JP2006029937A - Compensation method for rotation angle of rotation angle detector - Google Patents

Compensation method for rotation angle of rotation angle detector Download PDF

Info

Publication number
JP2006029937A
JP2006029937A JP2004208150A JP2004208150A JP2006029937A JP 2006029937 A JP2006029937 A JP 2006029937A JP 2004208150 A JP2004208150 A JP 2004208150A JP 2004208150 A JP2004208150 A JP 2004208150A JP 2006029937 A JP2006029937 A JP 2006029937A
Authority
JP
Japan
Prior art keywords
angle
rotation
absolute
rotation angle
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004208150A
Other languages
Japanese (ja)
Inventor
Koji Oike
幸司 御池
Kiyotaka Uehira
清孝 植平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004208150A priority Critical patent/JP2006029937A/en
Publication of JP2006029937A publication Critical patent/JP2006029937A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compensation method for angle of rotation of an angle of rotation detector with high precision in which mechanical error of gears and electric error of an absolute angle of rotation detector are compensated with fewer compensation angle data. <P>SOLUTION: In the angle of rotation detector for steering of multiple rotation used for a car body control system of a car, a motor 15 for rotating a rotary shaft to be tested 7, a motor controller 14 for controlling the absolute angle of rotation of the motor 15 and an encoder 16 for detecting the absolute angle of rotation of the motor 15 are combined. The difference between the absolute angle of rotation of the rotary shaft to be tested 7 actually rotated by the motor 15 and a calculated absolute angle of rotation at every specific interval of the rotary shaft to be tested 7 obtained from absolute angle of rotation detectors 4 and 5 of a second and a third gears 2 and 3 is stored in a non-volatile memory 11 as a compensation angle. In the specific calculated absolute angles of rotation, the calculated absolute angle of rotation of the rotary shaft to be teste 7 is compensated with the difference between a straight line of the calculated absolute angle of rotation obtained using the compensation angle for the before and after the calculated absolute angle of rotation and a straight line of an ideal absolute angle of rotation not including a rotation detection error. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は自動車の車体制御システムなどに用いられる多回転のハンドルの回転角度検出装置の回転角補正方法に関するものである。   The present invention relates to a rotation angle correction method for a rotation angle detection device for a multi-turn steering wheel used in a vehicle body control system of an automobile.

従来、アブソリュートエンコーダなどのように多回転する回転体の絶対回転角を検出する装置としては、位相差を有する複数の回転体の絶対回転角から被検回転軸の絶対回転角を検出する回転角度の測定方法や装置が存在する。   Conventionally, as an apparatus for detecting the absolute rotation angle of a rotating body that rotates multiple times, such as an absolute encoder, a rotation angle that detects the absolute rotation angle of a rotating shaft to be detected from the absolute rotation angles of a plurality of rotating bodies having phase differences. Measurement methods and devices exist.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開昭63−118614号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 63-118614 A

しかしながら、上記の装置においては歯車の配列精度や芯振れ、また絶対回転角検出部における検出誤差などにより、被検回転軸の絶対回転角の検出精度が悪くなるという課題があった。   However, the above-described apparatus has a problem that the detection accuracy of the absolute rotation angle of the rotation shaft to be detected is deteriorated due to the alignment accuracy of the gears, the center deflection, and the detection error in the absolute rotation angle detection unit.

本発明はこの課題を解決するためのものであり、歯車の機械的誤差や絶対回転角検出部の電気的誤差を補正する高精度な回転角度検出装置の回転角補正方法を提供することを目的とするものである。   The present invention is for solving this problem, and an object of the present invention is to provide a highly accurate rotation angle correction method for a rotation angle detector that corrects mechanical errors of gears and electrical errors of an absolute rotation angle detector. It is what.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、被検回転軸に嵌合した第1の歯車に順次係合されそれぞれ歯数の異なる第2および第3の歯車と、この第2および第3の歯車の絶対回転角をそれぞれ検出する絶対回転角検出部とを備え、検出された前記第2および第3の歯車の絶対回転角の組み合わせに基づいて前記被検回転軸の多回転での絶対回転角を検出する回転角度検出装置において、前記被検回転軸を回転させるモータと、このモータの絶対回転角を制御するモータコントローラと、このモータの絶対回転角を検出するエンコーダとを用いて、前記モータにより実際に回転させた前記被検回転軸の絶対回転角と前記第2および第3の歯車の絶対回転角検出部より求めた前記被検回転軸の所定間隔毎の算出絶対回転角との差を補正角として不揮発性メモリに記憶し、前記所定の算出絶対回転角間においては、その前後の算出絶対回転角に対する補正角より求めた算出絶対回転角直線と回転検出誤差を含まない理想絶対回転角直線との差でもって被検回転軸の前記算出絶対回転角を補正するものである。   According to the first aspect of the present invention, the second and third gears, which are sequentially engaged with the first gear fitted to the rotation shaft to be tested and have different numbers of teeth, respectively, An absolute rotation angle detecting unit for detecting the absolute rotation angle of each gear, and based on the detected combination of the absolute rotation angles of the second and third gears, the absolute rotation in multiple rotations of the rotation shaft to be tested In the rotation angle detection device for detecting an angle, a motor for rotating the rotation shaft to be tested, a motor controller for controlling the absolute rotation angle of the motor, and an encoder for detecting the absolute rotation angle of the motor, An absolute rotation angle of the test rotation shaft actually rotated by a motor and a calculated absolute rotation angle for each predetermined interval of the test rotation shaft obtained from the absolute rotation angle detection unit of the second and third gears. Non-volatile with difference as correction angle The difference between the calculated absolute rotation angle line calculated from the correction angle for the calculated absolute rotation angle before and after the predetermined absolute rotation angle and the ideal absolute rotation angle line not including the rotation detection error is stored between the predetermined calculated absolute rotation angles. The calculated absolute rotation angle of the test rotation shaft is corrected.

本発明の請求項2に記載の発明は、被検回転軸を一方向に回転させた後、前記被検回転軸を逆方向に回転させて算出したヒステリシス角を前記不揮発性メモリに記憶させ、被検回転軸が逆回転するごとに前記算出絶対回転角をこのヒステリシス角で補正するものである。   The invention according to claim 2 of the present invention stores the hysteresis angle calculated by rotating the test rotation shaft in the reverse direction after rotating the test rotation shaft in one direction, and storing the hysteresis angle in the nonvolatile memory, The calculated absolute rotation angle is corrected by this hysteresis angle every time the rotation axis of the test rotates in the reverse direction.

本発明の請求項3に記載の発明は、被検回転軸の必要な検出範囲にわたって算出した補正角を不揮発性メモリに記憶し、被検回転軸の算出絶対回転角を補正するものである。   According to a third aspect of the present invention, the correction angle calculated over the necessary detection range of the test rotation axis is stored in a nonvolatile memory, and the calculated absolute rotation angle of the test rotation axis is corrected.

本発明の請求項4に記載の発明は、被検回転軸に嵌合した第1の歯車の1周期にわたって算出した補正角を不揮発性メモリに記憶し、被検回転軸の算出絶対回転角を補正するものである。   According to a fourth aspect of the present invention, the correction angle calculated over one cycle of the first gear fitted to the test rotation shaft is stored in the nonvolatile memory, and the calculated absolute rotation angle of the test rotation shaft is stored. It is to correct.

本発明の請求項5に記載の発明は、被検回転軸に嵌合した第1の歯車に順次係合されている第2および第3の歯車のうちどちらか1つの歯車の1周期にわたって算出した補正角を不揮発性メモリに記憶し、被検回転軸の算出絶対回転角を補正するものである。   The invention according to claim 5 of the present invention is calculated over one cycle of any one of the second gear and the third gear sequentially engaged with the first gear fitted to the test rotating shaft. The corrected angle is stored in a nonvolatile memory, and the calculated absolute rotation angle of the rotation axis to be detected is corrected.

これらの発明によれば、少ない補正角データを用いて、より少ない容量の不揮発性メモリに記憶させることにより、歯車の機械的な回転角の検出誤差や絶対回転角検出部の電気的な回転角の検出誤差を簡易な構成で補正でき、被検回転軸の算出した絶対回転角の検出精度が大幅に向上するという作用効果が得られるものである。   According to these inventions, by using a small amount of correction angle data and storing it in a nonvolatile memory with a smaller capacity, it is possible to detect a mechanical rotation angle detection error of the gear and an electrical rotation angle of the absolute rotation angle detection unit. The detection error can be corrected with a simple configuration, and the effect of greatly improving the detection accuracy of the absolute rotation angle calculated by the rotation axis to be detected can be obtained.

本発明によれば、より少ない容量の不揮発性メモリで、歯車の機械的誤差や絶対回転角検出部の電気的誤差により発生する絶対回転角の検出誤差を事前に求めた補正角で補正することにより、被検回転軸の多回転を高精度に検出する回転角度検出装置の回転角補正方法を簡易な形態で提供することができるという効果を奏するものである。   According to the present invention, the absolute rotation angle detection error caused by the mechanical error of the gear and the electrical error of the absolute rotation angle detection unit is corrected with a correction angle obtained in advance with a nonvolatile memory having a smaller capacity. Thus, the rotation angle correction method of the rotation angle detection device that detects the multiple rotations of the rotation shaft to be detected with high accuracy can be provided in a simple form.

以下、本発明の実施の形態について図1〜図9と(表1)を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 9 and (Table 1).

図1(a),(b)は本発明の実施の形態における回転角度検出装置の構成を示す正面図と側面図、図2は図1に示す第2および第3の歯車の絶対回転角検出部の拡大図、図3は同回転角度検出装置の回転角補正方法のシステム構成図、図4は第2の歯車2と第3の歯車3の絶対回転角より第1の歯車1の多回転での絶対回転角を算出する原理図、図5はリニアリティの補正原理を示す図、図6はヒステリシスの補正原理を示す図、図7〜図9は算出絶対回転角に含まれる誤差と被検回転軸7の絶対回転角との関係を示す図である。また(表1)はリニアリティの補正の具体的方法を示す表である。   1A and 1B are a front view and a side view showing a configuration of a rotation angle detection device according to an embodiment of the present invention, and FIG. 2 is an absolute rotation angle detection of the second and third gears shown in FIG. FIG. 3 is a system configuration diagram of the rotation angle correction method of the rotation angle detector, and FIG. 4 is a multiple rotation of the first gear 1 based on the absolute rotation angles of the second gear 2 and the third gear 3. FIG. 5 is a diagram showing the principle of correction of linearity, FIG. 6 is a diagram showing the principle of correction of hysteresis, and FIGS. 7 to 9 are errors included in the calculated absolute rotation angle and the test. It is a figure which shows the relationship with the absolute rotation angle of the rotating shaft. Table 1 shows a specific method for correcting linearity.

Figure 2006029937
Figure 2006029937

図1(a),(b)は被検回転軸7の多回転を検出する回転角度検出装置6の構成を示している。第1の歯車1は被検回転軸7に嵌合され、第2の歯車2は第1の歯車1と、第3の歯車3は第2の歯車2と順次係合されている。第2の歯車2および第3の歯車3の中央部には、それぞれ第1の磁石8および第2の磁石9が配置されている。   FIGS. 1A and 1B show the configuration of a rotation angle detection device 6 that detects multiple rotations of the rotation shaft 7 to be tested. The first gear 1 is fitted to the test rotating shaft 7, the second gear 2 is engaged with the first gear 1, and the third gear 3 is sequentially engaged with the second gear 2. A first magnet 8 and a second magnet 9 are disposed in the central portions of the second gear 2 and the third gear 3, respectively.

図2において、第1の磁石8に対向する位置には絶対回転角を検出する第1の絶対回転角検出部4が、第2の磁石9に対向する位置には絶対回転角を検出する第2の絶対回転角検出部5が配置されている。第1、第2の絶対回転角検出部4,5はそれぞれプリント基板10の上に配置されており、第1の絶対回転角検出部4は第2の歯車2の中央に固定された第1の磁石8の磁界方向を、また第2の絶対回転角検出部5は第3の歯車3の中央に固定された第2の磁石9の磁界方向を検出している。   In FIG. 2, a first absolute rotation angle detection unit 4 that detects an absolute rotation angle at a position that faces the first magnet 8 and a first rotation angle that detects an absolute rotation angle at a position that faces the second magnet 9. Two absolute rotation angle detectors 5 are arranged. The first and second absolute rotation angle detectors 4 and 5 are respectively arranged on the printed circuit board 10, and the first absolute rotation angle detector 4 is fixed to the center of the second gear 2. The second absolute rotation angle detection unit 5 detects the magnetic field direction of the second magnet 9 fixed to the center of the third gear 3.

図3において、不揮発性メモリ(EEPROM)11は補正角などを記憶するためのものである。CPU12は不揮発性メモリ(EEPROM)11や第1、第2の絶対回転角検出部4,5と接続されており、絶対回転角を算出する。また、CPU12とモータコントローラ14とは角度信号や命令信号を送受信するシリアル通信ライン13で結ばれ、信号の送受信ができるようになっている。被検回転軸7にはモータ15が取り付けられており、モータコントローラ14によりその回転を高精度に駆動制御するようになっている。被検回転軸7の絶対回転角はエンコーダ16で高精度に検出してモータコントローラ14にこの絶対回転角を送信している。   In FIG. 3, a non-volatile memory (EEPROM) 11 is for storing correction angles and the like. The CPU 12 is connected to the nonvolatile memory (EEPROM) 11 and the first and second absolute rotation angle detectors 4 and 5 and calculates the absolute rotation angle. The CPU 12 and the motor controller 14 are connected by a serial communication line 13 that transmits and receives an angle signal and a command signal so that signals can be transmitted and received. A motor 15 is attached to the rotating shaft 7 to be tested, and the motor controller 14 drives and controls the rotation with high accuracy. The absolute rotation angle of the rotation shaft 7 to be detected is detected with high accuracy by the encoder 16 and is transmitted to the motor controller 14.

次に、被検回転軸7の絶対回転角の検出方法について説明する。   Next, a method for detecting the absolute rotation angle of the test rotating shaft 7 will be described.

図1において被検回転軸7が回転すると、この被検回転軸7と嵌合している第1の歯車1が回転する。第1の歯車1が回転するとこれに連動して第1の歯車1と係合している第2の歯車2及び第2の歯車2に係合している第3の歯車3が回転する。第2の歯車2と第3の歯車3は歯数が異なるため、被検回転軸7に対して異なる速さで回転する。第1の絶対回転角検出部4からは第2の歯車2の絶対回転角を算出するための信号が、同様に第2の絶対回転角検出部5からは第3の歯車3の絶対回転角を算出するための信号が得られるようになっている。   In FIG. 1, when the test rotating shaft 7 rotates, the first gear 1 fitted to the test rotating shaft 7 rotates. When the first gear 1 is rotated, the second gear 2 engaged with the first gear 1 and the third gear 3 engaged with the second gear 2 are rotated in conjunction with the rotation. Since the second gear 2 and the third gear 3 have different numbers of teeth, the second gear 2 and the third gear 3 rotate at different speeds with respect to the rotation shaft 7 to be tested. A signal for calculating the absolute rotation angle of the second gear 2 is output from the first absolute rotation angle detection unit 4, and similarly, an absolute rotation angle of the third gear 3 is output from the second absolute rotation angle detection unit 5. A signal for calculating is obtained.

図4を用いて被検回転軸7の多回転での絶対回転角を算出する方法について説明する。図4の上段において、第1の歯車1の歯数をa、第2の歯車2の歯数をb、第3の歯車3の歯数をcとすると、第2の歯車2は被検回転軸7に嵌合している第1の歯車1の回転に対して歯数比(a/b)の速さで回転し、第3の歯車3は被検回転軸7に嵌合している第1の歯車1の回転に対して歯数比(a/c)の速さで回転するが、b≠cであるので第2の歯車2と第3の歯車3の絶対回転角の位相差はある規則性をもって変動する。図4の中段において被検回転軸7の多回転での絶対回転角19に対して、第2の歯車2の絶対回転角値17と第3の歯車3の絶対回転角値18の差が回転検出範囲において直線上に乗り、1対1に決定されることを示している。   A method for calculating the absolute rotation angle of the test rotating shaft 7 in multiple rotations will be described with reference to FIG. In the upper part of FIG. 4, when the number of teeth of the first gear 1 is a, the number of teeth of the second gear 2 is b, and the number of teeth of the third gear 3 is c, the second gear 2 is rotated under test. The first gear 1 fitted on the shaft 7 rotates at a gear ratio (a / b) with respect to the rotation of the first gear 1, and the third gear 3 is fitted on the rotation shaft 7 to be tested. The gear rotates at the speed of the gear ratio (a / c) with respect to the rotation of the first gear 1, but since b ≠ c, the phase difference between the absolute rotation angles of the second gear 2 and the third gear 3. Fluctuates with a certain regularity. 4, the difference between the absolute rotation angle value 17 of the second gear 2 and the absolute rotation angle value 18 of the third gear 3 is rotated with respect to the absolute rotation angle 19 in the multiple rotation of the rotation shaft 7 to be tested. It shows that it is determined on a straight line in the detection range and one-to-one.

次に、被検回転軸7の絶対回転角の検出精度を向上させる補正方法について説明する。   Next, a correction method for improving the detection accuracy of the absolute rotation angle of the test rotating shaft 7 will be described.

図4の下段において、被検回転軸7の多回転での絶対回転角19に対し、被検回転軸7の理想の絶対回転角(以下、理想絶対角という)20はここに示す直線上に乗るわけだが、第1の絶対回転角検出部4と第2の絶対回転角検出部5の信号より算出した絶対回転角(以下、算出絶対角という)21は、第1の歯車1、第2の歯車2の歯の配列精度や芯振れなどの機械的な検出誤差や第1の絶対回転角検出部4と第2の絶対回転角検出部5における電気的な検出誤差などが含まれており、被検回転軸7の理想絶対角20と一致しない。そこで被検回転軸7の絶対回転角19に対し、算出絶対角21と理想絶対角20との差を補正角として不揮発性メモリ(EEPROM)11に記憶し、算出絶対角21をこの補正角で補正することにより理想絶対角20に近づけて被検回転軸7の絶対回転角の検出精度を高めることができる。   In the lower part of FIG. 4, an ideal absolute rotation angle 20 (hereinafter referred to as an ideal absolute angle) 20 of the test rotation shaft 7 is on a straight line shown here with respect to the absolute rotation angle 19 of the test rotation shaft 7 in multiple rotations. The absolute rotation angle (hereinafter referred to as a calculated absolute angle) 21 calculated from the signals of the first absolute rotation angle detection unit 4 and the second absolute rotation angle detection unit 5 is the first gear 1 and the second gear. Mechanical detection errors such as tooth arrangement accuracy of the gear 2 and center runout, and electrical detection errors in the first absolute rotation angle detection unit 4 and the second absolute rotation angle detection unit 5 are included. This does not coincide with the ideal absolute angle 20 of the rotation axis 7 to be examined. Therefore, the difference between the calculated absolute angle 21 and the ideal absolute angle 20 is stored in the nonvolatile memory (EEPROM) 11 as a correction angle with respect to the absolute rotation angle 19 of the rotation shaft 7 to be tested, and the calculated absolute angle 21 is calculated with this correction angle. By correcting it, the detection accuracy of the absolute rotation angle of the rotation shaft 7 to be detected can be raised close to the ideal absolute angle 20.

図5〜図9と(表1)を用いて、被検回転軸7の絶対回転角の検出精度、特にリニアリティの補正方法について更に詳細に説明する。   With reference to FIGS. 5 to 9 and (Table 1), the detection accuracy of the absolute rotation angle of the rotation shaft 7 to be detected, particularly the method for correcting the linearity will be described in more detail.

図5は横軸に回転角度検出装置6により算出された被検回転軸7の絶対回転角を、縦軸に被検回転軸7が実際に回転した絶対回転角を取っている。シリアル通信ライン13から送信されてくる算出絶対角が1°毎に変化するようにモータコントローラ14にてモータ15を制御する。その時の被検回転軸7の絶対回転角をエンコーダ16にて検出する。1°毎の算出絶対角に対する補正角は次式により求める。   In FIG. 5, the horizontal axis represents the absolute rotation angle of the test rotation shaft 7 calculated by the rotation angle detection device 6, and the vertical axis represents the absolute rotation angle obtained by actually rotating the test rotation shaft 7. The motor 15 is controlled by the motor controller 14 so that the calculated absolute angle transmitted from the serial communication line 13 changes every 1 °. The absolute rotation angle of the rotation shaft 7 to be detected at that time is detected by the encoder 16. The correction angle for the calculated absolute angle every 1 ° is obtained by the following equation.

(1°毎の算出絶対角に対する補正角)=(被検回転軸7の絶対回転角)−(1°毎の算出絶対角)…(1)
1°より小さい算出絶対角(例えば0.1°毎の算出絶対角)に対する補正角は不揮発性メモリ(EEPROM)11に記憶していないので、1°毎の補正角より0.1°毎の算出絶対角を推定する。xを0.1°毎の算出絶対角、cをxよりも小さく最も近い1°毎の算出絶対角とする。すなわちc<x<c+1とする。mを(c+1)における補正角、nをcにおける補正角とし、これらの補正角に基づき被検回転軸7の算出絶対角を直線近似すると、算出絶対角Y1は次式で表される。
(Correction angle for calculated absolute angle every 1 °) = (Absolute rotational angle of rotation shaft 7 to be measured) − (Absolute calculated angle every 1 °) (1)
Since the correction angle for the calculated absolute angle smaller than 1 ° (for example, the calculated absolute angle every 0.1 °) is not stored in the nonvolatile memory (EEPROM) 11, the correction angle for every 0.1 ° is smaller than the correction angle for every 1 °. Estimate the calculated absolute angle. Let x be the calculated absolute angle every 0.1 °, and c be the closest calculated absolute angle every 1 ° smaller than x. That is, c <x <c + 1. When m is a correction angle in (c + 1), n is a correction angle in c, and the calculated absolute angle of the rotation shaft 7 to be linearly approximated based on these correction angles, the calculated absolute angle Y1 is expressed by the following equation.

Y1=(m−n+1)・(x−c)+n…(2)
理想的な算出絶対角とは被検回転軸7の実際の絶対回転角と一致しているものと定義できるので、理想的な算出絶対角をY2とすると
Y2=x−c…(3)
と表される。すなわちY1とY2との差が補正角となる。このことは(2)式、(3)式より次のように求められる。
Y1 = (m−n + 1) · (x−c) + n (2)
Since the ideal calculated absolute angle can be defined as being coincident with the actual absolute rotation angle of the rotation axis 7 to be examined, assuming that the ideal calculated absolute angle is Y2, Y2 = x−c (3)
It is expressed. That is, the difference between Y1 and Y2 is the correction angle. This can be obtained as follows from equations (2) and (3).

Y1−Y2=(m−n)・(x−c)+n…(4)
(表1)ではこの(4)式を使って具体的に1°毎の補正角から0.1°毎の補正角を算出する方法を示している。初期設定時に回転角度検出装置6の算出絶対角が0°の時は被検回転軸7の絶対回転角も0°としている。まずモータコントローラ14によってモータ15を回転させ、シリアル通信ライン13を監視して算出絶対角が1°になった時に被検回転軸7の絶対回転角をエンコーダ16により確定する。この(表1)では0.8°となっている。すなわち回転角度検出装置6の算出絶対角1°に対する補正角は(1)式より−0.2°となる。これら1°毎の補正角から0°〜1°における0.1°毎の補正角を(4)式から求める。mは(c+1)すなわち算出絶対角1°における補正角なので−0.2°となる。一方、nはcにおける補正角すなわち0°における補正角なので0°となる。0°から1°までの0.1°毎の補正角を求める式はこれらの値を(4)式に代入して
Y1−Y2=(−0.2−0)・(x−0)+0
=−0.2・x…(5)
となる。例えば、算出絶対角xが0.1°の時の補正角は(5)式より−0.02°となる。これは算出絶対角が0.1°であっても被検回転軸7は0.08°(0.1−0.02)しか回転していないだろうと仮定している。また算出絶対角xが0.5°の時の補正角は(5)式より−0.1°となり、算出絶対角0.5°は0.4°(0.5−0.1)に修正される。
Y1-Y2 = (mn). (Xc) + n (4)
(Table 1) shows a method of calculating the correction angle every 0.1 ° from the correction angle every 1 ° using the equation (4). When the calculated absolute angle of the rotation angle detection device 6 is 0 ° at the initial setting, the absolute rotation angle of the rotation shaft 7 to be detected is also 0 °. First, the motor 15 is rotated by the motor controller 14 and the serial communication line 13 is monitored. When the calculated absolute angle becomes 1 °, the absolute rotation angle of the rotating shaft 7 to be detected is determined by the encoder 16. In this (Table 1), it is 0.8 °. That is, the correction angle with respect to the calculated absolute angle 1 ° of the rotation angle detection device 6 is −0.2 ° from the equation (1). From these correction angles every 1 °, correction angles every 0.1 ° in the range of 0 ° to 1 ° are obtained from the equation (4). Since m is a correction angle at (c + 1), that is, a calculated absolute angle of 1 °, it is −0.2 °. On the other hand, since n is a correction angle at c, that is, a correction angle at 0 °, it is 0 °. The equation for calculating the correction angle every 0.1 ° from 0 ° to 1 ° is obtained by substituting these values into the equation (4). Y1−Y2 = (− 0.2−0) · (x−0) +0
= −0.2 · x (5)
It becomes. For example, the correction angle when the calculated absolute angle x is 0.1 ° is −0.02 ° from the equation (5). This assumes that even if the calculated absolute angle is 0.1 °, the rotation axis 7 to be tested will only rotate 0.08 ° (0.1-0.02). When the calculated absolute angle x is 0.5 °, the correction angle is −0.1 ° from the equation (5), and the calculated absolute angle 0.5 ° is 0.4 ° (0.5−0.1). Will be corrected.

引き続き、モータコントローラ14によって回転角度検出装置6の算出絶対角が2°となるまでモータ15を回転させる。この時の被検回転軸7の絶対回転角をエンコーダ16により検出する。(表1)では2.2°となっている。すなわち算出絶対角2°に対する補正角は(1)式より+0.2°となる。これら1°毎の補正角から1°〜2°における0.1°毎の補正角を(4)式から求めると次のようになる。   Subsequently, the motor 15 is rotated by the motor controller 14 until the calculated absolute angle of the rotation angle detection device 6 becomes 2 °. The absolute rotation angle of the rotation shaft 7 to be detected at this time is detected by the encoder 16. In Table 1, it is 2.2 °. That is, the correction angle for the calculated absolute angle of 2 ° is + 0.2 ° from the equation (1). From these correction angles every 1 °, correction angles every 0.1 ° in the range of 1 ° to 2 ° are obtained from the equation (4) as follows.

mは(c+1)すなわち回転角度検出装置6の算出絶対角2°における補正角なので+0.2°となる。一方、nはcにおける補正角すなわち1°における補正角なので−0.2°となる。1°から2°までの0.1°毎の補正角を求める式は、これらの値を(4)式に代入して
Y1−Y2=(0.2−(−0.2)・(x−1)−0.2
=0.4・(x−1)−0.2…(6)
となる。例えば、算出絶対角xが1.1°の時の補正角は(6)式より−0.16°となる。これは算出絶対角が1.1°であっても、被検回転軸7は0.94°(1.1−0.16)しか回転していないだろうと仮定している。また算出絶対角xが1.5°の時の補正角は(6)式より0°となり、算出絶対角1.5°は修正しなくても理想絶対角の直線上にあるだろうと推定している。
Since m is a correction angle at (c + 1), that is, the calculated absolute angle 2 ° of the rotation angle detection device 6, it is + 0.2 °. On the other hand, since n is a correction angle at c, that is, a correction angle at 1 °, it is −0.2 °. The equation for obtaining the correction angle every 0.1 ° from 1 ° to 2 ° is obtained by substituting these values into the equation (4). Y1-Y2 = (0.2 − (− 0.2) · (x -1) -0.2
= 0.4 · (x−1) −0.2 (6)
It becomes. For example, the correction angle when the calculated absolute angle x is 1.1 ° is −0.16 ° from the equation (6). This assumes that even if the calculated absolute angle is 1.1 °, the rotation axis 7 to be tested will only rotate 0.94 ° (1.1-0.16). When the calculated absolute angle x is 1.5 °, the correction angle is 0 ° from the equation (6), and the calculated absolute angle 1.5 ° is estimated to be on the straight line of the ideal absolute angle without correction. ing.

次に、モータコントローラ14によって回転角度検出装置6の算出絶対角が3°となるまでモータ15を回転させる。この時の被検回転軸7の絶対回転角を同様にエンコーダ16により検出する。(表1)では3.2°となっている。すなわち算出絶対角3°に対する補正角は(1)式より+0.2°となる。これら1°毎の補正角から2°〜3°における0.1°毎の補正角を(4)式から求めると次のようになる。   Next, the motor 15 is rotated by the motor controller 14 until the calculated absolute angle of the rotation angle detection device 6 becomes 3 °. The absolute rotation angle of the rotation shaft 7 to be detected at this time is similarly detected by the encoder 16. In Table 1, it is 3.2 °. In other words, the correction angle for the calculated absolute angle of 3 ° is + 0.2 ° from the equation (1). From these correction angles every 1 °, correction angles every 0.1 ° in 2 ° to 3 ° are obtained from the equation (4) as follows.

mは(c+1)すなわち算出絶対角3°における補正角なので+0.2°となる。一方、nはcにおける補正角すなわち2°における補正角なので+0.2°となる。2°から3°までの0.1°毎の補正角を求める式は、これらの値を(4)式に代入して
Y1−Y2=(0.2−0.2)・(x−2)+0.2
=0.2…(7)
となる。例えば、算出絶対角xが2.1°の時の補正角は(7)式より0.2°となる。これは算出絶対角が2.1°であっても被検回転軸7は2.3°(2.1+0.2)回転しているだろうと推定している。また、算出絶対角xが2.5°の時の補正角も(7)式より0.2°となり、算出絶対角2.5°は2.7°(2.5+0.2)に修正する。
Since m is a correction angle at (c + 1), that is, a calculated absolute angle of 3 °, it is + 0.2 °. On the other hand, since n is a correction angle at c, that is, a correction angle at 2 °, it is + 0.2 °. The equation for obtaining the correction angle every 0.1 ° from 2 ° to 3 ° is obtained by substituting these values into the equation (4). Y1−Y2 = (0.2−0.2) · (x−2) ) +0.2
= 0.2 ... (7)
It becomes. For example, the correction angle when the calculated absolute angle x is 2.1 ° is 0.2 ° from the equation (7). This estimates that even if the calculated absolute angle is 2.1 °, the rotation axis 7 to be tested will rotate 2.3 ° (2.1 + 0.2). Also, the correction angle when the calculated absolute angle x is 2.5 ° is 0.2 ° from the equation (7), and the calculated absolute angle 2.5 ° is corrected to 2.7 ° (2.5 + 0.2). .

次に、図6にて被検回転軸7の絶対回転角の検出精度、特にヒステリシスの補正方法について説明する。   Next, the detection accuracy of the absolute rotation angle of the rotation shaft 7 to be tested, particularly the method for correcting the hysteresis will be described with reference to FIG.

図6は横軸に回転角度検出装置6により算出された絶対回転角を、縦軸に被検回転軸7の絶対回転角を取っている。シリアル通信ライン13から送信されてくる算出絶対角をモータコントローラ14にて監視しながらモータ15を回転させる。まず算出絶対角が増加する方向にモータ15を回転させる。次に逆方向にモータ15を回転させる。この時、算出絶対角が変動するまでの被検回転軸7の絶対回転角をエンコーダ16より求める。この値をヒステリシスの補正角として不揮発性メモリ(EEPROM)11に記憶する。このヒステリシスの要因としては歯車等のバックラッシュが考えられるので、この補正角は被検回転軸7の回転位置によって異なる。従って複数の回転位置でのヒステリシスの平均値を補正角としてもよい。   In FIG. 6, the horizontal axis represents the absolute rotation angle calculated by the rotation angle detection device 6, and the vertical axis represents the absolute rotation angle of the test rotation shaft 7. The motor 15 is rotated while the calculated absolute angle transmitted from the serial communication line 13 is monitored by the motor controller 14. First, the motor 15 is rotated in the direction in which the calculated absolute angle increases. Next, the motor 15 is rotated in the reverse direction. At this time, the absolute rotation angle of the rotation shaft 7 to be tested until the calculated absolute angle fluctuates is obtained from the encoder 16. This value is stored in the nonvolatile memory (EEPROM) 11 as a hysteresis correction angle. As a factor of this hysteresis, backlash of a gear or the like can be considered, and this correction angle varies depending on the rotational position of the rotation shaft 7 to be tested. Therefore, the average value of hysteresis at a plurality of rotational positions may be used as the correction angle.

回転角度検出装置6においては、算出絶対角が減少したら、このヒステリシスの補正角を算出絶対角に加えてヒステリシスによる精度の低下を補正する。次に、被検回転軸7が反転して算出絶対角が増加した場合は、ヒステリシスの補正は行わないようにする。   In the rotation angle detection device 6, when the calculated absolute angle decreases, the correction angle of this hysteresis is added to the calculated absolute angle to correct a decrease in accuracy due to the hysteresis. Next, when the rotation axis 7 to be tested is inverted and the calculated absolute angle increases, the hysteresis is not corrected.

次に図7〜図9を用いて、算出絶対角に含まれる誤差を修正するリニアリティの補正角を記憶した不揮発性メモリ(EEPROM)11の容量をさらに削減する方法について説明する。   Next, a method for further reducing the capacity of the nonvolatile memory (EEPROM) 11 storing the linearity correction angle for correcting the error included in the calculated absolute angle will be described with reference to FIGS.

図7〜図9の下段に示すグラフでは、横軸に被検回転軸7の絶対回転角、縦軸に回転角度検出装置6の算出絶対角21の誤差をとっている。図7〜図9の中段に示すように算出絶対角21が理想絶対角20に一致した時に、下段に示した算出絶対角21の誤差がゼロとなり精度の高い回転角度検出装置が実現できていることを示している。図7では被検回転軸7の絶対回転角と算出絶対角21の誤差との間には相関がないので、検出範囲においてリニアリティの補正角を全て不揮発性メモリ(EEPROM)11に記憶し、算出絶対角21を理想絶対角20に近づける必要がある。そのため大容量の不揮発性メモリ(EEPROM)11が必要となる。一方、図8では算出絶対角の誤差曲線が被検回転軸7の絶対回転角360°の周期を持っている。これは算出絶対回転角の誤差が図1に示す第1の歯車1に起因するものが支配的であることを示している。この場合、図7の場合と異なり被検回転軸7の絶対回転角0〜360°の範囲におけるリニアリティの補正角だけを不揮発性メモリ(EEPROM)11に記憶することで、算出絶対角21を理想絶対角20に近づけることができる。ゆえに図7の場合より少ない不揮発性メモリ(EEPROM)11で算出絶対角の誤差を小さくすることができる。   In the graphs shown in the lower part of FIGS. 7 to 9, the horizontal axis represents the absolute rotation angle of the rotation shaft 7 to be tested, and the vertical axis represents the error of the calculated absolute angle 21 of the rotation angle detection device 6. When the calculated absolute angle 21 coincides with the ideal absolute angle 20 as shown in the middle stage of FIGS. 7 to 9, the error of the calculated absolute angle 21 shown in the lower stage becomes zero, and a highly accurate rotation angle detection device can be realized. It is shown that. In FIG. 7, since there is no correlation between the absolute rotation angle of the test rotating shaft 7 and the error of the calculated absolute angle 21, all the correction angles of linearity in the detection range are stored in the nonvolatile memory (EEPROM) 11 and calculated. The absolute angle 21 needs to be close to the ideal absolute angle 20. Therefore, a large-capacity nonvolatile memory (EEPROM) 11 is required. On the other hand, in FIG. 8, the error curve of the calculated absolute angle has a cycle of the absolute rotation angle 360 ° of the rotation axis 7 to be tested. This indicates that the error of the calculated absolute rotation angle is dominant due to the first gear 1 shown in FIG. In this case, unlike the case of FIG. 7, only the linearity correction angle in the range of the absolute rotation angle 0 to 360 ° of the rotation shaft 7 to be tested is stored in the nonvolatile memory (EEPROM) 11, so that the calculated absolute angle 21 is ideal. The absolute angle 20 can be approached. Therefore, the error of the calculated absolute angle can be reduced with less nonvolatile memory (EEPROM) 11 than in the case of FIG.

一方、図9では算出絶対角の誤差曲線が第2の歯車2の回転周期を持っている。これは算出絶対角の誤差が図1に示す第2の歯車2に起因するものが支配的であることを示している。この場合、図7、図8の場合と異なり、第1の歯車1の歯数をa、第2の歯車2の歯数をb(ここでa>bとする)とすると、被検回転軸7の絶対回転角0〜360・b/a°の範囲におけるリニアリティの補正角だけを不揮発性メモリ(EEPROM)11に記憶することで算出絶対角を理想絶対角20に近づけることができる。ゆえに図8の場合より少ない不揮発性メモリ(EEPROM)11で算出絶対角の誤差を小さくすることができる。   On the other hand, in FIG. 9, the calculated absolute angle error curve has the rotation period of the second gear 2. This indicates that the error of the calculated absolute angle is dominant due to the second gear 2 shown in FIG. In this case, unlike FIGS. 7 and 8, if the number of teeth of the first gear 1 is a and the number of teeth of the second gear 2 is b (here, a> b), the rotation shaft to be tested The calculated absolute angle can be brought close to the ideal absolute angle 20 by storing only the linearity correction angle in the range of 0 to 360 · b / a ° of the absolute rotation angle 7 in the nonvolatile memory (EEPROM) 11. Therefore, the error of the calculated absolute angle can be reduced with less nonvolatile memory (EEPROM) 11 than in the case of FIG.

以上のように本実施の形態における回転角度検出装置6の回転角補正方法においては、検出範囲全域の第1の歯車1が1回転する範囲にわたって或いは第2の歯車2が1回転する範囲にわたって、被検回転軸7の算出絶対角に対する補正角を不揮発性メモリ(EEPROM)11に記憶するという方法により、歯車の機械的誤差や絶対回転角検出部の電気的誤差による絶対回転角の検出誤差も修正でき、被検回転軸の算出絶対角の精度向上を図ることができるという作用効果が得られる。また、補正角はある一定の絶対回転角おきに記憶しているため、より少ない容量の不揮発性メモリ11で被検回転軸7の検出精度を上げることができるという作用効果も得られる。   As described above, in the rotation angle correction method of the rotation angle detection device 6 in the present embodiment, over the range where the first gear 1 in the entire detection range rotates once or over the range where the second gear 2 rotates once. By storing a correction angle for the calculated absolute angle of the rotation axis 7 to be tested in a nonvolatile memory (EEPROM) 11, a detection error of the absolute rotation angle due to a mechanical error of the gear and an electrical error of the absolute rotation angle detector is also obtained. The operational effect is obtained that it can be corrected and the accuracy of the calculated absolute angle of the rotation axis to be tested can be improved. In addition, since the correction angle is stored at every certain absolute rotation angle, there is an effect that the detection accuracy of the rotation axis 7 to be detected can be increased with the nonvolatile memory 11 having a smaller capacity.

本発明にかかる回転角度検出装置の回転角補正方法は、より少ない容量の不揮発性メモリを用いた簡単な構成で、被検回転軸の多回転を高精度に検出することができるという作用効果を有しており、車両のパワーステアリング等で使用される回転角度検出装置の回転角補正方法として用いるのに適している。   The rotation angle correction method of the rotation angle detection device according to the present invention has the effect of being able to detect multiple rotations of the rotation axis to be detected with high accuracy with a simple configuration using a nonvolatile memory with a smaller capacity. It is suitable for use as a rotation angle correction method of a rotation angle detection device used for power steering of a vehicle.

(a)本発明の実施の形態における回転角度検出装置の構成を示す正面図、(b)同側面図(A) The front view which shows the structure of the rotation angle detection apparatus in embodiment of this invention, (b) The side view 図1に示す第2および第3の歯車の絶対回転角検出部の拡大図The enlarged view of the absolute rotation angle detection part of the 2nd and 3rd gearwheel shown in FIG. 同回転角度検出装置の回転角補正方法のシステム構成図System configuration diagram of the rotation angle correction method of the rotation angle detector 第2の歯車2と第3の歯車3の絶対回転角より第1の歯車1の多回転での絶対回転角を算出する原理図Principle diagram for calculating the absolute rotation angle of the first gear 1 in multiple rotations from the absolute rotation angles of the second gear 2 and the third gear 3 リニアリティの補正の方法を示す原理図Principle diagram showing how to correct linearity ヒステリシスの補正の方法を示す原理図Principle diagram showing how to correct hysteresis 算出絶対角に含まれる誤差と被検回転軸7の絶対回転角との関係を示す図The figure which shows the relationship between the error contained in a calculation absolute angle, and the absolute rotation angle of the rotating shaft 7 to be tested. 算出絶対角に含まれる誤差と被検回転軸7の絶対回転角との関係を示す図The figure which shows the relationship between the error contained in a calculation absolute angle, and the absolute rotation angle of the rotating shaft 7 to be tested. 算出絶対角に含まれる誤差と被検回転軸7の絶対回転角との関係を示す図The figure which shows the relationship between the error contained in a calculation absolute angle, and the absolute rotation angle of the rotating shaft 7 to be tested.

符号の説明Explanation of symbols

1 第1の歯車
2 第2の歯車
3 第3の歯車
4 第1の絶対回転角検出部
5 第2の絶対回転角検出部
6 回転角度検出装置
7 被検回転軸
8 第1の磁石
9 第2の磁石
10 プリント基板
11 不揮発性メモリ(EEPROM)
12 CPU
13 シリアル通信ライン
14 モータコントローラ
15 モータ
16 エンコーダ
17 歯車2の絶対回転角値
18 歯車3の絶対回転角値
19 被検回転軸7の絶対回転角
20 被検回転軸7の理想絶対角の直線
21 被検回転軸7の算出絶対角
22 被検回転軸7の理想絶対角の直線
23 補正角より求めた被検回転軸7の算出絶対角の直線
24,25,26 算出絶対角の誤差曲線
DESCRIPTION OF SYMBOLS 1 1st gear 2 2nd gear 3 3rd gear 4 1st absolute rotation angle detection part 5 2nd absolute rotation angle detection part 6 Rotation angle detection apparatus 7 Rotating shaft 8 to be tested 8 1st magnet 9 1st Magnet of 2 10 Printed circuit board 11 Non-volatile memory (EEPROM)
12 CPU
13 Serial communication line 14 Motor controller 15 Motor 16 Encoder 17 Absolute rotation angle value of gear 2 18 Absolute rotation angle value of gear 3 19 Absolute rotation angle of rotation shaft 7 to be tested 20 Straight line of ideal absolute angle of rotation shaft 7 to be tested 21 Calculated absolute angle 22 of the test rotary shaft 22 Straight line of ideal absolute angle of the test rotary shaft 23 Straight line of calculated absolute angle 24 of the test rotary shaft 7 calculated from the correction angle 24, 25, 26 Error curve of the calculated absolute angle

Claims (5)

被検回転軸に嵌合した第1の歯車に順次係合されそれぞれ歯数の異なる第2および第3の歯車と、この第2および第3の歯車の絶対回転角をそれぞれ検出する絶対回転角検出部とを備え、検出された前記第2および第3の歯車の絶対回転角の組み合わせに基づいて前記被検回転軸の多回転での絶対回転角を検出する回転角度検出装置において、前記被検回転軸を回転させるモータと、このモータの絶対回転角を制御するモータコントローラと、このモータの絶対回転角を検出するエンコーダとを用いて、前記モータにより実際に回転させた前記被検回転軸の絶対回転角と前記第2および第3の歯車の絶対回転角検出部より求めた前記被検回転軸の所定間隔毎の算出絶対回転角との差を補正角として不揮発性メモリに記憶し、前記所定の算出絶対回転角間においては、その前後の算出絶対回転角に対する補正角より求めた算出絶対回転角直線と回転検出誤差を含まない理想絶対回転角直線との差でもって被検回転軸の前記算出絶対回転角を補正するようにした回転角度検出装置の回転角補正方法。 Second and third gears that are sequentially engaged with the first gear fitted to the rotation shaft to be tested and have different numbers of teeth, and absolute rotation angles that detect the absolute rotation angles of the second and third gears, respectively. A rotation angle detecting device for detecting an absolute rotation angle in multiple rotations of the rotation shaft to be detected based on a combination of the detected absolute rotation angles of the second and third gears. Using the motor that rotates the test rotation shaft, the motor controller that controls the absolute rotation angle of the motor, and the encoder that detects the absolute rotation angle of the motor, the test rotation shaft that is actually rotated by the motor And the difference between the absolute rotation angle of the second and third gears calculated from the absolute rotation angle detection unit of the second and third gears at a predetermined interval of the rotation axis to be tested is stored in a nonvolatile memory as a correction angle, The predetermined calculation limit Between the rotation angles, the calculated absolute rotation angle of the rotation axis to be tested is the difference between the calculated absolute rotation angle straight line calculated from the correction angle for the calculated absolute rotation angle before and after that and the ideal absolute rotation angle straight line not including the rotation detection error. A rotation angle correction method for a rotation angle detection device that corrects the rotation angle. 被検回転軸を一方向に回転させた後、前記被検回転軸を逆方向に回転させて算出したヒステリシス角を前記不揮発性メモリに記憶させ、被検回転軸が逆回転するごとに前記算出絶対回転角をこのヒステリシス角で補正するようにした請求項1に記載の回転角度検出装置の回転角補正方法。 After rotating the test rotation shaft in one direction, the hysteresis angle calculated by rotating the test rotation shaft in the reverse direction is stored in the nonvolatile memory, and the calculation is performed every time the test rotation shaft rotates in the reverse direction. The rotation angle correction method of the rotation angle detection device according to claim 1, wherein the absolute rotation angle is corrected by the hysteresis angle. 被検回転軸の必要な検出範囲にわたって算出した補正角を不揮発性メモリに記憶させるようにした請求項1に記載の回転角度検出装置の回転角補正方法。 The rotation angle correction method of the rotation angle detection device according to claim 1, wherein the correction angle calculated over a necessary detection range of the rotation axis to be detected is stored in a nonvolatile memory. 被検回転軸に嵌合した第1の歯車の1周期にわたって算出した補正角を不揮発性メモリに記憶させるようにした請求項1に記載の回転角度検出装置の回転角補正方法。 The rotation angle correction method of the rotation angle detection device according to claim 1, wherein the correction angle calculated over one cycle of the first gear fitted to the rotation shaft to be tested is stored in the nonvolatile memory. 被検回転軸に嵌合した第1の歯車に順次係合されている第2および第3の歯車のうちどちらか1つの歯車の1周期にわたって算出した補正角を不揮発性メモリに記憶させるようにした請求項1に記載の回転角度検出装置の回転角補正方法。 The correction angle calculated over one cycle of any one of the second and third gears sequentially engaged with the first gear fitted to the test rotating shaft is stored in the nonvolatile memory. The rotation angle correction method for the rotation angle detection device according to claim 1.
JP2004208150A 2004-07-15 2004-07-15 Compensation method for rotation angle of rotation angle detector Pending JP2006029937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208150A JP2006029937A (en) 2004-07-15 2004-07-15 Compensation method for rotation angle of rotation angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208150A JP2006029937A (en) 2004-07-15 2004-07-15 Compensation method for rotation angle of rotation angle detector

Publications (1)

Publication Number Publication Date
JP2006029937A true JP2006029937A (en) 2006-02-02

Family

ID=35896484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208150A Pending JP2006029937A (en) 2004-07-15 2004-07-15 Compensation method for rotation angle of rotation angle detector

Country Status (1)

Country Link
JP (1) JP2006029937A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232617A (en) * 2006-03-02 2007-09-13 Tokai Rika Co Ltd Rotary angle detector and its initial setting method
KR100767185B1 (en) 2006-07-26 2007-10-12 지멘스 오토모티브 주식회사 Compensating installation for steering angle of car and method thereof
JP2009174863A (en) * 2008-01-21 2009-08-06 Seiko Epson Corp Transducer
JP2010096708A (en) * 2008-10-20 2010-04-30 Denso Corp Detector of motor rotational angle
JP2011149821A (en) * 2010-01-21 2011-08-04 Showa Corp Rotation angle detection device and rotation angle detection method
US8204641B2 (en) 2009-07-31 2012-06-19 Denso Corporation Traction motor control apparatus for vehicle
US8487563B2 (en) 2009-11-27 2013-07-16 Denso Corporation Drive motor control apparatus for vehicle, motor control system, method for correcting rotation angle of motor, program for performing the same, rotation detecting apparatus
WO2014034317A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
WO2014034315A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
WO2014034316A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
JP2015524053A (en) * 2012-05-16 2015-08-20 ファロ テクノロジーズ インコーポレーテッド Apparatus and method for correcting bearing runout of laser tracker
US9423282B2 (en) 2014-06-12 2016-08-23 Faro Technologies, Inc. Metrology device and a method for compensating for bearing runout error
CN105984490A (en) * 2015-03-18 2016-10-05 现代摩比斯株式会社 Zero point calibration apparatus and method for steering angle sensor using rotational displacement difference
US9482525B2 (en) 2012-05-16 2016-11-01 Faro Technologies, Inc. Apparatus to compensate bearing runout in a three-dimensional coordinate measuring system
US9488476B2 (en) 2014-02-06 2016-11-08 Faro Technologies, Inc. Apparatus and method to compensate bearing runout in an articulated arm coordinate measurement machine
US9542857B2 (en) 2012-01-11 2017-01-10 Pygmalion Kabushiki Kaisha Math teaching tool
US9746304B2 (en) 2012-05-16 2017-08-29 Faro Technologies, Inc. Apparatus and method to compensate bearing runout in an articulated arm coordinate measurement machine
WO2019059173A1 (en) 2017-09-19 2019-03-28 ミネベアミツミ株式会社 Angle detection device, rotation amount specifying unit and rotation driving unit
JP2020109394A (en) * 2019-01-04 2020-07-16 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Method and system for immediately correcting encoder
EP3851804A1 (en) 2020-01-16 2021-07-21 Jtekt Corporation Rotation angle detection device
WO2021153613A1 (en) * 2020-01-31 2021-08-05 ミネベアミツミ株式会社 Absolute encoder, program for outputting angle error information about absolute encoder, and method for outputting angle error information about absolute encoder
US11639192B2 (en) * 2019-03-28 2023-05-02 Denso Corporation Detection unit

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232617A (en) * 2006-03-02 2007-09-13 Tokai Rika Co Ltd Rotary angle detector and its initial setting method
JP4559982B2 (en) * 2006-03-02 2010-10-13 株式会社東海理化電機製作所 Rotation angle detection device and initial setting method thereof
KR100767185B1 (en) 2006-07-26 2007-10-12 지멘스 오토모티브 주식회사 Compensating installation for steering angle of car and method thereof
JP2009174863A (en) * 2008-01-21 2009-08-06 Seiko Epson Corp Transducer
JP2010096708A (en) * 2008-10-20 2010-04-30 Denso Corp Detector of motor rotational angle
US8204641B2 (en) 2009-07-31 2012-06-19 Denso Corporation Traction motor control apparatus for vehicle
US8487563B2 (en) 2009-11-27 2013-07-16 Denso Corporation Drive motor control apparatus for vehicle, motor control system, method for correcting rotation angle of motor, program for performing the same, rotation detecting apparatus
JP2011149821A (en) * 2010-01-21 2011-08-04 Showa Corp Rotation angle detection device and rotation angle detection method
US9542857B2 (en) 2012-01-11 2017-01-10 Pygmalion Kabushiki Kaisha Math teaching tool
JP2015524053A (en) * 2012-05-16 2015-08-20 ファロ テクノロジーズ インコーポレーテッド Apparatus and method for correcting bearing runout of laser tracker
US10563969B2 (en) 2012-05-16 2020-02-18 Faro Technologies, Inc. Apparatus and method to compensate bearing runout in an articulated arm coordinate measurement machine
US9746304B2 (en) 2012-05-16 2017-08-29 Faro Technologies, Inc. Apparatus and method to compensate bearing runout in an articulated arm coordinate measurement machine
US9482525B2 (en) 2012-05-16 2016-11-01 Faro Technologies, Inc. Apparatus to compensate bearing runout in a three-dimensional coordinate measuring system
WO2014034316A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
US9372324B2 (en) 2012-08-30 2016-06-21 Fujifilm Corporation Imaging lens barrel and method for controlling operation of the same
JP5736519B2 (en) * 2012-08-30 2015-06-17 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JP5736518B2 (en) * 2012-08-30 2015-06-17 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
CN104704327A (en) * 2012-08-30 2015-06-10 富士胶片株式会社 Image pickup lens tube and method for controlling motion thereof
US9274305B2 (en) 2012-08-30 2016-03-01 Fujifilm Corporation Imaging lens barrel and method for controlling operation of the same
CN104541133B (en) * 2012-08-30 2016-03-16 富士胶片株式会社 Imaging lens system lens barrel and method of controlling operation thereof
CN104541132B (en) * 2012-08-30 2016-03-30 富士胶片株式会社 Imaging lens system lens barrel and method of controlling operation thereof
US9307164B2 (en) 2012-08-30 2016-04-05 Fujifilm Corporation Imaging lens barrel and method for controlling operation of the same
WO2014034315A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
JPWO2014034316A1 (en) * 2012-08-30 2016-08-08 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JPWO2014034315A1 (en) * 2012-08-30 2016-08-08 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JPWO2014034317A1 (en) * 2012-08-30 2016-08-08 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
JP5736520B2 (en) * 2012-08-30 2015-06-17 富士フイルム株式会社 Imaging lens barrel and operation control method thereof
WO2014034317A1 (en) * 2012-08-30 2014-03-06 富士フイルム株式会社 Image pickup lens tube and method for controlling motion thereof
CN104541132A (en) * 2012-08-30 2015-04-22 富士胶片株式会社 Image pickup lens tube and method for controlling motion thereof
CN104541133A (en) * 2012-08-30 2015-04-22 富士胶片株式会社 Image pickup lens tube and method for controlling motion thereof
US9488476B2 (en) 2014-02-06 2016-11-08 Faro Technologies, Inc. Apparatus and method to compensate bearing runout in an articulated arm coordinate measurement machine
US9423282B2 (en) 2014-06-12 2016-08-23 Faro Technologies, Inc. Metrology device and a method for compensating for bearing runout error
CN105984490A (en) * 2015-03-18 2016-10-05 现代摩比斯株式会社 Zero point calibration apparatus and method for steering angle sensor using rotational displacement difference
WO2019059173A1 (en) 2017-09-19 2019-03-28 ミネベアミツミ株式会社 Angle detection device, rotation amount specifying unit and rotation driving unit
US11404938B2 (en) 2017-09-19 2022-08-02 Minebea Mitsumi Inc. Angle detection apparatus, rotation amount specification unit, and rotary driving unit
JP2020109394A (en) * 2019-01-04 2020-07-16 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Method and system for immediately correcting encoder
US11639192B2 (en) * 2019-03-28 2023-05-02 Denso Corporation Detection unit
EP3851804A1 (en) 2020-01-16 2021-07-21 Jtekt Corporation Rotation angle detection device
US11953396B2 (en) 2020-01-16 2024-04-09 Jtekt Corporation Rotation angle detection device
WO2021153613A1 (en) * 2020-01-31 2021-08-05 ミネベアミツミ株式会社 Absolute encoder, program for outputting angle error information about absolute encoder, and method for outputting angle error information about absolute encoder
JP7441061B2 (en) 2020-01-31 2024-02-29 ミネベアミツミ株式会社 Absolute encoder, absolute encoder angular error information output program, absolute encoder angular error information output method

Similar Documents

Publication Publication Date Title
JP2006029937A (en) Compensation method for rotation angle of rotation angle detector
US7583080B2 (en) Rotation angle detection device and rotation angle correction method
JP4474872B2 (en) Absolute rotation angle and torque detector
CN100552374C (en) Rotation angle detection apparatus and anglec of rotation modification method
TWI471531B (en) Encoder system, signal processing method
US10011298B2 (en) Electric power assisted steering system
US10442460B2 (en) Electric power assisted steering system
US10155532B2 (en) Electric power assisted steering system
JP2006220529A (en) Detection device for absolute angle of rotation and torque
CN103234504B (en) A kind of error calibration, compensation method and its computer program, computer-readable recording medium
US10005491B2 (en) Electric power assisted steering system
KR20190035910A (en) A sensor system for determining an absolute rotational angle of a shaft, a method for determining an absolute rotational angle of a shaft, and a vehicle having a sensor system
JP2022043321A (en) Calibration value generation method of encoder, calibration value generation system of encoder, and encoder
JP5402313B2 (en) Encoder and signal processing method
CN110617760B (en) Initial setting method and initial setting device for rotation angle detection device
CN117168530B (en) Self-calibration method of magnetic encoder, magnetic encoder and motor
US20150316371A1 (en) Method for determining the absolute position of a linear actuator
JP5096399B2 (en) Rotation angle detector
JP2005016968A (en) Turning angle detector
JP6452232B2 (en) Magnet analyzer
JP2013120090A (en) Rotation angle detector
KR100827818B1 (en) Method for measuring the angles of rotatable bodies
JP5706355B2 (en) Rotation angle detector
KR20100076298A (en) Apparatus and method for detecting angle
JP2007278924A (en) Turning angle detector