JP2006021156A - Microreactor and manufacturing method therefor - Google Patents

Microreactor and manufacturing method therefor Download PDF

Info

Publication number
JP2006021156A
JP2006021156A JP2004202943A JP2004202943A JP2006021156A JP 2006021156 A JP2006021156 A JP 2006021156A JP 2004202943 A JP2004202943 A JP 2004202943A JP 2004202943 A JP2004202943 A JP 2004202943A JP 2006021156 A JP2006021156 A JP 2006021156A
Authority
JP
Japan
Prior art keywords
flow path
wiring
heat insulating
insulating layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004202943A
Other languages
Japanese (ja)
Other versions
JP4440020B2 (en
Inventor
Masahito Amanaka
将人 甘中
Yasushi Goto
裕史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004202943A priority Critical patent/JP4440020B2/en
Publication of JP2006021156A publication Critical patent/JP2006021156A/en
Application granted granted Critical
Publication of JP4440020B2 publication Critical patent/JP4440020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microreactor in which a fluid in a flow passage is heated efficiently and the temperature of the fluid is controlled quickly with high precision and to provide a method for manufacturing the microreactor. <P>SOLUTION: The microreactor is provided with flow passage forming members 10, 12 in each of which the flow passage is formed. A metallic electrical wire 30 for a heater and metallic electrical wires 40A, 40B for a temperature sensor are arranged in a specified area of the surface of an inner wall surrounding the flow passage. A heat insulating layer 18 having the insulating property higher than those of the flow passage forming members 10, 12 is interposed between the metallic electrical wire 30 for the heater and the inner wall surface of the flow passage so that the heat to be generated by the metallic electrical wire 30 for the heater is restrained from being transmitted to the sides of the flow passage forming members. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、医療・生化学・分析化学等の分野において、限られた空間内で効率的な化学反応を行わせるためのマイクロ反応器に関するものである。   The present invention relates to a microreactor for causing an efficient chemical reaction in a limited space in the fields of medical treatment, biochemistry, analytical chemistry, and the like.

従来、上記のようなマイクロ反応器として特許文献1に記載されたものが知られている。このマイクロ反応器は、流路板と底板とを備え、これらを重ね合わせることにより、反応室をもつ流体流路が内部に形成されるように構成されている。さらに、前記底板の下面には加温装置が設けられ、その加温によって前記流体流路中の流体温度が反応に適した所望の温度に保たれるようになっている。具体的に、同文献記載の加温装置は、前記底板の下面に形成されたポリイミドからなる絶縁膜中にシート状のヒータ及び温度センサを組み込んだ構成となっている。
特開2004−33907号公報
Conventionally, what was described in patent document 1 as a micro reactor as mentioned above is known. The microreactor includes a flow channel plate and a bottom plate, and is configured such that a fluid flow channel having a reaction chamber is formed inside by superimposing them. Furthermore, a heating device is provided on the lower surface of the bottom plate, and the temperature of the fluid in the fluid flow path is maintained at a desired temperature suitable for reaction by the heating. Specifically, the heating device described in the document has a structure in which a sheet-like heater and a temperature sensor are incorporated in an insulating film made of polyimide formed on the lower surface of the bottom plate.
JP 2004-33907 A

前記特許文献1に記載されるマイクロ反応器では、底板の外側に加温装置が付設されており、当該底板を介して流体流路中に熱が与えられるので、前記加温装置におけるヒータの作動と反応室内での実際の流体温度の変化との間にかなりの応答遅れが予想される。従って、迅速かつ高精度の温度制御を実現するのは難しい。しかも、前記流体を加熱するのにまず、熱容量が比較的大きい底板を加熱しなければならず、また、反応器外部への熱放散も阻止しにくいため、熱効率の低下は避け難い。   In the microreactor described in Patent Document 1, a heating device is attached to the outside of the bottom plate, and heat is applied to the fluid flow path through the bottom plate, so that the heater in the heating device operates. And a substantial response delay between the actual fluid temperature change in the reaction chamber is expected. Therefore, it is difficult to realize quick and highly accurate temperature control. Moreover, in order to heat the fluid, first, the bottom plate having a relatively large heat capacity must be heated, and it is difficult to prevent heat dissipation to the outside of the reactor.

前記のような課題を解決するための手段として、本発明は、内部に流体流路を形成する流路形成部材と、その流体流路を囲む内壁面上の特定領域に形成されたヒータ用の金属配線及び温度センサ用の金属配線とを備え、かつ、前記ヒータ用の金属配線と前記流体流路の内壁面との間に前記流路形成部材よりも断熱性の高い断熱層が介在しているマイクロ反応器である。   As means for solving the above-mentioned problems, the present invention provides a flow path forming member that forms a fluid flow path inside, and a heater formed in a specific region on an inner wall surface that surrounds the fluid flow path. A metal wiring for the temperature sensor and a metal wiring for the temperature sensor, and a heat insulating layer having a higher heat insulating property than the flow path forming member is interposed between the metal wiring for the heater and the inner wall surface of the fluid flow path. Is a microreactor.

この構成によれば、流体流路内にヒータ用及び温度センサ用の金属配線がそれぞれ組み込まれており、前記ヒータ用金属配線の通電により前記流体流路中の流体に直接熱が与えられ、かつ、当該流体の温度が前記温度センサ用金属配線により直接検出されるので、当該流体温度について迅速かつ精度の高い制御を実現することができる。また、前記流体を流体流路内で直接加熱するため、当該流体を反応器外部から加熱する場合に比べて熱効率も飛躍的に向上する。   According to this configuration, the metal wiring for the heater and the temperature sensor are respectively incorporated in the fluid flow path, and heat is directly applied to the fluid in the fluid flow path by energization of the heater metal wiring, and Since the temperature of the fluid is directly detected by the metal wire for the temperature sensor, it is possible to realize quick and highly accurate control of the fluid temperature. Further, since the fluid is directly heated in the fluid flow path, the thermal efficiency is dramatically improved as compared with the case where the fluid is heated from the outside of the reactor.

しかも、前記ヒータ用金属配線と流体流路の内壁面との間には前記流路形成部材よりも断熱性の高い断熱層が介在しているので、この断熱層の存在により、ヒータ用配線から発せられる熱が流路形成部材側に伝わることが抑制され、これにより熱効率及び温度制御の応答性がさらに向上する。   In addition, since a heat insulating layer having a higher heat insulating property than the flow path forming member is interposed between the heater metal wiring and the inner wall surface of the fluid flow path, the presence of the heat insulating layer allows the heater wiring to be separated from the heater wiring. It is suppressed that the generated heat is transmitted to the flow path forming member side, thereby further improving the thermal efficiency and the responsiveness of temperature control.

なお、前記断熱層は少なくともヒータ用の金属配線と配線面との間に介在していればよく、温度センサ用の金属配線と配線面との間での断熱層の有無は問わない。   The heat insulating layer only needs to be interposed at least between the metal wiring for the heater and the wiring surface, and it does not matter whether the heat insulating layer is present between the metal wiring for the temperature sensor and the wiring surface.

この断熱層としては、断熱性に優れた多孔質膜により構成されているものが好ましく、特にシリカエアロゲルからなる多孔質膜が好適である。   As this heat insulating layer, those composed of a porous film excellent in heat insulating properties are preferable, and a porous film made of silica airgel is particularly preferable.

さらに、当該多孔質膜で断熱層が構成されている場合には、その断熱層を当該断熱層を構成する材料よりも疎水性の高い防水膜で覆い、その防水膜上に前記ヒータ用の金属配線を配する構成とすることにより、例えば水溶液が前記多孔質膜に浸透して流体挙動の変化や構造の破壊を引起すのを有効に抑止することができる。   Further, when the heat insulating layer is constituted by the porous film, the heat insulating layer is covered with a waterproof film having higher hydrophobicity than the material constituting the heat insulating layer, and the metal for the heater is formed on the waterproof film. By adopting a configuration in which the wiring is arranged, it is possible to effectively prevent, for example, an aqueous solution from penetrating into the porous film and causing a change in fluid behavior or a structural destruction.

前記流路形成部材としては、配線面を有し、その上に前記断熱層と各金属配線とが配せられる配線基材と、この配線基材の配線面と対向する対向面を有し、この対向面から前記金属配線を囲む形状の流路形成凹部が凹んでいる流路基材とを含み、前記配線基材の配線面と前記流路基材の対向面とが対向した状態で重ね合わされることにより前記配線基材の配線面と前記流路基材の流路形成凹部とで前記ヒータ用の金属配線及び温度センサ用の金属配線を格納する流体流路が形成されるように構成されているものが、好適である。   The flow path forming member has a wiring surface, a wiring substrate on which the heat insulating layer and each metal wiring are disposed, and a facing surface facing the wiring surface of the wiring substrate, A flow path base material in which a flow path forming recess having a shape surrounding the metal wiring is recessed from the facing surface, and the wiring surface of the wiring base material and the facing surface of the flow path base material are overlapped with each other. Accordingly, a fluid flow path for storing the metal wiring for the heater and the metal wiring for the temperature sensor is formed by the wiring surface of the wiring base and the flow path forming recess of the flow path base. What has been done is preferred.

この構成によれば、予め断熱層及び金属配線が形成された配線基材の配線面と、流路形成凹部が形成された流路基材の対向面とを重ね合せるだけで、薄型の配線構造を容易に得ることができる。   According to this configuration, a thin wiring structure can be obtained simply by overlapping the wiring surface of the wiring base material on which the heat insulating layer and the metal wiring are formed in advance and the facing surface of the flow path base material on which the flow path forming recess is formed. Can be easily obtained.

前記金属配線には、例えば金属板を打ち抜いたものや線材を用いてもよいが、当該金属配線を前記配線基材の対向面に沿って成膜された金属パターンで構成することにより、きわめて薄型の配線構造を得ることができる。   For the metal wiring, for example, a metal plate punched out or a wire material may be used. However, by forming the metal wiring with a metal pattern formed along the facing surface of the wiring substrate, the metal wiring is extremely thin. The wiring structure can be obtained.

この場合、前記金属パターンがその端部に外部回路と接続される電極を有し、この電極が前記流路基材から外側にはみ出て流路形成部材の外部に露出する構成とすれば、当該電極を利用して、流体流路内に作り込まれた金属配線と外部回路とを容易に接続することができる。   In this case, if the metal pattern has an electrode connected to an external circuit at an end thereof, and this electrode protrudes outward from the flow path base material and is exposed to the outside of the flow path forming member, the By using the electrodes, the metal wiring built in the fluid flow path and the external circuit can be easily connected.

また本発明は、内部に流体流路を形成する流路形成部材と、その流体流路を囲む内壁面上の特定領域に形成されたヒータ用の金属配線及び温度センサ用の金属配線とを備え、かつ、前記ヒータ用の金属配線と前記流体流路の内壁面との間に前記流路形成部材よりも断熱性の高い断熱層が介在しているマイクロ反応器を製造する方法であって、平面状の配線面を有する配線基材を製造する工程と、この配線基材の配線面上に当該配線基材よりも断熱性の高い断熱層を形成する工程と、この断熱層上に前記各金属配線を形成する工程と、前記配線基材の配線面と対向する対向面を有し、この対向面から前記金属配線を囲む形状の流路形成凹部が凹んでいる流路基材を製造する工程と、前記配線基材の配線面と前記流路基材の対向面とを対向させながら両流路形成部材を重ね合せることにより当該配線基材の配線面と流路基材の流路形成凹部とで前記各金属配線を格納する流体流路を形成する工程とを含むものである。   The present invention also includes a flow path forming member that forms a fluid flow path therein, a metal wiring for a heater and a metal wiring for a temperature sensor formed in a specific region on an inner wall surface surrounding the fluid flow path. And, a method of manufacturing a microreactor in which a heat insulating layer having a higher heat insulating property than the flow path forming member is interposed between the metal wiring for the heater and the inner wall surface of the fluid flow path, A step of manufacturing a wiring base material having a planar wiring surface, a step of forming a heat insulating layer having a higher heat insulating property than the wiring base material on the wiring surface of the wiring base material, A flow path base material having a step of forming a metal wiring and a facing surface facing the wiring surface of the wiring base material, the flow path forming concave portion having a shape surrounding the metal wiring from the facing surface is manufactured. Do not oppose the wiring surface of the wiring substrate and the facing surface of the flow path substrate. By superimposing the Luo both flow path forming member in which a step of forming a fluid flow path for storing each of said metal wiring and the flow path forming recess of the wiring surface and the channel base of the wiring substrate.

この方法によれば、配線基材の配線面を開放した状態でその上に断熱層及び金属配線を容易に形成することができる。そして、その配線面に流路基材の対向面を重ね合せるだけで前記金属配線が組み込まれた流体流路を容易に形成することができる。   According to this method, the heat insulating layer and the metal wiring can be easily formed on the wiring substrate with the wiring surface open. And the fluid flow path in which the said metal wiring was integrated can be easily formed only by overlapping the opposing surface of a flow-path base material on the wiring surface.

ここで、前記断熱層を形成する工程が前記配線面上に多孔質膜を形成する工程である場合、その工程後、その断熱層上に当該断熱層を覆う防水膜を形成してから当該防水膜上に前記金属配線を形成する工程を行うようにすれば、当該防水膜によって前記流体流路中の流体から前記多孔質膜を保護することが可能になる。   Here, when the step of forming the heat insulating layer is a step of forming a porous film on the wiring surface, after the step, a waterproof film covering the heat insulating layer is formed on the heat insulating layer, and then the waterproofing is performed. If the step of forming the metal wiring on the film is performed, the porous film can be protected from the fluid in the fluid flow path by the waterproof film.

以上のように、本発明によれば、流体流路中の流体を効率良く加熱することができるとともに、その温度制御をより迅速にかつ精度良く行うことができるという効果がある。   As described above, according to the present invention, the fluid in the fluid flow path can be efficiently heated, and the temperature control can be performed more quickly and accurately.

本発明の好ましい実施の形態を図面を参照しながら説明する。   A preferred embodiment of the present invention will be described with reference to the drawings.

図示のマイクロ反応器は、流路形成部材として、配線基材に相当する平板状の配線基板10と、その上に重ねられる流路基板12とを備えている。これらの基板10,12は、絶縁性及び耐久性に優れたセラミックス材料により形成されるのが好ましいが、その具体的な材質は特に問わない。   The illustrated microreactor includes a flat wiring substrate 10 corresponding to a wiring substrate and a flow channel substrate 12 stacked thereon as a flow channel forming member. These substrates 10 and 12 are preferably formed of a ceramic material excellent in insulation and durability, but the specific material is not particularly limited.

これらの基板10,12のうち、配線基板10の上面が配線面14とされ、流路基板12の下面が前記配線面14に対向する対向面16とされている。そして、前記配線基板10の配線面14上に断熱層18が形成される一方、前記流路基板12にその対向面16から上向きに凹む流路形成凹部20が形成されている。   Among these substrates 10 and 12, the upper surface of the wiring substrate 10 is a wiring surface 14, and the lower surface of the flow path substrate 12 is a facing surface 16 that faces the wiring surface 14. A heat insulating layer 18 is formed on the wiring surface 14 of the wiring substrate 10, while a flow path forming recess 20 that is recessed upward from the facing surface 16 is formed in the flow path substrate 12.

この流路形成凹部20は、前記配線基板10の配線面14との間で流体流路を形成するものであり、図では特定方向に延びるものとなっている。具体的に、この実施の形態にかかる流路形成凹部20は、反応室を形成する幅広の主要通路部22と、その主要通路部22の一端から延長される小幅の流体入口通路部23と、この流体入口通路部23の端部に形成された円柱状の流体入口ポート24と、前記主要通路部22の他端から延長される小幅の流体出口通路部25と、この流体出口通路部25の端部に形成された円柱状の流体出口ポート26とで構成されている。   The flow path forming recess 20 forms a fluid flow path with the wiring surface 14 of the wiring board 10 and extends in a specific direction in the drawing. Specifically, the flow path forming recess 20 according to this embodiment includes a wide main passage portion 22 that forms a reaction chamber, a small fluid inlet passage portion 23 that extends from one end of the main passage portion 22, and A cylindrical fluid inlet port 24 formed at the end of the fluid inlet passage 23, a small fluid outlet passage 25 extending from the other end of the main passage 22, and the fluid outlet passage 25 It is comprised with the column-shaped fluid outlet port 26 formed in the edge part.

一方、前記配線基板10にはこれを前記断熱層18も含めて板厚方向に貫通する流体入口孔27及び流体出口孔28が設けられている。前記流体入口孔27は前記流体入口ポート24に対応する位置に設けられ、前記流体出口孔28は前記流体出口ポート26に対応する位置に設けられている。   On the other hand, the wiring board 10 is provided with a fluid inlet hole 27 and a fluid outlet hole 28 penetrating in the thickness direction including the heat insulating layer 18. The fluid inlet hole 27 is provided at a position corresponding to the fluid inlet port 24, and the fluid outlet hole 28 is provided at a position corresponding to the fluid outlet port 26.

前記断熱層18は、前記配線面14の略全域にわたって形成されている。この断熱層18は断熱性及び絶縁性に優れたものであることがより好ましく、具体的には、シリカエアロゲル等により形成された多孔質膜が好適である。また、シリコーンゴム等の樹脂材料の適用も可能である。   The heat insulating layer 18 is formed over substantially the entire area of the wiring surface 14. The heat insulating layer 18 is more preferably excellent in heat insulating properties and insulating properties, and specifically, a porous film formed of silica airgel or the like is preferable. Moreover, application of resin materials such as silicone rubber is also possible.

前記のような多孔質膜を採用する場合には、その表面上を当該多孔質膜よりも疎水性の高い防水膜で覆っておくことが、より好ましい。このような防水膜は、例えば、前記断熱層上にSiO2やSiN等からなる薄膜をスパッタ法やCVD法によって成膜することにより、形成することができる。その他、フッ素樹脂等の適用も可能である。 When the porous membrane as described above is employed, it is more preferable to cover the surface with a waterproof membrane having a higher hydrophobicity than the porous membrane. Such a waterproof film can be formed, for example, by forming a thin film made of SiO 2 , SiN or the like on the heat insulating layer by a sputtering method or a CVD method. In addition, application of fluororesin etc. is also possible.

そして、この断熱層18上(当該断熱層18の表面が防水膜で覆われている場合にはその防水膜上)に、金属配線を構成するパターンが形成されている。具体的には、前記流体流路の長手方向略中間部位に位置するヒータ用金属パターン30が形成されるとともに、このヒータ用金属パターン30の上流側及び下流側にそれぞれ位置する温度センサ用金属パターン40A,40Bが形成されている。   And the pattern which comprises metal wiring is formed on this heat insulation layer 18 (When the surface of the said heat insulation layer 18 is covered with the waterproof film). Specifically, the heater metal pattern 30 is formed at a substantially intermediate portion in the longitudinal direction of the fluid flow path, and the temperature sensor metal patterns are respectively positioned on the upstream side and the downstream side of the heater metal pattern 30. 40A and 40B are formed.

前記ヒータ用金属パターン30は、前記主要通路部22内に組み込まれるヒータ部32と、このヒータ部32の両端から流路幅方向の片側に同じ向きに延びる接続部34,36と、各接続部34,36の端部に形成された矩形状の電極37,38とを一体に有している。前記ヒータ部32及び接続部34,36は小幅に形成され、かつ、ヒータ部32は抵抗を増大させるために微細に蛇行した形状に形成されている。   The heater metal pattern 30 includes a heater portion 32 incorporated in the main passage portion 22, connection portions 34 and 36 extending in the same direction from one end of the flow passage width direction from both ends of the heater portion 32, and each connection portion. The electrodes 34 and 36 are integrally formed with rectangular electrodes 37 and 38 formed at the ends thereof. The heater part 32 and the connecting parts 34 and 36 are formed with a small width, and the heater part 32 is formed in a finely meandering shape in order to increase the resistance.

一方、温度センサ用金属パターン40A,40Bは、前記主要通路部22内に組み込まれるセンサ部42と、このセンサ部42の両端から流路幅方向の両側に相互反対の向きに延びる接続部44,46と、各接続部44,46の端部に形成された矩形状の電極47,48とを一体に有している。前記センサ部42及び接続部44,46は小幅に形成され、かつ、センサ部42は抵抗を増大させるために微細に蛇行した形状に形成されている。   On the other hand, the temperature sensor metal patterns 40A and 40B include a sensor part 42 incorporated in the main passage part 22, and connection parts 44 extending in opposite directions from both ends of the sensor part 42 to both sides in the channel width direction. 46 and rectangular electrodes 47 and 48 formed at end portions of the respective connection portions 44 and 46 are integrally provided. The sensor part 42 and the connection parts 44 and 46 are formed with a small width, and the sensor part 42 is formed in a finely meandering shape in order to increase resistance.

前記流路基材12の長手方向中間位置における幅方向両側部分には、前記各電極37,38,47,48を基板外に露出させるための切欠部49が形成されている。そして、図2に示すように、前記電極のうちのヒータ用金属パターン30の電極37,38に図2に示すような温度調節器50が接続され、上流側の温度センサ用金属パターン40Aの電極47,48に上流側温度測定器52Aが接続され、下流側の温度センサ用金属パターン40Bの電極47,48に下流側温度測定器52Bが接続されている。   Cutout portions 49 for exposing the electrodes 37, 38, 47, 48 to the outside of the substrate are formed at both sides in the width direction at the intermediate position in the longitudinal direction of the flow path base material 12. As shown in FIG. 2, a temperature controller 50 as shown in FIG. 2 is connected to the electrodes 37 and 38 of the heater metal pattern 30 among the electrodes, and the electrode of the upstream temperature sensor metal pattern 40A. The upstream temperature measuring device 52A is connected to 47, 48, and the downstream temperature measuring device 52B is connected to the electrodes 47, 48 of the downstream temperature sensor metal pattern 40B.

前記各温度測定器52A,52Bは、各温度センサ用金属パターン40A,40Bの電極47,48間に電流を流してその抵抗値を測定し、当該抵抗値に基づいて各金属パターン40A,40Bにおけるセンサ部42の温度を算出するものである。   Each of the temperature measuring devices 52A and 52B causes a current to flow between the electrodes 47 and 48 of the temperature sensor metal patterns 40A and 40B, measures the resistance value, and based on the resistance value, in each of the metal patterns 40A and 40B. The temperature of the sensor unit 42 is calculated.

前記温度調節器50は、前記ヒータ用金属パターン30の電極37,38間に電流を流して高抵抗のヒータ部32を発熱させるとともに、下流側温度測定器52Bにより算出される温度に基づき、当該温度を予め設定された目標温度に近づけるように前記ヒータ用金属パターン30の通電制御を行う。さらに、上流側温度測定器52A及び下流側温度測定器52Bから出力される温度測定値の差を監視し、その差が現在のヒータ用金属パターン30の通電状態に適合していない場合(例えばヒータ用金属パターン30を通電しているにもかかわらず前記温度測定値の差がほとんど生じていない場合)にヒータ作動が不良であるとして警告信号を出力する。   The temperature adjuster 50 causes a current to flow between the electrodes 37 and 38 of the heater metal pattern 30 to generate heat in the high-resistance heater 32, and based on the temperature calculated by the downstream temperature measuring device 52B. Energization control of the heater metal pattern 30 is performed so that the temperature approaches a preset target temperature. Further, the difference between the temperature measurement values output from the upstream temperature measuring device 52A and the downstream temperature measuring device 52B is monitored, and the difference does not match the current energization state of the heater metal pattern 30 (for example, the heater In the case where the difference in the temperature measurement value hardly occurs even though the metal pattern 30 is energized), a warning signal is output as the heater operation is defective.

また、配線基板10の下面には、当該基板10を所定温度に保温するための補助加熱器56が付設されている。この補助加熱器56は、前記配線基板10の下面に沿って加温媒体を流すための媒体流路58を有しており、その媒体の給排によって前記配線基板10の温度が所定温度に保たれるようになっている。   Further, an auxiliary heater 56 for keeping the substrate 10 at a predetermined temperature is attached to the lower surface of the wiring substrate 10. The auxiliary heater 56 has a medium flow path 58 for flowing a heating medium along the lower surface of the wiring board 10, and the temperature of the wiring board 10 is maintained at a predetermined temperature by supplying and discharging the medium. It has come to droop.

次に、このマイクロ反応器を製造する方法の好適例を説明する。ただし、本発明に係るマイクロ反応器は以下に示す方法により製造されたものに限られるものではない。   Next, a preferred example of a method for producing this microreactor will be described. However, the microreactor according to the present invention is not limited to the one manufactured by the method shown below.

1)基板製造工程
前記配線基板10及び流路基板12を製造する。これらの基板10,12は、上述のように絶縁性及び耐久性の高いセラミックス材料で形成されることが、より好ましい。具体的に、流路基板12は熱伝導率が低くて透明度の高い(すなわち内部視認性の高い)石英やガラスなどで成形するのが好ましく、配線基板10は、熱伝導率が比較的高くて前記石英やガラスなどとの接合が容易なシリコン等で成形するのが好ましい。
1) Substrate manufacturing process The wiring substrate 10 and the flow path substrate 12 are manufactured. These substrates 10 and 12 are more preferably formed of a ceramic material having high insulation and durability as described above. Specifically, the flow path substrate 12 is preferably formed of quartz or glass having low thermal conductivity and high transparency (that is, high internal visibility), and the wiring substrate 10 has relatively high thermal conductivity. It is preferable to mold with silicon or the like that can be easily bonded to the quartz or glass.

2)断熱層形成工程
前記配線基板10の配線面14上に断熱層18を形成する。この断熱層18は、図示のように配線面14の略全域にわたって形成されたものでもよいが、少なくとも流体流路中においてヒータ用金属パターン30と配線面14との間に介在しておればよく、例えば当該パターン30の形状に対応した形状に前記断熱層18を局所的に形成するようにしてもよい。
2) Heat insulation layer forming step A heat insulation layer 18 is formed on the wiring surface 14 of the wiring board 10. The heat insulating layer 18 may be formed over substantially the entire area of the wiring surface 14 as shown in the figure, but it is sufficient that it is interposed between the heater metal pattern 30 and the wiring surface 14 at least in the fluid flow path. For example, the heat insulating layer 18 may be locally formed in a shape corresponding to the shape of the pattern 30.

この断熱層18の具体的な形成手法は、その材質等に応じて適宜設定可能である。例えば前記シリカエアロゲルからなる多孔質膜を適用する場合には、次のような手順で断熱層18を形成するのが好ましい。   A specific method for forming the heat insulating layer 18 can be appropriately set according to the material and the like. For example, in the case of applying a porous film made of silica aerogel, it is preferable to form the heat insulating layer 18 by the following procedure.

2−1)原材料としてテトラメトキシシラン(TMOS)を用い、その溶液を前記配線基板10上にスピンコートする。   2-1) Tetramethoxysilane (TMOS) is used as a raw material, and the solution is spin-coated on the wiring substrate 10.

2−2)前記配線基板10をアンモニア水蒸気で満たされた容器内に所定時間室温保持することにより前記溶液のゲル化を促進させてウェットゲルを形成する。   2-2) Holding the wiring board 10 in a container filled with ammonia water vapor at room temperature for a predetermined time to promote gelation of the solution to form a wet gel.

2−3)基板をエタノール中に浸漬させて前記ゲル中のメタノール、水、及びアンモニアをエタノールに置換する。   2-3) The substrate is immersed in ethanol to replace methanol, water, and ammonia in the gel with ethanol.

2−4)生成した膜をエタノールに浸漬させたまま高圧容器内に保持し、超臨界二酸化炭素を通す等して超臨界乾燥させる。   2-4) The produced membrane is kept in a high-pressure vessel while being immersed in ethanol, and is supercritically dried by passing supercritical carbon dioxide or the like.

なお、このようにして得られる多孔質膜からなる断熱層は、断熱性に優れるものの水分の吸着に対して非常に敏感であるため、その表面を前述のような防水膜にてコーティングすることがより好ましい。   The heat insulating layer made of the porous film thus obtained is excellent in heat insulating properties but very sensitive to moisture adsorption, so that the surface can be coated with a waterproof film as described above. More preferred.

また、断熱層18の形成後は、当該断熱層18及び前記配線基板10を貫く流体入口孔27及び流体出口孔28を形成しておく。   In addition, after the heat insulating layer 18 is formed, the fluid inlet hole 27 and the fluid outlet hole 28 penetrating the heat insulating layer 18 and the wiring board 10 are formed.

3)配線工程
前記断熱層18上にヒータ用金属パターン30及び温度センサ用金属パターン40A,40Bを形成する。これらのパターンを形成するには、例えば、当該パターンの形状に対応する形状の貫通孔をもつマスキングボードを断熱層18上に載せて白金等を蒸着させることにより薄膜パターンを形成するようにすればよい。その他、印刷によるパターン形成や、予め所定形状に打ち抜いた薄肉金属板の貼着といった方法をとってもよい。ただし、前記のような蒸着法による成膜を行うことにより、きわめて薄肉の金属配線を効率良く形成することが可能になる。
3) Wiring process The heater metal pattern 30 and the temperature sensor metal patterns 40A and 40B are formed on the heat insulating layer 18. In order to form these patterns, for example, if a masking board having a through-hole having a shape corresponding to the shape of the pattern is placed on the heat insulating layer 18 and platinum or the like is deposited, a thin film pattern is formed. Good. In addition, a method such as pattern formation by printing or sticking of a thin metal plate punched in advance in a predetermined shape may be used. However, an extremely thin metal wiring can be efficiently formed by performing the film formation by the vapor deposition method as described above.

なお、前記の「1)基板製造工程」において流路基板12を製造する工程と、「2)断熱層形成工程」及び「3)配線工程」とはその前後を問わず、例えば並行して進めるようにしてもよい。また、補助加熱器56の付設はどの段階で行うようにしてもよい。   In addition, the process of manufacturing the flow path substrate 12 in the “1) substrate manufacturing process”, “2) heat insulating layer forming process”, and “3) wiring process” are performed in parallel, for example, before and after. You may do it. Further, the auxiliary heater 56 may be attached at any stage.

4)基板重合工程
前記金属パターン30,40A,40Bが配せられた配線基板10の断熱層18の上に流路基板12の対向面16を重ね合せるようにして両基板10,12を接合する。この接合により、前記断熱層18が形成された配線基板10の配線面14と前記流路基板12の流路形成凹部20とで囲まれる流体流路が形成されるとともに、その流体流路中にヒータ用金属パターン30のヒータ部32及び温度センサ用金属パターン40A,40Bの温度センサ部42が作り込まれた状態となる。
4) Substrate superposition process Both substrates 10 and 12 are joined so that the facing surface 16 of the flow path substrate 12 is superimposed on the heat insulating layer 18 of the wiring substrate 10 on which the metal patterns 30, 40A, and 40B are arranged. . By this bonding, a fluid flow path surrounded by the wiring surface 14 of the wiring board 10 on which the heat insulating layer 18 is formed and the flow path forming recess 20 of the flow path substrate 12 is formed, and in the fluid flow path The heater portion 32 of the heater metal pattern 30 and the temperature sensor portion 42 of the temperature sensor metal patterns 40A and 40B are built.

このようにして得られたマイクロ反応器において、流体入口孔27から導入される流体は、流路形成凹部20の流体入口ポート24、流体入口通路部23、主要通路部22、流体出口通路部25、及び流体出口ポート26を通って流体出口孔28から排出される。   In the microreactor thus obtained, the fluid introduced from the fluid inlet hole 27 flows into the fluid inlet port 24, the fluid inlet passage portion 23, the main passage portion 22, and the fluid outlet passage portion 25 of the flow path forming recess 20. And through the fluid outlet port 26 and out of the fluid outlet hole 28.

このとき、各温度センサ用金属パターン40A,40Bのセンサ部42が流体と接触することにより、前記流体の温度が検出され、その検出温度に基づいてヒータ部32の通電が制御されることにより、流体が目標温度まで加熱される。このとき、前記センサ部42及びヒータ部32は流体に直接接触する状態にあり、しかも断熱性を有する断熱層18の存在により前記ヒータ部32及びセンサ部42と配線基板10との間の熱伝導が抑制されるため、迅速かつ高精度の温度制御が可能になるとともに、熱効率の大幅な向上が期待できる。   At this time, the temperature of the fluid is detected by the sensor portions 42 of the temperature sensor metal patterns 40A and 40B coming into contact with the fluid, and the energization of the heater portion 32 is controlled based on the detected temperature. The fluid is heated to the target temperature. At this time, the sensor unit 42 and the heater unit 32 are in direct contact with the fluid, and the heat conduction between the heater unit 32 and the sensor unit 42 and the wiring board 10 due to the presence of the heat insulating layer 18 having heat insulating properties. Therefore, rapid and highly accurate temperature control becomes possible, and a significant improvement in thermal efficiency can be expected.

さらに、必要に応じて補助加熱器56の媒体通路58に加熱媒体を流すことにより、配線基板10全体を好適な温度に保つことも可能である。   Furthermore, it is possible to keep the entire wiring board 10 at a suitable temperature by flowing a heating medium through the medium passage 58 of the auxiliary heater 56 as necessary.

流路基板12として厚さ1.0mmの石英基板を用い、この石英基板にフォトリソグラフィーを用いて深さ90μmの流路を形成する。この流路における主要通路部22の形状は、幅100μm、長さ30mmとする。一方、配線基板10には厚さ0.7mmのシリコン基板を用い、その配線面14にシリカエアロゲル膜からなる厚さ5μmの断熱層18を形成するとともに、その表面にSiO2からなる厚さ1000Å〜1μm程度の防水膜を形成する。そして、その断熱層18上に白金蒸着によって厚さ0.02μm、幅100μmの金属パターン30,40A,40Bを形成した後、両基板10,12をフッ酸接合で貼り合わせて流体流路を形成する。 A quartz substrate having a thickness of 1.0 mm is used as the channel substrate 12, and a channel having a depth of 90 μm is formed on the quartz substrate using photolithography. The shape of the main passage portion 22 in this flow path is 100 μm wide and 30 mm long. On the other hand, a 0.7 mm thick silicon substrate is used as the wiring substrate 10, and a 5 μm thick heat insulating layer 18 made of a silica airgel film is formed on the wiring surface 14, and a SiO 2 thickness of 1000 μm on the surface thereof. A waterproof film of about 1 μm is formed. Then, after forming metal patterns 30, 40A and 40B having a thickness of 0.02 μm and a width of 100 μm on the heat insulating layer 18 by platinum vapor deposition, both substrates 10 and 12 are bonded together by hydrofluoric acid bonding to form a fluid flow path. .

この構造について、初期温度20℃から加熱を開始して1秒が経過した後の温度変化をシュミレーションについて求め、断熱層18を有しないものとの比較を行った。なお、ヒータ部32の長さは30mm、放出熱量は1.13Wとし、流体流路中には水を流速10mm/sで流すものとする。   With respect to this structure, the temperature change after 1 second has elapsed after the start of heating at an initial temperature of 20 ° C. was obtained by simulation and compared with that without the heat insulating layer 18. In addition, the length of the heater portion 32 is 30 mm, the amount of heat released is 1.13 W, and water flows through the fluid flow path at a flow rate of 10 mm / s.

図6(a)(b)にシュミレーションの結果を示す。図示のように、断熱層を有しないものにおいては、流体温度が約23℃までしか上昇せず、しかも配線基板が当該流体温度と略同等の温度まで昇温してしまうのに対し、断熱層として厚さ0.5μmのシリカエアロゲル膜を形成したものにおいては、流体温度(中心位置の温度)は約29℃まで素早く上昇する一方、配線基板温度はほとんど上昇しない(21℃)という結果が得られた。この結果は、本発明によるマイクロ反応器が高い加温応答性及び優れた熱効率を有するものであることを如実に示すものである。   FIGS. 6A and 6B show the simulation results. As shown in the figure, in the case without the heat insulation layer, the fluid temperature rises only to about 23 ° C. and the wiring board is heated to a temperature substantially equal to the fluid temperature, whereas the heat insulation layer In the case where a silica airgel film having a thickness of 0.5 μm is formed, the fluid temperature (temperature at the center position) rises quickly to about 29 ° C., while the wiring board temperature hardly rises (21 ° C.). It was. This result clearly shows that the microreactor according to the present invention has high warming response and excellent thermal efficiency.

そして、このような優れた温度制御特性を有することから、本発明にかかるマイクロ反応器は、様々な分野に応用することが可能になる。その使用例を以下に示す。   And since it has such an excellent temperature control characteristic, the microreactor according to the present invention can be applied to various fields. An example of its use is shown below.

使用例1:DNAの増幅反応を行わせるためのPCR処理は、「第1段階(94〜96℃)で標的二本鎖DNAを熱変性させて一本鎖とし、第2段階(55〜60℃)でプライマーを一本鎖DNAにアニーリングさせ、第3段階(72〜74℃)で伸長反応を進める」という温度サイクルを繰り返すことにより増幅を行うが、この反応を例えば前記図1〜図5に示したマイクロ反応器内で再現するには、補助加熱器56で反応器全体を55℃に保った上で、ヒータ用金属パターン30の通電によって局所的に73℃加熱期間と95℃加熱期間を設け、あるいは当該温度を連続変化させるようにすればよい。   Use Example 1: PCR treatment for carrying out a DNA amplification reaction is as follows: “In the first stage (94 to 96 ° C.), the target double-stranded DNA is thermally denatured to form a single strand, and the second stage (55 to 60 The primer is annealed to single-stranded DNA at a temperature of 0 ° C.), and amplification is carried out by repeating a temperature cycle of “promoting the extension reaction at the third stage (72 to 74 ° C.)”. In order to reproduce in the microreactor shown in FIG. 1, the entire reactor is kept at 55 ° C. by the auxiliary heater 56 and then the 73 ° C. heating period and the 95 ° C. heating period are locally applied by energizing the heater metal pattern 30. Or the temperature may be continuously changed.

使用例2:蛋白質の直鎖状電気泳動を実験する際には、その前処理として、蛋白質試料と処理液とを混合して一定温度まで加熱することにより蛋白質を分析可能な形に変化させる処理を要する。この処理を再現するには、マイクロ反応器内で蛋白質試料と処理液とを送液して合流、混合、加熱という3段階の処理を行う必要があるが、その加熱に本発明に係るマイクロ反応器がもつ局所的な加熱温度制御機構がきわめて好適である。   Example of use 2: When conducting linear electrophoresis of proteins, as a pretreatment, a protein sample and a treatment solution are mixed and heated to a certain temperature to change the protein into a form that can be analyzed. Cost. In order to reproduce this process, it is necessary to send a protein sample and a processing solution in a microreactor and perform a three-stage process such as merging, mixing, and heating. The local heating temperature control mechanism of the vessel is very suitable.

本発明の実施の形態に係るマイクロ反応器の斜視図である。1 is a perspective view of a microreactor according to an embodiment of the present invention. 前記マイクロ反応器の平面図である。It is a top view of the said micro reactor. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2. 図2のC−C線断面図である。It is CC sectional view taken on the line of FIG. (a)は前記マイクロ反応器及び断熱層を有しないマイクロ反応器のそれぞれにおけるヒータ作動に伴う流体温度上昇についてシュミレーションを行った結果を示すグラフ、(b)は前記各マイクロ反応器におけるヒータ作動に伴う配線基板温度上昇についてシュミレーションを行った結果を示すグラフである。(A) is a graph showing the results of a simulation of the fluid temperature rise associated with heater operation in each of the microreactor and the microreactor having no heat insulation layer, and (b) shows the heater operation in each microreactor. It is a graph which shows the result of having performed the simulation about the accompanying wiring board temperature rise.

符号の説明Explanation of symbols

10 配線基板
12 流路基板
14 配線面
16 対向面
18 断熱層
20 流路形成凹部
30 ヒータ用金属パターン
32 ヒータ部
37,38 ヒータ用金属パターンの電極
40A,40B 温度センサ用金属パターン
42 センサ部
47,48 温度センサ用金属パターンの電極
DESCRIPTION OF SYMBOLS 10 Wiring board 12 Flow path board 14 Wiring surface 16 Opposing surface 18 Heat insulation layer 20 Flow path formation recessed part 30 Heater metal pattern 32 Heater part 37,38 Heater metal pattern electrode 40A, 40B Temperature sensor metal pattern 42 Sensor part 47 , 48 Metal pattern electrode for temperature sensor

Claims (9)

内部に流体流路を形成する流路形成部材と、その流体流路を囲む内壁面上の特定領域に形成されたヒータ用の金属配線及び温度センサ用の金属配線とを備え、かつ、前記ヒータ用の金属配線と前記流体流路の内壁面との間に前記流路形成部材よりも断熱性の高い断熱層が介在していることを特徴とするマイクロ反応器。   A flow path forming member for forming a fluid flow path therein, a metal wiring for a heater and a metal wiring for a temperature sensor formed in a specific region on an inner wall surface surrounding the fluid flow path, and the heater A microreactor, wherein a heat insulating layer having a higher heat insulating property than the flow path forming member is interposed between a metal wiring for use and an inner wall surface of the fluid flow path. 請求項1記載のマイクロ反応器において、前記流路形成部材は、配線面を有し、その上に前記断熱層と各金属配線とが配せられる配線基材と、この配線基材の配線面と対向する対向面を有し、この対向面から前記金属配線を囲む形状の流路形成凹部が凹んでいる流路基材とを含み、前記配線基材の配線面と前記流路基材の対向面とが対向した状態で重ね合わされることにより前記配線基材の配線面と前記流路基材の流路形成凹部とで前記ヒータ用の金属配線及び温度センサ用の金属配線を格納する流体流路が形成されるように構成されていることを特徴とするマイクロ反応器。   2. The microreactor according to claim 1, wherein the flow path forming member has a wiring surface on which the heat insulating layer and each metal wiring are arranged, and the wiring surface of the wiring substrate. And a flow path base material in which a flow path forming recess having a shape surrounding the metal wiring is recessed from the facing surface, the wiring surface of the wiring base material and the flow path base material Fluid that stores the metal wiring for the heater and the metal wiring for the temperature sensor between the wiring surface of the wiring base material and the flow path forming recess of the flow path base material by being overlapped with the opposing surface facing each other A microreactor characterized in that a flow path is formed. 請求項1または2記載のマイクロ反応器において、前記断熱層は多孔質膜により構成されていることを特徴とするマイクロ反応器。   3. The microreactor according to claim 1 or 2, wherein the heat insulating layer is constituted by a porous film. 請求項3記載のマイクロ反応器において、前記断熱層はシリカエアロゲルからなる多孔質膜により構成されていることを特徴とするマイクロ反応器。   4. The microreactor according to claim 3, wherein the heat insulating layer is composed of a porous film made of silica aerogel. 請求項3または4記載のマイクロ反応器において、前記断熱層の表面は当該断熱層を構成する材料よりも疎水性の高い防水膜で覆われており、その防水膜上に前記金属配線が配せられることを特徴とするマイクロ反応器。   5. The microreactor according to claim 3, wherein a surface of the heat insulating layer is covered with a waterproof film having a higher hydrophobicity than a material constituting the heat insulating layer, and the metal wiring is disposed on the waterproof film. A microreactor characterized by that. 請求項1〜5のいずれかに記載のマイクロ反応器において、前記金属配線は前記断熱層上に成膜された金属パターンで構成されていることを特徴とするマイクロ反応器。   6. The microreactor according to claim 1, wherein the metal wiring is composed of a metal pattern formed on the heat insulating layer. 請求項6記載のマイクロ反応器において、前記金属パターンはその端部に外部回路と接続される電極を有し、この電極が前記流路基材から外側にはみ出て流路形成部材の外部に露出するように構成されていることを特徴とするマイクロ反応器。   7. The microreactor according to claim 6, wherein the metal pattern has an electrode connected to an external circuit at an end thereof, and the electrode protrudes outward from the flow path base material and is exposed to the outside of the flow path forming member. A microreactor characterized by being configured to do so. 内部に流体流路を形成する流路形成部材と、その流体流路を囲む内壁面上の特定領域に形成されたヒータ用の金属配線及び温度センサ用の金属配線とを備え、かつ、前記ヒータ用の金属配線と前記流体流路の内壁面との間に前記流路形成部材よりも断熱性の高い断熱層が介在しているマイクロ反応器を製造する方法であって、平面状の配線面を有する配線基材を製造する工程と、この配線基材の配線面上に当該配線基材よりも断熱性の高い断熱層を形成する工程と、この断熱層上に前記各金属配線を形成する工程と、前記配線基材の配線面と対向する対向面を有し、この対向面から前記金属配線を囲む形状の流路形成凹部が凹んでいる流路基材を製造する工程と、前記配線基材の配線面と前記流路基材の対向面とを対向させながら両流路形成部材を重ね合せることにより当該配線基材の配線面と流路基材の流路形成凹部とで前記各金属配線を格納する流体流路を形成する工程とを含むことを特徴とするマイクロ反応器の製造方法。   A flow path forming member for forming a fluid flow path therein, a metal wiring for a heater and a metal wiring for a temperature sensor formed in a specific region on an inner wall surface surrounding the fluid flow path, and the heater A method of manufacturing a microreactor in which a heat insulating layer having a higher heat insulating property than the flow path forming member is interposed between a metal wiring for use and an inner wall surface of the fluid flow path. Manufacturing a wiring base material having a step, forming a heat insulating layer having a higher heat insulating property than the wiring base material on the wiring surface of the wiring base material, and forming each metal wiring on the heat insulating layer A step of manufacturing a flow path base material having a facing surface facing the wiring surface of the wiring base material, and having a recessed flow path forming recess having a shape surrounding the metal wiring from the facing surface; Both flow paths are formed while facing the wiring surface of the base material and the facing surface of the flow path base material Forming a fluid flow path for storing each of the metal wirings by superimposing materials on the wiring surface of the wiring base material and the flow path forming recess of the flow path base material. Manufacturing method. 請求項8記載のマイクロ反応器の製造方法において、前記断熱層を形成する工程は前記配線面上に多孔質膜を形成する工程であり、その工程後、前記断熱層上に当該断熱層を覆う防水膜を形成してから当該防水膜上に前記各金属配線を形成する工程を行うことを特徴とするマイクロ反応器の製造方法。   9. The method of manufacturing a microreactor according to claim 8, wherein the step of forming the heat insulating layer is a step of forming a porous film on the wiring surface, and after that step, the heat insulating layer is covered on the heat insulating layer. A method for producing a microreactor, comprising: forming a metal film on the waterproof film after forming the waterproof film.
JP2004202943A 2004-07-09 2004-07-09 Microreactor and manufacturing method thereof Expired - Fee Related JP4440020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202943A JP4440020B2 (en) 2004-07-09 2004-07-09 Microreactor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202943A JP4440020B2 (en) 2004-07-09 2004-07-09 Microreactor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006021156A true JP2006021156A (en) 2006-01-26
JP4440020B2 JP4440020B2 (en) 2010-03-24

Family

ID=35794812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202943A Expired - Fee Related JP4440020B2 (en) 2004-07-09 2004-07-09 Microreactor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4440020B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168171A (en) * 2007-01-09 2008-07-24 Kobe Steel Ltd Method and apparatus for manufacturing fine particle
JP2009530633A (en) * 2006-03-20 2009-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System-in-package platform for electronic microfluidic devices
WO2012157689A1 (en) * 2011-05-13 2012-11-22 Canon Kabushiki Kaisha Microfluidic device and microfluidic apparatus using the same
JP2013167639A (en) * 2007-07-13 2013-08-29 Handylab Inc Heater base substance and heater unit
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US9028773B2 (en) 2001-09-12 2015-05-12 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US9051604B2 (en) 2001-02-14 2015-06-09 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
USD742027S1 (en) 2011-09-30 2015-10-27 Becton, Dickinson And Company Single piece reagent holder
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9217143B2 (en) 2007-07-13 2015-12-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US9222954B2 (en) 2011-09-30 2015-12-29 Becton, Dickinson And Company Unitized reagent strip
US9238223B2 (en) 2007-07-13 2016-01-19 Handylab, Inc. Microfluidic cartridge
US9259735B2 (en) 2001-03-28 2016-02-16 Handylab, Inc. Methods and systems for control of microfluidic devices
US9259734B2 (en) 2007-07-13 2016-02-16 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9713802B2 (en) 2009-01-13 2017-07-25 Kobe Steel, Ltd. Method and apparatus for manufacturing liquid microspheres
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
JP2019527358A (en) * 2016-07-21 2019-09-26 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Temperature controlled transport pack
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
USD1029291S1 (en) 2020-12-14 2024-05-28 Becton, Dickinson And Company Single piece reagent holder

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528142B2 (en) 2001-02-14 2016-12-27 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US9051604B2 (en) 2001-02-14 2015-06-09 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10351901B2 (en) 2001-03-28 2019-07-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9259735B2 (en) 2001-03-28 2016-02-16 Handylab, Inc. Methods and systems for control of microfluidic devices
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US9028773B2 (en) 2001-09-12 2015-05-12 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US10865437B2 (en) 2003-07-31 2020-12-15 Handylab, Inc. Processing particle-containing samples
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US11078523B2 (en) 2003-07-31 2021-08-03 Handylab, Inc. Processing particle-containing samples
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US10604788B2 (en) 2004-05-03 2020-03-31 Handylab, Inc. System for processing polynucleotide-containing samples
US10494663B1 (en) 2004-05-03 2019-12-03 Handylab, Inc. Method for processing polynucleotide-containing samples
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US11441171B2 (en) 2004-05-03 2022-09-13 Handylab, Inc. Method for processing polynucleotide-containing samples
JP2009530633A (en) * 2006-03-20 2009-08-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System-in-package platform for electronic microfluidic devices
US10857535B2 (en) 2006-03-24 2020-12-08 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11959126B2 (en) 2006-03-24 2024-04-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11666903B2 (en) 2006-03-24 2023-06-06 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US9080207B2 (en) 2006-03-24 2015-07-14 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11141734B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10821436B2 (en) 2006-03-24 2020-11-03 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US11085069B2 (en) 2006-03-24 2021-08-10 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10913061B2 (en) 2006-03-24 2021-02-09 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10843188B2 (en) 2006-03-24 2020-11-24 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10821446B1 (en) 2006-03-24 2020-11-03 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
JP4627302B2 (en) * 2007-01-09 2011-02-09 株式会社神戸製鋼所 Method and apparatus for producing fine particles
JP2008168171A (en) * 2007-01-09 2008-07-24 Kobe Steel Ltd Method and apparatus for manufacturing fine particle
US10717085B2 (en) 2007-07-13 2020-07-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11254927B2 (en) 2007-07-13 2022-02-22 Handylab, Inc. Polynucleotide capture materials, and systems using same
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11845081B2 (en) 2007-07-13 2023-12-19 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625261B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10632466B1 (en) 2007-07-13 2020-04-28 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US9238223B2 (en) 2007-07-13 2016-01-19 Handylab, Inc. Microfluidic cartridge
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
JP2013167639A (en) * 2007-07-13 2013-08-29 Handylab Inc Heater base substance and heater unit
US11466263B2 (en) 2007-07-13 2022-10-11 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US9259734B2 (en) 2007-07-13 2016-02-16 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10139012B2 (en) 2007-07-13 2018-11-27 Handylab, Inc. Integrated heater and magnetic separator
US9217143B2 (en) 2007-07-13 2015-12-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US10065185B2 (en) 2007-07-13 2018-09-04 Handylab, Inc. Microfluidic cartridge
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10875022B2 (en) 2007-07-13 2020-12-29 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10100302B2 (en) 2007-07-13 2018-10-16 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11060082B2 (en) 2007-07-13 2021-07-13 Handy Lab, Inc. Polynucleotide capture materials, and systems using same
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9713802B2 (en) 2009-01-13 2017-07-25 Kobe Steel, Ltd. Method and apparatus for manufacturing liquid microspheres
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US11788127B2 (en) 2011-04-15 2023-10-17 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
WO2012157689A1 (en) * 2011-05-13 2012-11-22 Canon Kabushiki Kaisha Microfluidic device and microfluidic apparatus using the same
JP2012236179A (en) * 2011-05-13 2012-12-06 Canon Inc Microfluidic device, and microfluidic apparatus using the same
US9222954B2 (en) 2011-09-30 2015-12-29 Becton, Dickinson And Company Unitized reagent strip
US10076754B2 (en) 2011-09-30 2018-09-18 Becton, Dickinson And Company Unitized reagent strip
USD831843S1 (en) 2011-09-30 2018-10-23 Becton, Dickinson And Company Single piece reagent holder
US9480983B2 (en) 2011-09-30 2016-11-01 Becton, Dickinson And Company Unitized reagent strip
USD742027S1 (en) 2011-09-30 2015-10-27 Becton, Dickinson And Company Single piece reagent holder
USD905269S1 (en) 2011-09-30 2020-12-15 Becton, Dickinson And Company Single piece reagent holder
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US11530851B2 (en) 2016-07-21 2022-12-20 Siemens Healthcare Diagnostics Inc. Temperature controlled transport puck
JP2019527358A (en) * 2016-07-21 2019-09-26 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Temperature controlled transport pack
USD1029291S1 (en) 2020-12-14 2024-05-28 Becton, Dickinson And Company Single piece reagent holder

Also Published As

Publication number Publication date
JP4440020B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4440020B2 (en) Microreactor and manufacturing method thereof
US6909073B2 (en) Integrated device based upon semiconductor technology, in particular chemical microreactor
US6762049B2 (en) Miniaturized multi-chamber thermal cycler for independent thermal multiplexing
JP5965908B2 (en) Microfluidic device
US6420143B1 (en) Methods and systems for performing superheated reactions in microscale fluidic systems
JP2008035859A (en) Instrument for heating and cooling
JP2008017843A (en) Instrument for heating and cooling
US20220193682A1 (en) Thermocycling system, composition, and microfabrication method
JP2005503262A (en) Micro components
Zou et al. Miniaturized independently controllable multichamber thermal cycler
US20170072400A1 (en) Thermocycling system and manufacturing method
JP2008082768A (en) Thermal flow sensor
JP2005308676A (en) Heater device, and gas sensor unit using the same
JP2004279340A (en) Microchip and temperature regulator therefor
US9823215B2 (en) Electrochemical sensor
WO2005068066A1 (en) Temperature controller and protein crystallizer utilizing the same
US20200368750A1 (en) Fluid thermal processing
Mesforush et al. Finite element simulation of isothermal regions in serpentine shaped PCB electrodes of a micro-PCR device
Poser et al. Temperature controlled chip reactor for rapid PCR
JP2010276499A (en) Microchip electrophoretic apparatus
CN112770841B (en) Temperature-changing reactor, heater and control circuit thereof
JP2017530014A (en) Method for manufacturing embedded microfluidic channel with integrated heater
JP2006300860A (en) Micro chemical chip
JP2009112934A (en) Temperature controller of reaction vessel
Simion et al. Electro-thermal simulation and design of silicon based bioanalytical micro-devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees