JP2006016660A - Apparatus for forming organic thin film, and method therefor - Google Patents

Apparatus for forming organic thin film, and method therefor Download PDF

Info

Publication number
JP2006016660A
JP2006016660A JP2004195226A JP2004195226A JP2006016660A JP 2006016660 A JP2006016660 A JP 2006016660A JP 2004195226 A JP2004195226 A JP 2004195226A JP 2004195226 A JP2004195226 A JP 2004195226A JP 2006016660 A JP2006016660 A JP 2006016660A
Authority
JP
Japan
Prior art keywords
thin film
light
organic thin
fluorescence
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004195226A
Other languages
Japanese (ja)
Inventor
Akihiko Atami
陽彦 熱海
Osamu Shirai
修 白井
Kyosuke Kodera
恭介 小寺
Junji Kido
淳二 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shinku Co Ltd
Original Assignee
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co Ltd filed Critical Showa Shinku Co Ltd
Priority to JP2004195226A priority Critical patent/JP2006016660A/en
Publication of JP2006016660A publication Critical patent/JP2006016660A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus which can control the thickness of an organic film so as to precisely form a functional device with an organic thin film having a desired film thickness and film composition, with a simple motion mechanism. <P>SOLUTION: A measuring instrument for measuring the concentration of a doped material in the organic thin film formed on a structure comprises: a light source for irradiating the structure with a light having such a wavelength range as to include at least an exciting light, at least in a period of forming the film; a detecting means for detecting the fluorescence intensity emitted from the structure in response to the irradiated light, by receiving at least fluorescent light from the structure; and a measuring means for measuring the concentration of the doping material doped into the organic film, on the basis of the thickness of the organic thin film and the fluorescence intensity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は薄膜形成および薄膜制御に係り、特に、機能素子を構成する有機薄膜の膜厚および組成が素子特性に対して敏感である有機薄膜機能素子を形成する装置および方法に関する。   The present invention relates to thin film formation and thin film control, and more particularly to an apparatus and method for forming an organic thin film functional element in which the thickness and composition of an organic thin film constituting the functional element are sensitive to element characteristics.

有機エレクトロニクス分野から発生した次世代の表示素子として大きな市場となることが期待される有機EL素子は、高輝度、高効率で視野角が広く、高速応答性を有し、薄型の表示装置が得られることから近年注目されており、フルカラー化と長寿命化による実現化に向け、鋭意研究が行われている。
図4に示すように一般的な有機EL素子は、ガラス基板30上に透明導電膜31を形成した後、有機薄膜32〜34を形成し、次いで、有機薄膜34表面に電極35を積層し、最後に缶36による封止を行うことで全体を保護している。
このように作製される有機EL素子は、各有機薄膜32〜34を、正孔輸送層、発光層、電子輸送層として機能させ、透明導電膜31に正電圧、電極35に負電圧を印加すると、発光層である有機薄膜33が電気ショックにより発光し、ガラス基板30を透過したEL光37が外部に放射される。
Organic EL devices, which are expected to become a large market for next-generation display devices generated from the organic electronics field, have high brightness, high efficiency, wide viewing angle, high-speed response, and thin display devices. Therefore, it has been attracting attention in recent years, and intensive research is being conducted toward realization by full color and long life.
As shown in FIG. 4, a general organic EL element is formed by forming a transparent conductive film 31 on a glass substrate 30, then forming organic thin films 32 to 34, and then laminating an electrode 35 on the surface of the organic thin film 34, Finally, the whole is protected by sealing with the can 36.
In the organic EL device fabricated in this way, when each organic thin film 32 to 34 functions as a hole transport layer, a light emitting layer, and an electron transport layer, a positive voltage is applied to the transparent conductive film 31 and a negative voltage is applied to the electrode 35. The organic thin film 33 as the light emitting layer emits light by electric shock, and the EL light 37 transmitted through the glass substrate 30 is emitted to the outside.

上述の透明導電膜31は、一般にはITO(Indium-Tin Oxide)薄膜が用いられている。その表面に有機薄膜32〜34を積層する場合には、透明導電膜31が形成されたガラス基板30を用意し、透明導電膜31の表面処理を行った後、有機薄膜形成装置の真空槽内に設置する。
前記真空槽内には、少なくとも一個以上の有機材料用蒸発源が配置されており、設置されたガラス基板30の透明導電膜31を有機材料用蒸発源に対向させ、該真空槽内を所定圧力まで排気する。
前記有機材料用蒸発源には、予め有機蒸発材料を充填しておき、前記有機材料用蒸発源を加熱すると、該真空槽内に該有機蒸発材料の蒸気が放出されるようになる。
水晶振動子上に堆積する物質による該振動子の固有振動数の変化を検出する蒸着速度検出手段により蒸気放出速度の安定を確認したところで、前記ガラス基板30下に配置されたシャッターを開放すると、有機蒸発材料の蒸気は該透明導電膜31に到達し、表面に一様な膜厚の有機薄膜が形成される。
このように、有機薄膜形成装置を用いれば、真空雰囲気中で該透明導電膜31表面に膜質の良い有機薄膜を形成することが可能となっている。
The transparent conductive film 31 generally uses an ITO (Indium-Tin Oxide) thin film. When the organic thin films 32 to 34 are laminated on the surface, a glass substrate 30 on which the transparent conductive film 31 is formed is prepared, and after the surface treatment of the transparent conductive film 31 is performed, the inside of the vacuum chamber of the organic thin film forming apparatus Install in.
At least one or more organic material evaporation source is disposed in the vacuum chamber, the transparent conductive film 31 of the installed glass substrate 30 is opposed to the organic material evaporation source, and the vacuum chamber has a predetermined pressure. Exhaust until.
When the organic material evaporation source is filled in advance with the organic material evaporation source and the organic material evaporation source is heated, the vapor of the organic evaporation material is released into the vacuum chamber.
When the stability of the vapor release rate is confirmed by the vapor deposition rate detection means for detecting the change in the natural frequency of the resonator due to the substance deposited on the crystal resonator, when the shutter disposed under the glass substrate 30 is opened, The vapor of the organic evaporation material reaches the transparent conductive film 31, and an organic thin film having a uniform thickness is formed on the surface.
Thus, if an organic thin film forming apparatus is used, it is possible to form an organic thin film with good film quality on the surface of the transparent conductive film 31 in a vacuum atmosphere.

ところで、近年では、有機EL素子の表示装置への幅広い実用化に向け、さらなる高効率化、長寿命化が期待されている。前記有機EL素子の高効率化、長寿命化に向けた課題解決が望まれている。その課題解決のひとつには材料性能の向上があげられる。有機蒸発材料によって特有のHOMO(最高被占軌道)およびLUMO(最低空軌道)の大きさ、バンドギャップ、キャリア移動度、ガラス転移温度等を有しており、そのため前記した複数の性能の改善を目的とし有機合成によって多種多様な構造の化合物が合成されている。中でもイリジウム錯体等の三重項燐光発光を利用した新規発光材料や従来よりもキャリア移動度の大きい新規キャリア輸送性材料等の鋭意開発が行われている。
また、材料性能の向上以外に、有機EL素子の効率化、長寿命化への課題改善として、有機EL素子を構成する各機能層の膜厚の組み合わせ、レーザー色素等をホスト材料に混入させたドーピング型素子における該ドーピングのホスト材料に対する重量パーセント濃度等の全体的な素子構造、並びに、各層における膜厚および膜の組成の最適化が行われている。
有機EL素子は複数の有機層から形成され、各機能層の役割の重みは、膜厚にも依存する。膜厚が数nmずれるだけで大きく素子特性が変化する。再結合領域の変化によって色純度、素子寿命、視感効率、電流効率が顕著に変化する場合がある。
By the way, in recent years, higher efficiency and longer life are expected for practical application to a wide range of organic EL element display devices. It is desired to solve the problems for improving the efficiency and extending the life of the organic EL element. One solution to this problem is to improve material performance. Depending on the organic evaporation material, it has specific HOMO (highest occupied orbit) and LUMO (lowest empty orbit) size, band gap, carrier mobility, glass transition temperature, etc. A variety of structures have been synthesized by organic synthesis for the purpose. In particular, intensive developments such as new light emitting materials utilizing triplet phosphorescence such as iridium complexes and new carrier transporting materials having higher carrier mobility than conventional ones have been made.
In addition to improving the performance of materials, as a problem to improve the efficiency and longevity of organic EL elements, the combination of the thickness of each functional layer constituting the organic EL element, laser dyes, etc. were mixed into the host material. Optimization of the overall device structure, such as the weight percent concentration of the doped host material in the doping type device, as well as the film thickness and film composition of each layer, has been performed.
An organic EL element is formed of a plurality of organic layers, and the weight of the role of each functional layer also depends on the film thickness. The device characteristics change greatly only by the film thickness deviating by several nm. Depending on the recombination region, the color purity, device lifetime, luminous efficiency, and current efficiency may change significantly.

また、有機EL素子の発光層は、キャリア輸送材料からなるホスト材料に、蛍光物質であるゲスト材料を極微量ドーピングして所望の発光特性に調整する場合が多い。ドーピングは、ホスト材料とゲスト材料とを同時蒸着することにより行い、ドーピング濃度は各材料の蒸着速度を制御することにより決定する。例えば、ホスト材料を毎秒1nmの速度で蒸着し、ゲスト材料 を毎秒0.01nmで蒸着して、1%のゲスト材料を有する発光層を形成するなどである。このようにして製造される素子のドーピング濃度は有機EL素子の効率化および長寿命化に多大な効果を与えるため、ドーピング濃度を精度良く制御することが行われている。
前述のように、有機EL素子において、膜厚および膜の組成が光学特性に大きな影響を及ぼすことは周知であり、そのため精度よく所望の膜厚およびドーピング濃度で素子構造を作製する技術は重要な技術として位置づけられる。
In addition, the light-emitting layer of the organic EL element is often adjusted to a desired light-emitting characteristic by doping a host material made of a carrier transport material with a guest material that is a fluorescent material in a very small amount. Doping is performed by co-evaporating a host material and a guest material, and the doping concentration is determined by controlling the deposition rate of each material. For example, a host material is deposited at a rate of 1 nm per second, and a guest material is deposited at a rate of 0.01 nm per second to form a light emitting layer having 1% guest material. Since the doping concentration of the device manufactured in this way has a great effect on the efficiency and life of the organic EL device, the doping concentration is controlled with high accuracy.
As described above, in organic EL elements, it is well known that the film thickness and film composition have a great influence on the optical characteristics. Therefore, a technique for accurately fabricating an element structure with a desired film thickness and doping concentration is important. Positioned as technology.

従来から用いられる膜厚制御方法としては、水晶振動子の固有振動数の変化から膜厚を検出する水晶振動子法が一般的である。水晶振動子法は、成膜室に水晶振動子を配置し、水晶振動子上に堆積する物質量の変化を該振動子の固有振動数から検出し、実際の構造体上に形成される成膜材料の重量を求める方法であり、実構造体上の膜厚を間接的に予測して膜厚制御を行っている。
水晶振動子法はドーピング型素子の作製においても、膜中の組成制御手段として用いられる。これは、前記と同様の水晶振動子によりドーピング材料とホスト材料の成膜速度を測定し、ドーピング材料の成膜速度を制御し、さらにホスト材料の成膜速度制御することで、間接的に実構造体上の素子薄膜の組成を予測し制御するものである。
As a conventional film thickness control method, a crystal oscillator method that detects a film thickness from a change in the natural frequency of a crystal oscillator is generally used. In the crystal resonator method, a crystal resonator is disposed in a film forming chamber, a change in the amount of material deposited on the crystal resonator is detected from the natural frequency of the resonator, and a component formed on an actual structure is formed. In this method, the film thickness is controlled by indirectly estimating the film thickness on the actual structure.
The crystal resonator method is used as a composition control means in the film also in the production of a doping type element. This is indirectly achieved by measuring the deposition rate of the doping material and the host material with the same crystal resonator as described above, controlling the deposition rate of the doping material, and further controlling the deposition rate of the host material. It predicts and controls the composition of the device thin film on the structure.

しかしながら、有機材料の蒸気には有機物特有の熱伝導が小さい、蒸気圧が高いといった特徴があり、蒸着速度制御、蒸発分布制御が比較的困難であるという問題がある。また、蒸発源内において成膜中の材料消費により蒸発面の下降が発生すると、蒸発分布が変化してしまうため、間接的な膜厚計測手段では膜厚誤差が生じてしまい、前述したように、膜厚又はドーピング濃度がきわめて特性に影響をおよぼす有機機能素子の作製においては重大な問題であった。また、このような成膜制御で作製した素子は再現性も悪く、装置の歩留りが低くなってしまうという問題もある。
更に、水晶振動子は、質量負荷による周波数変化から膜厚を計測する原理から、水晶振動子の質量負荷範囲の限度を超えると発振不良を引き起こすため、成膜を中断し水晶振動子の交換をしなければならなかったり、はがれが発生したりするため精度の高い有機膜形成時における膜厚制御において問題となる。
特に量産化における素子製造装置においては、メンテナンス性と制御精度性の両方の観点から、さらに十分なものが求められている。
However, the vapor of the organic material has characteristics such as low heat conduction peculiar to organic matter and high vapor pressure, and there is a problem that the deposition rate control and the evaporation distribution control are relatively difficult. In addition, when the evaporation surface falls due to material consumption during film formation in the evaporation source, the evaporation distribution changes, so an indirect film thickness measurement means causes a film thickness error. This is a serious problem in the production of an organic functional device in which the film thickness or doping concentration greatly affects the characteristics. In addition, an element manufactured by such film formation control also has a problem of poor reproducibility and low device yield.
Furthermore, because the crystal oscillator measures the film thickness from the frequency change caused by the mass load, it causes oscillation failure when the mass load range limit of the crystal oscillator is exceeded. As a result, there is a problem in controlling the film thickness when forming an organic film with high accuracy.
In particular, in an element manufacturing apparatus in mass production, more sufficient devices are required from the viewpoints of both maintainability and control accuracy.

上述の問題を鑑み、特許文献1から3には光学的薄膜制御手段を用いた装置又は方法が開示されている。
特許文献1は、有機EL素子の製造装置に紫外線照射手段と蛍光強度測定手段とを備え、有機材料の蒸発分子に紫外線を照射して蒸発分子の蛍光強度を測定し、基板に形成される有機材料膜の膜厚を決定するものである。
特許文献2は、モニター用可動部材、光学的に有機材料の厚みを感知・制御する手段、光学的に有機材料に含有されるドーパント材料の濃度を感知・制御する手段、および可動部材クリーニング手段を具備し、有機層蒸着工程の監視および制御を行うものである。
特許文献3は、有機薄膜に紫外光を含む光を照射し、有機薄膜が生成する蛍光の強度から膜厚を求め、有機薄膜の膜厚分布を測定するものである。
特開2000-294372号公報 特開2003-7462号公報 特開2003-279326号公報
In view of the above-mentioned problems, Patent Documents 1 to 3 disclose apparatuses or methods using optical thin film control means.
In Patent Document 1, an organic EL element manufacturing apparatus includes an ultraviolet irradiation means and a fluorescence intensity measurement means, and the organic molecules formed on the substrate are measured by irradiating the evaporation molecules of the organic material with ultraviolet rays to measure the fluorescence intensity of the evaporation molecules. The thickness of the material film is determined.
Patent Document 2 discloses a movable member for monitoring, a means for optically sensing and controlling the thickness of the organic material, a means for optically sensing and controlling the concentration of the dopant material contained in the organic material, and a movable member cleaning means. And monitoring and controlling the organic layer deposition process.
Patent Document 3 irradiates an organic thin film with light containing ultraviolet light, obtains the film thickness from the intensity of fluorescence generated by the organic thin film, and measures the film thickness distribution of the organic thin film.
JP 2000-294372 A JP 2003-7462 A JP 2003-279326 A

特許文献1開示の手段では、実構造体上のドーピング濃度ではなく、従来の水晶振動子による膜厚計測と同様に間接的にドーピングの蒸着速度を制御しているため組成の再現性の確認は素子として特性を比較することでしかできない問題があった。
特許文献2開示の手段は、成膜中の構造体を計測していないため、成膜中の膜厚およびドーピング濃度の変化が計測できないという問題があった。更に、有機材料の厚みを感知する手段とドーパント材料の濃度を感知する手段が独立に存在するといった構成や、可動部材を動作させるための複雑な機械的、電気的な機構を必要とするため、蒸着装置に大きな空間を確保しなければならいという不都合があった。
特許文献3開示の手段では、ドーピング型素子を作製しようとするときに、ホスト材料の蛍光をドーピング材料が吸収してしまうために蛍光強度から膜厚を測定することができないという不都合があった。
In the means disclosed in Patent Document 1, the reproducibility of the composition is confirmed because the doping deposition rate is indirectly controlled in the same manner as the film thickness measurement by the conventional crystal resonator, not the doping concentration on the actual structure. There was a problem that could only be done by comparing the characteristics of the device.
Since the means disclosed in Patent Document 2 does not measure the structure during film formation, there is a problem in that changes in film thickness and doping concentration during film formation cannot be measured. Furthermore, since a means for sensing the thickness of the organic material and a means for sensing the concentration of the dopant material exist independently, and a complicated mechanical and electrical mechanism for operating the movable member is required, There was a disadvantage that a large space had to be secured in the vapor deposition apparatus.
The means disclosed in Patent Document 3 has the disadvantage that the film thickness cannot be measured from the fluorescence intensity because the doping material absorbs the fluorescence of the host material when a doping type device is to be produced.

したがって、これらを解決し簡便に実基板の膜厚およびドーピング素子作製における実ドーピング濃度の計測および制御が求められている。
そこで、本発明は、単純な動作機構により所望の膜厚および膜組成をもつ有機薄膜機能素子を精度よく形成することが可能な有機膜の膜厚制御を実現する装置を提供することを目的とする。
Therefore, there is a need to solve these problems and to easily measure and control the thickness of the actual substrate and the actual doping concentration in manufacturing the doping element.
Therefore, an object of the present invention is to provide an apparatus that realizes film thickness control of an organic film capable of accurately forming an organic thin film functional element having a desired film thickness and film composition by a simple operation mechanism. To do.

本発明の第一の側面は、構造体の有機薄膜中のドーピング濃度を測定する測定装置であって、少なくとも成膜中に構造体に少なくとも励起光を含む波長範囲の照射光を投光する光源、照射光に対する該構造体からの少なくとも蛍光を受光し、構造体の蛍光強度を得る検出手段、有機薄膜の厚さ及び該蛍光強度に基づいて有機膜にドープされたドーピング材料の濃度を測定する濃度測定手段からなる測定装置である。また、濃度測定手段が有機薄膜の厚さに対する該蛍光の強度に基づいてドーピング濃度を測定するようにした。   A first aspect of the present invention is a measuring apparatus for measuring a doping concentration in an organic thin film of a structure, and a light source that projects irradiation light in a wavelength range including at least excitation light onto the structure at least during film formation Detecting means for receiving at least fluorescence from the structure with respect to irradiation light and obtaining fluorescence intensity of the structure, measuring the thickness of the organic thin film and the concentration of the doping material doped in the organic film based on the fluorescence intensity It is a measuring device comprising a concentration measuring means. In addition, the concentration measuring means measures the doping concentration based on the intensity of the fluorescence with respect to the thickness of the organic thin film.

本発明の第二の側面は、構造体に有機薄膜を形成する有機薄膜形成装置であって、少なくとも成膜中に構造体に少なくとも励起光の波長を含む波長範囲の照射光を投光する光源、照射光に対する構造体からの光を受光し、波長分離および光強度検出を行う光検知器、および、光検知器に接続される測定装置を具備し、測定装置は、光検知器から出力される光波長および光強度から構造体の蛍光波長および蛍光強度を観測する第一の観測手段、第一の観測手段の出力から有機薄膜の厚さを測定する第一の測定手段、および、第一の観測手段の出力から有機薄膜中のドーピング濃度を測定する第二の測定手段を有する有機薄膜形成装置である。
さらに、光検知器は、照射光に含まれる励起光に対する構造体の蛍光および照射光に対する反射光又は透過光を同時に受光し、測定装置は、光検知器から出力される光波長および光強度から構造体の吸収波長および吸収強度を観測する第二の観測手段、および、第二の観測手段の出力から有機薄膜の厚さを測定する第三の測定手段を有する構成とした。また、第一の測定手段は、第一の観測手段の出力と、少なくとも目標膜厚値を含む膜厚に対する第一の蛍光特性理論値とを比較して有機薄膜の厚さを計算し、第一の蛍光特性理論値は、励起光の光強度と、構造体の蛍光強度と、有機薄膜の厚さとの依存特性を利用して算出される値とした。
According to a second aspect of the present invention, there is provided an organic thin film forming apparatus for forming an organic thin film on a structure, and at least a light source for projecting irradiation light in a wavelength range including a wavelength of excitation light onto the structure during film formation A light detector that receives light from the structure with respect to the irradiation light, performs wavelength separation and light intensity detection, and a measurement device connected to the light detector, and the measurement device is output from the light detector First observation means for observing the fluorescence wavelength and fluorescence intensity of the structure from the light wavelength and light intensity to be measured, first measurement means for measuring the thickness of the organic thin film from the output of the first observation means, and first It is an organic thin film formation apparatus which has the 2nd measurement means to measure the doping concentration in an organic thin film from the output of this observation means.
Further, the photodetector simultaneously receives the fluorescence of the structure with respect to the excitation light included in the irradiation light and the reflected light or transmitted light with respect to the irradiation light, and the measuring device determines from the light wavelength and light intensity output from the light detector. The structure has second observation means for observing the absorption wavelength and absorption intensity of the structure, and third measurement means for measuring the thickness of the organic thin film from the output of the second observation means. Further, the first measuring means calculates the thickness of the organic thin film by comparing the output of the first observing means with the first theoretical value of the fluorescence characteristic for the film thickness including at least the target film thickness value. One theoretical value of the fluorescence characteristic is a value calculated by using the dependence characteristics of the light intensity of the excitation light, the fluorescence intensity of the structure, and the thickness of the organic thin film.

またさらに、第二の測定手段は、第一の観測手段の出力と、少なくとも目標ドーピング濃度を含むドーピング濃度に対する第二又は第三の蛍光特性理論値とを比較して有機薄膜のドーピング濃度を計算し、第二の蛍光特性理論値は、ドープされるドーピング材料の蛍光波長と、有機薄膜中のドーピング濃度との依存特定を利用して算出される値とした。ここで、第三の蛍光特性理論値は、ドープされるドーピング材料の蛍光強度と、有機薄膜の厚さと、有機薄膜中のドーピング濃度との依存特性を利用して算出される値とした。また、第二の蛍光特性理論値において、有機薄膜中のドーピング濃度が該有機薄膜中のドーピング濃度の増加に伴って該蛍光波長が長波長側へシフトすることに基づいて計算された値とした。一方、第三の蛍光特性理論値において、有機薄膜中のドーピング濃度が有機薄膜の厚さに対して蛍光強度が単調増加することに基づいて計算された値とした。
また、第三の測定手段は、第二の観測手段の出力と、少なくとも目標膜厚値を含む膜厚に対する第一又は第二の吸収光理論値とを比較して有機薄膜の膜厚を計算し、第一の吸収光理論値は、該照射光における所定の波長光の光強度と、構造体からの反射光又は透過光における波長光の光強度と、有機薄膜の厚さとの依存特性を利用して算出された値とし、第二の吸収光理論値は、照射光の分光特性と、構造体からの反射光又は透過光の分光特性と、有機薄膜の厚さとの依存特性を利用して算出された値とした。
Still further, the second measuring means calculates the doping concentration of the organic thin film by comparing the output of the first observing means with the second or third fluorescent characteristic theoretical value for the doping concentration including at least the target doping concentration. Then, the second theoretical value of the fluorescence characteristic is a value calculated by utilizing the dependency specification between the fluorescence wavelength of the doped doping material and the doping concentration in the organic thin film. Here, the third theoretical value of the fluorescence characteristic is a value calculated using the dependence characteristics of the fluorescence intensity of the doped doping material, the thickness of the organic thin film, and the doping concentration in the organic thin film. In the second theoretical value of fluorescence characteristics, the doping concentration in the organic thin film is a value calculated based on the fact that the fluorescence wavelength shifts to the longer wavelength side as the doping concentration in the organic thin film increases. . On the other hand, in the third theoretical value of fluorescence characteristics, the doping concentration in the organic thin film was a value calculated based on the monotonous increase in the fluorescence intensity with respect to the thickness of the organic thin film.
The third measuring means calculates the film thickness of the organic thin film by comparing the output of the second observing means with the first or second absorbed light theoretical value for the film thickness including at least the target film thickness value. The first theoretical value of absorbed light is dependent on the light intensity of the predetermined wavelength light in the irradiation light, the light intensity of the wavelength light in the reflected or transmitted light from the structure, and the thickness of the organic thin film. The second theoretical value of absorbed light is calculated based on the spectral characteristics of the irradiated light, the spectral characteristics of reflected or transmitted light from the structure, and the dependence on the thickness of the organic thin film. It was set as the value calculated.

本発明の第三の側面は、上記第二の側面において、構造体に形成される直前の有機材料に少なくとも励起光を含む波長範囲の照射光を投光する第二の光源、および、有機材料から光を受光して受光した光の波長分離および光強度検出を行い、波長分離および光強度検出の結果を測定装置に出力する第二の光検知器を具備し、測定装置は、第二の光検知器から出力される波長および光強度から、有機材料の蛍光波長および蛍光強度を観測する第三の観測手段、および、第三の観測手段の出力から有機薄膜中のドーピング濃度を測定する第四の測定手段を有する有機薄膜形成装置である。さらに、第四の測定手段は、第三の観測手段の出力と、少なくとも目標ドーピング濃度を含むドーピング濃度に対する第四又は第五の蛍光特性理論値とを比較して有機薄膜のドーピング濃度を測定し、第四の蛍光特性理論値は、有機材料におけるドーピング材料の蛍光波長と該有機薄膜のドーピング濃度との依存特定を利用して算出される値とし、第五の蛍光特性理論値は、有機材料におけるドーピング材料の蛍光強度と、有機薄膜の厚さと、有機薄膜のドーピング濃度との依存特性を利用して算出される値とした。   According to a third aspect of the present invention, in the second aspect, a second light source that projects irradiation light in a wavelength range including at least excitation light onto the organic material immediately before being formed in the structure, and the organic material A second optical detector that performs wavelength separation and light intensity detection of the received light and outputs the result of wavelength separation and light intensity detection to the measurement device. A third observation means for observing the fluorescence wavelength and fluorescence intensity of the organic material from the wavelength and light intensity output from the photodetector, and a doping concentration in the organic thin film from the output of the third observation means. An organic thin film forming apparatus having four measuring means. Further, the fourth measuring means measures the doping concentration of the organic thin film by comparing the output of the third observing means with the fourth or fifth theoretical value of the fluorescence characteristic for the doping concentration including at least the target doping concentration. The fourth theoretical value of the fluorescence characteristic is a value calculated by using the dependency specification of the fluorescence wavelength of the doping material in the organic material and the doping concentration of the organic thin film, and the fifth theoretical value of the fluorescence characteristic is the organic material The value calculated based on the dependence characteristics of the fluorescence intensity of the doping material, the thickness of the organic thin film, and the doping concentration of the organic thin film.

さらに、上記第二又は第三の側面において、構造体に有機材料を蒸着する蒸発源、蒸発源を構造体に対して遮蔽するシャッター、および、測定装置に接続される制御装置からなり、制御装置は、測定装置からの出力に基づいて、有機薄膜の厚さ又はドーピング濃度が所望の値となるように蒸発源を制御し、有機薄膜が所望の厚さとなった時点で蒸着を終了させるように蒸発源又はシャッターを制御するようにした。   Further, in the second or third aspect, the control device comprises an evaporation source for depositing an organic material on the structure, a shutter for shielding the evaporation source from the structure, and a control device connected to the measurement device. Based on the output from the measuring device, the evaporation source is controlled so that the thickness or doping concentration of the organic thin film becomes a desired value, and the deposition is terminated when the organic thin film reaches the desired thickness. The evaporation source or shutter was controlled.

また、光源は、投光端を構造体に近接配置し他端を光源に接続した光ファイバを介して構造体に光を投光し、光検知器は、受光端を構造体に近接配置し他端を光検知器に接続した光ファイバを介して構造体から受光するようにした。ここで、光ファイバは投光/受光端を構造体に近接配置し他端を光源と光検知器とに接続したY分岐形状光ファイバであり、光ファイバの投光/受光端が構造体への投光と構造体からの受光を同時に行うようにした。   The light source projects light to the structure via an optical fiber having a light projecting end disposed close to the structure and the other end connected to the light source, and the photodetector has a light receiving end disposed close to the structure. Light is received from the structure via an optical fiber having the other end connected to a photodetector. Here, the optical fiber is a Y-branch-shaped optical fiber in which the light projecting / receiving end is disposed close to the structure and the other end is connected to the light source and the light detector. Projecting light and receiving light from the structure at the same time.

またさらに、照射光を成膜中の実構造体に照射するようにした。   Furthermore, the irradiation structure is irradiated with the actual structure during film formation.

本発明の第四の側面は、構造体に有機薄膜を形成する有機薄膜形成方法であって、少なくとも成膜中に構造体に励起光を照射して構造体から光を受光し、光の蛍光波長および蛍光強度を観測する第一の観測を行い、又は、構造体の吸収波長および吸収光強度を観測する第二の観測を行い、第一の観測の結果から有機薄膜の厚さを測定する第一の測定を行い、第一の観測の結果から有機薄膜のドーピング濃度を測定する第二の測定を行い、又は、第二の観測の結果から有機薄膜の厚さを測定する第三の測定を行う有機薄膜形成方法である。さらに、第一、第二又は第三の測定の結果を有機薄膜の蒸発源制御にフィードバックするようにした。   According to a fourth aspect of the present invention, there is provided an organic thin film forming method for forming an organic thin film on a structure. At least during the film formation, the structure is irradiated with excitation light to receive light from the structure, and light fluorescence. Perform the first observation to observe the wavelength and fluorescence intensity, or the second observation to observe the absorption wavelength and absorbed light intensity of the structure, and measure the thickness of the organic thin film from the result of the first observation Perform the first measurement and perform the second measurement to measure the doping concentration of the organic thin film from the result of the first observation, or the third measurement to measure the thickness of the organic thin film from the result of the second observation This is an organic thin film forming method. Furthermore, the result of the first, second or third measurement is fed back to the evaporation source control of the organic thin film.

本発明の第五の側面は、有機薄膜機能素子におけるドーピング素子の形成方法であって、構造体にドーピング材料の励起光を含む波長範囲の光を照射し、励起光によるドーピング材料の蛍光を観測し、観測結果から有機薄膜のドーピング濃度を測定し、構造体に照射した光の反射光又は透過光の光強度から有機薄膜の厚さを測定し、有機薄膜のドーピング濃度および厚さを測定して制御する形成方法である。   A fifth aspect of the present invention is a method for forming a doping element in an organic thin film functional element, wherein the structure is irradiated with light in a wavelength range including excitation light of the doping material, and fluorescence of the doping material by the excitation light is observed. Then, the doping concentration of the organic thin film is measured from the observation results, the thickness of the organic thin film is measured from the light intensity of reflected light or transmitted light irradiated to the structure, and the doping concentration and thickness of the organic thin film are measured. Forming method to be controlled.

本発明の第六の側面は、構造体の有機薄膜中のドーピング濃度を測定する測定装置であって、少なくとも成膜中に構造体に少なくとも励起光を含む波長範囲の照射光を投光する光源、照射光に対する構造体からの少なくとも蛍光を受光し、構造体の蛍光波長を得る検出手段、蛍光波長に基づいて有機膜にドープされたドーピング材料の濃度を測定する濃度測定手段からなる測定装置である。さらに、ドーピング濃度増加に伴って該蛍光波長が長波長側にシフトすることに基づいてドーピング濃度を測定するようにした。   A sixth aspect of the present invention is a measuring apparatus for measuring a doping concentration in an organic thin film of a structure, and at least during the film formation, a light source that projects irradiation light in a wavelength range including at least excitation light onto the structure A measuring device comprising a detecting means for receiving at least fluorescence from the structure with respect to irradiation light and obtaining a fluorescence wavelength of the structure, and a concentration measuring means for measuring the concentration of the doping material doped in the organic film based on the fluorescence wavelength. is there. Further, the doping concentration is measured based on the fact that the fluorescence wavelength shifts to the longer wavelength side as the doping concentration increases.

本発明により、簡単な構成で有機材料成膜における膜厚測定・制御およびドーピング濃度測定・制御の精度を向上させることが可能となった。またプログラムの切換えにより同一装置で複数種の成膜測定および成膜制御を選択することが可能となったため、有機薄膜形成装置性能の向上にも貢献する。   According to the present invention, it is possible to improve the accuracy of film thickness measurement / control and doping concentration measurement / control in organic material film formation with a simple configuration. In addition, since it is possible to select a plurality of types of film formation measurement and film formation control with the same apparatus by switching programs, it contributes to the improvement of the performance of the organic thin film forming apparatus.

図1は本発明の一実施形態を説明する有機薄膜形成装置であり、真空槽1を有している。該真空槽1の底面には独立する複数の有機蒸発源4が配置されており、天井側には基板ホルダ3が配置されている。同図では有機蒸発源4を2つ設けているが、蒸発源の数は適宜選択すればよい。各有機蒸発源4は、容器内に充填した有機蒸発材料5を蒸発又は昇華させ、真空槽1内に蒸気17を発生させる。有機蒸発源4には、例えばセラミックス等により構成される坩堝の周囲に抵抗加熱ヒータを巻回し、通電加熱により蒸気を発生させる蒸発源等を用いればよい。あるいはこれ以外の加熱方法、材質、構造であってもよい。容器内には、例えば図3Aおよび図3Bに示す粉末状の昇華性有機化合物であるAlq3[Tris(8-hydroxy-quinoline)alminium]や
α-NPD[N,N'-di-α-naphthyl-N,N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine等の有機蒸発材料を充填すればよい。
前記基板ホルダ3下の近接位置上には基板2を設置し、基板2下には成膜領域を制限するマスク6を配置する。以下、基板2上に堆積され有機薄膜機能素子を構成する部分を、素子の形成段階であるものも含めて以下構造体と称する。マスク6に、本願出願人の提案する特願2003−390319号開示のコンビナトリアル用マスクを用いれば、複数の素子を効率良く成膜することも可能となる。
FIG. 1 shows an organic thin film forming apparatus for explaining an embodiment of the present invention, which has a vacuum chamber 1. A plurality of independent organic evaporation sources 4 are disposed on the bottom surface of the vacuum chamber 1, and a substrate holder 3 is disposed on the ceiling side. Although two organic evaporation sources 4 are provided in the figure, the number of evaporation sources may be appropriately selected. Each organic evaporation source 4 evaporates or sublimates the organic evaporation material 5 filled in the container, and generates a vapor 17 in the vacuum chamber 1. For the organic evaporation source 4, for example, an evaporation source that winds a resistance heater around a crucible made of ceramics and generates steam by energization heating may be used. Alternatively, other heating methods, materials, and structures may be used. In the container, for example, Alq3 [Tris (8-hydroxy-quinoline) alminium] or α-NPD [N, N'-di-α-naphthyl-] which is a powdery sublimable organic compound shown in FIG. 3A and FIG. 3B. An organic evaporation material such as N, N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine may be filled.
A substrate 2 is placed on a close position under the substrate holder 3, and a mask 6 for restricting a film formation region is placed under the substrate 2. Hereinafter, the portion constituting the organic thin film functional element deposited on the substrate 2 is hereinafter referred to as a structure including the element forming stage. If the combinatorial mask disclosed in Japanese Patent Application No. 2003-390319 proposed by the applicant of the present application is used for the mask 6, a plurality of elements can be formed efficiently.

基板2と有機蒸発源4の間には該蒸気を遮蔽するシャッター7が開閉自在に配置され、制御装置16に制御される。また、基板蒸発源間には、該蒸気17の蒸発速度を検出する蒸着速度検出手段15が配置される。蒸着速度検出手段15には、例えば、堆積する物質量の時系列変化を検出しうる手段の中で好適なものとして水晶振動子を利用し、水晶振動子の固有振動数の変化から蒸着速度を検出すればよい。蒸着速度検出手段15は蒸着速度を制御装置16に出力し、制御装置16は蒸発源4を制御して蒸発速度を安定させる。   A shutter 7 that shields the vapor is disposed between the substrate 2 and the organic evaporation source 4 so as to be openable and closable, and is controlled by the control device 16. Further, a deposition rate detecting means 15 for detecting the evaporation rate of the vapor 17 is disposed between the substrate evaporation sources. For the vapor deposition rate detecting means 15, for example, a quartz resonator is used as a suitable means capable of detecting a time-series change in the amount of deposited material, and the vapor deposition rate is determined from the change in the natural frequency of the quartz resonator. What is necessary is just to detect. The vapor deposition rate detection means 15 outputs the vapor deposition rate to the control device 16, and the control device 16 controls the evaporation source 4 to stabilize the evaporation rate.

ガラス基板2近傍にはY分岐形状光ファイバ8のバンドルされた先端11が配置される。Y分岐形状光ファイバ8の分岐した一端の光ファイバ9は光源12に接続され、他端の光ファイバ10は光検知器13に接続される。光源12は、任意の波長範囲の光又は任意の単一波長の光を選択して投光する手段を有し、光検知器13は、受光した光を波長分離して光強度を感知する分光光度計のような光強度感知手段を有する。光ファイバ8は、先端11からガラス基板2に励起光を照射し、励起光によって励起された蛍光又は吸収された反射光を、同じく光ファイバ8の先端11で集光する。光の照射および集光は例えば基板2上に形成される構造体のデッドポイントにより行えばよい。実施例では、実基板の膜厚又は材料組成を実測することにより成膜精度を向上させているが、モニターガラスを用意し、モニターガラス上近傍に前記光ファイバ8を設置して計測、制御を行うことも可能である。光検知器13は、測定装置14に接続され、測定装置14は制御装置16に接続される。   Near the glass substrate 2, a bundled tip 11 of the Y-branch optical fiber 8 is disposed. The branched optical fiber 9 at one end of the Y-branched optical fiber 8 is connected to a light source 12, and the optical fiber 10 at the other end is connected to a photodetector 13. The light source 12 has means for selecting and projecting light of an arbitrary wavelength range or light of an arbitrary single wavelength, and the light detector 13 is a spectroscope that senses light intensity by wavelength-separating the received light. It has light intensity sensing means such as a photometer. The optical fiber 8 irradiates the glass substrate 2 with excitation light from the tip 11, and condenses the fluorescence excited by the excitation light or the reflected reflected light at the tip 11 of the optical fiber 8. Light irradiation and light collection may be performed, for example, according to a dead point of a structure formed on the substrate 2. In the embodiment, the film forming accuracy is improved by actually measuring the film thickness or material composition of the actual substrate. However, a monitor glass is prepared, and the optical fiber 8 is installed in the vicinity of the monitor glass to perform measurement and control. It is also possible to do this. The light detector 13 is connected to a measuring device 14, and the measuring device 14 is connected to a control device 16.

測定装置14は、光検知器13に入射する光の時系列変化を観測する手段と、時系列変化を元に膜厚又はドーピング濃度を測定する手段を有する。測定は、光検知器13の出力を実測値として、予めプログラムされた理論値とを逐次比較することにより行う。
例えば、有機薄膜機能素子を構成する構造体の成膜中に構造体に励起光を照射すると、有機薄膜中の電子が励起されて蛍光が発せられるが、蛍光強度は、励起光の光強度と有機薄膜の厚さに依存して増大する特徴がある。有機薄膜機能素子がドーピング型素子である場合は、ドーピング材料の中心蛍光波長はホスト材料に対するドーピング材料の組成比率に影響して変化する特徴がある。また、ホスト材料に対するドーピング材料の組成比率は、膜厚に対するドーピング材料の蛍光強度からも算出できる。測定装置14に予めこれらの依存特性をプログラムすることにより、各蛍光強度および各中心蛍光波長における膜厚およびドーピング濃度を算出することが可能となる。以下、蛍光の時系列変化を観測する手段を第一の観測手段と称し、第一の観測手段をもとに有機薄膜の厚さを算出する手段を第一の測定手段、第一の観測手段をもとにドーピング濃度を算出する手段を第二の測定手段と称す。
The measuring device 14 has means for observing a time series change of light incident on the photodetector 13 and means for measuring a film thickness or a doping concentration based on the time series change. The measurement is performed by sequentially comparing the pre-programmed theoretical value with the output of the photodetector 13 as an actual measurement value.
For example, if the structure is irradiated with excitation light during the formation of the structure constituting the organic thin film functional element, electrons in the organic thin film are excited to emit fluorescence, but the fluorescence intensity is the same as the light intensity of the excitation light. There is a feature that increases depending on the thickness of the organic thin film. In the case where the organic thin film functional element is a doping type element, the central fluorescence wavelength of the doping material has a characteristic that it changes by affecting the composition ratio of the doping material to the host material. The composition ratio of the doping material to the host material can also be calculated from the fluorescence intensity of the doping material with respect to the film thickness. By programming these dependency characteristics in the measurement device 14 in advance, it becomes possible to calculate the film thickness and the doping concentration at each fluorescence intensity and each central fluorescence wavelength. Hereinafter, the means for observing the time series change of fluorescence is referred to as the first observing means, and the means for calculating the thickness of the organic thin film based on the first observing means is the first measuring means, the first observing means. The means for calculating the doping concentration based on the above is referred to as a second measuring means.

また、成膜中の構造体に光を照射すると、膜厚に依存して吸収光が変化することは周知の技術である。測定装置14には、吸収光と膜厚の依存特性も予めプログラムすることにより、吸収光の時系列変化から膜厚を算出することも可能となる。以下、吸収光の時系列変化を観測する手段を第二の観測手段と称し、吸収光から有機薄膜の厚さを算出する手段を第三の測定手段と称す。測定装置14に設けられた第一乃至第三の測定手段は、それぞれ独立のプログラムを有し、プログラムの切換えによって特定手段を選択すること、あるいはプログラムを同時に実行することにより同時に複数の測定を行うことが可能である。
光検知器13に入射する光の中から蛍光又は吸収光を選択して観測するためには、構造体の基体構造や積層構造、成膜材料等の素子特性を予めプログラムに入力し、特定波長又は特定波長範囲を選出して時系列変化を観測すればよい。このため照射光には、蛍光の波長範囲を含まない光を採用することが望ましい。
Further, it is a well-known technique that when light is applied to a structure during film formation, the absorbed light changes depending on the film thickness. The measuring device 14 can also calculate the film thickness from the time-series change of the absorbed light by previously programming the dependence characteristics of the absorbed light and the film thickness. Hereinafter, the means for observing the time series change of the absorbed light is referred to as second observation means, and the means for calculating the thickness of the organic thin film from the absorbed light is referred to as third measurement means. The first to third measuring means provided in the measuring device 14 have independent programs, and perform a plurality of measurements at the same time by selecting specific means by switching programs or by simultaneously executing the programs. It is possible.
In order to select and observe fluorescent light or absorbed light from light incident on the light detector 13, element characteristics such as a base structure of a structure, a laminated structure, and a film forming material are input to a program in advance, and a specific wavelength is selected. Alternatively, a specific wavelength range may be selected and a time series change may be observed. Therefore, it is desirable to employ light that does not include the fluorescence wavelength range as the irradiation light.

制御装置16は、測定装置14の出力する膜厚又はドーピング濃度の実測値をもとに蒸発源4又はシャッター7を制御する。具体的には、測定装置14が前記プログラムを用いて算出する理論値に対して予め目標範囲を設定し、実測値が目標範囲内となるようにあるいは実測値が目標範囲内となった時点で成膜を終了させるように制御すればよい。   The control device 16 controls the evaporation source 4 or the shutter 7 based on the actually measured value of the film thickness or doping concentration output from the measurement device 14. Specifically, a target range is set in advance for the theoretical value calculated by the measuring device 14 using the program, and when the measured value falls within the target range or when the measured value falls within the target range. What is necessary is just to control so that film-forming may be complete | finished.

実施例でY分岐光ファイバ8を用いることにより、真空槽内部への導入ポートを1つにすることが可能となり構成の簡略化に貢献するが、光源から導出する光ファイバ9と光検知器13に導入する光ファイバ10をそれぞれ独立に設けて導入ポートを2つにしてもよい。この場合光の出射位置と入射位置を別に設ければよい。また、実施例では光検知器13は反射光を受光するが、透過光を受光するように光ファイバ8を配置してもよい。また、光検知器13に接続する光ファイバ10と基板2との間に集光レンズを配置することや、波長カットフィルタを配置することも考えられる。   By using the Y branch optical fiber 8 in the embodiment, it is possible to make one introduction port into the vacuum chamber, which contributes to the simplification of the configuration. However, the optical fiber 9 and the photodetector 13 that are led out from the light source. The optical fibers 10 to be introduced into the optical fiber 10 may be provided independently to provide two introduction ports. In this case, the light emission position and the incident position may be provided separately. In the embodiment, the photodetector 13 receives the reflected light, but the optical fiber 8 may be disposed so as to receive the transmitted light. It is also conceivable to arrange a condensing lens or a wavelength cut filter between the optical fiber 10 connected to the light detector 13 and the substrate 2.

図2は本発明の他の実施形態を説明する有機薄膜形成装置であり、図1に示す有機薄膜形成装置と同様の部分には同一符号を付して説明を省略する。
図2に示す装置は、第二の光源20、第二の光源20から導出して有機材料蒸気に励起光を照射する光ファイバ22、第二の光検知器21、第二の光検知器21に導入して有機材料蒸気の蛍光を受光する光ファイバ23を具備する。同図では、光ファイバ22および光ファイバ23の先端24により光の出射と入射を行うが、出射位置と入射位置は別に設けてもよい。同図では4本の光ファイバをバンドルして導入しているが、各々の光ファイバを独立に導入してもよい。また、第二の光源20を独立に設けているが、光源12と光ファイバ22を接続し、光源を一つにしてもよい。この場合、基板2と有機材料蒸気に同波長の光を照射してもよいし、一方の光ファイバの先端に波長カットフィルタを設け特定範囲の波長を照射光から除く手段を設けてもよい。
FIG. 2 shows an organic thin film forming apparatus for explaining another embodiment of the present invention. The same parts as those of the organic thin film forming apparatus shown in FIG.
The apparatus shown in FIG. 2 includes a second light source 20, an optical fiber 22 that is derived from the second light source 20 and irradiates the organic material vapor with excitation light, a second photodetector 21, and a second photodetector 21. And an optical fiber 23 for receiving the fluorescence of the organic material vapor. In the figure, light is emitted and incident by the optical fiber 22 and the tip 24 of the optical fiber 23, but the emission position and the incident position may be provided separately. In the figure, four optical fibers are bundled and introduced, but each optical fiber may be introduced independently. Moreover, although the 2nd light source 20 is provided independently, you may connect the light source 12 and the optical fiber 22, and may make one light source. In this case, the substrate 2 and the organic material vapor may be irradiated with light having the same wavelength, or a wavelength cut filter may be provided at the tip of one optical fiber to remove a specific range of wavelengths from the irradiated light.

測定装置25は、第二の光検知器21の出力をもとに構造体への堆積直前の蒸気が発する蛍光の時系列変化を観測する第三の観測手段と、第三の観測手段をもとに蒸気のドーピング濃度を測定する第四の測定手段を有する。測定装置25には前記第一乃至第二の測定手段も備えられており、光検知器13の出力と第二の光検知器21の出力を独立に処理する。第四の測定手段は、予め入力したプログラムを用いて理論値を算出し、理論値と実測値を逐次比較するという点において第二の測定手段に等しいが、実測値が有機材料蒸気のドーピング濃度である点において異なる。   The measuring device 25 includes a third observation means and a third observation means for observing a time-series change in fluorescence emitted by vapor immediately before deposition on the structure based on the output of the second photodetector 21. And a fourth measuring means for measuring the vapor doping concentration. The measuring device 25 is also provided with the first and second measuring means, and processes the output of the photodetector 13 and the output of the second photodetector 21 independently. The fourth measurement means is the same as the second measurement means in that the theoretical value is calculated using a program inputted in advance and the theoretical value and the actual measurement value are sequentially compared, but the actual measurement value is the doping concentration of the organic material vapor. Is different in that.

制御装置26は、第四の測定手段の出力をもとに蒸発源4を制御する。制御装置26は、第一乃至第四の測定手段の出力をもとに適宜処理した制御信号を出力してもよい。   The control device 26 controls the evaporation source 4 based on the output of the fourth measuring means. The control device 26 may output a control signal appropriately processed based on the outputs of the first to fourth measuring means.

以下、図1又は図2に示す有機薄膜形成装置を用いて有機薄膜機能素子を作製した実施例を説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although the Example which produced the organic thin film functional element using the organic thin film forming apparatus shown in FIG. 1 or FIG. 2 is described, this invention is not limited to a following example.

第一の実施例は、図1に示す有機薄膜形成装置を用いて、図3Aに示す化学構造式のジアミン系化合物であるα-NPDを正孔輸送性材料とし、図3Bに示すAlq3を電子輸送性発光材料としたシングルへテロ構造の有機EL素子を作製した例である。   In the first example, α-NPD, which is a diamine compound having a chemical structural formula shown in FIG. 3A, is used as a hole transporting material, and Alq3 shown in FIG. This is an example in which an organic EL element having a single hetero structure as a transporting light-emitting material was manufactured.

図1の真空槽1内天井側には、基板蒸発源間距離が約200mmとなる位置に基板ホルダ3を配置し、基板ホルダ3に基板2を配置して、真空槽1内を真空度6.0×10-6Torrまで真空排気した。基板2には、ガラス表面にITOからなる厚さ130nmの透明導電膜31を2.0mm×2.0mm×4パターニング形成した40mm×40mmのガラス基板を用いた。ITOのパターン数を増やせば、異なる構造又は組成をもつ素子をITOのパターン数だけ作製することも可能である。 1, the substrate holder 3 is disposed at a position where the distance between the substrate evaporation sources is about 200 mm, the substrate 2 is disposed on the substrate holder 3, and the degree of vacuum is 6 in the vacuum chamber 1. Vacuum exhausted to 0.0 × 10 −6 Torr. The substrate 2 was a 40 mm × 40 mm glass substrate in which a transparent conductive film 31 made of ITO having a thickness of 130 nm was formed on the glass surface by patterning 2.0 mm × 2.0 mm × 4. If the number of ITO patterns is increased, devices having different structures or compositions can be produced by the number of ITO patterns.

有機蒸発源4にはアルミナ製の容器にタングステン製コイルを巻回した抵抗加熱による回転式坩堝を採用した。正孔輸送性材料であるα-NPDを充填した有機蒸発源4Aと、電子輸送性発光材料であるAlq3を充填した有機蒸発源4Bを隣接配置した二元蒸着源とし、各有機蒸発材料5を装填する深さは4mmとした。
有機蒸発源4Aの巻回コイルを図示しない電流電源により通電加熱し、α-NPDの蒸着速度が0.2nm/ secに一定となるように、蒸着速度検出手段15から電流電源へフィードバック制御を行った。
The organic evaporation source 4 is a rotary crucible by resistance heating in which a tungsten coil is wound around an alumina container. An organic evaporation source 4A filled with α-NPD, which is a hole transporting material, and an organic evaporation source 4B filled with Alq3, which is an electron transporting luminescent material, are used as a binary evaporation source adjacent to each other. The loading depth was 4 mm.
The winding coil of the organic evaporation source 4A is energized and heated by a current power source (not shown), and feedback control is performed from the deposition rate detecting means 15 to the current power source so that the deposition rate of α-NPD is constant at 0.2 nm / sec. It was.

α-NPDの蒸発速度が0.2nm/secに安定した時点で、基板ホルダ3下に配置した蒸気遮蔽用シャッター7を開放し、α-NPDの抵抗加熱蒸着を開始した。成膜中Y分岐光ファイバ8の先端11からは、光源12から投光する波長300nmの励起光を照射した。光の照射によって励起状態となった構造体中の電子が基底状態に戻ると発光現象が起こり、構造体から蛍光が発せられるため、Y分岐光ファイバ8は励起光の照射と同位置において構造体の蛍光と励起光の反射光を受光する。光検知器13には分光光度計を用い、Y分岐光ファイバ8は受光した光を分光光度計13に入射する。
α-NPDが基底状態に戻る場合、波長430nm近傍に極大値を有する蛍光が発せられるため、測定装置14は分光光度計13から入力する波長430nm近傍の光の時系列変化を観測した。測定装置14には、励起光が照射される構造体の素子特性、励起光の光強度、蛍光の光強度、および構造体における有機薄膜の厚さの依存特性が予めプログラムされており、前記した第一の観測手段および第一の測定手段を用いて、プログラムにより算出される理論値と分光光度計13から入力する実測値とを逐次比較し膜厚測定を行った。
When the evaporation rate of α-NPD was stabilized at 0.2 nm / sec, the vapor shielding shutter 7 disposed under the substrate holder 3 was opened, and resistance heating evaporation of α-NPD was started. During film formation, the tip 11 of the Y branch optical fiber 8 was irradiated with excitation light having a wavelength of 300 nm projected from the light source 12. When electrons in the structure excited by light irradiation return to the ground state, a light emission phenomenon occurs and fluorescence is emitted from the structure. Therefore, the Y-branch optical fiber 8 is structured at the same position as the excitation light irradiation. The fluorescent light and the reflected light of the excitation light are received. A spectrophotometer is used for the photodetector 13, and the Y branch optical fiber 8 makes the received light incident on the spectrophotometer 13.
When α-NPD returns to the ground state, fluorescence having a maximum value is emitted in the vicinity of a wavelength of 430 nm. Therefore, the measuring device 14 observed a time series change of light in the vicinity of a wavelength of 430 nm input from the spectrophotometer 13. The measurement device 14 is programmed in advance with the element characteristics of the structure irradiated with the excitation light, the light intensity of the excitation light, the light intensity of the fluorescence, and the dependence characteristics of the thickness of the organic thin film in the structure. Using the first observation means and the first measurement means, the theoretical value calculated by the program and the actual measurement value input from the spectrophotometer 13 were sequentially compared to perform film thickness measurement.

図5の実線は、α-NPDの蒸気17が基板2のITO膜31表面に60nmの薄膜を形成したときの蛍光の理論特性を示し、横軸に波長を縦軸に光強度を表す。説明のため膜厚60nmの理論特性を例示するが、蛍光の理論特性は所望の膜厚について算出可能である。第一の実施例では、60nmのα-NPD膜を成膜するため、波長430nm近傍における光強度の時系列変化を観測し、光強度が図5の実線に示す蛍光強度の目標範囲内となる時点で制御装置16により成膜を終了させた。
図5の破線は60nmのα-NPD膜における吸収光の光強度を示す。α-NPD膜の膜厚検出を光吸収により行う場合は、前記した第二の観測手段および第三の測定手段を用いて、光強度が図5の破線に示す吸収光強度の目標範囲内となる時点で成膜を終了させればよい。第二の観測手段では、紫外から可視光領域までの波長範囲を照射光として分光特性を観測しても、単一波長の光強度変化を観測してもよい。測定装置14および制御装置16は、プログラムの切換えにより蛍光特性による膜厚制御か光吸収特性による膜厚制御かを適宜選択可能であることを特徴とする。
The solid line in FIG. 5 shows the theoretical characteristics of fluorescence when the α-NPD vapor 17 forms a 60 nm thin film on the surface of the ITO film 31 of the substrate 2, and the horizontal axis represents wavelength and the vertical axis represents light intensity. For the sake of explanation, the theoretical characteristic of a film thickness of 60 nm is exemplified, but the theoretical characteristic of fluorescence can be calculated for a desired film thickness. In the first embodiment, since an α-NPD film having a thickness of 60 nm is formed, a time-series change in light intensity in the vicinity of a wavelength of 430 nm is observed, and the light intensity falls within the target range of fluorescence intensity shown by the solid line in FIG. At the time, the film formation was terminated by the control device 16.
The broken line in FIG. 5 indicates the light intensity of the absorbed light in the 60 nm α-NPD film. When detecting the film thickness of the α-NPD film by light absorption, the second observation means and the third measurement means are used, and the light intensity falls within the target range of the absorption light intensity indicated by the broken line in FIG. The film formation may be terminated at this point. In the second observation means, the spectral characteristic may be observed using the wavelength range from the ultraviolet to the visible light region as irradiation light, or a change in light intensity at a single wavelength may be observed. The measuring device 14 and the control device 16 are characterized by being able to appropriately select between film thickness control by fluorescence characteristics and film thickness control by light absorption characteristics by switching programs.

次いで、上記のα-NPDが成膜されたガラス基板2に対して、電子輸送性発光層であるAlq3を、前記α-NPD膜の蒸着と同様の方法で行った。まず、有機蒸発源4Bを図示しない電流電源により通電加熱し、Alq3の蒸着速度が0.2nm/secに一定となるように蒸着速度検出手段15によりフィードバック制御を行った。Alq3の蒸着速度を0.2nm/secで安定させた後、基板ホルダ3の下に配置したシャッター7を開放し、Alq3の抵抗加熱蒸着を開始した。   Subsequently, Alq3 which is an electron transporting light emitting layer was performed on the glass substrate 2 on which the α-NPD was formed in the same manner as the evaporation of the α-NPD film. First, the organic evaporation source 4B was energized and heated by a current power source (not shown), and feedback control was performed by the deposition rate detecting means 15 so that the deposition rate of Alq3 was constant at 0.2 nm / sec. After stabilizing the deposition rate of Alq3 at 0.2 nm / sec, the shutter 7 arranged under the substrate holder 3 was opened, and resistance heating deposition of Alq3 was started.

成膜中基板2には、波長400nmの励起光を照射した。Alq3が基底状態に戻る場合、波長535nm近傍に極大値を有する蛍光が発せられる。
図6の実線は、Alq3膜48nmにおける蛍光の理論特性を示し、横軸に波長を縦軸に光強度を表す。説明のため膜厚48nmの理論特性を例示するが、蛍光の理論特性は所望の膜厚について算出可能である。膜厚測定にはα-NPD膜の成膜と同様に前記第一の観測手段および第一の測定手段を用い、波長535nm近傍における光強度の時系列変化を観測した。実施例は、膜厚48nmのAlq3膜を作製するため、光強度が図6の実線に示す蛍光強度の目標範囲内となる時点で成膜を終了させる。
During the film formation, the substrate 2 was irradiated with excitation light having a wavelength of 400 nm. When Alq3 returns to the ground state, fluorescence having a maximum value in the vicinity of a wavelength of 535 nm is emitted.
The solid line in FIG. 6 shows the theoretical characteristics of fluorescence in the Alq3 film 48 nm, with the horizontal axis representing wavelength and the vertical axis representing light intensity. For the sake of explanation, the theoretical characteristic of a film thickness of 48 nm is exemplified, but the theoretical characteristic of fluorescence can be calculated for a desired film thickness. For the film thickness measurement, the first observation means and the first measurement means were used in the same manner as the formation of the α-NPD film, and the time series change of the light intensity in the vicinity of the wavelength of 535 nm was observed. In the example, in order to produce an Alq3 film having a thickness of 48 nm, the film formation is terminated when the light intensity falls within the target range of the fluorescence intensity shown by the solid line in FIG.

図7は、Alq3膜の膜厚とAlq3の蛍光強度の相関図を示す。図は各膜厚における蛍光強度を実際に測定した結果であり、前述のように膜厚と蛍光強度とは相関関係にあることがわかる。測定装置14のプログラムには実測により得た理論値として同図の線形回帰に示す相関関係を入力してもよい。
図6の破線は吸収光の光強度を示し、光吸収による膜厚制御を行う場合は、α-NPD 膜の成膜と同様にプログラムの切換えにより行えばよい。
その後、種々の膜厚でα-NPDおよびAlq3が成膜されたガラス基板2を真空槽1内に搭載した図示しない基板搬送機構により図示しない陰極金属蒸着用基板ホルダに搬送、配置した。陰極金属蒸着用基板ホルダ上の近接位置には2.0mm×5.0mmの単位開口を少なくとも4個有する図示しない陰極金属用蒸着マスクが配置されている。
FIG. 7 shows a correlation diagram between the thickness of the Alq3 film and the fluorescence intensity of Alq3. The figure shows the results of actual measurement of the fluorescence intensity at each film thickness, and it can be seen that the film thickness and the fluorescence intensity are correlated as described above. The program of the measuring device 14 may be input with the correlation shown in the linear regression of the same figure as the theoretical value obtained by actual measurement.
The broken line in FIG. 6 indicates the light intensity of the absorbed light. When the film thickness is controlled by the light absorption, the program may be switched as in the case of forming the α-NPD film.
Thereafter, the glass substrate 2 on which α-NPD and Alq3 were formed with various film thicknesses was transported and placed on a cathode metal vapor deposition substrate holder (not shown) by a substrate transport mechanism (not shown) mounted in the vacuum chamber 1. A cathode metal vapor deposition mask (not shown) having at least four 2.0 mm × 5.0 mm unit openings is disposed in the vicinity of the cathode metal vapor deposition substrate holder.

陰極金属材料としてアルミニウム金属を用いるが、有機薄膜とアルミニウム金属の中間層として低仕事関数として知られるリチウムの化合物であるLiF(フッ化リチウム)を導入した。モリブデンの材質で形成された蒸着ボートにフッ化リチウムを配置し、蒸着速度を0.01〜0.02nm/secで一定に安定させるよう水晶振動子を利用した蒸着速度検出手段によりフィードバック制御を行った。前記蒸着速度が安定した後、図示しない陰極金属蒸着用遮蔽シャッターを開放し、0.5nmの膜厚になるようにAlq3膜上に抵抗加熱蒸着させた。   Although aluminum metal is used as the cathode metal material, LiF (lithium fluoride), a lithium compound known as a low work function, was introduced as an intermediate layer between the organic thin film and the aluminum metal. Lithium fluoride is placed in a vapor deposition boat made of molybdenum material, and feedback control is performed by a vapor deposition rate detection means using a crystal resonator so that the vapor deposition rate is constantly stabilized at 0.01 to 0.02 nm / sec. It was. After the deposition rate was stabilized, a cathode metal deposition shielding shutter (not shown) was opened, and resistance heating deposition was performed on the Alq3 film so as to have a film thickness of 0.5 nm.

次いで、タングステン製のフィラメントコイルにワイヤ形状のアルミニウム金属を配置させ、フィラメントに通電加熱を行い、蒸着速度1.0〜1.1nm/secで一定に安定させるよう水晶振動子を利用した蒸着速度検出手段によりフィードバック制御を行った。前記蒸着速度が安定した後、図示しない陰極金属蒸着用遮蔽シャッターを開放し、膜厚が100nmになるように抵抗加熱蒸着させた。   Next, wire-shaped aluminum metal is placed on a tungsten filament coil, the filament is energized and heated, and the deposition rate is detected using a quartz crystal so that the deposition rate is stabilized at 1.0 to 1.1 nm / sec. Feedback control was performed by means. After the deposition rate was stabilized, a cathode metal deposition shielding shutter (not shown) was opened, and resistance heating deposition was performed so that the film thickness became 100 nm.

作製した有機ELの素子特性である輝度-電圧特性、視感効率-電圧特性、電流効率-電圧特性の測定を行った結果、素子特性は良好であり、膜厚の再現性も良好であった。上記実施例の蒸着速度を変化させて有機EL素子を作製した場合においても、蒸着速度の変化による蒸発分布変化に追従できた結果、光学特性の再現性の良い素子が作製できた。
上記のように本発明を用いれば、坩堝蒸発面の下降による蒸発分布の変化、又は蒸気圧が比較的高いことに起因する蒸着速度のふらつきによる蒸発分布の変化による膜厚測定誤差が発生せず、信頼性のある有機EL素子構造の解析、最適化等の研究開発を行うことが可能となった。
As a result of measuring luminance-voltage characteristics, luminous efficiency-voltage characteristics, and current efficiency-voltage characteristics, which were the element characteristics of the fabricated organic EL, the element characteristics were good and the reproducibility of the film thickness was also good. . Even when the organic EL device was manufactured by changing the vapor deposition rate in the above example, as a result of being able to follow the change in the evaporation distribution due to the change in the vapor deposition rate, a device with good reproducibility of the optical characteristics could be manufactured.
As described above, when the present invention is used, there is no occurrence of a film thickness measurement error due to a change in the evaporation distribution due to the lowering of the crucible evaporation surface, or a change in the evaporation distribution due to a fluctuation in the evaporation rate due to a relatively high vapor pressure. It became possible to conduct research and development such as analysis and optimization of reliable organic EL element structures.

第二の実施例は、図1に示す有機薄膜形成装置を用いて、第一の実施例において作製した素子の電子輸送性発光材料に図3Cに示す化学構造式のDCM2をドーピングした、ドーピング型有機EL素子の作製例である。第二の実施例における装置構成は、有機蒸発源4を3つ用意したことを除き第一の実施例と同様である。   In the second embodiment, the organic thin film forming apparatus shown in FIG. 1 is used, and the electron transporting light-emitting material of the element manufactured in the first embodiment is doped with DCM2 having the chemical structural formula shown in FIG. 3C. This is an example of manufacturing an organic EL element. The apparatus configuration in the second embodiment is the same as that in the first embodiment except that three organic evaporation sources 4 are prepared.

有機蒸発源4Aには正孔輸送性材料であるα-NPDを充填し、有機蒸発源4Bには電子輸送性発光材料であるAlq3を充填し、有機蒸発源4Cには橙色のドーピング材料であるDCM2を充填し、各有機蒸発材料5を装填する深さは4mmとした。
素子構造としてガラス基板に成膜されたITO表面上にα-NPDを任意の膜厚堆積させる方法は第一の実施例と同様であり、α-NPDの蒸着レートを0.2nm/secとし60nmの膜厚となるように光学的膜厚制御によって成膜制御を行った。
その後、ホスト材料であるAlq3を充填する有機蒸発源4B、ドーピング材料であるDCM2を充填する有機蒸発源4Cに通電加熱を行い、蒸着速度検出手段15により所望のドーピング濃度となるように蒸発源4を制御した。第二の実施例ではDCM2ドーピング濃度が0.5wt%のAlq3を成膜するため、Alq3の蒸着レートを0.2nm/secとし、DCM2の蒸着レートを0.001nm/secとした。各々の蒸着レートが安定した時点で、基板2下に配置した蒸気遮蔽シャッター7を開放し、α-NPD膜上への成膜を開始する。
The organic evaporation source 4A is filled with α-NPD which is a hole transporting material, the organic evaporation source 4B is filled with Alq3 which is an electron transporting luminescent material, and the organic evaporation source 4C is an orange doping material. The depth at which DCM 2 was filled and each organic evaporation material 5 was loaded was 4 mm.
The method of depositing α-NPD in any film thickness on the ITO surface formed on the glass substrate as the element structure is the same as in the first embodiment, and the deposition rate of α-NPD is 0.2 nm / sec and 60 nm. The film formation was controlled by controlling the optical film thickness so that the film thickness was as follows.
Thereafter, the organic evaporation source 4B filled with Alq3 which is a host material and the organic evaporation source 4C filled with DCM2 which is a doping material are energized and heated, and the evaporation source 4 is adjusted to a desired doping concentration by the deposition rate detecting means 15. Controlled. In the second embodiment, Alq3 having a DCM2 doping concentration of 0.5 wt% was formed, so that the deposition rate of Alq3 was 0.2 nm / sec and the deposition rate of DCM2 was 0.001 nm / sec. When each deposition rate is stabilized, the vapor shielding shutter 7 disposed under the substrate 2 is opened, and film formation on the α-NPD film is started.

成膜中、基板2に対し、Y分岐形状光ファイバ8の先端11からAlq3の吸収波長である波長400nmの光を照射した。該励起光によりAlq3単層であれば波長530nm付近にピークを有する蛍光発光を示すが、第二の実施例ではDCM2をドープするため、DCM2へのエネルギー移動が発生する。これは、Alq3が波長530nm付近に光吸収帯を有するためであり、この現象については周知のことである。このため光検知器13への入射光は、Alq3由来の蛍光発光は小さく、DCM2由来の630nm付近に発光ピークを有する橙色の蛍光発光が見られる。図8は、Alq3に0.5wt%のDCM2をドーピングした際の反射光および蛍光の光強度を示し、横軸に波長を縦軸に光強度を示す。同図より、波長530nm付近の発光は観測されず、DCM2に吸収されていることがわかる。この現象により、ホスト材料の蛍光強度の変化からホスト材料の膜厚を読み取る前記第一の測定手段が実施困難なため、ドーピング素子の膜厚制御には第三の測定手段を用いることが有効である。第二の実施例では、ホスト材料を吸収膜として考慮し、光源からの励起光を成膜中の基板に対し照射した場合に反射される吸収膜の干渉光の時系列変化から膜厚を計測した。   During film formation, the substrate 2 was irradiated with light having a wavelength of 400 nm, which is the absorption wavelength of Alq3, from the tip 11 of the Y-branch optical fiber 8. If the Alq3 single layer is excited by the excitation light, fluorescence emission having a peak in the vicinity of a wavelength of 530 nm is exhibited. However, in the second embodiment, since DCM2 is doped, energy transfer to DCM2 occurs. This is because Alq3 has a light absorption band near the wavelength of 530 nm, and this phenomenon is well known. For this reason, the incident light to the photodetector 13 has a small fluorescence emission derived from Alq3, and an orange fluorescence emission having an emission peak in the vicinity of 630 nm derived from DCM2 is observed. FIG. 8 shows the light intensity of reflected light and fluorescence when Alq3 is doped with 0.5 wt% DCM2, the horizontal axis indicates the wavelength, and the vertical axis indicates the light intensity. From the figure, it can be seen that light emission around a wavelength of 530 nm is not observed and is absorbed by DCM2. Because of this phenomenon, it is difficult to implement the first measuring means for reading the thickness of the host material from the change in the fluorescence intensity of the host material, so it is effective to use the third measuring means for controlling the film thickness of the doping element. is there. In the second embodiment, the host material is considered as the absorption film, and the film thickness is measured from the time-series change of the interference light of the absorption film reflected when the excitation light from the light source is irradiated onto the substrate being formed. did.

図9の縦軸に波長400nmの光を成膜中の基板2に対し照射した場合の反射率の変化を示し、横軸に膜厚を示す。測定装置14には、図9に示す膜厚と反射率との相関関係が予めプログラムされており、プログラムにより算出される理論値と分光光度計13から入力する実測値とを逐次比較し前記第二の観測手段および第三の測定手段を用いて膜厚測定を行った。図8は実際に分光光度計13に入射した光の時系列変化を示す。第二の実施例では、DCM2ドーピング濃度が0.5wt%のAlq3膜を48nm成膜するため、波長400nm近傍における光強度の時系列変化を観測し、図9に示す反射率の目標範囲内となる時点で成膜を終了させた。実施例では単一波長光の時系列変化を観測したが、照射光の波長範囲を広げて分光特性による制御を行ってもよい。   The vertical axis of FIG. 9 shows the change in reflectance when the substrate 2 being deposited is irradiated with light having a wavelength of 400 nm, and the horizontal axis shows the film thickness. The measurement device 14 is pre-programmed with the correlation between the film thickness and the reflectance shown in FIG. 9, and sequentially compares the theoretical value calculated by the program with the actual measurement value input from the spectrophotometer 13. The film thickness was measured using the second observation means and the third measurement means. FIG. 8 shows a time-series change of light actually incident on the spectrophotometer 13. In the second embodiment, since an Alq3 film having a DCM2 doping concentration of 0.5 wt% is formed to 48 nm, a time series change of light intensity in the vicinity of a wavelength of 400 nm is observed, and within the target range of reflectance shown in FIG. At this point, the film formation was terminated. In the embodiment, the time series change of the single wavelength light is observed, but the wavelength range of the irradiation light may be widened and the control by the spectral characteristics may be performed.

ドーピング濃度が一定である場合、ドーピング材料の蛍光強度は膜厚に比例して増大するため、ドーピング材料の蛍光強度と膜厚の依存特性によりドーピング濃度を測定することが可能となる。第二の実施例では上記特性を予め測定装置14にプログラム入力し、前記第一の観測手段および第二の測定手段を用い、プログラムにより算出される理論値と分光光度計13から入力する実測値とを逐次比較することによりドーピング濃度制御を行った。上記ドーピング濃度の制御には膜厚の実測値が必要であるが、実測値には前記第二の測定手段の出力を用いればよい。ドーピング濃度の測定および制御は膜厚の測定および制御と同時に行い、制御装置16は、第三の測定手段の出力と第二の測定手段の出力を同時に処理する。   When the doping concentration is constant, the fluorescence intensity of the doping material increases in proportion to the film thickness. Therefore, it is possible to measure the doping concentration based on the dependency of the fluorescence intensity and film thickness of the doping material. In the second embodiment, the above characteristics are preliminarily input to the measuring device 14 and the theoretical values calculated by the program and the actual values input from the spectrophotometer 13 using the first observing means and the second measuring means. The doping concentration was controlled by sequentially comparing Although the measured value of the film thickness is necessary for controlling the doping concentration, the output of the second measuring means may be used as the measured value. The doping concentration is measured and controlled simultaneously with the measurement and control of the film thickness, and the control device 16 processes the output of the third measuring means and the output of the second measuring means simultaneously.

図10は、DCM2ドーピング濃度が0.5wt%のAlq3膜の膜厚とDCM2の蛍光強度の相関図を示し、縦軸に膜厚横軸に光強度を表す。図は各膜厚におけるドーピング材料の蛍光強度を実際に測定した結果であり、前述のように膜厚と蛍光強度とが相関関係にあることがわかる。測定装置14のプログラムには実測により得た理論値として同図の線形回帰に示す相関関係を入力してもよい。
なお、図10には単一のドーピング濃度における膜厚と蛍光強度との相関を示したが、実際には、複数のドーピング濃度に対する同相関をプロットすることができる。従って、所望のドーピング濃度における相関を利用して、既知のAlq3膜厚に対するCDM2蛍光強度が所定値に達した時にドーピングを終了するように制御することができる。
また、図10においては、ドーピング濃度を固定のパラメータとして、横軸に膜厚、縦軸に蛍光強度を示したが、例えば、膜厚を固定のパラメータとして、横軸に蛍光強度、縦軸にドーピング濃度を示す相関図を利用してもよい。
さらに、膜厚、蛍光強度及びドーピング濃度を三軸とする三次元的な相関図やその相関をテーブル又は関数としたようなプログラミングを利用することもできる。
いずれの方法においても、所望のドーピング濃度に対する膜厚と蛍光強度との相関がプログラミングされて、測定される蛍光強度から現在のドーピング濃度が算出され、その算出されるドーピング濃度が理論値に達した時にドーピングを停止できればよい。
FIG. 10 is a correlation diagram between the thickness of the Alq3 film having a DCM2 doping concentration of 0.5 wt% and the fluorescence intensity of DCM2, and the horizontal axis represents the light intensity on the vertical axis. The figure shows the results of actual measurement of the fluorescence intensity of the doping material at each film thickness, and it can be seen that the film thickness and the fluorescence intensity are correlated as described above. The program of the measuring device 14 may be input with the correlation shown in the linear regression of the same figure as the theoretical value obtained by actual measurement.
Although FIG. 10 shows the correlation between the film thickness and the fluorescence intensity at a single doping concentration, in practice, the correlation can be plotted for a plurality of doping concentrations. Therefore, using the correlation at the desired doping concentration, it is possible to control the doping to be terminated when the CDM2 fluorescence intensity for the known Alq3 film thickness reaches a predetermined value.
In FIG. 10, the horizontal axis represents the film thickness and the vertical axis represents the fluorescence intensity with the doping concentration as a fixed parameter. For example, the horizontal axis represents the fluorescence intensity and the vertical axis represents the film thickness as a fixed parameter. A correlation diagram showing the doping concentration may be used.
Furthermore, a three-dimensional correlation diagram having three axes of film thickness, fluorescence intensity, and doping concentration, and programming using the correlation as a table or function can be used.
In either method, the correlation between the film thickness and the fluorescence intensity for the desired doping concentration is programmed, the current doping concentration is calculated from the measured fluorescence intensity, and the calculated doping concentration reaches the theoretical value. It only has to stop doping sometimes.

実施例でドーピング材料の蛍光強度を測定することによりドーピング濃度を測定したが、ドーピング材料特有の性質である、ドーピング濃度が高くなるにつれて、発光ピーク波長が長波長側にシフトしていく現象を利用しても、ドーピング濃度計測が可能となる。第二の実施例におけるドーピング濃度では、ドーピング材料の中心蛍光波長が630nmとなる。図8を参照すると、波長630nm近傍にDCM2の発光が見られるため、発光のピークが常に波長630nmとなるようにドーピング濃度を制御すればよい。
有機材料の成膜後、第一の実施例と同様に、蒸着速度0.01〜0.02nm/sec、膜厚0.5nmのフッ化リチウム蒸着を行い、蒸着速度1.0〜1.1nm/sec、膜厚100nmのアルミニウム金属蒸着を行った。
Although the doping concentration was measured by measuring the fluorescence intensity of the doping material in the examples, the phenomenon that the emission peak wavelength shifts to the longer wavelength side as the doping concentration increases, which is a property unique to the doping material, is used. Even so, the doping concentration can be measured. At the doping concentration in the second embodiment, the central fluorescence wavelength of the doping material is 630 nm. Referring to FIG. 8, since the emission of DCM2 is observed in the vicinity of a wavelength of 630 nm, the doping concentration may be controlled so that the emission peak always has a wavelength of 630 nm.
After the formation of the organic material, as in the first embodiment, lithium fluoride was deposited at a deposition rate of 0.01 to 0.02 nm / sec and a thickness of 0.5 nm, and the deposition rate was 1.0 to 1.1 nm. / sec, 100 nm-thick aluminum metal vapor deposition was performed.

上記実施例により膜厚とドーピング濃度を同時に観測できるため、高精度の成膜制御を簡単な構成で行うことが可能となった。作製されたドーピング型有機EL素子は素子特性である輝度-電圧特性、視感効率-電圧特性、電流効率-電圧特性の再現性が良好であり、ドーピング濃度の再現性も良好であった。   Since the film thickness and the doping concentration can be observed simultaneously by the above embodiment, it is possible to perform highly accurate film formation control with a simple configuration. The produced doping type organic EL device had good reproducibility of luminance-voltage characteristics, luminous efficiency-voltage characteristics, and current efficiency-voltage characteristics, which were element characteristics, and good reproducibility of doping concentration.

第三の実施例は、図2に示す有機薄膜形成装置を用いて、第二の実施例において作製したドーピング型有機EL素子に等しい構造の有機EL素子を作製する例である。
α-NPD膜の作製、アルミニウム陰極金属、フッ化リチウム中間層の形成においては第一および第二の実施例と同一であるため説明を省略する。
The third embodiment is an example in which an organic EL element having a structure equal to the doping type organic EL element manufactured in the second embodiment is manufactured using the organic thin film forming apparatus shown in FIG.
The production of the α-NPD film, the aluminum cathode metal, and the formation of the lithium fluoride intermediate layer are the same as those in the first and second embodiments, and thus the description thereof is omitted.

第三の実施例は、ドーピング濃度の制御に第二の光検知器21からの出力を用いている点において異なるが、成膜条件および膜厚制御手段は第二の実施例と同様である。測定装置25は、第二の光検知器21の出力を元に有機材料蒸気の蛍光強度を観測し、予めプログラムされた理論特性と実測値とを逐次比較してドーピング濃度を測定した。制御装置26は、測定装置25から出力される膜厚とドーピング濃度を処理し、蒸発源4およびシャッター7を制御した。第三の実施例において作製した有機薄膜素子に関しても、輝度-電圧特性、視感効率-電圧特性、電流効率-電圧特性を測定した結果、素子特性の再現性は良好であった。   The third embodiment is different in that the output from the second photodetector 21 is used to control the doping concentration, but the film formation conditions and the film thickness control means are the same as in the second embodiment. The measuring device 25 observed the fluorescence intensity of the organic material vapor based on the output of the second photodetector 21, and measured the doping concentration by sequentially comparing the preprogrammed theoretical characteristics with the actual measurement values. The control device 26 processed the film thickness and doping concentration output from the measurement device 25 and controlled the evaporation source 4 and the shutter 7. As for the organic thin film element fabricated in the third example, the luminance-voltage characteristic, luminous efficiency-voltage characteristic, and current efficiency-voltage characteristic were measured, and the reproducibility of the element characteristic was good.

上記した実施の形態および実施例は本発明の技術的思想に基づいて変形することが可能である。上記実施例では有機EL素子の作製例をあげたが、それ以外の有機薄膜機能素子の作製にも利用できる。例えば、近年注力されている有機薄膜トランジスタの作製プロセス又は将来への応用が期待される有機太陽電池の作製プロセスにも利用してもよい。また、上記実施例として用いた有機EL素子は、シングルへテロ構造であるが、通常有機ELの素子構造はさらに各機能層を有する積層構造のものが多く、これに利用してもよい。また、上記実施例では、研究開発用蒸着装置における膜厚計測および制御計として利用しているが、量産化装置にも設置、利用することもできる。   The above-described embodiments and examples can be modified based on the technical idea of the present invention. In the above embodiment, an example of manufacturing an organic EL element is given, but it can also be used for manufacturing other organic thin film functional elements. For example, the present invention may also be used for an organic thin film transistor manufacturing process that has been focused on in recent years or an organic solar cell manufacturing process that is expected to be applied in the future. The organic EL elements used as the above examples have a single heterostructure, but usually the organic EL element structure has many laminated structures having further functional layers, and may be used for this. Moreover, in the said Example, although it utilizes as a film thickness measurement and control meter in the vapor deposition apparatus for research and development, it can also install and utilize also in a mass production apparatus.

本発明有機薄膜形成装置の概略図1Schematic 1 of the organic thin film forming apparatus of the present invention 本発明有機薄膜形成装置の概略図2Schematic diagram 2 of the organic thin film forming apparatus of the present invention 有機蒸発材料の構造式を示す説明図1Explanatory drawing 1 showing the structural formula of the organic evaporation material 有機蒸発材料の構造式を示す説明図2Explanatory drawing showing the structural formula of the organic evaporation material 2 有機蒸発材料の構造式を示す説明図3Explanatory drawing 3 showing the structural formula of the organic evaporation material 有機EL素子を示す説明図Explanatory drawing showing organic EL elements α-NPDの光吸収と蛍光発光スペクトルを示す図Diagram showing light absorption and fluorescence emission spectrum of α-NPD Alq3の光吸収と蛍光発光スペクトルを示す図Diagram showing light absorption and fluorescence emission spectrum of Alq3 蛍光発光強度と膜厚相関図Fluorescence emission intensity vs. film thickness correlation diagram ドーピング膜を成膜中の反射光強度および蛍光発光強度の変化を説明する図The figure explaining the change of the reflected light intensity and the fluorescence emission intensity during film formation of the doping film Alq3膜(DCM20.5wt%ド−プ)の反射率と膜厚相関図Reflectivity and film thickness correlation diagram of Alq3 film (DCM 20.5 wt% dopant) DCM2蛍光発光強度とAlq3膜厚(DCM20.5wt%ド−プ)相関図Correlation diagram of DCM2 fluorescence emission intensity and Alq3 film thickness (DCM20.5wt% dopant)

符号の説明Explanation of symbols

1 真空槽
2 基板
3 基板ホルダ
4 有機蒸発源
5 有機蒸発材料
6 マスク
7 シャッター
8 Y分岐形状光ファイバ
9 光ファイバ
10 光ファイバ
11 Y分岐形状光ファイバ先端
12 光源
13 光検知器
14 測定装置
15 蒸着速度検出手段
16 制御装置
17 蒸気
20 第二の光源
21 第二の光検知器
22 光ファイバ
23 光ファイバ
24 光ファイバの先端
25 測定装置
26 制御装置
30 ガラス基板
31 透明導電膜
32 正孔輸送層
33 発光層
34 電子輸送層
35 陰極金属
36 缶
37 EL光
1 Vacuum chamber
2 Board
3 Substrate holder
4 Organic evaporation sources
5 Organic evaporation materials
6 Mask
7 Shutter
8 Y-branch optical fiber
9 Optical fiber
10 optical fiber
11 Y-branch optical fiber tip
12 Light source
13 Light detector
14 Measuring equipment
15 Deposition rate detection means
16 Control unit
17 steam
20 Second light source
21 Second photodetector
22 Optical fiber
23 Optical fiber
24 Optical fiber tip
25 Measuring equipment
26 Control unit
30 Glass substrate
31 Transparent conductive film
32 Hole transport layer
33 Light-emitting layer
34 Electron transport layer
35 Cathode metal
36 cans
37 EL light

Claims (20)

構造体の有機薄膜中のドーピング濃度を測定する測定装置であって、
少なくとも成膜中に該構造体に少なくとも励起光を含む波長範囲の照射光を投光する光源、
該照射光に対する該構造体からの少なくとも蛍光を受光し、該構造体の蛍光強度を得る検出手段、
該有機薄膜の厚さ及び該蛍光強度に基づいて該有機膜にドープされたドーピング材料の濃度を測定する濃度測定手段からなる測定装置。
A measuring device for measuring a doping concentration in an organic thin film of a structure,
A light source that projects irradiation light in a wavelength range including at least excitation light to the structure during film formation,
Detecting means for receiving at least fluorescence from the structure with respect to the irradiation light and obtaining fluorescence intensity of the structure;
A measuring apparatus comprising a concentration measuring means for measuring the concentration of a doping material doped in the organic film based on the thickness of the organic thin film and the fluorescence intensity.
請求項1記載の測定装置であって、
該濃度測定手段が該有機薄膜の厚さに対する該蛍光の強度に基づいてドーピング濃度を測定することからなる測定装置。
The measuring device according to claim 1,
A measuring apparatus comprising the concentration measuring means for measuring a doping concentration based on the intensity of the fluorescence with respect to the thickness of the organic thin film.
構造体に有機薄膜を形成する有機薄膜形成装置であって、
少なくとも成膜中に該構造体に少なくとも励起光の波長を含む波長範囲の照射光を投光する光源、
該照射光に対する該構造体からの光を受光し、波長分離および光強度検出を行う光検知器、および、
該光検知器に接続される測定装置を具備し、
該測定装置は、該光検知器から出力される光波長および光強度から該構造体の蛍光波長および蛍光強度を観測する第一の観測手段、該第一の観測手段の出力から該有機薄膜の厚さを測定する第一の測定手段、および、該第一の観測手段の出力から該有機薄膜中のドーピング濃度を測定する第二の測定手段を有することを特徴とする有機薄膜形成装置。
An organic thin film forming apparatus for forming an organic thin film on a structure,
A light source that projects irradiation light in a wavelength range including at least the wavelength of excitation light onto the structure during film formation,
A light detector that receives light from the structure with respect to the irradiation light and performs wavelength separation and light intensity detection; and
Comprising a measuring device connected to the photodetector;
The measuring apparatus includes: first observation means for observing the fluorescence wavelength and fluorescence intensity of the structure from the light wavelength and light intensity output from the photodetector; and the output of the organic thin film from the output of the first observation means. An organic thin film forming apparatus comprising: first measuring means for measuring a thickness; and second measuring means for measuring a doping concentration in the organic thin film from an output of the first observing means.
請求項3記載の有機薄膜形成装置であって、
該光検知器は、該照射光に含まれる励起光に対する該構造体の蛍光および該照射光に対する反射光又は透過光を同時に受光し、
該測定装置は、該光検知器から出力される光波長および光強度から該構造体の吸収波長および吸収強度を観測する第二の観測手段、および、該第二の観測手段の出力から該有機薄膜の厚さを測定する第三の測定手段を有することを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to claim 3,
The photodetector simultaneously receives fluorescence of the structure with respect to excitation light included in the irradiation light and reflected light or transmitted light with respect to the irradiation light,
The measurement apparatus includes: second observation means for observing the absorption wavelength and absorption intensity of the structure from the light wavelength and light intensity output from the photodetector; and the organic substance from the output of the second observation means. An organic thin film forming apparatus comprising a third measuring means for measuring the thickness of the thin film.
請求項3記載の有機薄膜形成装置であって、
該第一の測定手段は、該第一の観測手段の出力と、少なくとも目標膜厚値を含む膜厚に対する第一の蛍光特性理論値とを比較して該有機薄膜の厚さを計算し、
該第一の蛍光特性理論値は、該励起光の光強度と、該構造体の蛍光強度と、該有機薄膜の厚さとの依存特性を利用して算出される値であること特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to claim 3,
The first measuring means calculates the thickness of the organic thin film by comparing the output of the first observing means with the first theoretical value of fluorescence characteristics for the film thickness including at least the target film thickness value,
The theoretical value of the first fluorescence characteristic is a value calculated using a dependence characteristic of the light intensity of the excitation light, the fluorescence intensity of the structure, and the thickness of the organic thin film. Thin film forming equipment.
請求項3記載の有機薄膜形成装置であって、
該第二の測定手段は、該第一の観測手段の出力と、少なくとも目標ドーピング濃度を含むドーピング濃度に対する第二又は第三の蛍光特性理論値とを比較して該有機薄膜のドーピング濃度を計算し、
該第二の蛍光特性理論値は、ドープされるドーピング材料の蛍光波長と、該有機薄膜中のドーピング濃度との依存特定を利用して算出される値であり、
該第三の蛍光特性理論値は、ドープされるドーピング材料の蛍光強度と、該有機薄膜の厚さと、該有機薄膜中のドーピング濃度との依存特性を利用して算出される値であることを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to claim 3,
The second measuring means calculates the doping concentration of the organic thin film by comparing the output of the first observing means with the second or third theoretical fluorescence characteristic value for the doping concentration including at least the target doping concentration. And
The theoretical value of the second fluorescence characteristic is a value calculated by using the dependence of the fluorescence wavelength of the doped doping material and the doping concentration in the organic thin film,
The third theoretical value of the fluorescence characteristic is a value calculated using the dependence characteristics of the fluorescence intensity of the doping material to be doped, the thickness of the organic thin film, and the doping concentration in the organic thin film. An organic thin film forming apparatus.
請求項6記載の有機薄膜形成装置であって、さらに、
該第二の蛍光特性理論値において、該有機薄膜中のドーピング濃度の増加に伴って該蛍光波長が長波長側へシフトすることに基づいて計算された値であることを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to claim 6, further comprising:
In the second theoretical value of the fluorescence characteristic, the value is calculated based on the fact that the fluorescence wavelength is shifted to the longer wavelength side as the doping concentration in the organic thin film is increased. apparatus.
請求項6記載の有機薄膜形成装置であって、さらに、
該第三の蛍光特性理論値において、該有機薄膜中のドーピング濃度が該有機薄膜の厚さに対して該蛍光強度が単調増加することに基づいて計算された値であることを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to claim 6, further comprising:
In the third theoretical value of fluorescence characteristics, the doping concentration in the organic thin film is a value calculated based on a monotonically increasing fluorescence intensity with respect to the thickness of the organic thin film. Thin film forming equipment.
請求項4記載の有機薄膜形成装置であって、
該第三の測定手段は、該第二の観測手段の出力と、少なくとも目標膜厚値を含む膜厚に対する第一又は第二の吸収光理論値とを比較して該有機薄膜の膜厚を計算し、
該第一の吸収光理論値は、該照射光における所定の波長光の光強度と、該構造体からの反射光又は透過光における該波長光の光強度と、該有機薄膜の厚さとの依存特性を利用して算出された値であり、
該第二の吸収光理論値は、該照射光の分光特性と、該構造体からの反射光又は透過光の分光特性と、該有機薄膜の厚さとの依存特性を利用して算出された値であることを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to claim 4,
The third measuring means compares the output of the second observing means with the first or second absorbed light theoretical value for the film thickness including at least the target film thickness value to determine the film thickness of the organic thin film. Calculate
The theoretical value of the first absorbed light depends on the light intensity of the predetermined wavelength light in the irradiation light, the light intensity of the wavelength light in reflected or transmitted light from the structure, and the thickness of the organic thin film. It is a value calculated using characteristics,
The theoretical value of the second absorbed light is a value calculated using the dependence of the spectral characteristics of the irradiation light, the spectral characteristics of reflected or transmitted light from the structure, and the thickness of the organic thin film. An organic thin film forming apparatus characterized by the above.
請求項2から請求項9いずれか一項に記載の有機薄膜形成装置であって、
該構造体に形成される直前の有機材料に少なくとも励起光を含む波長範囲の照射光を投光する第二の光源、および、
該有機材料から光を受光して受光した光の波長分離および光強度検出を行い、該波長分離および光強度検出の結果を前記測定装置に出力する第二の光検知器を具備し、
該測定装置は、該第二の光検知器から出力される波長および光強度から、該有機材料の蛍光波長および蛍光強度を観測する第三の観測手段、および、該第三の観測手段の出力から該有機薄膜中のドーピング濃度を測定する第四の測定手段を有することを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to any one of claims 2 to 9,
A second light source for projecting irradiation light in a wavelength range including at least excitation light onto the organic material immediately before being formed in the structure; and
Receiving a light from the organic material, performing wavelength separation and light intensity detection of the received light, and comprising a second photodetector that outputs the result of the wavelength separation and light intensity detection to the measurement device,
The measuring apparatus comprises: third observation means for observing the fluorescence wavelength and fluorescence intensity of the organic material from the wavelength and light intensity output from the second photodetector; and the output of the third observation means. An organic thin film forming apparatus comprising a fourth measuring means for measuring a doping concentration in the organic thin film.
請求項10記載の有機薄膜形成装置であって、
該第四の測定手段は、該第三の観測手段の出力と、少なくとも目標ドーピング濃度を含むドーピング濃度に対する第四又は第五の蛍光特性理論値とを比較して該有機薄膜のドーピング濃度を測定し、
該第四の蛍光特性理論値は、該有機材料におけるドーピング材料の蛍光波長と該有機薄膜のドーピング濃度との依存特定を利用して算出される値であり、
該第五の蛍光特性理論値は、該有機材料におけるドーピング材料の蛍光強度と、該有機薄膜の厚さと、該有機薄膜のドーピング濃度との依存特性を利用して算出される値であることを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to claim 10,
The fourth measuring means measures the doping concentration of the organic thin film by comparing the output of the third observing means with the fourth or fifth fluorescent characteristic theoretical value for the doping concentration including at least the target doping concentration. And
The theoretical value of the fourth fluorescence characteristic is a value calculated using the dependence specification of the fluorescence wavelength of the doping material in the organic material and the doping concentration of the organic thin film,
The fifth theoretical value of the fluorescence characteristic is a value calculated using the dependence characteristics of the fluorescence intensity of the doping material in the organic material, the thickness of the organic thin film, and the doping concentration of the organic thin film. An organic thin film forming apparatus.
請求項3乃至請求項11いずれか一項に記載の有機薄膜形成装置であって、
該構造体に有機材料を蒸着する蒸発源、該蒸発源を該構造体に対して遮蔽するシャッター、および、該測定装置に接続される制御装置を具備し、
該制御装置は、該測定装置からの出力に基づいて、該有機薄膜の厚さ又はドーピング濃度が所望の値となるように該蒸発源を制御し、該有機薄膜が所望の厚さとなった時点で蒸着を終了させるように該蒸発源又は該シャッターを制御することを特徴とする有機薄膜形成装置。
An organic thin film forming apparatus according to any one of claims 3 to 11,
An evaporation source for depositing an organic material on the structure, a shutter for shielding the evaporation source from the structure, and a control device connected to the measurement device;
The control device controls the evaporation source so that the thickness or doping concentration of the organic thin film becomes a desired value based on the output from the measuring device, and the time when the organic thin film reaches the desired thickness. And controlling the evaporation source or the shutter so as to terminate the vapor deposition.
請求項3乃至請求項12いずれか一項に記載の有機薄膜形成装置であって、
該光源は、投光端を該構造体に近接配置し他端を該光源に接続した光ファイバを介して該構造体に光を投光し、
該光検知器は、受光端を該構造体に近接配置し他端を該光検知器に接続した光ファイバを介して該構造体から受光することを特徴とする有機薄膜形成装置。
An organic thin film forming apparatus according to any one of claims 3 to 12,
The light source projects light to the structure through an optical fiber having a light projecting end disposed close to the structure and the other end connected to the light source,
The light detector receives light from the structure through an optical fiber having a light receiving end disposed close to the structure and the other end connected to the light detector.
請求項13記載の有機薄膜形成装置であって、
該光ファイバは投光/受光端を該構造体に近接配置し他端を該光源と該光検知器とに接続したY分岐形状光ファイバであり、
該光ファイバの該投光/受光端が該構造体への投光と該構造体からの受光を同時に行うことを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to claim 13,
The optical fiber is a Y-branched optical fiber having a light projecting / receiving end disposed close to the structure and the other end connected to the light source and the photodetector.
An organic thin film forming apparatus, wherein the light projecting / receiving end of the optical fiber simultaneously performs light projecting on the structure and light receiving from the structure.
請求項1乃至請求項14いずれか一項に記載の有機薄膜形成装置であって、
該照射光を成膜中の実構造体に照射することを特徴とする有機薄膜形成装置。
The organic thin film forming apparatus according to any one of claims 1 to 14,
An organic thin film forming apparatus, wherein the irradiation structure is irradiated with a real structure during film formation.
構造体に有機薄膜を形成する有機薄膜形成方法であって、
少なくとも成膜中に該構造体に励起光を照射して該構造体から光を受光し、
該光の蛍光波長および蛍光強度を観測する第一の観測を行い、又は、該構造体の吸収波長および吸収光強度を観測する第二の観測を行い、
該第一の観測の結果から該有機薄膜の厚さを測定する第一の測定を行い、該第一の観測の結果から該有機薄膜のドーピング濃度を測定する第二の測定を行い、又は、該第二の観測の結果から該有機薄膜の厚さを測定する第三の測定を行うことからなることを特徴とする有機薄膜形成方法。
An organic thin film forming method for forming an organic thin film on a structure,
At least during the film formation, the structure is irradiated with excitation light to receive light from the structure,
Perform a first observation to observe the fluorescence wavelength and fluorescence intensity of the light, or perform a second observation to observe the absorption wavelength and absorption light intensity of the structure,
Performing a first measurement to measure the thickness of the organic thin film from the result of the first observation, performing a second measurement to measure the doping concentration of the organic thin film from the result of the first observation, or A method of forming an organic thin film, comprising performing a third measurement for measuring the thickness of the organic thin film from the result of the second observation.
請求項16に記載の有機薄膜形成方法であって、
該第一、第二又は第三の測定の結果を該有機薄膜の蒸発源制御にフィードバックすることを特徴とする有機薄膜形成方法。
The method for forming an organic thin film according to claim 16,
A method of forming an organic thin film, wherein the result of the first, second or third measurement is fed back to evaporation source control of the organic thin film.
有機薄膜機能素子におけるドーピング素子の形成方法であって、
少なくとも成膜中に該構造体にドーピング材料の励起光を含む波長範囲の光を照射し、
該励起光によるドーピング材料の蛍光を観測し、
該観測の結果から該有機薄膜のドーピング濃度を測定し、
該構造体に照射した光の反射光又は透過光の光強度から該有機薄膜の厚さを測定し、
該有機薄膜のドーピング濃度および厚さを同時に測定して制御することを特徴とする形成方法。
A method for forming a doping element in an organic thin film functional element,
At least during the film formation, the structure is irradiated with light in a wavelength range including excitation light of the doping material,
Observing the fluorescence of the doping material by the excitation light,
The doping concentration of the organic thin film is measured from the observation result,
Measure the thickness of the organic thin film from the light intensity of the reflected light or transmitted light irradiated to the structure,
A method of forming the organic thin film, wherein the doping concentration and the thickness of the organic thin film are simultaneously measured and controlled.
構造体の有機薄膜中のドーピング濃度を測定する測定装置であって、
少なくとも成膜中に該構造体に少なくとも励起光を含む波長範囲の照射光を投光する光源、
該照射光に対する該構造体からの少なくとも蛍光を受光し、該構造体の蛍光波長を得る検出手段、
該蛍光波長に基づいて該有機膜にドープされたドーピング材料の濃度を測定する濃度測定手段からなる測定装置。
A measuring device for measuring a doping concentration in an organic thin film of a structure,
A light source that projects irradiation light in a wavelength range including at least excitation light to the structure during film formation,
Detection means for receiving at least fluorescence from the structure with respect to the irradiation light and obtaining a fluorescence wavelength of the structure;
A measuring apparatus comprising concentration measuring means for measuring the concentration of a doping material doped in the organic film based on the fluorescence wavelength.
請求項19記載の測定装置であって、
ドーピング濃度増加に伴って該蛍光波長が長波長側にシフトすることに基づいてドーピング濃度を測定することからなる測定装置。
The measuring device according to claim 19, wherein
A measuring apparatus comprising measuring a doping concentration based on a shift of the fluorescence wavelength to a longer wavelength side as the doping concentration increases.
JP2004195226A 2004-07-01 2004-07-01 Apparatus for forming organic thin film, and method therefor Pending JP2006016660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195226A JP2006016660A (en) 2004-07-01 2004-07-01 Apparatus for forming organic thin film, and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195226A JP2006016660A (en) 2004-07-01 2004-07-01 Apparatus for forming organic thin film, and method therefor

Publications (1)

Publication Number Publication Date
JP2006016660A true JP2006016660A (en) 2006-01-19

Family

ID=35791200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195226A Pending JP2006016660A (en) 2004-07-01 2004-07-01 Apparatus for forming organic thin film, and method therefor

Country Status (1)

Country Link
JP (1) JP2006016660A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170257A (en) * 2007-01-11 2008-07-24 Fujikura Ltd Fluorescence lifetime measuring instrument and coating device
CN103540896A (en) * 2012-07-16 2014-01-29 三星显示有限公司 Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
US9347886B2 (en) 2013-06-24 2016-05-24 Samsung Display Co., Ltd. Apparatus for monitoring deposition rate, apparatus provided with the same for depositing organic layer, method of monitoring deposition rate, and method of manufacturing organic light emitting display apparatus using the same
JP2018206928A (en) * 2017-06-02 2018-12-27 住友電工デバイス・イノベーション株式会社 Semiconductor substrate manufacturing method
KR20200132997A (en) * 2018-04-13 2020-11-25 어플라이드 머티어리얼스, 인코포레이티드 Measurement for OLED manufacturing using photoluminescence spectroscopy
US11856833B2 (en) 2020-01-22 2023-12-26 Applied Materials, Inc. In-line monitoring of OLED layer thickness and dopant concentration
US11889740B2 (en) 2020-01-22 2024-01-30 Applied Materials, Inc. In-line monitoring of OLED layer thickness and dopant concentration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294372A (en) * 1999-04-09 2000-10-20 Pioneer Electronic Corp Formation of organic material film, manufacture of organic el element and device therefor
JP2003279326A (en) * 2002-03-26 2003-10-02 Univ Toyama Method and apparatus for measuring thickness of organic thin film used for organic electroluminescent element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294372A (en) * 1999-04-09 2000-10-20 Pioneer Electronic Corp Formation of organic material film, manufacture of organic el element and device therefor
JP2003279326A (en) * 2002-03-26 2003-10-02 Univ Toyama Method and apparatus for measuring thickness of organic thin film used for organic electroluminescent element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170257A (en) * 2007-01-11 2008-07-24 Fujikura Ltd Fluorescence lifetime measuring instrument and coating device
CN103540896A (en) * 2012-07-16 2014-01-29 三星显示有限公司 Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
EP2688121A3 (en) * 2012-07-16 2016-02-17 Samsung Display Co., Ltd. Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method
US9347886B2 (en) 2013-06-24 2016-05-24 Samsung Display Co., Ltd. Apparatus for monitoring deposition rate, apparatus provided with the same for depositing organic layer, method of monitoring deposition rate, and method of manufacturing organic light emitting display apparatus using the same
JP2018206928A (en) * 2017-06-02 2018-12-27 住友電工デバイス・イノベーション株式会社 Semiconductor substrate manufacturing method
JP2021520496A (en) * 2018-04-13 2021-08-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Metrology for the manufacture of organic light emitting diodes using photoluminescence spectroscopy
KR20200132997A (en) * 2018-04-13 2020-11-25 어플라이드 머티어리얼스, 인코포레이티드 Measurement for OLED manufacturing using photoluminescence spectroscopy
KR102422102B1 (en) 2018-04-13 2022-07-18 어플라이드 머티어리얼스, 인코포레이티드 Metrology for OLED Manufacturing Using Photoluminescence Spectroscopy
JP7158494B2 (en) 2018-04-13 2022-10-21 アプライド マテリアルズ インコーポレイテッド Metrology for Organic Light Emitting Diode Fabrication Using Photoluminescence Spectroscopy
US11662317B2 (en) 2018-04-13 2023-05-30 Applied Materials, Inc. Metrology for OLED manufacturing using photoluminescence spectroscopy
US11927535B2 (en) 2018-04-13 2024-03-12 Applied Materials, Inc. Metrology for OLED manufacturing using photoluminescence spectroscopy
US11856833B2 (en) 2020-01-22 2023-12-26 Applied Materials, Inc. In-line monitoring of OLED layer thickness and dopant concentration
US11889740B2 (en) 2020-01-22 2024-01-30 Applied Materials, Inc. In-line monitoring of OLED layer thickness and dopant concentration
JP7433449B2 (en) 2020-01-22 2024-02-19 アプライド マテリアルズ インコーポレイテッド In-line monitoring of OLED layer thickness and dopant concentration

Similar Documents

Publication Publication Date Title
Tsai et al. Stable light‐emitting diodes using phase‐pure Ruddlesden–Popper layered perovskites
Reyes et al. Growth and characterization of OLED with samarium complex as emitting and electron transporting layer
Nüesch et al. Doping‐Induced Charge Trapping in Organic Light‐Emitting Devices
Santos et al. Synthesis, structures and spectroscopy of three new lanthanide β-diketonate complexes with 4, 4′-dimethyl-2, 2′-bipyridine. Near-infrared electroluminescence of ytterbium (III) complex in OLED
Gavriluta et al. Tuning the chemical properties of europium complexes as downshifting agents for copper indium gallium selenide solar cells
Che et al. [meso-Tetrakis (pentafluorophenyl) porphyrinato] platinum (ii) as an efficient, oxidation-resistant red phosphor: spectroscopic properties and applications in organic light-emitting diodes
JP2015508568A (en) Organic molecules for OLEDs and other optoelectronic devices
CN112993198B (en) Germanium-based perovskite photoelectric material, application, preparation method, device and preparation method
Utochnikova et al. Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs
Zhang et al. Thermal stability improvement of Cr3+‐activated broadband near‐infrared phosphors via state population optimization
JP4813292B2 (en) Organic thin film thickness measuring device and organic thin film forming device
KR20230100719A (en) organic electroluminescent device
JP2006016660A (en) Apparatus for forming organic thin film, and method therefor
Bideh et al. A molecularly engineered near-infrared-light-emitting electrochemical cell (NIR-LEC)
JP4495951B2 (en) Method and apparatus for forming organic material thin film
Quirino et al. Electroluminescence of a device based on europium β-diketonate with phosphine oxide complex
JP2009103523A (en) Method for evaluating mixture ratio of reactive mixture layer and method for manufacturing organic light emitting element
CN101101970A (en) Organic ultraviolet optical sensor based on phosphorescence material light diode
Reyes et al. Electrophosphorescence emission in organic light-emitting diodes based on (Sm+ Eu) complexes
TWI773276B (en) Metrology for oled manufacturing using photoluminescence spectroscopy
Beierlein et al. Combinatorial device fabrication and optimization of multilayer organic LEDs
Hatanaka et al. Exploring the behavior of electron-hole pairs in working organic light emitting diodes
Ali et al. Synthesis, photophysical, electrochemical and electroluminescence studies of red emitting phosphorescent Ir (III) heteroleptic complexes
JP4209747B2 (en) Spectral measurement method using slab type optical waveguide
JP2004047493A (en) Organic light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100804