JP2006011035A - Automatic focusing device, imaging apparatus, and focusing position detecting method - Google Patents

Automatic focusing device, imaging apparatus, and focusing position detecting method Download PDF

Info

Publication number
JP2006011035A
JP2006011035A JP2004187912A JP2004187912A JP2006011035A JP 2006011035 A JP2006011035 A JP 2006011035A JP 2004187912 A JP2004187912 A JP 2004187912A JP 2004187912 A JP2004187912 A JP 2004187912A JP 2006011035 A JP2006011035 A JP 2006011035A
Authority
JP
Japan
Prior art keywords
lens
image sensor
focusing
frequency component
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004187912A
Other languages
Japanese (ja)
Inventor
Yoshihiro Todaka
義弘 戸高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004187912A priority Critical patent/JP2006011035A/en
Publication of JP2006011035A publication Critical patent/JP2006011035A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic focusing device capable of obtaining a correct focal point by correcting a lens position obtained by a contrast detection system, and to provide an imaging apparatus and a focal point detecting method. <P>SOLUTION: The automatic focusing device comprises: optical lenses 101 including a focusing lens 101a for forming an imaging in a prescribed position; a lens drive means 110 for moving the focusing lens 101a; an imaging device 102 for photoelectrically converting the imaging formed by the optical lenses 101, and outputting an image signal; and an electronic shutter 103 for adjusting charge accumulation time of the imaging device 102. The automatic focusing device detects the high frequency component of the image signal while moving the focusing lens 101a, and finds a focusing position at which the high frequency component is maximum. Further, the automatic focusing device calculates an amount of correction of the detected focusing position based upon the charge accumulation time of the imaging device 102. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、画像信号のコントラストを検出してレンズの合焦位置を決定する自動合焦装置及び合焦位置検出方法に関する。   The present invention relates to an automatic focusing apparatus and a focusing position detection method for determining a focusing position of a lens by detecting contrast of an image signal.

デジタルビデオカメラ等においてピント合わせを行う自動合焦装置では、赤外線等を用いた測距手段を利用するアクティブ方式又はレンズを通して撮影された撮像信号を用いたパッシブ方式が用いられてきたが、現在では、小型化、マクロ撮影等の特徴を有するパッシブ方式が大勢を占めるに至っている。   In an automatic focusing device that performs focusing in a digital video camera or the like, an active method using a distance measuring means using infrared rays or a passive method using an imaging signal photographed through a lens has been used. Passive systems having features such as miniaturization and macro photography have come to dominate.

パッシブ方式の一つに、レンズによって撮像素子に結像して得られた撮像信号中の高周波成分、つまりコントラストが最大となるようレンズ位置を移動させることにより、合焦点を得るコントラスト検出方式がある。このコントラスト検出方式は測距手段が不要で構成が簡易であるため低コスト化、小型化に適しており、自動合焦装置での制御方式として広く採用されている。   As one of the passive methods, there is a contrast detection method for obtaining a focal point by moving a lens position so that a high-frequency component in an image signal obtained by forming an image on an image sensor with a lens, that is, a contrast is maximized. . This contrast detection method does not require distance measuring means and has a simple configuration, so it is suitable for cost reduction and miniaturization, and is widely used as a control method in an automatic focusing device.

コントラスト検出方式では、いかに精度良く高速に合焦点を検出してピント合わせを行うかが性能競争における課題となっている。このため、従来から、撮像信号の高周波成分の特性に基づいて高周波成分の最大点である合焦点を予測することによって、合焦動作の高速化を図る技術が提案されている(例えば特許文献1乃至3を参照)。
特開昭62−203485号公報 特開昭62−208012号公報 特許第2912649号公報
In the contrast detection method, how to accurately focus at high speed and focus is an issue in performance competition. For this reason, conventionally, a technique for speeding up the focusing operation by predicting the in-focus point that is the maximum point of the high-frequency component based on the characteristics of the high-frequency component of the imaging signal has been proposed (for example, Patent Document 1). Thru 3).
JP-A-62-203485 Japanese Patent Laid-Open No. 62-208012 Japanese Patent No. 2912649

一方、このような自動合焦装置を搭載したデジタルビデオカメラやデジタルスチルカメラにおいては、更なる小型化を図るため、イメージセンサのサイズ縮小化やレンズの短小化が行われている。その小型化を図る方法の一つとして、レンズ構造の簡略化や超小型化を狙って、従来から露光制御のために使用されてきた絞り機構に代わり、撮像素子の電子シャッタ機能を用いて露光制御を行うものがある。この方式では、絞り機構が不要或いは簡便になるため小型のカメラブロックの製作が容易となる利点がある。   On the other hand, in digital video cameras and digital still cameras equipped with such an automatic focusing device, the size of the image sensor and the lens are shortened in order to further reduce the size. One way to reduce the size is to use the electronic shutter function of the image sensor instead of the aperture mechanism that has been used for exposure control in the past, with the aim of simplifying the lens structure and reducing the size of the lens. Some control. This method has an advantage that it is easy to manufacture a small camera block because the diaphragm mechanism is unnecessary or simple.

しかしながら、電子シャッタを用いた露光制御を行うことにより、従来配慮されていなかった問題が生じてきた。具体的には、被写体像の高周波成分の山頂位置(最大点)を検出するために合焦用レンズを移動させる場合において、撮像素子での被写体像の露出時刻と高周波成分の検出時刻の時間差が生じ、さらにシャッタスピードによってその時間差が変化するため、レンズ移動中に検出した高周波成分の山頂位置が正確な合焦点からずれて検出され、ピント合わせの精度が低下するという問題である。   However, performing exposure control using an electronic shutter has caused problems that have not been considered in the past. Specifically, when the focusing lens is moved to detect the peak position (maximum point) of the high-frequency component of the subject image, the time difference between the exposure time of the subject image on the image sensor and the detection time of the high-frequency component is Further, since the time difference changes depending on the shutter speed, the peak position of the high-frequency component detected during the lens movement is detected by deviating from the correct focal point, and the accuracy of focusing is lowered.

このような現象は、撮像素子の種類に依らず、例えばCCDセンサやCMOSセンサでも生じる。更に撮像素子の種類が異なると、シャッタスピードを得るための露出方式が異なるため、ピントずれの補正は、それぞれ別途配慮する必要がある。   Such a phenomenon occurs also in a CCD sensor or a CMOS sensor, for example, regardless of the type of the image sensor. Furthermore, since the exposure method for obtaining the shutter speed differs depending on the type of the image sensor, it is necessary to separately consider the correction of the focus shift.

本発明は、上述の事情を考慮してなされたものであり、本発明の目的は、コントラスト検出方式によって得られたレンズ位置を補正して正確な合焦点を得ることができる自動合焦装置及び合焦位置検出方法を提供することである。   The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide an automatic focusing apparatus capable of correcting the lens position obtained by the contrast detection method and obtaining an accurate focal point, and It is to provide a focus position detection method.

本発明にかかる自動合焦装置は、撮像の結像位置を調整するための合焦用レンズを含む光学レンズ系と、前記合焦用レンズを移動させる駆動手段と、前記光学レンズ系によって結像される撮像を光電変換して画像信号を出力する撮像素子と、前記撮像素子の電荷蓄積時間を調節する電子シャッタ手段と、前記合焦用レンズを移動させながら前記画像信号の高周波成分を検出し、前記高周波成分が最大となる合焦位置を検出する第1の手段と、前記撮像素子の電荷蓄積時間に基づいて、前記第1の手段で検出した合焦位置に対する補正量を算出する第2の手段とを有するものである。これにより、正しい合焦位置に合焦用レンズを移動することができるため、正確な合焦点を得ることができる。   An automatic focusing device according to the present invention includes an optical lens system including a focusing lens for adjusting an imaging imaging position, a driving unit that moves the focusing lens, and an image formed by the optical lens system. An image sensor that photoelectrically converts the captured image and outputs an image signal; an electronic shutter unit that adjusts a charge accumulation time of the image sensor; and a high-frequency component of the image signal is detected while moving the focusing lens A second means for calculating a correction amount for the in-focus position detected by the first means on the basis of a first in-focus position at which the high-frequency component is maximized and a charge accumulation time of the image sensor; It has a means. Thereby, since the focusing lens can be moved to the correct focusing position, an accurate focusing point can be obtained.

また、前記第2の手段は、前記電荷蓄積時間に加えて、前記合焦用レンズの移動速度情報と、前記撮像素子の種別情報に基づいて、前記第1の手段で検出した合焦位置に対する補正量を算出することとしてもよい。これにより、撮像素子の種類に応じた補正量を算出することができる。   In addition to the charge accumulation time, the second means is based on the moving speed information of the focusing lens and the type information of the image sensor, and is used for the in-focus position detected by the first means. The correction amount may be calculated. Thereby, the correction amount according to the type of the image sensor can be calculated.

なお、前記撮像素子がCMOSイメージセンサである場合は、前記第2の手段は、さらに、前記画像信号上の高周波成分の抽出範囲を操作するために必要な画枠ゲート時間に基づいて、前記第1の手段で検出した合焦位置に対する補正量を算出することが望ましい。これにより、画枠ゲート時間の変動の影響を補正することができ、より正確に合焦点を得ることができる。   In the case where the image sensor is a CMOS image sensor, the second means further includes the second frame based on an image frame gate time required for operating a high frequency component extraction range on the image signal. It is desirable to calculate a correction amount for the in-focus position detected by means 1. Thereby, the influence of the fluctuation of the image frame gate time can be corrected, and the focal point can be obtained more accurately.

さらに、前記第2の手段は、撮像素子からの電荷読み出し周期にさらに基づいて、前記第1の手段で検出した合焦レンズ位置に対する補正量を算出することとしてもよい。これにより、電荷読み出し周期、つまりフレームレートが変化する場合にも、正確に合焦点を得ることができる。   Further, the second means may calculate a correction amount for the focus lens position detected by the first means, further based on a charge readout cycle from the image sensor. Thereby, even when the charge readout cycle, that is, the frame rate changes, the focal point can be obtained accurately.

また、本発明にかかる撮像装置は、上述の自動合焦装置を備えたことを特徴とするものである。   In addition, an imaging apparatus according to the present invention includes the above-described automatic focusing device.

さらに本発明にかかる合焦位置検出方法は、光学レンズを通して撮像素子に結像する被写体の画像信号から高周波成分を検出し、検出した高周波成分が最大となるよう前記光学レンズの位置を移動させて合焦を行う合焦位置検出方法であって、前記光学レンズを移動させながら前記画像信号の高周波成分を検出し、前記高周波成分が最大となる合焦位置を検出する第1のステップと、前記撮像素子の電荷蓄積時間に基づいて、前記第1の手段で検出した合焦位置に対する補正量を算出する第2のステップと、前記第2のステップ算出した補正量によって補正された合焦位置に、前記光学レンズを移動する第3のステップとを含むものである。   Furthermore, the focus position detection method according to the present invention detects a high frequency component from an image signal of a subject imaged on an image sensor through an optical lens, and moves the position of the optical lens so that the detected high frequency component is maximized. A focus position detection method for performing focusing, wherein a first step of detecting a high-frequency component of the image signal while moving the optical lens and detecting a focus position at which the high-frequency component is maximized; Based on the charge accumulation time of the image sensor, a second step of calculating a correction amount for the focus position detected by the first means, and a focus position corrected by the correction amount calculated by the second step. And a third step of moving the optical lens.

本発明により、コントラスト検出方式によって得られたレンズ位置を補正して正確な合焦点を得ることができる自動合焦装置、撮像装置及び合焦位置検出方法を提供することができる。   According to the present invention, it is possible to provide an automatic focusing apparatus, an imaging apparatus, and a focusing position detection method capable of correcting the lens position obtained by the contrast detection method and obtaining an accurate focusing point.

発明の実施の形態1.
図1は、本発明の実施の形態にかかる自動合焦装置の構成図である。レンズ101は、被写体の像を撮像素子102に結像させるための光学レンズである。後述する合焦制御回路107によって制御されるレンズ駆動手段110により、レンズ101に含まれる合焦用レンズ101aの位置を光軸方向に移動させてピント合わせを行う。撮像素子102は、レンズ101を介して入射した光信号を電気信号に変換するセンサであり、例えばCCDセンサあるいはCMOSセンサである。
Embodiment 1 of the Invention
FIG. 1 is a configuration diagram of an automatic focusing apparatus according to an embodiment of the present invention. The lens 101 is an optical lens for forming an image of a subject on the image sensor 102. A lens driving unit 110 controlled by a focusing control circuit 107 described later moves the position of the focusing lens 101a included in the lens 101 in the optical axis direction to perform focusing. The image sensor 102 is a sensor that converts an optical signal incident through the lens 101 into an electrical signal, and is, for example, a CCD sensor or a CMOS sensor.

電子シャッタ103は、撮像素子102に対して電荷蓄積時間、つまりシャッタスピードを決定するためのタイミング信号を与える手段である。具体的には、撮像素子に蓄積された電荷をリセットするタイミング信号と撮像素子102に蓄積された電荷の読み出すタイミング信号を与えることによって、電荷蓄積時間を電子的に制御する。   The electronic shutter 103 is means for giving a timing signal for determining the charge accumulation time, that is, the shutter speed, to the image sensor 102. Specifically, the charge accumulation time is electronically controlled by providing a timing signal for resetting the charge accumulated in the image sensor and a timing signal for reading the charge accumulated in the image sensor 102.

信号処理回路104は、撮像素子102で得られた撮像信号をデジタル画像信号に変換する。104aは画像処理回路104からの画像信号出力端子である。自動合焦回路105は、画像信号の高周波成分を抽出してコントラストが高くなるよう、レンズ101に含まれる合焦用レンズ101aの位置を移動させることにより、合焦動作を行う。   The signal processing circuit 104 converts an image signal obtained by the image sensor 102 into a digital image signal. Reference numeral 104 a denotes an image signal output terminal from the image processing circuit 104. The automatic focusing circuit 105 performs a focusing operation by moving the position of the focusing lens 101a included in the lens 101 so that the high-frequency component of the image signal is extracted to increase the contrast.

自動合焦回路105は、図1に示すように高域フィルタ106、検波回路107、合焦制御回路108、補正量算出手段109を含んでいる。ここで高域フィルタ106は、撮像素子102で得られた画像信号から高周波成分を取り出すフィルタであり、ハイパスフィルタ又は高域のバンドパスフィルタである。検波回路107は、高域フィルタ106を通して得た高周波成分を検波し、さらに検波した信号を積分して高周波成分量を算出する回路であり、得られた積分値(高周波成分量)を自動合焦用信号(以下、AF用信号)として合焦制御回路108に出力する。   As shown in FIG. 1, the automatic focusing circuit 105 includes a high-pass filter 106, a detection circuit 107, a focusing control circuit 108, and a correction amount calculating means 109. Here, the high-pass filter 106 is a filter that extracts a high-frequency component from the image signal obtained by the image sensor 102, and is a high-pass filter or a high-pass band-pass filter. The detection circuit 107 is a circuit that detects a high-frequency component obtained through the high-pass filter 106, integrates the detected signal, and calculates a high-frequency component amount. The obtained integrated value (high-frequency component amount) is automatically focused. It outputs to the focusing control circuit 108 as a signal for use (hereinafter referred to as an AF signal).

合焦制御回路108は、AF用信号が最大となるようレンズ駆動手段109により合焦用レンズ101aの位置を移動して自動合焦動作を実行する回路である。なお、レンズ駆動手段109は、レンズ位置を移動させるステッピングモータである。   The focus control circuit 108 is a circuit that executes an automatic focus operation by moving the position of the focus lens 101a by the lens driving means 109 so that the AF signal becomes maximum. The lens driving means 109 is a stepping motor that moves the lens position.

補正量算出手段109は、電子シャッタ103が撮像素子102に指示するシャッタスピードを示す信号S1と合焦制御回路108が出力するレンズ移動速度を示す信号S2を元に、後述する演算を行うことにより、合焦制御回路108で得た合焦点のレンズ位置に対するレンズ位置補正量の算出を行う。算出したレンズ位置補正量は合焦制御回路108に入力される。合焦制御回路108は、レンズ駆動手段110に対して、レンズ位置補正量を反映した位置に合焦用レンズ101aを移動するよう指示する。   The correction amount calculating unit 109 performs a calculation described later based on a signal S1 indicating the shutter speed that the electronic shutter 103 instructs the image sensor 102 and a signal S2 indicating the lens moving speed output from the focusing control circuit 108. Then, the lens position correction amount for the in-focus lens position obtained by the focus control circuit 108 is calculated. The calculated lens position correction amount is input to the focus control circuit 108. The focusing control circuit 108 instructs the lens driving unit 110 to move the focusing lens 101a to a position reflecting the lens position correction amount.

撮像素子102において撮像を得てからAF用信号を得るまでに遅延時間がある。この遅延時間の間も合焦用レンズ101aの移動は行われるため、正確な合焦点を得るためには、AF用信号から合焦点となるレンズ位置を得た後に、遅延時間の間のレンズ移動量を補正する必要がある。   There is a delay time from obtaining an image in the image sensor 102 to obtaining an AF signal. Since the focusing lens 101a is moved during this delay time, in order to obtain an accurate focusing point, the lens movement during the delay time is obtained after obtaining the lens position that becomes the focusing point from the AF signal. The amount needs to be corrected.

次に、補正量算出手段109におけるレンズ位置補正量の算出方法について、図2乃至図4を用いて説明する。図2は、撮像素子102がCCDイメージセンサである場合について、電荷の蓄積・読み出しのタイミングを示した図である。図3は、撮像素子102がCMOSイメージセンサである場合について、図2と同様に電荷の蓄積・読み出しのタイミングを示した図である。図4は、正確な合焦点からのレンズ位置のずれとシャッタスピードの関係を示した図である。   Next, a method for calculating the lens position correction amount in the correction amount calculation unit 109 will be described with reference to FIGS. FIG. 2 is a diagram showing the charge accumulation / readout timing when the image sensor 102 is a CCD image sensor. FIG. 3 is a diagram showing the charge accumulation / reading timing in the same manner as in FIG. 2 in the case where the image sensor 102 is a CMOS image sensor. FIG. 4 is a graph showing the relationship between the lens position deviation from the correct focal point and the shutter speed.

まず、撮像素子102がインターライン・トランスファ方式のCCDイメージセンサである場合の例を、図2を用いて説明する。図2において、(a)リセットパルスは、CCDイメージセンサに蓄積された電荷を放電させるタイミングを指示するものである。リセットパルスは電子シャッタ103から撮像素子102(図2の例ではCCDイメージセンサ)に入力される。   First, an example in which the image sensor 102 is an interline transfer type CCD image sensor will be described with reference to FIG. In FIG. 2, (a) a reset pulse instructs the timing of discharging the charge accumulated in the CCD image sensor. The reset pulse is input from the electronic shutter 103 to the image sensor 102 (CCD image sensor in the example of FIG. 2).

図2の(b)トランスファパルスは、CCDイメージセンサ内のフォトダイオードに蓄積された電荷を、隣接する垂直CCDに転送するタイミングを指示するものである。リセットパルスからトランスファパルスまでの間が“電荷蓄積時間(図ではSd)”となる。なお、電荷蓄積時間Sdは、シャッタスピードと同じ意味である。   The (b) transfer pulse in FIG. 2 indicates the timing for transferring the electric charge accumulated in the photodiode in the CCD image sensor to the adjacent vertical CCD. The period from the reset pulse to the transfer pulse is the “charge accumulation time (Sd in the figure)”. The charge accumulation time Sd has the same meaning as the shutter speed.

図2の(c)AF用信号取り込みタイミングは、撮像素子102(CCDイメージセンサ)で得られた画像信号から、高周波成分を抽出してAF信号として得るタイミングを示している。ここで、トランスファパルスによってCCDイメージセンサでの電荷蓄積が終了してからAF用信号が得られるまでの時間を“読み出し遅れ時間(図ではDd)”とする。   The (c) AF signal capture timing in FIG. 2 indicates a timing at which a high frequency component is extracted from an image signal obtained by the image sensor 102 (CCD image sensor) and obtained as an AF signal. Here, the time from when charge accumulation in the CCD image sensor is completed by the transfer pulse until the AF signal is obtained is referred to as “read delay time (Dd in the figure)”.

図2の(d)シャッタスピードは、リセットパルスからトランスファパルスまでの間の電荷蓄積時間を模式的に示したものである。   The shutter speed (d) in FIG. 2 schematically shows the charge accumulation time from the reset pulse to the transfer pulse.

以上から、図2の場合において、黒三角で示した電荷蓄積時間の中間点からAF用信号が得られるまでの遅延時間Vddは、
Vdd=Sd/2+Dd ・・・(1)
となる。このように撮像素子102がCCDイメージセンサである場合の遅延時間Vddは、電荷蓄積時間Sd及び読み出し遅れ時間Ddによって決まることが分かる。したがって、電荷蓄積時間Sd、つまりシャッタスピードが変化すると遅延時間Vddが変化することになる。
From the above, in the case of FIG. 2, the delay time Vdd until the AF signal is obtained from the middle point of the charge accumulation time indicated by the black triangle is
Vdd = Sd / 2 + Dd (1)
It becomes. Thus, it can be seen that the delay time Vdd when the image sensor 102 is a CCD image sensor is determined by the charge accumulation time Sd and the read delay time Dd. Therefore, the delay time Vdd changes when the charge accumulation time Sd, that is, the shutter speed changes.

次に、コントラスト検出方式によって合焦動作を行う際に、遅延時間Vddによって生じる合焦点の誤差と、その誤差を補正する方法について、図4を用いて説明する。図4の横軸は、レンズ101の位置、具体的にはレンズ101に含まれる合焦用レンズ101aの位置を示している。縦軸は、AF用信号である画像信号中の高周波成分量である。図中のVf1は、撮像素子102の電荷蓄積が終了してAF用信号として高周波成分を得るまで、合焦用レンズ101aの位置が移動しないと仮定した場合に、レンズ位置と高周波成分の関係を示したグラフである。Vf1において高周波成分が最大(max)となるレンズ位置L1が正確な合焦点となる。   Next, a focus error caused by the delay time Vdd and a method for correcting the error when performing the focusing operation by the contrast detection method will be described with reference to FIG. 4 indicates the position of the lens 101, specifically, the position of the focusing lens 101a included in the lens 101. The vertical axis represents the amount of high-frequency components in the image signal that is an AF signal. Vf1 in the drawing represents the relationship between the lens position and the high frequency component when it is assumed that the position of the focusing lens 101a does not move until the charge accumulation of the image sensor 102 is completed and the high frequency component is obtained as the AF signal. It is the shown graph. The lens position L1 at which the high-frequency component is maximum (max) at Vf1 is an accurate focal point.

一方、実際の合焦動作では、撮像素子102の電荷蓄積が終了してAF用信号として高周波成分を得るまでの間にも、合焦用レンズ101aの位置が移動し、AF用信号を得る時点でレンズ位置を合わせて取り込むと、レンズ位置がずれた状態となってしまう。図4中のVf2は、レンズ位置がずれた場合を示している。Vf2において、高周波成分が最大となるレンズ位置L2と、正確な合焦位置L1とのずれは、上述の(1)式で示した遅延時間Vddに起因するものである。このため、電荷蓄積時間Sdが長い、つまりシャッタスピードが遅いほど、正確な合焦点からのレンズ位置のずれは大きくなる。図4中のVf3は、Vf2に比べてシャッタスピードが遅い場合の例を示しており、この場合は、さらにレンズ位置のずれが大きくなってしまう。   On the other hand, in the actual focusing operation, the time when the position of the focusing lens 101a is moved and the AF signal is obtained before the charge accumulation of the image sensor 102 is completed and the high frequency component is obtained as the AF signal. If the lens positions are taken together, the lens position will be shifted. Vf2 in FIG. 4 indicates a case where the lens position is shifted. In Vf2, the deviation between the lens position L2 at which the high-frequency component is maximum and the accurate focus position L1 is caused by the delay time Vdd shown in the above equation (1). For this reason, the longer the charge accumulation time Sd, that is, the slower the shutter speed, the greater the deviation of the lens position from the correct focal point. Vf3 in FIG. 4 shows an example in which the shutter speed is slower than Vf2, and in this case, the lens position shift further increases.

したがって、正確な合焦位置L1にレンズ位置を補正するためには、合焦位置L1からのレンズ位置のずれの大きさを求めて、その大きさ分だけレンズ位置を補正してやればよい。   Therefore, in order to correct the lens position to the accurate focus position L1, it is only necessary to obtain the magnitude of the deviation of the lens position from the focus position L1 and correct the lens position by that amount.

本発明では、補正量算出手段109において、(1)式で示される遅延時間Vddと合焦用レンズ101aの移動速度から、遅延時間Vddの間の合焦用レンズ101aの移動量を求め、合焦制御回路108が、補正量算出手段109において算出された移動量を元に合焦点レンズ位置を補正することによって、シャッタスピードが変化した場合でも正確な合焦点を得ることができる。   In the present invention, the correction amount calculating means 109 obtains the amount of movement of the focusing lens 101a during the delay time Vdd from the delay time Vdd expressed by the equation (1) and the moving speed of the focusing lens 101a. The focus control circuit 108 corrects the in-focus lens position based on the movement amount calculated by the correction amount calculation unit 109, so that an accurate in-focus point can be obtained even when the shutter speed changes.

続いて、撮像素子102がCMOSイメージセンサである場合の例を、図3を用いて説明する。図3において、(a)リセットパルスは、CMOSイメージセンサに蓄積された電荷を放電させるタイミングを指示するものである。リセットパルスは電子シャッタ103から撮像素子102(図3の例ではCMOSイメージセンサ)に入力される。なお、図3でのリセットパルスの位置は、一例として、後述する画枠ゲートの先頭位置、つまり画枠ゲート内で最初に走査される画素に対して電荷蓄積を開始させるタイミングを示している。   Next, an example in which the image sensor 102 is a CMOS image sensor will be described with reference to FIG. In FIG. 3, (a) a reset pulse indicates the timing for discharging the charge accumulated in the CMOS image sensor. The reset pulse is input from the electronic shutter 103 to the image sensor 102 (a CMOS image sensor in the example of FIG. 3). Note that the position of the reset pulse in FIG. 3 indicates, as an example, the start position of an image frame gate, which will be described later, that is, the timing at which charge accumulation is started for the pixel that is scanned first in the image frame gate.

図3の(b)垂直選択パルスは、フォトダイオードに蓄積された電荷の読み出しを行うタイミングを示している。なお、図3では、垂直選択パルスの位置は、リセットパルスと同様に画枠ゲートの先頭位置を走査するタイミングを示している。リセットパルスから垂直選択パルスまでの間が“電荷蓄積時間(図ではSm)”となる。   The (b) vertical selection pulse in FIG. 3 indicates the timing for reading out the charges accumulated in the photodiode. In FIG. 3, the position of the vertical selection pulse indicates the timing at which the head position of the image frame gate is scanned in the same manner as the reset pulse. The period from the reset pulse to the vertical selection pulse is the “charge accumulation time (Sm in the figure)”.

図3の(c)画枠ゲートは、画像信号上でAF用信号の対象とする範囲を絞るために設定するものである。つまり、図3(d)センサ出力で示す1フレーム分の走査に要する時間のうち、図3(c)の画枠ゲートの時間内で走査される画像範囲がAF用信号の対象範囲となる。なお、CMOSイメージセンサでは、画枠ゲート内を順次走査して電荷を読み出す際に走査線ごとに蓄積時間のずれが生じるため、画枠ゲート内を走査し終えるまでに、有限の時間を要する。この時間が図中の画枠ゲート時間Gmである。   The (c) image frame gate in FIG. 3 is set to narrow down the target range of the AF signal on the image signal. That is, among the time required for scanning for one frame shown by the sensor output in FIG. 3D, the image range scanned within the time of the image frame gate in FIG. 3C becomes the target range of the AF signal. In the CMOS image sensor, when reading the electric charges by sequentially scanning the inside of the image frame gate, a shift in the accumulation time occurs for each scanning line. Therefore, a finite time is required until the scanning inside the image frame gate is completed. This time is the image frame gate time Gm in the figure.

図3の(e)AF用信号取り込みタイミングは、撮像素子102(CMOSイメージセンサ)で得られた画像信号から、高周波成分を抽出してAF信号として得るタイミングを示している。ここで、Dmは、画枠ゲートが閉じてからAF用信号が得られるまでの“読み出し遅れ時間”であり、図2のCCDイメージセンサの場合におけるDdに対応するものである。   The (e) AF signal capture timing in FIG. 3 indicates the timing at which a high-frequency component is extracted from the image signal obtained by the image sensor 102 (CMOS image sensor) and obtained as an AF signal. Here, Dm is a “read delay time” from when the image frame gate is closed until an AF signal is obtained, and corresponds to Dd in the case of the CCD image sensor of FIG.

図3の(f)シャッタスピードは、リセットパルスから垂直選択パルスまでの間の電荷蓄積時間を模式的に示したものである。また、画枠ゲート時間Gmは、AF用信号の対象とする画像信号範囲を指定する画枠ゲート内を全て走査するために必要となる時間である。CMOSイメージセンサでは垂直方向に順次操作して電荷を読み出す際に走査線ごとに蓄積時間のずれが生じるため、画枠ゲート時間Gmが発生する。   The (f) shutter speed in FIG. 3 schematically shows the charge accumulation time from the reset pulse to the vertical selection pulse. Further, the image frame gate time Gm is a time required for scanning the entire image frame gate that designates the image signal range that is the target of the AF signal. In the CMOS image sensor, when the electric charges are read out by sequentially operating in the vertical direction, an accumulation time shift occurs for each scanning line, so that an image frame gate time Gm is generated.

CMOSイメージセンサの場合に、図2で説明したVddに相当する遅延時間Vdmは、
Vdm=(Sm+Gm)/2+Dm ・・・(2)
で表される。このように撮像素子102がCMOSイメージセンサである場合の遅延時間Vdmは、電荷蓄積時間Sd、画枠ゲート時間Gm及び読み出し遅れ時間Dmによって決まることが分かる。したがって、CMOSイメージセンサの場合は、電荷蓄積時間Smだけでなく、AF用信号の範囲、つまり画像信号上でピント合わせを行う範囲が変化すると画枠ゲート時間Gmが変動して、結果的に遅延時間Vdmも変化することになる。
In the case of a CMOS image sensor, the delay time Vdm corresponding to Vdd described in FIG.
Vdm = (Sm + Gm) / 2 + Dm (2)
It is represented by Thus, it can be seen that the delay time Vdm when the image sensor 102 is a CMOS image sensor is determined by the charge accumulation time Sd, the image frame gate time Gm, and the readout delay time Dm. Therefore, in the case of a CMOS image sensor, not only the charge accumulation time Sm but also the AF signal range, that is, the focusing range on the image signal, changes the image frame gate time Gm, resulting in a delay. The time Vdm will also change.

本発明では、補正量算出手段109において、(2)式で示される遅延時間Vdmと合焦用レンズ101aの移動速度から、遅延時間Vdmの間に合焦用レンズ101aが移動した量を求め、合焦制御回路108が、補正量算出手段109において算出された移動量を元に合焦点レンズ位置を補正することによって、正確な合焦点を得ることができる。   In the present invention, the correction amount calculating means 109 obtains the amount of movement of the focusing lens 101a during the delay time Vdm from the delay time Vdm expressed by the equation (2) and the moving speed of the focusing lens 101a. The in-focus control circuit 108 corrects the in-focus lens position based on the movement amount calculated by the correction amount calculating unit 109, whereby an accurate in-focus point can be obtained.

なお、シャッタスピードだけでなく、撮像素子102から画像を読み出す際のフレームレートが変化した場合にも電荷蓄積時間が変化によって、上述した遅延時間Vdd又はVdmに相当する時間が変動する。   Note that not only the shutter speed but also the time corresponding to the delay time Vdd or Vdm fluctuates due to the change in the charge accumulation time even when the frame rate when reading an image from the image sensor 102 changes.

例えば、デジタルスチルカメラ等の液晶モニタ等にカメラアングルの決定等に使用するために動画像を表示する場合には、デジタルビデオカメラの場合と異なり、一定のフィールド周期で画像再生を行う必要はなく、画像が暗ければ電荷蓄積時間を長くするために、フレームレートを低下させることが行われる。このように、フレームレートが変化する場合について図5を用いて説明する。   For example, when displaying a moving image for use in determining a camera angle on a liquid crystal monitor such as a digital still camera, unlike the case of a digital video camera, it is not necessary to reproduce an image with a constant field period. If the image is dark, the frame rate is reduced in order to increase the charge accumulation time. A case where the frame rate changes in this way will be described with reference to FIG.

図5の(a)乃至(e)のパルス波形は、垂直選択パルスを示している。図の(d)を除いて、パルス間隔が撮像素子における電荷蓄積時間に相当する。(d)は、リセットパルスによる放電が行われて、電荷蓄積時間が短い場合に相当する。また、パルス波形の下に示した台形は、図3のそれと同様に、撮像素子に対する電荷蓄積時間を模式的に示したものである。   The pulse waveforms in FIGS. 5A to 5E indicate vertical selection pulses. Except (d) in the figure, the pulse interval corresponds to the charge accumulation time in the image sensor. (D) corresponds to the case where the discharge by the reset pulse is performed and the charge accumulation time is short. Also, the trapezoid shown below the pulse waveform schematically shows the charge accumulation time for the image sensor, similar to that of FIG.

図5の(a)は、デジタルビデオカメラにおける動画像の蓄積・読み出しの例を示すものであり、NTSC方式の場合は、インタレーススキャンによって1秒当たり60フィールドの周期で画像が出力される。2フィールドで1フレームの画像となるが、読み出し周期を高めることで動画の解像度を高めている。   FIG. 5A shows an example of moving image accumulation / readout in a digital video camera. In the case of the NTSC system, images are output at a period of 60 fields per second by interlace scanning. An image of one frame is obtained with two fields, but the resolution of the moving image is increased by increasing the readout cycle.

これに対して、デジタルスチルカメラでは通常、プログレッシブスキャンを行っており、1フレームの画像を一回で読み出すことが多い。図5の(b)はこの場合を示しており、VGA等の画素数が比較的少ない場合は、30フレーム/秒程度が一般的である。この画像を、カメラの液晶モニタ等に表示させてカメラアングルの操作を行っている。   On the other hand, a digital still camera normally performs progressive scanning and often reads out one frame image at a time. FIG. 5B shows this case, and when the number of pixels such as VGA is relatively small, about 30 frames / second is common. This image is displayed on a liquid crystal monitor of the camera and the camera angle is operated.

上述のように、デジタルスチルカメラでは、動画への対応はそれほど配慮する必要がないため、被写体の照度が低下して撮像信号レベルが低下するような場合には、フレームレートを低下させて電荷蓄積時間を増加させることが行われる。例えば図5の(c)にはフレームレートを15フレーム/秒に低下させた場合を示している。なお、図では、フレームレートが変更されても、読み出しレートは一定の場合を示している。もちろん、フレームレートの変更に応じて読み出しレートを変更することとしてもかまわない。図5の(d)は、電子シャッタ103によるリセットパルスによって、電荷蓄積時間を短くした場合であり、図5の(e)は、さらにフレームレートを低下させ、7.5フレーム/秒とした場合を示している。   As described above, with a digital still camera, it is not necessary to pay much attention to moving images. Therefore, when the illuminance of the subject decreases and the imaging signal level decreases, the frame rate is reduced and charge storage is performed. Increasing time is done. For example, FIG. 5C shows a case where the frame rate is reduced to 15 frames / second. In the figure, even when the frame rate is changed, the read rate is constant. Of course, the read rate may be changed according to the change of the frame rate. FIG. 5D shows a case where the charge accumulation time is shortened by a reset pulse from the electronic shutter 103. FIG. 5E shows a case where the frame rate is further reduced to 7.5 frames / second. Is shown.

図5中の黒三角は、それぞれの電荷蓄積時間の中間点を示しており、白三角はAF用信号取り込みタイミングを示している。このように、フレームレートが変化することによって電荷蓄積時間が変化すると、電荷蓄積時間の中間点も変化する。この結果、図2及び図3を用いて説明した、電荷蓄積時間の中間点からAF用信号として取り込まれるまでの遅延時間が、フレームレートによって変化することになる。しかしながら、この場合においても上述した遅延時間VdmまたはVddを算出し、レンズ位置の補正を行うことにより、正確な合焦位置にレンズを移動させることができるため、合焦動作を精度よく実施することができる。   The black triangles in FIG. 5 indicate the intermediate points of the respective charge accumulation times, and the white triangles indicate the AF signal capture timing. As described above, when the charge accumulation time is changed by changing the frame rate, the midpoint of the charge accumulation time is also changed. As a result, the delay time from the middle point of the charge accumulation time described above with reference to FIGS. 2 and 3 until the signal is taken in as an AF signal varies depending on the frame rate. However, even in this case, the lens can be moved to an accurate in-focus position by calculating the delay time Vdm or Vdd described above and correcting the lens position. Can do.

発明の実施の形態2.
図6は、本発明の実施の形態にかかる自動合焦装置の構成図である。図1に示した発明の実施の形態1にかかる構成と同一の機能を有する部分は、図1と同一の記号を付して説明を省略する。図6において、補正量算出手段209は、電子シャッタ103が撮像素子102に指示するシャッタスピードを示す信号S1と合焦制御回路108が出力するレンズ移動速度を示す信号S2に加えて、フレームレート情報を示す信号S3、イメージセンサ種別を示す信号S4の入力を元に、合焦制御回路108で得た合焦点のレンズ位置に対するレンズ位置補正量の算出を行う。なお、レンズ位置補正量の算出方法は、発明の実施の形態1で説明したものと同様であるため、詳細な説明は省略するが、フレームレート情報の入力を元に電荷蓄積時間Sd又はSmを算出することとすればよいし、イメージセンサ種別の入力を元に上述の(1)式又は(2)式を選択するようにすればよい。
Embodiment 2 of the Invention
FIG. 6 is a configuration diagram of the automatic focusing device according to the embodiment of the present invention. Parts having the same functions as those of the configuration according to the first embodiment of the invention shown in FIG. 1 are denoted by the same reference numerals as those in FIG. In FIG. 6, the correction amount calculation means 209 includes frame rate information in addition to the signal S1 indicating the shutter speed that the electronic shutter 103 instructs the image sensor 102 and the signal S2 indicating the lens moving speed output from the focus control circuit 108. The lens position correction amount for the in-focus lens position obtained by the in-focus control circuit 108 is calculated based on the input of the signal S3 indicating the signal S and the signal S4 indicating the image sensor type. Since the lens position correction amount calculation method is the same as that described in the first embodiment of the invention, detailed description thereof is omitted, but the charge accumulation time Sd or Sm is calculated based on the input of frame rate information. What is necessary is just to calculate, and what is necessary is just to select said Formula (1) or (2) based on the input of image sensor classification.

算出したレンズ位置補正量は、発明の実施の形態1で説明した自動合焦装置と同様に、合焦制御回路108に送信され、レンズ位置補正量を反映した位置に合焦用レンズ101aを移動するよう、合焦制御回路108によってレンズ駆動手段110に指示される。   The calculated lens position correction amount is transmitted to the focusing control circuit 108 as in the automatic focusing device described in the first embodiment of the invention, and the focusing lens 101a is moved to a position reflecting the lens position correction amount. Therefore, the focus control circuit 108 instructs the lens driving unit 110 to do so.

なお、図6に示した構成では、補正量算出手段109が、シャッタスピード、フレームレート及びイメージセンサ種別を電子シャッタ103から得て、レンズ移動速度を合焦制御回路108から得ているが、これらの情報を有する他の部分、例えば、信号処理回路103がこれらの情報を有している場合は信号処理回路103から得てもよい。本発明は、これらの情報に基づいてレンズ位置の補正を行うものであり、これらの情報の出所に関しては限定されるものでないことは言うまでもない。   In the configuration shown in FIG. 6, the correction amount calculation unit 109 obtains the shutter speed, frame rate, and image sensor type from the electronic shutter 103, and obtains the lens movement speed from the focus control circuit 108. If the other part having the information, for example, the signal processing circuit 103 has such information, it may be obtained from the signal processing circuit 103. The present invention corrects the lens position based on these pieces of information, and it goes without saying that the source of these pieces of information is not limited.

発明の実施の形態3.
発明の実施の形態1で説明した自動合焦装置を備えたことを特徴とする本実施の形態にかかる撮像装置の構成を、図7を用いて説明する。なお、本発明にかかる自動合焦装置を備えた撮像装置は様々な形態が考えられる。図7の構成はその一例を示したものである。
Embodiment 3 of the Invention
A configuration of the imaging apparatus according to the present embodiment, which includes the automatic focusing apparatus described in the first embodiment of the invention, will be described with reference to FIG. It should be noted that the imaging apparatus provided with the automatic focusing device according to the present invention can be in various forms. The configuration of FIG. 7 shows an example.

図中のCPU601は、撮像装置全体の制御を行うコントローラである。具体的には、撮影、記録媒体IF(インタフェース)606を介した記録媒体607への画像データの保存、操作スイッチ604を介した操作者による操作の受け付け、及び液晶モニタ605への表示等の通常の撮像装置で行われる処理の制御に加えて、上述した合焦制御、補正量算出、及び合焦用レンズ101aの駆動といった本発明にかかる制御を実施する。なお、CPU601における制御は、ROM602に格納された制御プログラムをRAM603にロードして実行することによって行うこととすればよい。また、RAM603は、CPU601が上述の制御を行う際の作業領域としても使用される。   A CPU 601 in the figure is a controller that controls the entire imaging apparatus. Specifically, normal operations such as shooting, storage of image data in the recording medium 607 via the recording medium IF (interface) 606, acceptance of an operation by the operator via the operation switch 604, and display on the liquid crystal monitor 605, etc. In addition to the control of the processing performed by the imaging apparatus, the control according to the present invention such as the above-described focusing control, correction amount calculation, and driving of the focusing lens 101a is performed. The control in the CPU 601 may be performed by loading a control program stored in the ROM 602 into the RAM 603 and executing it. The RAM 603 is also used as a work area when the CPU 601 performs the above-described control.

図7のその他の部分は、図1において示した発明の実施の形態1にかかる自動合焦装置と同一の機能を有しているため説明を省略する。また、レンズ位置を補正して正確な合焦位置を得る原理及び方法は、発明の実施の形態1で示したものと同様であるため説明を省略する。   7 has the same function as the automatic focusing apparatus according to the first embodiment of the invention shown in FIG. Further, the principle and method for obtaining an accurate in-focus position by correcting the lens position are the same as those described in the first embodiment of the present invention, and therefore description thereof is omitted.

発明の実施の形態1にかかる自動合焦装置の構成図である。It is a block diagram of the automatic focusing apparatus concerning Embodiment 1 of invention. 撮像素子で得られた画像から高周波成分を取得する動作を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation | movement which acquires a high frequency component from the image obtained with the image pick-up element. 撮像素子で得られた画像から高周波成分を取得する動作を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation | movement which acquires a high frequency component from the image obtained with the image pick-up element. レンズ位置のずれとシャッタスピードの関係を示す図である。It is a figure which shows the relationship between the shift | offset | difference of a lens position, and shutter speed. フレームレートの違いによる電荷蓄積時間の変化を示す図である。It is a figure which shows the change of the charge accumulation time by the difference in a frame rate. 発明の実施の形態2にかかる自動合焦装置の構成図である。It is a block diagram of the automatic focusing apparatus concerning Embodiment 2 of invention. 発明の実施の形態3にかかる撮像装置の構成図である。It is a block diagram of the imaging device concerning Embodiment 3 of invention.

符号の説明Explanation of symbols

101 レンズ、101a 合焦用レンズ、102 撮像素子、103 電子シャッタ、104 信号処理回路、105自動合焦回路、108 合焦制御回路、109 補正量算出手段、110 レンズ駆動手段 101 lens, 101a focusing lens, 102 imaging device, 103 electronic shutter, 104 signal processing circuit, 105 automatic focusing circuit, 108 focusing control circuit, 109 correction amount calculating means, 110 lens driving means

Claims (6)

撮像の結像位置を調整するための合焦用レンズを含む光学レンズ系と、
前記合焦用レンズを移動させる駆動手段と、
前記光学レンズ系によって結像される撮像を光電変換して画像信号を出力する撮像素子と、
前記撮像素子の電荷蓄積時間を調節する電子シャッタ手段と、
前記合焦用レンズを移動させながら前記画像信号の高周波成分を検出し、前記高周波成分が最大となる合焦位置を検出する第1の手段と、
前記撮像素子の電荷蓄積時間に基づいて、前記第1の手段で検出した合焦位置に対する補正量を算出する第2の手段と、
を有する自動合焦装置。
An optical lens system including a focusing lens for adjusting the imaging position of the imaging;
Driving means for moving the focusing lens;
An image sensor that photoelectrically converts an image formed by the optical lens system and outputs an image signal; and
Electronic shutter means for adjusting the charge accumulation time of the image sensor;
Detecting a high frequency component of the image signal while moving the focusing lens, and detecting a focusing position where the high frequency component is maximized;
Second means for calculating a correction amount for the in-focus position detected by the first means based on the charge accumulation time of the image sensor;
An automatic focusing device.
前記第2の手段は、前記電荷蓄積時間に加えて、前記合焦用レンズの移動速度情報と、前記撮像素子の種別情報に基づいて、前記第1の手段で検出した合焦位置に対する補正量を算出する、請求項1に記載の自動合焦装置。   The second means is a correction amount for the in-focus position detected by the first means based on the moving speed information of the focusing lens and the type information of the image sensor in addition to the charge accumulation time. The automatic focusing device according to claim 1, wherein 前記撮像素子はCMOSイメージセンサであり、
前記第2の手段は、さらに、前記画像信号上の高周波成分の抽出範囲を操作するために必要な画枠ゲート時間に基づいて、前記第1の手段で検出した合焦位置に対する補正量を算出する、請求項1又は2に記載の自動合焦装置。
The image sensor is a CMOS image sensor,
The second means further calculates a correction amount for the in-focus position detected by the first means based on an image frame gate time necessary for operating a high-frequency component extraction range on the image signal. The automatic focusing device according to claim 1 or 2.
前記第2の手段は、撮像素子からの電荷読み出し周期にさらに基づいて、前記第1の手段で検出した合焦レンズ位置に対する補正量を算出する、請求項1乃至3のいずれかに記載の自動合焦装置。   The automatic means according to any one of claims 1 to 3, wherein the second means calculates a correction amount for the in-focus lens position detected by the first means based further on a charge readout period from the image sensor. Focusing device. 請求項1乃至4のいずれかに記載の自動合焦装置を備えたことを特徴とする撮像装置。   An imaging apparatus comprising the automatic focusing device according to claim 1. 光学レンズを通して撮像素子に結像する被写体の画像信号から高周波成分を検出し、検出した高周波成分が最大となるよう前記光学レンズの位置を移動させて合焦を行う合焦位置検出方法であって、
前記光学レンズを移動させながら前記画像信号の高周波成分を検出し、前記高周波成分が最大となる合焦位置を検出する第1のステップと、
前記撮像素子の電荷蓄積時間に基づいて、前記第1の手段で検出した合焦位置に対する補正量を算出する第2のステップと、
前記第2のステップ算出した補正量によって補正された合焦位置に、前記光学レンズを移動する第3のステップと、
を含む合焦位置検出方法。
A focus position detection method for detecting a high frequency component from an image signal of a subject imaged on an image sensor through an optical lens, and moving the position of the optical lens so that the detected high frequency component is maximized. ,
Detecting a high frequency component of the image signal while moving the optical lens, and detecting a focusing position where the high frequency component is maximized;
A second step of calculating a correction amount for the in-focus position detected by the first means based on the charge accumulation time of the image sensor;
A third step of moving the optical lens to the in-focus position corrected by the correction amount calculated in the second step;
In-focus position detection method.
JP2004187912A 2004-06-25 2004-06-25 Automatic focusing device, imaging apparatus, and focusing position detecting method Withdrawn JP2006011035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187912A JP2006011035A (en) 2004-06-25 2004-06-25 Automatic focusing device, imaging apparatus, and focusing position detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004187912A JP2006011035A (en) 2004-06-25 2004-06-25 Automatic focusing device, imaging apparatus, and focusing position detecting method

Publications (1)

Publication Number Publication Date
JP2006011035A true JP2006011035A (en) 2006-01-12

Family

ID=35778375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187912A Withdrawn JP2006011035A (en) 2004-06-25 2004-06-25 Automatic focusing device, imaging apparatus, and focusing position detecting method

Country Status (1)

Country Link
JP (1) JP2006011035A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242442A (en) * 2007-02-15 2008-10-09 Matsushita Electric Ind Co Ltd Camera system
JP2011002568A (en) * 2009-06-17 2011-01-06 Hoya Corp Image pickup device
KR101036172B1 (en) 2010-03-08 2011-05-23 김인균 Closed circuit television camera with focus adjusting mode
JP2012018352A (en) * 2010-07-09 2012-01-26 Canon Inc Image recorder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242442A (en) * 2007-02-15 2008-10-09 Matsushita Electric Ind Co Ltd Camera system
US8326139B2 (en) 2007-02-15 2012-12-04 Panasonic Corporation Camera system
JP2013033265A (en) * 2007-02-15 2013-02-14 Panasonic Corp Camera system
US8554068B2 (en) 2007-02-15 2013-10-08 Panasonic Corporation Camera system
JP2011002568A (en) * 2009-06-17 2011-01-06 Hoya Corp Image pickup device
KR101036172B1 (en) 2010-03-08 2011-05-23 김인균 Closed circuit television camera with focus adjusting mode
JP2012018352A (en) * 2010-07-09 2012-01-26 Canon Inc Image recorder

Similar Documents

Publication Publication Date Title
US7424213B2 (en) Camera system, image capturing apparatus, and a method of an image capturing apparatus
US7965334B2 (en) Auto-focus camera with adjustable lens movement pitch
KR101756839B1 (en) Digital photographing apparatus and control method thereof
USRE45900E1 (en) Imaging apparatus and control method
JP2008026802A (en) Imaging apparatus
US10187564B2 (en) Focus adjustment apparatus, imaging apparatus, focus adjustment method, and recording medium storing a focus adjustment program thereon
US20040223073A1 (en) Focal length detecting method and focusing device
US8848096B2 (en) Image-pickup apparatus and control method therefor
JP5095519B2 (en) Imaging apparatus and imaging method
JP7086551B2 (en) Imaging device and its control method
JP2008111995A (en) Autofocus control method and device
KR101747304B1 (en) A digital photographing apparatus, a method for auto-focusing, and a computer-readable storage medium for executing the method
JP2009042555A (en) Electronic camera
JP5354879B2 (en) camera
JP4046276B2 (en) Digital camera
US20140168467A1 (en) Focus adjustment apparatus and method, and image capturing apparatus
JP2006011035A (en) Automatic focusing device, imaging apparatus, and focusing position detecting method
KR20100085728A (en) Photographing apparatus and focus detecting method using the same
WO2017159336A1 (en) Focal position detection device and focal position detection method
US20120105699A1 (en) Portable device
JP2007267278A (en) Imaging apparatus and imaging method
JP2004085964A (en) Automatic focusing device, digital camera, and portable information input device
JP2006243745A (en) Automatic focus detector
JP5159295B2 (en) Automatic focusing device and imaging device
JP4779383B2 (en) Digital camera

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904