JP2006010628A - Detector for detecting object - Google Patents

Detector for detecting object Download PDF

Info

Publication number
JP2006010628A
JP2006010628A JP2004191349A JP2004191349A JP2006010628A JP 2006010628 A JP2006010628 A JP 2006010628A JP 2004191349 A JP2004191349 A JP 2004191349A JP 2004191349 A JP2004191349 A JP 2004191349A JP 2006010628 A JP2006010628 A JP 2006010628A
Authority
JP
Japan
Prior art keywords
magnetic field
detecting
detection
field generation
generation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004191349A
Other languages
Japanese (ja)
Inventor
Masato Kagawa
理人 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004191349A priority Critical patent/JP2006010628A/en
Publication of JP2006010628A publication Critical patent/JP2006010628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detector capable of detecting precisely a position and a posture of a cutting object, in particular, without occupying a wide ground surface in a non-excavating method, in the detector for detecting a detecting object. <P>SOLUTION: This detector for detecting the position and/or the posture of the detecting object has a magnetic field generating source built in the detecting object, one detecting means capable of detecting three-directional orthogonal components of a magnetic field generated by the magnetic field generating source, and a computing means for computing the position and/or the posture of the detecting object, based on a data detected by the detecting means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検出体の検出装置に関し、特に非開削工法等で用いられる地下掘削体の位置や姿勢を検出するに好適な装置に係る。   The present invention relates to a detection apparatus for an object to be detected, and particularly relates to an apparatus suitable for detecting the position and posture of an underground excavation body used in a non-open cutting method or the like.

新たに民地へガスを供給する場合には、車道や側道など公共道路の地下に埋設されたガス本支管(以下本支管と称する。)にガス供給管(以下供給管と称する。)を接続し、民地側へ供給管を引込むことが必要となる。従来の供給管を敷設する工法は、民地側の供給管引出し予定部から本支管の接続部までの間の公共道路の地盤に地表面に開口した敷設路を開削し、敷設路に供給管を敷設し、供給管を本支管に接続し、開口した敷設路を埋戻す、いわゆる開削工法であった。開削工法によれば、前記敷設路が、例えば公共道路を横断するように設けられた場合、供給管の敷設工事の間は公共道路の交通を阻害するという問題があった。   When gas is newly supplied to a private area, a gas supply pipe (hereinafter referred to as a supply pipe) is connected to a gas main branch pipe (hereinafter referred to as a main branch pipe) embedded in a public road such as a roadway or a side road. It is necessary to connect and draw the supply pipe to the private side. The conventional method of laying a supply pipe is to cut a laying road that opens to the ground surface on the ground of a public road between the planned supply pipe withdrawal part on the private side and the connection part of this branch pipe. This is a so-called open-cut method, in which the supply pipe is connected to the branch pipe, and the opened laying path is backfilled. According to the open-cut method, when the laying road is provided so as to cross, for example, a public road, there is a problem that the traffic on the public road is obstructed during the laying work of the supply pipe.

その問題を解決する工法として、近年、非開削工法が注目されている。非開削工法は、供給管を引込む民地側の地盤或いは本支管を接続部の地盤のみを開削し、供給管を敷設する敷設路は地中部にのみ掘削して形成する工法であり、公共道路を大規模に開削する必要がない。もって、公共道路の交通を阻害せず、さらに供給管の敷設工事を短期間で出来る利点があり、特に交通量の多い都市部では多用される傾向にある。   In recent years, non-cutting methods have attracted attention as methods for solving such problems. The non-cutting method is a method of excavating the ground on the private side where the supply pipe is drawn in or only the ground of the connecting part of this branch pipe, and laying the supply pipe by excavating only in the underground, public roads There is no need to excavate on a large scale. Therefore, there is an advantage that the construction of the supply pipe can be done in a short period of time without obstructing the traffic on the public road, and there is a tendency that it is frequently used especially in urban areas where the traffic is heavy.

非開削工法では、地中で掘削が行われるためそれに用いる地下掘削体(以下掘削体とも称する。)の位置と姿勢を検出する検出技術が必要である。その検出技術としては、取り扱いが容易で構造が簡単な磁気検出装置を掘削体の推進にあわせて掘削体の直上で追従しながら検出を行うものや、複数の検出器を配置して受信強度の相対比較により検知するものが知られており、その一例が下記特許文献1に開示されている。特許文献1の検出方法は、「推進体(掘削体)の所定の到達部で予定到達方向に直交する平面内で、且つ、到達部を挟んで等しい距離の複数位置に、発信コイルからの電磁波を受信する複数の受信コイルを、それぞれ予定到達方向に軸芯を沿わせて設けておき、複数の受信コイルそれぞれの電磁波受信強度が各別に設定された値になるように推進体の推進方向を設定して推進させる。」方法であり、複数の受信コイルで受信した電磁波の受信強度を比較しながら掘削体の位置を特定しつつ推進するものである。
特開平8−100595号公報
In the non-open cutting method, excavation is performed in the ground, and thus a detection technique for detecting the position and posture of an underground excavation body (hereinafter also referred to as an excavation body) used for the excavation is necessary. As the detection technology, a magnetic detection device that is easy to handle and has a simple structure is used for detection while following the excavation body in accordance with the propulsion of the excavation body. What is detected by relative comparison is known, and an example thereof is disclosed in Patent Document 1 below. The detection method disclosed in Patent Document 1 is “an electromagnetic wave from a transmitting coil at a plurality of positions at equal distances within a plane perpendicular to a planned arrival direction at a predetermined arrival portion of a propulsion body (excavation body). A plurality of receiving coils are arranged with the axis in the planned arrival direction, and the propulsion direction of the propulsion body is set so that the electromagnetic wave reception intensity of each of the plurality of receiving coils becomes a value set individually. It is set and propelled. ”Is a method in which the position of the excavated body is identified while propagating while comparing the received intensity of electromagnetic waves received by a plurality of receiving coils.
Japanese Patent Laid-Open No. 8-100595

かかる特許文献1の検出方法によれば、予定到達方向に対しずれることなく推進できるという利点があるが、推進予定線から掘削体が大きく離れることがないということが前提にされている。したがって、推進予定線から掘削体が離れてしまった場合には掘削体の推進方向の修正が困難となる。   According to the detection method of Patent Document 1, there is an advantage that propulsion can be performed without being deviated with respect to the planned arrival direction, but it is premised that the excavated body is not greatly separated from the planned propulsion line. Therefore, when the excavated body is separated from the propulsion planned line, it is difficult to correct the propulsion direction of the excavated body.

また、特許文献1の検出技術によれば、掘削体の予定到達方向に対し複数の受信コイルの軸心を合わせつつ地表面あるいは地中に配置せねばならず、依然として作業中に地表面を占有するという問題がある。   Moreover, according to the detection technique of Patent Document 1, it must be arranged on the ground surface or in the ground while aligning the axes of the plurality of receiving coils with respect to the planned arrival direction of the excavated body, and still occupies the ground surface during work There is a problem of doing.

本発明は、被検出体を検出する新規な装置を提供することを目的とし、特に非開削工法において地表面を大きく占有することなく掘削体の位置および姿勢をより精度よく検出可能な検出装置を提供することをその一つの目的としている。   An object of the present invention is to provide a novel device for detecting a detected object, and in particular, a detection device capable of detecting the position and posture of an excavated body more accurately without occupying the ground surface in a non-open cutting method. Its purpose is to provide.

本発明の一態様は、被検出体の位置及び/又は姿勢を検出する装置であって、前記被検出体に内蔵された磁界発生源と、前記磁界発生源が発生する磁界の直交する3方向成分を検出可能な一の検出手段と、前記検出手段で検出したデータに基づいて前記被検出体の位置及び/又は姿勢を演算する演算手段とを有する装置である。前記被検出体として地中を掘削する地下掘削体を対象とすることができる。さらに、前記検出手段として三のコイルを直交するように組み合わせた三軸コイルを用いれば好ましい。   One aspect of the present invention is an apparatus for detecting the position and / or orientation of a detected object, and a magnetic field generation source built in the detected object and three directions orthogonal to the magnetic field generated by the magnetic field generation source It is an apparatus having one detection means capable of detecting a component and a calculation means for calculating the position and / or orientation of the detected object based on data detected by the detection means. An underground excavation body excavating underground can be used as the object to be detected. Further, it is preferable to use a triaxial coil in which three coils are combined so as to be orthogonal as the detection means.

さらに加えて、前記演算手段は、所定の磁気モーメントを有する前記磁界発生源が発生する磁界を前記測定手段で測定した磁束密度の3方向成分である(Bx、By、Bz)と前記磁気モーメントMとを式(1)に算入し前記被検出体の位置(Xs、Ys、Zs)を算出し、及び/又は、式(2)に算入して前記被検出体の姿勢(θ、φ)を算出するものとすれば好ましい。   In addition, the arithmetic means is a magnetic flux M (Bx, By, Bz) that is a three-way component of magnetic flux density obtained by measuring the magnetic field generated by the magnetic field generation source having a predetermined magnetic moment, and the magnetic moment M. And the position (Xs, Ys, Zs) of the object to be detected is calculated, and / or the position (θ, φ) of the object to be detected is calculated by calculating the position (Xs, Ys, Zs) of the object. It is preferable to calculate.

Figure 2006010628
Figure 2006010628

Figure 2006010628
Figure 2006010628

上記検出装置によれば、被検出体を検出するための検出手段は一つであるので検出手段を配置するにあたり広いスペースを必要としない。さらに、上記式(1)および(2)を使用することにより一つの検出手段でも精度よく被検出体の位置と姿勢を特定することができる。   According to the above-described detection apparatus, since there is one detection means for detecting the detection target, a large space is not required for arranging the detection means. Furthermore, by using the above formulas (1) and (2), the position and orientation of the detected object can be specified with high accuracy even with a single detection means.

本発明についてその実施態様に基づき説明する。図1は、本発明の一実施態様である掘削体の位置および姿勢の検出装置6を示す概略構成図である。図2〜4は、図1の検出装置により掘削体の位置と姿勢を検出する方法を説明する図である。図5は、本発明の別の実施態様を示す図である。図6は、本発明のさらに別の実施態様を示す図である。図7、8は、図1の検出装置による実施例を説明する図である。   The present invention will be described based on its embodiments. FIG. 1 is a schematic configuration diagram illustrating a position and orientation detection device 6 of an excavated body according to an embodiment of the present invention. 2-4 is a figure explaining the method to detect the position and attitude | position of an excavation body by the detection apparatus of FIG. FIG. 5 shows another embodiment of the present invention. FIG. 6 is a diagram showing still another embodiment of the present invention. 7 and 8 are diagrams for explaining an embodiment of the detection device of FIG.

図1に示すように、本態様の検出装置6は、地中に埋設された本支管4に向いて推進する掘削体5の位置と姿勢を検出するものである。この掘削体5の先端には回転しながら地中を掘削するとともに推進方向を修正するための斜切ヘッド51が装着されている。斜切ヘッド51の後端には、掘削装置本体(不図示)で生じる推進力や回転力を伝達するガイドロット52が取り付けられている。このガイドロット52は、掘削体5が曲進できるように円弧状に屈曲可能な構造をなしている。   As shown in FIG. 1, the detection device 6 according to this aspect detects the position and posture of an excavated body 5 propelled toward the main branch pipe 4 embedded in the ground. A slant cutting head 51 is mounted at the tip of the excavating body 5 for excavating the ground while rotating and correcting the propulsion direction. At the rear end of the oblique cutting head 51, a guide lot 52 for transmitting propulsive force and rotational force generated in the excavator body (not shown) is attached. The guide lot 52 has a structure that can be bent in an arc shape so that the excavated body 5 can bend.

検出装置6は、斜切ヘッド51に同軸に内蔵された磁界発生源61と、磁界発生源61が発生する磁界の直交する3方向成分を検出可能な一の3軸コイル62と、3軸コイル62で検出したデータに基づいて斜切ヘッド51の位置および姿勢を演算する演算手段63を備えている。ここで、3軸コイル62は、ほぼ同等の特性を有する3つの磁界検出用のコイルを直交する3方向に組合わせたものであり、磁界発生源61から生じた磁界による磁束密度の直交する3方向(x方向、y方向、z方向)の成分を各コイルで検出する。   The detection device 6 includes a magnetic field generation source 61 coaxially built in the oblique cutting head 51, one triaxial coil 62 capable of detecting three orthogonal components of the magnetic field generated by the magnetic field generation source 61, and a triaxial coil Based on the data detected at 62, a calculation means 63 for calculating the position and orientation of the oblique cutting head 51 is provided. Here, the three-axis coil 62 is a combination of three magnetic field detection coils having substantially the same characteristics in three orthogonal directions, and the magnetic flux density due to the magnetic field generated from the magnetic field generation source 61 is three orthogonal. Directional components (x direction, y direction, z direction) are detected by each coil.

演算手段63で実施される処理について図1〜4を参照し説明する。ここで、図1の磁界発生源61の中心の点Sを磁界磁界発生点、3軸コイル62の中心の点Pを測定点、掘削の目標地点Qを目標点と称する。   Processing performed by the calculation means 63 will be described with reference to FIGS. Here, the center point S of the magnetic field generation source 61 in FIG. 1 is referred to as the magnetic field generation point, the center point P of the triaxial coil 62 as the measurement point, and the excavation target point Q as the target point.

図2に示すように斜切りヘッド5の磁界発生源61から生じた所定の磁束分布を有する磁界において磁界発生点Sが座標(xs,ys,zs)に測定点Pが座標(xp,yp,zp)にあるものとする。磁界発生源61が発する磁界により式(3)で表わされる各軸方向の磁束密度Bが測定点Pで測定される。   As shown in FIG. 2, in a magnetic field having a predetermined magnetic flux distribution generated from the magnetic field generation source 61 of the oblique cutting head 5, the magnetic field generation point S is coordinate (xs, ys, zs) and the measurement point P is coordinate (xp, yp, zp). The magnetic flux density B in each axial direction represented by the equation (3) is measured at the measurement point P by the magnetic field generated by the magnetic field generation source 61.

Figure 2006010628
Figure 2006010628

ここで、式(3)における記号Mx,My,Mzは磁界発生源61の有する磁気モーメントMの各軸方向の成分である。また、記号x,y,zは測定点Pから磁界発生点Sに向かう直線の長さ(点Pから点Sまでの距離)rの式(4)で示される各軸方向の成分である。   Here, symbols Mx, My, and Mz in Equation (3) are components in the respective axial directions of the magnetic moment M of the magnetic field generation source 61. Symbols x, y, and z are components in the respective axial directions represented by Expression (4) of the length (distance from the point P to the point S) r of the straight line from the measurement point P to the magnetic field generation point S.

Figure 2006010628
Figure 2006010628

ここで、図3に示すように、三次元座標の原点に測定点Pを置き、y軸上に磁界発生源61を任意の姿勢に置いた場合を想定すると、測定点Pの座標は(xp,yp,zp)=(0,0,0)、磁界発生点Sの座標は(xs,ys,zs)=(0,ys,0)となる。また、推進方向に対する磁界発生源61の平面視の角度(ヨー角)を記号θと、立面視の角度(仰角)を記号φとし、磁界発生源61の姿勢をこのθ、φで定義する場合、磁界発生源61の磁気モーメントMは(Mcosφsinθ,Mcosφcosθ,Msinφ)
と表わすことができる。これらを式(3)に代入すると式(5)となる。
Here, as shown in FIG. 3, assuming that the measurement point P is placed at the origin of the three-dimensional coordinates and the magnetic field generation source 61 is placed in an arbitrary posture on the y-axis, the coordinates of the measurement point P are (xp , Yp, zp) = (0, 0, 0), and the coordinates of the magnetic field generation point S are (xs, ys, zs) = (0, ys, 0). Further, the angle (yaw angle) in plan view of the magnetic field generation source 61 with respect to the propulsion direction is represented by the symbol θ, and the angle (elevation angle) in elevation view is represented by the symbol φ, and the attitude of the magnetic field generation source 61 is defined by θ and φ. In this case, the magnetic moment M of the magnetic field generation source 61 is (Mcosφsinθ, Mcosφcosθ, Msinφ).
Can be expressed as Substituting these into equation (3) yields equation (5).

Figure 2006010628
Figure 2006010628

測定点Pから磁界発生点Sまでの距離は式(6)である。   The distance from the measurement point P to the magnetic field generation point S is Equation (6).

Figure 2006010628
Figure 2006010628

式(5)を整理して式(6)を式(5)に代入すると測定点Pの磁束密度Bの各成分についての式(7)を得ることができる。   By rearranging equation (5) and substituting equation (6) into equation (5), equation (7) for each component of magnetic flux density B at measurement point P can be obtained.

Figure 2006010628
Figure 2006010628

ここで式(7)をθとφで表わすと、磁界発生源61の姿勢を示す式(8)を得る。   Here, when Expression (7) is expressed by θ and φ, Expression (8) indicating the attitude of the magnetic field generation source 61 is obtained.

Figure 2006010628
Figure 2006010628

式(7)をysについて解くと、測定点Pから磁界発生点Sまでのy方向の距離である式(9)を得る。   When Expression (7) is solved for ys, Expression (9) that is the distance in the y direction from the measurement point P to the magnetic field generation point S is obtained.

Figure 2006010628
Figure 2006010628

次に、図4に示すように、磁界発生源61が図3の位置からxsの距離だけy軸からずれた場合を想定する。この場合、磁界発生点Sの座標は(xs,ys,0)であり、点Sの磁気モーメントはM=(0,M,0)である。また、測定点Pは原点にあることからその座標は(0,0,0)である。したがって式(4)は(x,y,z)=(xs,ys,0)となり、測定点Pから磁界発生点Sまでの距離rは式(10)で示される。   Next, as shown in FIG. 4, it is assumed that the magnetic field generation source 61 is shifted from the y-axis by a distance xs from the position of FIG. In this case, the coordinates of the magnetic field generation point S are (xs, ys, 0), and the magnetic moment of the point S is M = (0, M, 0). Further, since the measurement point P is at the origin, its coordinates are (0, 0, 0). Therefore, Expression (4) becomes (x, y, z) = (xs, ys, 0), and the distance r from the measurement point P to the magnetic field generation point S is expressed by Expression (10).

Figure 2006010628
Figure 2006010628

式(10)を用いれば式(3)は式(11)のように書き換えられる。 If Expression (10) is used, Expression (3) can be rewritten as Expression (11).

Figure 2006010628
Figure 2006010628

式(11)を、測定点Pから磁気発生点Sまでのx方向の距離xsについて解くと式(12)となる。   Solving the equation (11) for the distance xs in the x direction from the measurement point P to the magnetic generation point S, the equation (12) is obtained.

Figure 2006010628
Figure 2006010628

また、磁界発生源61がz方向にずれた場合の測定点Pから磁気発生点Sまでのz方向の距離zsも式(12)と同様に式(13)で表わされる。   Further, the distance zs in the z direction from the measurement point P to the magnetic generation point S when the magnetic field generation source 61 is displaced in the z direction is also expressed by the equation (13) as in the equation (12).

Figure 2006010628
Figure 2006010628

測定点Pにおける各軸方向の磁束密度Bは磁界発生源61から生じた磁界を検出する3軸コイル62で測定することができる。また、磁気発生源61の各軸方向の磁気モーメントMは磁気発生源61の固有のものであり既知である。したがって、演算手段63は、この各軸方向の磁束密度Bと磁気モーメントMを上記した式(8)、(9)、(12)、(13)に入力し、測定点Pから見た磁界発生点S(すなわち斜切ヘッド51)の位置と姿勢を特定するように構成されている。なお、図1において測定点Pは目標地点Qと離れた位置に配置されているが、目標地点Qに対する3軸コイル62の位置関係を予め演算手段63に記憶しておけば斜切ヘッド5の位置と姿勢を特定することができる。   The magnetic flux density B in each axis direction at the measurement point P can be measured by a triaxial coil 62 that detects a magnetic field generated from the magnetic field generation source 61. Further, the magnetic moment M in each axial direction of the magnetic source 61 is unique to the magnetic source 61 and is known. Accordingly, the calculation means 63 inputs the magnetic flux density B and the magnetic moment M in the respective axial directions into the above-described equations (8), (9), (12), and (13), and generates a magnetic field as viewed from the measurement point P. The position and posture of the point S (that is, the oblique cutting head 51) are specified. In FIG. 1, the measurement point P is arranged at a position distant from the target point Q. However, if the positional relationship of the three-axis coil 62 with respect to the target point Q is stored in the calculation means 63 in advance, the oblique cutting head 5 is moved. The position and posture can be specified.

3軸コイル62は、例えば図5、6に示すように、本支管4の直上に穿孔された小口径の縦孔を通し本支管4の近傍に配置することもできる。このようにすれば、より精度よく掘削体5を推進可能である。   For example, as shown in FIGS. 5 and 6, the triaxial coil 62 can be disposed in the vicinity of the main branch 4 through a small-diameter vertical hole drilled immediately above the main branch 4. In this way, the excavated body 5 can be propelled more accurately.

図6で示したように3軸コイル62を配置し上記した検出装置により位置と姿勢を検出しながら上記した掘削体5で地中を掘削した実験例について説明する。掘削条件は、掘削開始点から目標地点までの水平距離が3.73m、本支管4の埋設深さが0.985mである。掘削開始点から目標地点に至る過程における測定点から見た掘削体5の各軸方向の位置を検出した結果を図7に示す。   An experiment example in which the three-axis coil 62 is arranged as shown in FIG. 6 and the ground is excavated by the excavating body 5 while detecting the position and orientation by the above-described detection device will be described. The excavation conditions are that the horizontal distance from the excavation start point to the target point is 3.73 m, and the embedding depth of the main branch pipe 4 is 0.985 m. FIG. 7 shows the result of detecting the position in the axial direction of the excavated body 5 viewed from the measurement point in the process from the excavation start point to the target point.

本発明の一実施態様の検出装置の概略構成図である。It is a schematic block diagram of the detection apparatus of one embodiment of this invention. 図1の検出装置の検出方法を説明する図である。It is a figure explaining the detection method of the detection apparatus of FIG. 図1の検出装置の検出方法を説明する別の図である。It is another figure explaining the detection method of the detection apparatus of FIG. 図1の検出装置の検出方法を説明するさらに別の図である。It is another figure explaining the detection method of the detection apparatus of FIG. 本発明の別の実施態様の検出装置の概略構成図である。It is a schematic block diagram of the detection apparatus of another embodiment of this invention. 本発明のさらに別の実施態様の検出装置の概略構成図である。It is a schematic block diagram of the detection apparatus of another embodiment of this invention. 図1の検出装置の実施例を説明する図である。It is a figure explaining the Example of the detection apparatus of FIG.

符号の説明Explanation of symbols

4:本支管
5:掘削体、51:斜切ヘッド、52:ガイドロッド
6:地下掘削体の位置および姿勢検出装置
61:磁界発生源、62:磁界検出コイル(3軸コイル)
63:演算手段、64:掘削目標地点
65:検出コイルと本支管との位置関係
4: main branch pipe 5: excavated body, 51: oblique cutting head, 52: guide rod 6: position and orientation detection device for underground excavated body 61: magnetic field generation source, 62: magnetic field detection coil (3-axis coil)
63: calculation means, 64: excavation target point 65: positional relationship between the detection coil and the main branch pipe

Claims (4)

被検出体の位置及び/又は姿勢を検出する装置であって、前記被検出体に内蔵された磁界発生源と、前記磁界発生源が発生する磁界の直交する3方向成分を検出可能な一の検出手段と、前記検出手段で検出したデータに基づいて前記被検出体の位置及び/又は姿勢を演算する演算手段とを有する検出装置。   An apparatus for detecting the position and / or orientation of a detected object, wherein a magnetic field generation source built in the detected object and three orthogonal components of a magnetic field generated by the magnetic field generation source can be detected. A detection apparatus comprising: a detection unit; and a calculation unit that calculates a position and / or orientation of the detected object based on data detected by the detection unit. 請求項1に記載の検出装置において、前記被検出体は地中を掘削する地下掘削体である検出装置。   The detection apparatus according to claim 1, wherein the detected object is an underground excavation body that excavates underground. 請求項1または2のいずれかに記載の検出装置において、前記検出手段は三のコイルを直交するように組合わせた3軸コイルである検出装置。   The detection device according to claim 1, wherein the detection means is a three-axis coil in which three coils are combined so as to be orthogonal to each other. 請求項1乃至3のいずれかに記載の検出装置において、前記演算手段は、所定の磁気モーメントを有する前記磁界発生源が発生する磁界を前記測定手段で測定した磁束密度の3方向成分である(Bx、By、Bz)と前記磁気モーメントMとを式(1)に算入し前記被検出体の位置(Xs、Ys、Zs)を算出し、及び/又は、式(2)に算入して前記被検出体の姿勢(θ、φ)を算出する検出装置。
Figure 2006010628
Figure 2006010628
4. The detection device according to claim 1, wherein the calculation unit is a three-direction component of magnetic flux density obtained by measuring the magnetic field generated by the magnetic field generation source having a predetermined magnetic moment by the measurement unit. Bx, By, Bz) and the magnetic moment M are calculated in the equation (1) to calculate the position (Xs, Ys, Zs) of the detected object and / or in the equation (2). A detection device for calculating the posture (θ, φ) of the detected object.
Figure 2006010628
Figure 2006010628
JP2004191349A 2004-06-29 2004-06-29 Detector for detecting object Pending JP2006010628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191349A JP2006010628A (en) 2004-06-29 2004-06-29 Detector for detecting object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191349A JP2006010628A (en) 2004-06-29 2004-06-29 Detector for detecting object

Publications (1)

Publication Number Publication Date
JP2006010628A true JP2006010628A (en) 2006-01-12

Family

ID=35778035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191349A Pending JP2006010628A (en) 2004-06-29 2004-06-29 Detector for detecting object

Country Status (1)

Country Link
JP (1) JP2006010628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229443A (en) * 2008-02-29 2009-10-08 Shimadzu Corp Target survey system
CN102102522A (en) * 2010-12-30 2011-06-22 浙江大学 Track and posture composite control method in shield tunneling process
CN108104798A (en) * 2017-03-10 2018-06-01 苏州弘开传感科技有限公司 A kind of tunnel position indicator and its application method based on magnetic principles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238301A (en) * 1985-08-13 1987-02-19 コミツサリア ア レネルジイ アトミツク Device and method of determining position and direction in space of body
JP2003121151A (en) * 2001-10-16 2003-04-23 Hitachi Metals Ltd Method and apparatus for prospecting position in excavation body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238301A (en) * 1985-08-13 1987-02-19 コミツサリア ア レネルジイ アトミツク Device and method of determining position and direction in space of body
JP2003121151A (en) * 2001-10-16 2003-04-23 Hitachi Metals Ltd Method and apparatus for prospecting position in excavation body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229443A (en) * 2008-02-29 2009-10-08 Shimadzu Corp Target survey system
CN102102522A (en) * 2010-12-30 2011-06-22 浙江大学 Track and posture composite control method in shield tunneling process
CN108104798A (en) * 2017-03-10 2018-06-01 苏州弘开传感科技有限公司 A kind of tunnel position indicator and its application method based on magnetic principles
CN108104798B (en) * 2017-03-10 2021-09-21 苏州弘开传感科技有限公司 Tunnel positioning instrument based on magnetic field principle and using method thereof

Similar Documents

Publication Publication Date Title
US6737867B2 (en) Locating arrangement and method using boring tool and cable locating signals
US10107090B2 (en) Advanced underground homing system, apparatus and method
JPH11508004A (en) Positioning of independent underground boring machines
CN106050223B (en) A kind of omnidirectional&#39;s magnetostatic field relief well is with boring localization method and positioning system
JP6419731B2 (en) Method for measuring underground excavation position and underground excavation position measuring apparatus
JP2001091242A (en) Measuring device for propulsion locus and propulsion attitude in propulsion shield tunneling method, measuring method, propulsion locus control device and propulsion locus control method
JP2006010628A (en) Detector for detecting object
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
JP3224004B2 (en) Drilling tube tip location method
JP2003121151A (en) Method and apparatus for prospecting position in excavation body
JP5131729B2 (en) Underground position detection method
JPH0387612A (en) Position detector for underground excavator
JP2002339407A (en) Civil engineering work system
JP2003240552A (en) Method and device for propelling head position/direction measurement
JP5466023B2 (en) Drilling tube tip position measuring method and tip position measuring system
JPH03257321A (en) Relative position detecting apparatus of underground excavator
JP2003042707A (en) Excavation method
JP2011179995A (en) Tunneling system, horizontal direction measuring method
JPH0735971B2 (en) Position detection device for excavator
JPS625119A (en) Position detector of excavating machine
JP2005172586A (en) Driving direction measurement device for leading body of driving device
JP2001141408A (en) Position measuring method, position indicating method and position measuring apparatus
JP2005139820A (en) Pipe laying construction method and gyroscope
JP2913041B2 (en) Underground excavator displacement detection device
JPH11270280A (en) Pipe jacking method and surveying instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100903