JP2006007161A - Oscillating linear actuator - Google Patents

Oscillating linear actuator Download PDF

Info

Publication number
JP2006007161A
JP2006007161A JP2004191100A JP2004191100A JP2006007161A JP 2006007161 A JP2006007161 A JP 2006007161A JP 2004191100 A JP2004191100 A JP 2004191100A JP 2004191100 A JP2004191100 A JP 2004191100A JP 2006007161 A JP2006007161 A JP 2006007161A
Authority
JP
Japan
Prior art keywords
mover
linear actuator
coil
permanent magnet
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004191100A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kugo
智之 久郷
Minoru Ueda
稔 上田
Takeshi Furukawa
武志 古川
Toshio Ueki
俊雄 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2004191100A priority Critical patent/JP2006007161A/en
Priority to PCT/JP2005/011780 priority patent/WO2006001436A1/en
Publication of JP2006007161A publication Critical patent/JP2006007161A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillating linear actuator simple in the structure, excellent in the durability, and capable of oscillating a needle by efficiently utilizing the space in a limited housing main body at the maximum and generating oscillating power clearly noticeable for a user. <P>SOLUTION: The oscillating linear actuator comprises an oscillating device provided with a needle having a permanent magnet, a housing main body for storing the needle, a thin plate-like elastic body for joining and supporting the needle and housing main body, and a stator side coil for driving the needle. The permanent magnet of the oscillating device is magnetized in the oscillation direction of the needle and unitedly provided with a weight body to be a balance in the outer circumference. The coil installed on the opposite is positioned at a slight gap in the inner diameter side of the permanent magnet and a column-like pole piece is inserted in the center of the inner diameter of the cylindrically wound coil. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、振動アラーム装置としての小型振動デバイスに係り、特に、携帯電話、携帯電子機器、及び携帯液晶TVゲーム機等の情報端末機器に搭載される振動リニアアクチュエータに関する。   The present invention relates to a small vibration device as a vibration alarm device, and more particularly to a vibration linear actuator mounted on an information terminal device such as a mobile phone, a portable electronic device, and a portable liquid crystal TV game machine.

現在、携帯電話に代表される携帯情報端末機において、体感振動により使用者に着信を知らせる振動呼び出し機能(サイレントモード、マナーモード等のバイブ機能)は、社会的に、またマナーの面から必要不可欠なものとなっており、これに合わせて様々な機構の小型振動発生装置が開発されている。   Currently, in personal digital assistants represented by mobile phones, vibration calling functions (vibration functions such as silent mode and manner mode) that notify the user of an incoming call by bodily sensation vibration are indispensable from a social and manner standpoint. In accordance with this, small vibration generators having various mechanisms have been developed.

振動発生装置には、例えば、偏心分銅を回転させる円筒又は偏平型の小型振動モータや、スピーカー駆動型のマルチファンクションデバイス(MFD)等を用いて、振動と音と音声を発生させる応用装置が一般的に周知であるが、近年の携帯情報端末機本体の小型化への傾向に伴い、機器内部の振動発生装置が取り得るスペースも年々限られたものとなってきている。   As the vibration generator, for example, an application device that generates vibration, sound, and sound using a cylindrical or flat type small vibration motor that rotates an eccentric weight, a speaker-driven multifunction device (MFD), or the like is generally used. As is well known, with the recent trend toward downsizing of portable information terminal bodies, the space that can be taken by the vibration generator inside the device has become limited year by year.

このような制限の中で、振動発生装置の小型化を図り、消費電力を抑えつつも、使用者にあっては確実に着信が認識できる程度の振動力を発生させる新規な構造の振動デバイスの開発が望まれている。   In such a restriction, the vibration generating device having a novel structure that generates vibration force that can reliably recognize an incoming call while reducing power consumption and reducing the size of the vibration generating device. Development is desired.

上記課題を解決するため、例えば、特許文献1に示される振動発生装置においては、シャフトを中心とした内ヨークとコイルとを固定子とし、その外周に配置された外ヨークを可動子とした振動発生装置が開発されている(例えば、特許文献1参照)。
特開2003−154314号公報
In order to solve the above-described problem, for example, in the vibration generator shown in Patent Document 1, the vibration is obtained by using an inner yoke and a coil centered on a shaft as a stator and an outer yoke arranged on the outer periphery thereof as a mover. A generator has been developed (see, for example, Patent Document 1).
JP 2003-154314 A

しかしながら、上記特許文献1に代表される振動発生装置にあっては、可動子である外ヨークは円板を中抜きした環状に形成されているため、振動を発生させるのに十分な可動子としての重量を得ることが難しく、発振効率が低く、振動力が必ずしも十分とは言えない。また、上述のような一般的な振動モータにあっては、部品点数が多く、構造が複雑な上に高速回転で振動するため、摺動部の信頼性に問題が残る。また、前記マルチファンクションデバイス(MFD)は、スピーカの基本構造を採用しているために、可動子の磁気回路の振幅と、音又は音声のダイアフラムの振幅との領域が少なからず重なり合うようになり、限られた厚み寸法の範囲内では十分な振動力、又は音響特性が得られないという問題があった。   However, in the vibration generator represented by the above-mentioned Patent Document 1, the outer yoke, which is a mover, is formed in an annular shape with a disc cut out, so that it is sufficient as a mover to generate vibration. It is difficult to obtain the weight of the material, the oscillation efficiency is low, and the vibration force is not always sufficient. Further, in the general vibration motor as described above, the number of parts is large, the structure is complicated, and the vibration vibrates at a high speed, so that there is a problem in the reliability of the sliding portion. In addition, since the multi-function device (MFD) employs a basic speaker structure, the area of the amplitude of the magnetic circuit of the mover and the amplitude of the sound or voice diaphragm will overlap with each other. There is a problem that sufficient vibration force or acoustic characteristics cannot be obtained within a limited thickness dimension range.

そこで本発明は、薄型の振動デバイスとしての振動発生機能に特化し、構造が単純で耐久性に優れ、かつ限られたスペースを最大限活用して、使用者がはっきりと認識できる振動力を発することのできる小径偏平型の振動リニアアクチュエータを提供することを目的とする。   Therefore, the present invention specializes in a vibration generating function as a thin vibration device, has a simple structure, excellent durability, and uses a limited space as much as possible to generate a vibration force that can be clearly recognized by the user. An object of the present invention is to provide a small-diameter flat-type vibration linear actuator that can be used.

前記課題を解決するため、請求項1に記載の発明では、
永久磁石を備える可動子と、前記可動子を収納するハウジング本体と、前記可動子と前記ハウジング本体とを連結して支持する薄板状の弾性体と、前記可動子を駆動させるための固定子側コイルと、を備える振動デバイスにおいて、
前記永久磁石は、可動子の振幅方向に着磁され、かつ永久磁石外周には分銅となる重量体を一体に備えており、また対向する前記コイルは、前記永久磁石の内径側に僅かな隙間を介して位置し、その円筒状に巻回されたコイル内径には、柱状のポールピースが中心を貫通する形で設けられていることを特徴としている。
In order to solve the above problem, in the invention according to claim 1,
A mover including a permanent magnet, a housing main body that houses the mover, a thin plate-like elastic body that connects and supports the mover and the housing main body, and a stator side for driving the mover A vibrating device comprising a coil,
The permanent magnet is magnetized in the amplitude direction of the mover, and has a weight body integrally serving as a weight on the outer periphery of the permanent magnet, and the opposing coil has a small gap on the inner diameter side of the permanent magnet. A cylindrical pole piece is provided in the inner diameter of the coil wound in a cylindrical shape so as to penetrate the center.

また請求項2に記載の発明では、請求項1に記載の発明において、
前記永久磁石の厚み方向中心となる磁界の中心位置と、前記コイルに通電された時に発生する磁界の中心位置とを振幅方向で一致させず、振幅方向での双方の位置関係が、コイル一端部側寄りにオフセットさせて配置したことを特徴としている。
In the invention according to claim 2, in the invention according to claim 1,
The center position of the magnetic field that is the center of the permanent magnet in the thickness direction and the center position of the magnetic field that is generated when the coil is energized do not coincide with each other in the amplitude direction. It is characterized by being offset to the side.

また請求項3に記載の発明では、請求項1または請求項2に記載の発明において、
前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前記可動子の内周面と前記コイルの外周面との隙間、を共に0.08mm〜0.15mmの範囲内で幅狭にし、可動子の動きによって変化する前記可動子の上面側と前記ハウジング本体の上面内壁とで形成される空間と、前記可動子の下面側と前記ハウジング本体の蓋部となる端子基板とで形成される空間、との間の空気の移動量を制限するためのエアーダンパー構造を備えたことを特徴としている。
In the invention according to claim 3, in the invention according to claim 1 or 2,
The gap between the outer peripheral surface of the mover and the side wall inner surface of the housing body, and the gap between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both narrowed within a range of 0.08 mm to 0.15 mm, A space formed by the upper surface side of the mover and the inner wall of the upper surface of the housing main body, which is changed by the movement of the mover, and a terminal substrate serving as a lid portion of the housing main body and the lower surface side of the housing main body. An air damper structure for limiting the amount of air movement between the space and the space is provided.

また請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、
前記重量体は、タングステン、タンタル等の比重10以上の高比重合金を主成分とする非磁性材料の重りにより形成されていることを特徴としている。
The invention according to claim 4 is the invention according to any one of claims 1 to 3,
The weight body is characterized by being formed of a weight of a non-magnetic material whose main component is high specific polymerization gold having a specific gravity of 10 or more, such as tungsten or tantalum.

また請求項5に記載の発明では、請求項1〜請求項3のいずれか一項に記載の発明において、
前記重量体は、黄銅、銅等の比重8以上10未満の比重の大きい一般非磁性体材料の重りにより形成されていることを特徴としている。
In the invention according to claim 5, in the invention according to any one of claims 1 to 3,
The weight body is formed of a weight of a general non-magnetic material having a large specific gravity of 8 or more and less than 10 such as brass or copper.

また請求項6に記載の発明は、請求項1〜請求項5のいずれか一項に記載の発明において、
前記端子基板の底面側が、半田リフロー対応の端子基板構造であることを特徴としている。
The invention according to claim 6 is the invention according to any one of claims 1 to 5,
The bottom surface side of the terminal board has a terminal board structure compatible with solder reflow.

また請求項7に記載の発明は、請求項6に記載の発明において、
前記端子基板の半田リフロー対応の端子形状が、同心円状に区切られた中心に位置する正極(又は負極)とその外周に位置する環状帯体の負極(又は正極)領域とにより構成されていることを特徴としている。
The invention according to claim 7 is the invention according to claim 6,
The terminal shape corresponding to solder reflow of the terminal board is composed of a positive electrode (or negative electrode) located in the center of concentric circles and a negative electrode (or positive electrode) region of an annular band located on the outer periphery thereof. It is characterized by.

請求項1に記載の発明によれば、
弾性体により支持された可動子と、前記可動子を振動させる磁界を発生する固定子側コイルとを、ハウジング本体内部で対向配置し、前記コイルに電流が流れた時に生ずる磁界と、前記永久磁石の発生する磁界との間に作用する磁気反発力又は磁気吸引力により、前記可動子部分が共振して円筒状ハウジング本体の厚み方向であるスラスト方向に振動する。この時、前記コイルの外周面と前記永久磁石の内周面とが僅かな間隙を有するように配設し、さらに前記円筒状コイルの中心を貫通するポールピースを設けることにより、駆動力を得る磁気的な効率の向上が望める。
According to the invention of claim 1,
A mover supported by an elastic body and a stator side coil that generates a magnetic field that vibrates the mover are opposed to each other inside the housing body, and a magnetic field generated when a current flows through the coil, and the permanent magnet Due to the magnetic repulsive force or magnetic attractive force acting between the generated magnetic field and the magnetic attraction force, the mover portion resonates and vibrates in the thrust direction which is the thickness direction of the cylindrical housing body. At this time, the outer peripheral surface of the coil and the inner peripheral surface of the permanent magnet are arranged so as to have a slight gap, and a pole piece penetrating the center of the cylindrical coil is provided to obtain a driving force. The improvement of magnetic efficiency can be expected.

さらに加えると、可動する永久磁石外周には、分銅(重り)となる重量体を一体に備えており、限られたハウジング本体内のスペース中で、十分な振動力を得るための可動子としての重りの役割を果たしている。また振幅方向に着磁された永久磁石に対し、対向する固定子側の円筒状コイルは、前記永久磁石の内径側に僅かな隙間を介して位置し、またその円筒状に巻回されたコイル内径には、柱状のポールピースが中心を貫通する形で設けられているので、磁気的に磁束がポールピース内を集中的に通過し、ギャップを狭くすることにより、部分的な磁束密度が向上し、前記固定子側コイルからの磁束が、可動子側の永久磁石に効率よく作用する。   In addition, the outer periphery of the movable permanent magnet is integrally provided with a weight body that becomes a weight (weight), and as a mover for obtaining sufficient vibration force in a limited space within the housing body. Plays the role of weight. In addition, the stator-side cylindrical coil opposed to the permanent magnet magnetized in the amplitude direction is located on the inner diameter side of the permanent magnet via a slight gap, and the coil wound in the cylindrical shape. A columnar pole piece is provided in the inner diameter so as to penetrate the center, so that magnetic flux passes through the pole piece intensively and the gap is narrowed to improve the partial magnetic flux density. The magnetic flux from the stator side coil efficiently acts on the permanent magnet on the mover side.

このため前記コイルに電流が流された時、前記永久磁石と重量体とを有して構成される可動子の加速度が増し、振動方向に対して、より大きな力、すなわち振動力が得られる。これにより超小型サイズの振動デバイスを搭載した携帯情報機器の使用者が、着信時にはっきりと認識できる程度の十分な振動力を得ることができる。   For this reason, when a current is passed through the coil, the acceleration of the mover configured to include the permanent magnet and the weight body increases, and a greater force, that is, a vibration force is obtained in the vibration direction. Thereby, a user of a portable information device equipped with an ultra-small size vibration device can obtain a sufficient vibration force that can be clearly recognized at the time of an incoming call.

また、請求項2に記載の発明によれば、請求項1に記載の発明と同様の効果を得ることができる他、
前記永久磁石の磁界の中心位置とコイルに通電された時に生じる磁界の中心位置とが異なるように構成されているため、前記永久磁石の磁界と前記コイルに電流が流された時に生じる磁界との間に作用される磁気的な力がその位置で均衡することがなく、前記コイルに通電されると同時に、前記可動子が、一方の振幅方向に速やかに移動し、確実に起動して振動を繰り返す。
According to the invention described in claim 2, the same effect as that of the invention described in claim 1 can be obtained.
Since the central position of the magnetic field of the permanent magnet and the central position of the magnetic field generated when the coil is energized are different, the magnetic field of the permanent magnet and the magnetic field generated when a current is passed through the coil The magnetic force applied between them is not balanced at that position, and at the same time as the coil is energized, the mover quickly moves in one amplitude direction, reliably starts and vibrates. repeat.

つまり前記永久磁石から生じるN-S磁界が、前記円筒状に巻回したコイル両端の磁極の反転に対し、例えば図6で示すような位置関係で、永久磁石2の磁界中心位置Mとコイル5の磁界中心位置Cとが一致した無通電の初期状態では、電流起動時において磁気的なバランスの均衡が保たれてしまい、可動子9は動作しない。これに対し図5で示す位置関係では、特に軸方向に平行移動する可動子9の永久磁石2の磁界中心位置Mは、コイル5の磁界中心位置Cに対しオフセットされており、これにより前記コイル5の両端位置のN-S磁束発生によって、永久磁石2自身は、軸方向にリニアな力を受け、無負荷の弾性体平面を基準面として振幅方向に起動し、弾性体4に支持された状態の共振点領域で、可動子9が直線上を往復振動し、それにより振動力を発生させることが可能となる。   That is, the NS magnetic field generated from the permanent magnet is in a positional relationship as shown in FIG. 6, for example, with respect to the reversal of the magnetic poles at both ends of the coil wound in the cylindrical shape, and the magnetic field center M of the permanent magnet 2 and the magnetic field of the coil 5 In the non-energized initial state in which the center position C coincides, the balance of magnetic balance is maintained at the time of starting the current, and the mover 9 does not operate. On the other hand, in the positional relationship shown in FIG. 5, the magnetic field center position M of the permanent magnet 2 of the mover 9 that translates in the axial direction is offset with respect to the magnetic field center position C of the coil 5. Due to NS magnetic flux generation at both ends of 5, the permanent magnet 2 itself receives a linear force in the axial direction, starts in the amplitude direction with the unloaded elastic plane as the reference plane, and is supported by the elastic body 4. In the resonance point region, the mover 9 reciprocally vibrates on a straight line, thereby generating a vibration force.

また、請求項3に記載の発明によれば、請求項1及び請求項2に記載の発明と同様の効果を得ることができる他、
寸法的に前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前記可動子の内周面と前記コイルの外周面との隙間、を共に0.08mm〜0.15mmの範囲内で幅狭に設定することにより、前記可動子の上面側と前記ハウジング本体の上面内壁とで形成される空間と、前記可動子の下面と前記端子基板とで形成される空間、との空気の移動量を制限することができ、この構造によりエアーダンパー効果が働き、前記可動子が最適な振動を得るための共振周波数帯域が拡大できる。これにより例えば、落下や衝突により携帯情報端末機器の固有振動数が変化することによって共振周波数が僅かに変化した場合であっても、前記共振周波数帯域が広ければ、得られるピークの振動力が急激に減少することがなく、常に安定した振動力を得ることができる。さらに耐久性及びライフ等の信頼性が向上する。
According to the invention described in claim 3, the same effects as those of the invention described in claims 1 and 2 can be obtained.
Dimensionally, the width between the outer peripheral surface of the mover and the inner wall of the side wall of the housing body and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both within a range of 0.08 mm to 0.15 mm. By setting it to be narrow, the amount of air movement between the space formed by the upper surface side of the mover and the inner wall of the upper surface of the housing body, and the space formed by the lower surface of the mover and the terminal board With this structure, the air damper effect works, and the resonance frequency band for obtaining the optimum vibration of the mover can be expanded. Thus, for example, even if the resonance frequency slightly changes due to a change in the natural frequency of the portable information terminal device due to a drop or a collision, if the resonance frequency band is wide, the obtained peak vibration force is abrupt. Therefore, a stable vibration force can always be obtained. Further, durability and reliability such as life are improved.

尚この時、前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前記可動子の内周面と前記コイルの外周面との隙間、を共に0.08mm〜0.15mmの範囲内にする理由として、隙間の幅が0.08mm以下であると可動子側と固定子側で、動作時に緩衝してしまい、逆に隙間の幅が0.15mmより大きいと、エアーダンパーの効果が得られないためである。   At this time, the clearance between the outer peripheral surface of the mover and the inner surface of the side wall of the housing body, and the clearance between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both within a range of 0.08 mm to 0.15 mm. The reason for this is that if the gap width is 0.08 mm or less, the mover side and the stator side will cushion during operation, and conversely if the gap width is larger than 0.15 mm, the effect of the air damper cannot be obtained. Because.

また、請求項4に記載の発明によれば、請求項1〜請求項3に記載の発明と同様の効果を得ることができる他、
タングステン、タンタル等を主成分とする非磁性材料を含む高比重の金属体によって形成された前記重量体の重りが、可動子として永久磁石と一体に往復運動することにより、より大きな振動力が得られるものである。特に、前記重量体は、タングステン、タンタル等の比重10以上の高比重合金を主成分とする非磁性材料を含む金属体の重りにより形成するため、限られた小さなスペース内において、最大限の可動子としての重量を得ることができる。生産性やコストを考え、工業的に使用できる金属材料の範囲の中で、タングステン合金、タンタル合金、コバルト合金等の使用が可能である。
According to the invention described in claim 4, the same effect as that of the invention described in claims 1 to 3 can be obtained.
The weight of the heavy body formed of a high specific gravity metal body containing a non-magnetic material mainly composed of tungsten, tantalum or the like reciprocates integrally with a permanent magnet as a mover, thereby obtaining a larger vibration force. It is what In particular, the weight body is formed by the weight of a metal body containing a non-magnetic material whose main component is high specific polymerization gold such as tungsten, tantalum, etc., and the maximum movement is possible in a limited small space. The weight as a child can be obtained. In consideration of productivity and cost, tungsten alloys, tantalum alloys, cobalt alloys and the like can be used within the range of industrially usable metal materials.

また、請求項5に記載の発明によれば、請求項1〜請求項3に記載の発明と同様の効果を得ることができる他、
黄銅、銅等の比重8以上10未満の比較的比重の大きい非磁性体材料の金属体によって形成された前記重量体の重りが、可動子として永久磁石と一体に往復運動することにより、大きな振動力が得られるものである。特に、前記重量体は、黄銅、銅等の比重8以上10未満の比重の大きい一般的な非磁性体材料の金属体の重りにより形成されるため、限られたスペース内において安価な材料を用いて最良の可動子としての重量を得ることができる。
Further, according to the invention described in claim 5, the same effect as that of the invention described in claims 1 to 3 can be obtained.
The weight of the weight body, which is formed of a metal body of a nonmagnetic material with a relatively large specific gravity of brass, copper, or the like having a specific gravity of 8 or more and less than 10, reciprocates integrally with the permanent magnet as a mover, resulting in large vibration. Power is obtained. In particular, since the weight body is formed by a weight of a metal body of a general non-magnetic material having a large specific gravity of 8 or less and less than 10 such as brass or copper, an inexpensive material is used in a limited space. The weight as the best mover can be obtained.

また、請求項6に記載の発明によれば、請求項1〜請求項5に記載の発明と同様の効果を得ることができる他、
携帯情報端末機側の回路基板面に対し、ハウジング本体底部の端子基板面を前記回路基板上に直接的に半田リフロー固定ができ、前記回路基板の給電ランドへの通電が容易に行える。これにより組み立て作業工程における工数を削減でき、量産工程における半田リフロー自動化ラインに載せることも可能となる。
Further, according to the invention described in claim 6, the same effect as that of the invention described in claims 1 to 5 can be obtained.
With respect to the circuit board surface on the portable information terminal side, the terminal board surface at the bottom of the housing main body can be directly solder-reflow-fixed on the circuit board, and the power supply land of the circuit board can be easily energized. As a result, the number of man-hours in the assembly process can be reduced, and the process can be mounted on a solder reflow automation line in the mass production process.

また、請求項7に記載の発明によれば、請求項6に記載の発明と同様の効果を得ることができる他、
前記半田リフロー工程におけるリフロー部品の回路基板上への配置が容易になる。通常はロボットなどによる自動機あるいはオペレータが手動で配置を行うが、配置するリフロー部品が円盤状の場合、その底面側の端子位置の方向の識別が難しく、例えば回転方向に向きがズレた場合などは、半田固定した状態でも導通が得られないなどの不良問題があり、配置する側の回路基板上の給電ランド位置との一致が難しい。このため本発明のように、前記端子基板の円形位置の中心部分と、その同心円状外方の環状帯体部分とを分けて給電ランドに対応させ、円形形状のリフロー部品が、回転方向に無関係に位置合わせができる。
According to the invention described in claim 7, in addition to obtaining the same effect as the invention described in claim 6,
In the solder reflow process, the reflow component can be easily arranged on the circuit board. Usually, an automatic machine such as a robot or an operator performs manual placement, but if the reflow component to be placed is a disk shape, it is difficult to identify the direction of the terminal position on the bottom side, for example when the orientation is shifted in the rotation direction However, there is a defect problem such that conduction cannot be obtained even in a state where the solder is fixed, and it is difficult to match the position of the power feeding land on the circuit board on the side where the circuit is arranged. For this reason, as in the present invention, the center portion of the circular position of the terminal board and the concentric outer annular band portion are divided to correspond to the power feeding land, and the circular reflow component is irrelevant to the rotation direction. Can be aligned.

以下、図面を参照して本発明の実施形態に係る振動リニアアクチュエータについて説明する。   Hereinafter, a vibration linear actuator according to an embodiment of the present invention will be described with reference to the drawings.

<実施形態>
図2に示すように、本実施形態に係る振動リニアアクチュエータ1は、中心部に凹部7aを有する略円筒形状のハウジング本体7を備え、ハウジング本体7の開口する一端側に、リブ11を嵌め合いのガイドとして基台プレート10が組み込まれて外枠の筐体が構成され、端子基板14が底部に配置されている。外観寸法的には、外径φ15mm〜10mm程度、厚み5mm〜3mm程度の小型偏平形状の振動デバイスとして設計されている。
<Embodiment>
As shown in FIG. 2, the vibration linear actuator 1 according to the present embodiment includes a substantially cylindrical housing body 7 having a recess 7 a at the center, and a rib 11 is fitted to one end side of the housing body 7 that opens. As a guide, a base plate 10 is incorporated to form an outer frame housing, and a terminal board 14 is disposed at the bottom. In terms of external dimensions, it is designed as a small flat-shaped vibration device with an outer diameter of about 15 mm to 10 mm and a thickness of about 5 mm to 3 mm.

また内部構成は、前記ハウジング本体7内側の凹部7aの底面に相当する円環面に、図1に示すような、ハウジング本体7の内径側枠に近接する外径寸法を有する略円板状の弾性体4が、前記凹部7a円環面の内径穴8で、円柱状の主軸12の先端凸部によって同心状に固着されている。前記主軸12は、前記基台プレート10の板面の中心軸受穴10aに垂直に立てられるポールピース3と一体に、同軸同径で形成されており、主軸12部分は非磁性の樹脂体により形成されている。また主軸12は前記弾性体4を前記基台プレート10の基準面に対し、弾性体4の板面の水平を保つように支持固定する構造を有している。   Further, the internal configuration is a substantially disk-like shape having an outer diameter close to the inner diameter side frame of the housing body 7 as shown in FIG. 1 on an annular surface corresponding to the bottom surface of the recess 7a inside the housing body 7. The elastic body 4 is fixed concentrically by the tip convex portion of the cylindrical main shaft 12 in the inner diameter hole 8 of the annular surface of the concave portion 7a. The main shaft 12 is formed integrally with the pole piece 3 standing upright to the center bearing hole 10a on the plate surface of the base plate 10 and has the same coaxial diameter, and the main shaft 12 portion is formed of a nonmagnetic resin body. Has been. The main shaft 12 has a structure for supporting and fixing the elastic body 4 with respect to the reference surface of the base plate 10 so as to keep the plate surface of the elastic body 4 horizontal.

また弾性体4の下面側の外周縁には、前記弾性体4と等しい外径寸法を有する断面略凹環状に形成された重量体6が、釣り下げられるように取り付けられ、その重量体6の内径側には、スラスト配向型の円環状永久磁石2が、前記重量体6の略凹形状底面部と同一な厚み範囲内で嵌合固定され、可動子9全体を構成している。前記永久磁石2は、例えば、その上面側がN極で下面側がS極となるように軸方向に着磁されている。この可動子9の構造において、主軸12を中心に可動子9全体の組み込み精度、取り付けバランス等の仕上がりは、装置固有の振動特性を左右するため、部品寸法公差を厳密にする必要があり、量産時の個々の製品のバラツキを最小限に抑える必要がある。   Further, a weight body 6 formed in a substantially concave annular shape with an outer diameter equal to that of the elastic body 4 is attached to the outer peripheral edge of the lower surface side of the elastic body 4 so as to be suspended. On the inner diameter side, a thrust-oriented annular permanent magnet 2 is fitted and fixed within the same thickness range as the substantially concave bottom surface of the weight body 6 to constitute the entire movable element 9. The permanent magnet 2 is, for example, magnetized in the axial direction so that the upper surface side is an N pole and the lower surface side is an S pole. In this mover 9 structure, the finish of the mover 9 as a whole, centering on the main shaft 12, and the finish, such as the mounting balance, affect the vibration characteristics unique to the device. There is a need to minimize variations in individual products over time.

また一方、可動子9側の永久磁石2に対向する固定子側コイル5は、前記磁性材料からなる円柱状ポールピース3の外周に巻回され、ポールピース3と組み合わせた状態で、実質的に円筒状コイル5の軸方向両端付近にN-S磁束が集中するようになる。またポールピース3は、強磁性材料であることが好ましく、本実施形態においてはステンレス鋼(SUS420J)を採用した。ただし材料はこれに限定されるものではなく、例えば、鉄、コバルト、ニッケルを主成分とする金属又は合金であってもよい。さらにポールピース3自身は、略円板状の基台プレート10の中央部の軸受穴10aで支持され、固定子側コイル5と前記可動子側永久磁石2との配置関係を保ちつつ、その先端側に位置する主軸12と共に、ハウジング本体7と基台プレート10を嵌め合わせた筐体内の中心軸的な役割を果たしてる。   On the other hand, the stator side coil 5 facing the permanent magnet 2 on the mover 9 side is wound around the outer periphery of the cylindrical pole piece 3 made of the magnetic material, and is substantially combined with the pole piece 3, NS magnetic flux concentrates in the vicinity of both axial ends of the cylindrical coil 5. The pole piece 3 is preferably a ferromagnetic material, and stainless steel (SUS420J) is used in this embodiment. However, the material is not limited to this, and may be, for example, a metal or alloy mainly composed of iron, cobalt, or nickel. Further, the pole piece 3 itself is supported by a bearing hole 10a in the center of the substantially disc-shaped base plate 10, and maintains the positional relationship between the stator side coil 5 and the mover side permanent magnet 2, Together with the main shaft 12 located on the side, it plays the role of the central axis in the housing in which the housing body 7 and the base plate 10 are fitted together.

図1に示す構造断面図からわかるように、コイル5の外周には、環状に形成された永久磁石2が、前記コイル5の外周面から僅かな間隙、つまり磁気ギャップを介して取り付けられている。このため動作時に可動子側永久磁石2と固定子側コイル5との間で物理的な緩衝が出ないように、ハウジング本体7に対し基台プレート10をバラツキ無く正確に組み込む必要がある。   As can be seen from the structural cross-sectional view shown in FIG. 1, a permanent magnet 2 formed in an annular shape is attached to the outer periphery of the coil 5 from the outer peripheral surface of the coil 5 via a slight gap, that is, a magnetic gap. . For this reason, it is necessary to accurately incorporate the base plate 10 into the housing body 7 without variation so that no physical buffer is generated between the mover-side permanent magnet 2 and the stator-side coil 5 during operation.

また、前記可動子9の外周面と前記ハウジング本体7の側壁内面との隙間、及び前記可動子9の内周面と前記コイル5の外周面との隙間、を共に0.08mm〜0.15mmの範囲内で幅狭にし、可動子9の動きによって変化する前記可動子9の上面側と前記ハウジング本体7の上面内壁とで形成される空間と、前記可動子9の下面側と前記ハウジング本体7の蓋部となる基台プレート10とで形成される空間、との間の空気の移動量を制限するためのエアーダンパー構造を備えている。     Further, the clearance between the outer peripheral surface of the mover 9 and the inner surface of the side wall of the housing body 7 and the clearance between the inner peripheral surface of the mover 9 and the outer peripheral surface of the coil 5 are both in the range of 0.08 mm to 0.15 mm. The space formed by the upper surface side of the movable element 9 and the inner wall of the upper surface of the housing main body 7 which is narrowed in the inside and changes according to the movement of the movable element 9, and the lower surface side of the movable element 9 and the housing main body 7 An air damper structure is provided for restricting the amount of air movement between the space formed by the base plate 10 serving as a lid portion.

この時、前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前記可動子の内周面と前記コイルの外周面との隙間、を共に0.08mm〜0.15mmの範囲内にする必要がある。理由としては、隙間の幅が0.08mm以下であると可動子側と固定子側で、動作時に緩衝してしまい、逆に隙間の幅が0.15mmより大きいと、本発明のエアーダンパーの効果が得られないためである。   At this time, the clearance between the outer peripheral surface of the movable element and the inner wall of the side wall of the housing body, and the clearance between the inner peripheral surface of the movable element and the outer peripheral surface of the coil are both within the range of 0.08 mm to 0.15 mm. There is a need. The reason is that if the gap width is 0.08 mm or less, the mover side and the stator side will be buffered during operation, and conversely if the gap width is larger than 0.15 mm, the effect of the air damper of the present invention will be This is because it cannot be obtained.

寸法的に前記可動子と前記固定子との対向する隙間を0.08mm〜0.15mmの範囲内で幅狭に設計することにより、前記可動子9を挟んだ上下にある前記空間の空気は、可動子9の上下動を抑制する形で、空間から空間への空気の移動量を制限することができる。この構造によりエアーダンパー効果が働き、前記可動子9が必要レベル以上の振動力を得るために必要とされる共振周波数帯域が実質的に拡大する。   By designing the gap between the mover and the stator to be narrow in the range of 0.08 mm to 0.15 mm in dimension, the air in the space above and below the mover 9 is movable. In the form of suppressing the vertical movement of the child 9, the amount of air movement from space to space can be limited. With this structure, the air damper effect works, and the resonance frequency band required for the mover 9 to obtain a vibration force exceeding a required level is substantially expanded.

図10は、前記エアーダンパー構造を採用したのものとそうでないものを比較したグラフであり、横軸に入力周波数(Hz)、縦軸に加速度(G)の関係を示している。図において曲線Fがエアーダンパー構造のものである。グラフにおいてQ値が低いなだらかな曲線Fと、Q値が高い鋭い曲線Pとを比較すると、例えば落下や衝突により可動子部分が変形したり、携帯情報端末機器の固有振動数が変化することなどによって振動デバイス装置の共振周波数が変化(共振周波数域が変動)した場合、当然ながら前記FとPの二つの曲線の違いによる加速度(=振動力)Gの変化の違いが現れる。   FIG. 10 is a graph comparing the case where the air damper structure is adopted with the case where the air damper structure is not used, and the relationship between the input frequency (Hz) on the horizontal axis and the acceleration (G) on the vertical axis. In the figure, a curve F has an air damper structure. Comparing the gentle curve F with a low Q value and the sharp curve P with a high Q value in the graph, for example, the mover part is deformed by a drop or collision, the natural frequency of the portable information terminal device changes, etc. When the resonance frequency of the vibration device device changes due to (the resonance frequency range fluctuates), naturally, a difference in change in acceleration (= vibration force) G due to the difference between the two curves of F and P appears.

図10における曲線Fと曲線Pの共振周波数を仮に140Hzと同一とみなし、その共振周波数F0からの変動の幅を仮に破線で示すF1とF2とした場合、ピークF0における加速度Gは、曲線Pが1.0Gであるのに対し、曲線Fは0.9Gと、多少加速度の数値が劣る。しかし共振周波数が変動してしまうと、例えば、F1又はF2の共振周波数までズレたとすると、その時の加速度Gは、曲線Fの方が逆に0.8Gで大きく、曲線Pは0.6Gと大幅に下がり、ピークF0値との落差が激しくなる。このように、F1とF2の破線部領域を見ると、エアーダンパー構造である曲線Fの加速度(=振動力)Gは、入力周波数帯域の破線部領域全体において、広く安定した特性が得られ、ピークF0から外れた時の加速度の急激な減少は少なく、周波数の変化に対し常に安定した振動力を得ることができる。     If the resonance frequency of curve F and curve P in FIG. 10 is assumed to be the same as 140 Hz, and the width of fluctuation from the resonance frequency F0 is assumed to be F1 and F2 indicated by broken lines, the acceleration G at peak F0 is the curve G The curve F is 0.9G, while the value of acceleration is slightly inferior to 1.0G. However, if the resonance frequency fluctuates, for example, if the resonance frequency shifts to the resonance frequency of F1 or F2, the acceleration G at that time is 0.8G for the curve F, and the curve P is greatly reduced to 0.6G. The drop from the peak F0 value becomes intense. Thus, when looking at the broken line area of F1 and F2, the acceleration (= vibration force) G of the curve F that is an air damper structure has a wide and stable characteristic in the entire broken line area of the input frequency band, There is little sudden decrease in acceleration when it deviates from the peak F0, and a stable vibration force can always be obtained with respect to changes in frequency.

さらに図1又はそれを拡大した図5で示すように、本発明の振動リニアアクチュエータを組み込む場合、永久磁石2とコイル5との間には、次のような位置関係であることが設計上望ましい。例えば、前記永久磁石2の厚み方向の中心となる磁界の中心位置Mと、前記コイル5に通電された時に発生する磁界の中心位置Cとを、振幅方向で一致させずに、振幅方向での双方の位置関係が、一方のコイル5端部側寄りにオフセットさせて配置する必要がある。   Further, as shown in FIG. 1 or an enlarged view of FIG. 5, when the vibration linear actuator of the present invention is incorporated, the following positional relationship between the permanent magnet 2 and the coil 5 is desirable in design. . For example, the center position M of the magnetic field that is the center in the thickness direction of the permanent magnet 2 and the center position C of the magnetic field that is generated when the coil 5 is energized do not coincide with each other in the amplitude direction. The positional relationship between the two needs to be offset toward one coil 5 end side.

これは前記永久磁石2の磁界と前記コイル5に電流が流された時に生じる磁界との間に作用する磁気的な力が、その無通電の初期状態の位置で可動子9が均衡することがないように、前記コイル5に通電されると同時に、前記可動子9が一方の振幅方向に速やかに移動し、確実に起動して、振動を繰り返すための構造設計である。   This is because the magnetic force acting between the magnetic field of the permanent magnet 2 and the magnetic field generated when an electric current is passed through the coil 5 balances the mover 9 at the initial state of non-energization. In order to prevent the coil 5 from being energized, at the same time as the coil 5 is energized, the mover 9 quickly moves in one amplitude direction, starts reliably, and repeats vibration.

つまり前記永久磁石2から生じるN-S磁界が、前記円筒状に巻回したコイル5の両端のN-S磁極の反転に対し、例えば図6で示すような位置関係である場合、永久磁石2の磁界中心位置Mとコイル5の磁界中心位置Cとが一致した無通電の初期状態では、電流起動時において、磁気的なバランスの均衡が常に保たれてしまい、可動子9は動作しない。これに対し図5で示す位置関係のように、コイル5の磁界中心位置Cの高さを構造的に下げ、軸方向に平行移動する可動子9の永久磁石2の磁界中心位置Mを、図のように段違いにオフセットすることにより、電流起動時に磁気的な吸引反発力がすぐに働く。   That is, when the NS magnetic field generated from the permanent magnet 2 is in a positional relationship as shown in FIG. 6, for example, with respect to the reversal of the NS magnetic poles at both ends of the coil 5 wound in the cylindrical shape, the magnetic field center position of the permanent magnet 2 In the initial state of non-energization in which M and the magnetic field center position C of the coil 5 coincide with each other, the balance of magnetic balance is always maintained at the time of starting the current, and the mover 9 does not operate. On the other hand, as shown in the positional relationship shown in FIG. 5, the magnetic field center position C of the permanent magnet 2 of the mover 9 that moves in the axial direction is lowered by structurally lowering the height of the magnetic field center position C of the coil 5. By offsetting in steps like this, the magnetic attractive repulsive force works immediately when the current is activated.

図5に示すように、前記コイル5の両端位置でのN-S磁束発生による磁気的な吸引力、反発力は、可動子9の永久磁石2側の磁界に作用し、軸方向に動くリニアな力を与え、無負荷状態の弾性体4平面を基準面として、図の矢印方向下側に起動し、弾性体4と共に可動子9全体が共振しながら直線上を往復振動し、振動力を発生する。     As shown in FIG. 5, the magnetic attractive force and repulsive force due to NS magnetic flux generation at both ends of the coil 5 act on the magnetic field on the permanent magnet 2 side of the mover 9 and move linearly in the axial direction. The elastic body 4 in a non-load state is used as a reference plane, and starts downward in the direction of the arrow in the figure. The entire movable element 9 resonates with the elastic body 4 while reciprocating on a straight line to generate a vibration force. .

実際の可動子9部分の動きは、図1に示す無通電状態から図3に示す最下点位置に移動し、次に図1の姿勢に戻ってから反対位置に移動し、図4に示す最上点位置までの振幅範囲を往復運動する。ここで図1に示す符号S1とS2とは、共に可動子9が無通電状態の時の最大振幅許容範囲を示すものであり、可動子9が振動した時に筐体側との緩衝を考慮して、ストッパー手段等を配置するなどして、ストロークが上下均等にかつ最大になるようにS1とS2が設計されている。また符号S3は、円環状の重量体6上面側の凹形状に抉れた深さ寸法を示し、この抉れが可動子9の上下動によって弾性変形する時の弾性体4のアーム部4aとの接触や緩衝を避ける構造となっている。   The actual movement of the mover 9 moves from the non-energized state shown in FIG. 1 to the lowest point position shown in FIG. 3, then moves back to the posture shown in FIG. Reciprocates within the amplitude range up to the highest point position. Here, reference numerals S1 and S2 shown in FIG. 1 both indicate the maximum amplitude allowable range when the mover 9 is in a non-energized state, and considering the buffering with the housing side when the mover 9 vibrates. In addition, S1 and S2 are designed so that the strokes are evenly and maximally up and down by arranging stopper means and the like. Further, symbol S3 indicates the depth dimension of the concave shape on the upper surface side of the annular weight body 6, and the arm portion 4a of the elastic body 4 when this bend is elastically deformed by the vertical movement of the mover 9. It has a structure that avoids contact and buffering.

また本実施形態に係る重量体6は、非磁性材料で高比重な、比重18のタングステン焼結合金を採用している。可動子9の永久磁石2に付加する重量体6は、比重の大きい材料が好ましく、タングステン、タンタル等の比重10以上の高比重合金を主成分とする非磁性材料の重りは、装置自身の振動力アップにつながる重要な要素である。本実施形態においては、黄銅、銅等の比重8以上10未満の一般非磁性体材料に対して、より重量増を実現している。   Further, the weight body 6 according to the present embodiment employs a tungsten sintered alloy having a specific gravity of 18 which is a non-magnetic material and has a high specific gravity. The weight body 6 to be added to the permanent magnet 2 of the mover 9 is preferably a material having a large specific gravity, and the weight of a non-magnetic material mainly composed of high specific weight gold having a specific gravity of 10 or more such as tungsten or tantalum is the vibration of the device itself. It is an important element that leads to strength improvement. In this embodiment, a weight increase is realized with respect to a general nonmagnetic material having a specific gravity of 8 or more and less than 10 such as brass or copper.

また前記ハウジング本体7の開放端側に取り付けられる基台プレート10の背面側には、前記コイル5に電流を通電するための端子基板14が備えられており、端子基板14の底面側が半田リフロー対応の平面端子構造である。さらに前記端子基板14の半田リフロー対応の平面端子14A、14Bの形状が、同心円状に区切られた中心に位置する正極(又は負極)と、その外周に位置する環状帯体の負極(又は正極)領域と、により平面端子部が構成されている。   Further, a terminal board 14 for supplying current to the coil 5 is provided on the back side of the base plate 10 attached to the open end side of the housing body 7, and the bottom side of the terminal board 14 is compatible with solder reflow. This is a flat terminal structure. Further, the shape of the flat terminals 14A and 14B corresponding to the solder reflow of the terminal substrate 14 is such that the positive electrode (or negative electrode) located in the center of the concentric section and the negative electrode (or positive electrode) of the annular band located on the outer periphery A planar terminal portion is constituted by the region.

図7(A)に示すように、ハウジング本体7の底部に取り付ける端子基板14は、同心円状に区切られた中心に位置する平面端子14Aと、その外周に位置する環状帯体の平面端子14Bとにより、二つの領域が半田リフローにより固定される形状を有している。ちなみに、端子基板14の前記平面端子14A、14Bは、スルーホールHにより、表裏の配線パターンが導通可能に設けられており、前記コイル5の巻線材の端部を、図7(B)に示す、一方の予備配線端子面14A、14Bに接続すると、その裏面の前記平面端子14A、14Bに同時に配線される。   As shown in FIG. 7 (A), the terminal board 14 attached to the bottom of the housing body 7 includes a flat terminal 14A located at the center divided concentrically, and a flat terminal 14B of an annular band located on the outer periphery thereof. Thus, the two regions have a shape fixed by solder reflow. Incidentally, the planar terminals 14A and 14B of the terminal board 14 are provided so that the front and back wiring patterns can be conducted by the through holes H, and the ends of the winding material of the coil 5 are shown in FIG. 7B. When connected to one of the auxiliary wiring terminal surfaces 14A and 14B, wiring is performed simultaneously to the planar terminals 14A and 14B on the back surface thereof.

又、半田リフローによる固定の際、接合強度を考慮して、端子基板14の平面端子14A、14Bの接合面積のみならず、ハウジング本体7の外周に延長部を設け、その部分を折り曲げて、半田リフロー時にハウジング本体7も同時に固定することも、接合強度アップになる。   Also, when fixing by solder reflow, considering the bonding strength, not only the bonding area of the flat terminals 14A and 14B of the terminal board 14, but also an extension is provided on the outer periphery of the housing body 7, and the portion is bent and soldered. Fixing the housing body 7 at the same time during reflow also increases the bonding strength.

また、別の形状の多少違う端子基板の一例としては、図8に示す端子基板13のものがある。形状は、前記端子基板14が全くの円形状であるのに対し、図8に示す端子基板13は中心に位置する正極(又は負極)の平面端子13Aと、その外周の一方向に位置する負極(又は正極)の平面端子13B領域と、により平面端子13A、13Bが構成され、この場合、外周側の平面端子13Bの取り付け方向を回路基板の給電ランドパターンと合わせて置くだけでよい。   Another example of the terminal board having a slightly different shape is the terminal board 13 shown in FIG. The terminal board 14 has a completely circular shape, whereas the terminal board 13 shown in FIG. 8 has a positive (or negative) planar terminal 13A located at the center and a negative electrode located in one direction on the outer periphery thereof. The planar terminals 13A and 13B are configured by the (or positive electrode) planar terminal 13B region. In this case, it is only necessary to place the mounting direction of the planar terminal 13B on the outer peripheral side together with the power feeding land pattern of the circuit board.

これらの端子基板13、14を用いて振動リニアアクチュエータ1を、図9に示す機器筐体100内に取り付ける回路基板50の板面上の給電ランド面に、直接、半田固定することができ、他の一般電子部品と同様に、半田リフローでの熱処理が同時に行える。このため、機器筐体100側への取り付けスペースの問題が無くなり、また取り付けるための保持付属部品が不要となり、製造工程においての自動化ラインでの組み込みが可能となる。   Using these terminal boards 13 and 14, the vibration linear actuator 1 can be directly solder-fixed to the power feeding land surface on the plate surface of the circuit board 50 to be mounted in the device casing 100 shown in FIG. As with general electronic components, heat treatment by solder reflow can be performed simultaneously. For this reason, there is no problem of the installation space on the device casing 100 side, and there is no need for a holding accessory for installation, and it is possible to incorporate in an automated line in the manufacturing process.

次に、図面を参照して本発明の実施形態に係る振動リニアアクチュエータの作用動作について説明する。   Next, the operation of the vibration linear actuator according to the embodiment of the present invention will be described with reference to the drawings.

図1、図3、図4、及び図5に示すように、本実施形態に係る振動リニアアクチュエータ1は、可動子9側が永久磁石2、重量体6、弾性体4からなり、固定子側がコイル5、ポールピース3、ハウジング本体7、基台プレート10、主軸12及び端子基板14とから構成されている。 図5に、内部構造と磁束発生による可動子9の動きを拡大したものを示す。各図において、永久磁石2は、説明の簡易上、上方がN極、下方がS極となるように振幅する軸方向に着磁されているものとする。   As shown in FIGS. 1, 3, 4, and 5, the vibration linear actuator 1 according to the present embodiment includes a permanent magnet 2, a weight body 6, and an elastic body 4 on the mover 9 side, and a coil on the stator side. 5, a pole piece 3, a housing body 7, a base plate 10, a main shaft 12, and a terminal board 14. FIG. 5 shows an enlarged structure of the mover 9 due to the internal structure and magnetic flux generation. In each figure, for the sake of simplicity of explanation, the permanent magnet 2 is assumed to be magnetized in an axial direction in which the upper side is an N pole and the lower side is an S pole.

円柱状ポールピース3の外周方向に巻回された円筒状のコイル5に対し、弾性体4により支持されている永久磁石2が、図1に示すように、磁界中心位置Mより下方側のCの位置で段違いに配置される。図1と図5は共に、コイル5が無通電時のもので、前記弾性体4が弾性変形の動作をする前の無負荷の初期状態を示している。   As shown in FIG. 1, a permanent magnet 2 supported by an elastic body 4 is placed on the lower side of the magnetic field center position M with respect to the cylindrical coil 5 wound in the outer peripheral direction of the columnar pole piece 3. Are arranged at different positions. FIG. 1 and FIG. 5 both show the initial state of no load before the coil 5 is not energized and before the elastic body 4 is elastically deformed.

このコイル5に、例えば正弦波または矩形波等の周波数特性を有する交流電流が流されると、ポールピース3に巻回された前記円筒状コイル5の円筒両端にはS極とN極の磁束が生じる。この時、コイル5に流れる電流の向きにより、前記コイル5の円筒両端にはS極とN極が交互に反転しながら磁束の発生が繰り返される。   When an alternating current having a frequency characteristic such as a sine wave or a rectangular wave is passed through the coil 5, magnetic fluxes of S and N poles are formed at both ends of the cylindrical coil 5 wound around the pole piece 3. Arise. At this time, generation of magnetic flux is repeated while the S pole and the N pole are alternately reversed at both ends of the cylinder of the coil 5 depending on the direction of the current flowing in the coil 5.

図5においては、仮にコイル5上方がS極、下方がN極とした場合、初期状態の永久磁石2の磁極との位置関係は、コイル5上方では、コイル5側のS極と永久磁石側のN極が磁気吸引し、下方では、コイル5側N極と永久磁石側のS極が磁気吸引し、結果的に、可動子9全体が図の矢印下方側へ起動する。この時、可動子9の移動幅は、その磁気吸引力と弾性体4の弾性変形保持力との力のバランスにより支持され、動作的には図3に示すように、基台プレート10の面に最も近接した位置まで可動子9が下がる。   In FIG. 5, if the upper part of the coil 5 is the S pole and the lower part is the N pole, the positional relationship with the magnetic pole of the permanent magnet 2 in the initial state is that the S pole on the coil 5 side and the permanent magnet side are above the coil 5. The N pole of the magnet is magnetically attracted, and the N pole of the coil 5 side and the S pole of the permanent magnet side are magnetically attracted below. As a result, the entire mover 9 is activated downward in the figure. At this time, the moving width of the mover 9 is supported by the balance between the magnetic attraction force and the elastic deformation holding force of the elastic body 4, and in terms of operation, as shown in FIG. The mover 9 is lowered to the position closest to the.

続いてコイル5の磁極が入れ替わり、上方がN極、下方がS極となった場合、永久磁石2の磁極との位置関係は、コイル5に対しお互い同極同士の並びになり、磁気反発力と弾性体4の弾性変形保持力が作用し合い、可動子9は逆に急激に上昇し、上側の頂点位置で再び弾性体4の弾性保持力との力のバランスにより支持され、図4の動作状態となる。このとき、コイル5側上方のN極と永久磁石2側のS極が磁気吸引力で引き合う位置になる。     Subsequently, when the magnetic poles of the coil 5 are switched and the upper part is the N pole and the lower part is the S pole, the positional relationship with the magnetic poles of the permanent magnet 2 is the same polarity with respect to the coil 5, and the magnetic repulsion force and The elastic deformation holding force of the elastic body 4 acts on each other, and the mover 9 suddenly rises and is supported again by the balance of the force with the elastic holding force of the elastic body 4 at the upper vertex position, and the operation of FIG. It becomes a state. At this time, the N pole on the upper side of the coil 5 and the S pole on the permanent magnet 2 side are attracted to each other by the magnetic attractive force.

そして、前記コイル5に流れる電流の周波数が、前記永久磁石2及び重量体6を備える可動子9の総重量と、弾性体4のバネ定数とによって定まる固有振動数(共振周波数)と等しくチューニング調整できた時に、本実施形態の振動リニアアクチュエータ1は、振動デバイスとして最大の加速度、すなわち振動量を得ることができる。     The frequency of the current flowing in the coil 5 is tuned and adjusted to be equal to the natural frequency (resonance frequency) determined by the total weight of the mover 9 including the permanent magnet 2 and the weight body 6 and the spring constant of the elastic body 4. When completed, the vibration linear actuator 1 of the present embodiment can obtain the maximum acceleration, that is, the vibration amount as the vibration device.

つまり、コイル5には前述のように正弦波あるいは矩形波等の周波数特性を有する交流電流が流れ、永久磁石2と重量体6を備える可動子9の総重量と、弾性体4のバネ定数、さらには、振動リニアアクチュエータ1を組み立てた後の全体の固有振動数により定まる共振周波数と、の相互関係において、最大の振動力を得ることができる。携帯電話等の通信機器においては、機器自体の総重量が100G以下であり、一般的に、共振周波数140Hz前後の振動が、最も体感的に好ましく感じられる。   That is, as described above, an alternating current having a frequency characteristic such as a sine wave or a rectangular wave flows through the coil 5, the total weight of the mover 9 including the permanent magnet 2 and the weight body 6, the spring constant of the elastic body 4, Furthermore, the maximum vibration force can be obtained in the correlation with the resonance frequency determined by the total natural frequency after the vibration linear actuator 1 is assembled. In a communication device such as a mobile phone, the total weight of the device itself is 100 G or less, and in general, vibration with a resonance frequency of around 140 Hz is most preferably felt.

このように、重りを備えた可動子9全体が一連の磁気的作用・反作用によるリニアな往復動作を繰り返すことにより、ハウジング本体7と基台プレート10からなる限られた筐体内部のスペースの中で、可動子9の重心点が、最大加速度を得ながら上下動し、その力のモーメントが可動子9側からそれを支える主軸12に伝わり、また主軸12から筐体全体に伝わり、最終的に振動リニアアクチュエータ1が力強く振動する。   In this way, the entire movable element 9 with the weight repeats a linear reciprocating motion by a series of magnetic actions / reactions, so that the inside of the limited space formed by the housing body 7 and the base plate 10 is limited. The center of gravity of the mover 9 moves up and down while obtaining the maximum acceleration, and the moment of force is transmitted from the mover 9 side to the main shaft 12 that supports it, and from the main shaft 12 to the entire housing, and finally The vibration linear actuator 1 vibrates strongly.

すなわち、本実施形態に係る振動リニアアクチュエータ1では、高比重合金からなる重量体6を可動子9の一部とし、前記ハウジング本体7の内部における可動子9の取り得る移動領域を拡大することができ、限られた小さなスペースであっても、無駄なく、最大限の可動子9のストロークを確保することができ、装置全体が小さいながらも、使用者がはっきりと認識できる十分な振動力を得ることができる。   That is, in the vibration linear actuator 1 according to the present embodiment, the weight body 6 made of high-specific-polymerization metal is made a part of the mover 9, and the movable region that the mover 9 can take inside the housing body 7 can be expanded. Even in a limited small space, the maximum stroke of the mover 9 can be secured without waste, and sufficient vibration force can be obtained that can be clearly recognized by the user even though the entire device is small. be able to.

例えば前述のように、中心軸となるポールピース3先端の主軸12と、ハウジング本体7の円環面に形成された凹部7aの底面内径穴8とで弾性体4を挟持することによって、可動子9を支持する構成としたので、ハウジン本体7側内部の空間に占める可動子9が移動できる空間の体積を大きく取ることができ、装置本体を小型化しつつも、可動子9の振幅を大きくすることができ、最大の振動力を得ることができる。   For example, as described above, the mover is held by sandwiching the elastic body 4 between the main shaft 12 at the tip of the pole piece 3 serving as the central axis and the bottom surface inner diameter hole 8 of the recess 7a formed in the annular surface of the housing body 7. Since it is configured to support 9, the volume of the space in which the mover 9 occupies the space inside the housing main body 7 side can be increased, and the amplitude of the mover 9 is increased while the apparatus body is downsized. And maximum vibration force can be obtained.

また、本実施形態に係る振動リニアアクチュエータ1では、限られた小さなスペースの中で、前記永久磁石2の磁界と、前記コイル5に通電された時に生じる磁界と、の間に作用される磁気的な力が均衡することなく配置され、前記コイル5に通電されると同時に、速やかに、かつ確実に、起動して立ち上がり、常にバラツキのない良好な振動力を得ることができる。   Further, in the vibration linear actuator 1 according to the present embodiment, the magnetic force acting between the magnetic field of the permanent magnet 2 and the magnetic field generated when the coil 5 is energized in a limited small space. As a result, the coil 5 is energized, and at the same time, the coil 5 is energized promptly and reliably, and a good vibration force that is always free from variations can be obtained.

また、本実施形態に係る振動リニアアクチュエータ1では、ハウジング本体7と基台プレート10により密閉される空間内を移動する可動子9に対し、可動子9を挟む前記密閉された上下二つの空間を行き来して移動する空気の量を制限することにより、図10の曲線Fの共振周波数特性に見られるような、周波数帯域を拡大したなだらかな曲線の周波数帯域を実現できる。これにより共振周波数の値が僅かに変化したとしても、得られる振動力が急激に減少することがなく、安定して所定の振動を得ることができる。   Further, in the vibration linear actuator 1 according to the present embodiment, the above-described two sealed upper and lower spaces sandwiching the mover 9 with respect to the mover 9 moving in a space sealed by the housing body 7 and the base plate 10 are provided. By limiting the amount of air that moves back and forth, a gentle frequency band can be realized by expanding the frequency band as seen in the resonance frequency characteristic of the curve F in FIG. As a result, even if the value of the resonance frequency is slightly changed, the obtained vibration force is not rapidly reduced, and a predetermined vibration can be stably obtained.

さらに、本実施形態に係る振動リニアアクチュエータでは、構造が簡単で、耐久性に優れ、効率の良い磁気駆動部品の配置が可能となり、さらに部品点数を必要最小限に抑えることにより、組み立て製造工程における工数、および製造コスト、部品管理の手間を大幅に減少させることができる。   Furthermore, in the vibration linear actuator according to the present embodiment, the structure is simple, excellent in durability, and efficient magnetic drive parts can be arranged. Further, by minimizing the number of parts, the assembly manufacturing process can be performed. Man-hours, manufacturing costs, and parts management can be greatly reduced.

本発明に係る振動リニアアクチュエータの内部構造の概略を示す断面図である。It is sectional drawing which shows the outline of the internal structure of the vibration linear actuator which concerns on this invention. 本発明に係る振動リニアアクチュエータの内部構造と部品構成の概略を示す斜視分解図である。It is a perspective exploded view showing the outline of the internal structure and component configuration of the vibration linear actuator according to the present invention. 本発明に係る振動リニアアクチュエータの内部構造における可動子の動きの概略を示す断面図である。It is sectional drawing which shows the outline of a motion of the needle | mover in the internal structure of the vibration linear actuator which concerns on this invention. 本発明に係る振動リニアアクチュエータの内部構造における可動子の動きの概略を示す断面図である。It is sectional drawing which shows the outline of a motion of the needle | mover in the internal structure of the vibration linear actuator which concerns on this invention. 本発明に係る振動リニアアクチュエータの内部構造における可動子とコイルとの位置関係、及び可動子の動きの概略を示す拡大断面図である。It is an expanded sectional view showing an outline of a position relation of a mover and a coil in an internal structure of a vibration linear actuator concerning the present invention, and movement of a mover. 本発明に係る振動リニアアクチュエータの内部構造における可動子とコイルとの位置関係における悪い例としての概略を示す拡大断面図である。It is an expanded sectional view which shows the outline as a bad example in the positional relationship of the needle | mover and coil in the internal structure of the vibration linear actuator which concerns on this invention. 本発明に係る振動リニアアクチュエータの底部から見た端子基板における平面端子形状を示す概略図(A)、と端子基板の予備配線端子側の概略図(B)。FIG. 2A is a schematic diagram showing a planar terminal shape of a terminal board viewed from the bottom of the vibration linear actuator according to the present invention, and FIG. 2B is a schematic diagram of a spare wiring terminal side of the terminal board. 本発明に係る振動リニアアクチュエータの底部から見た端子基板における平面端子形状を示す概略図。Schematic which shows the planar terminal shape in the terminal board | substrate seen from the bottom part of the vibration linear actuator which concerns on this invention. 本発明に係る振動リニアアクチュエータを、携帯機器筐体内部の回路基板上に取り付けたときのイメージ図。The image figure when the vibration linear actuator which concerns on this invention is attached on the circuit board inside a portable apparatus housing | casing. 本発明に係る振動リニアアクチュエータについて、共振周波数帯域140Hz付近での入力周波数に対する加速度を概略的に示した図。The figure which showed schematically the acceleration with respect to the input frequency in the resonant frequency band 140Hz vicinity about the vibration linear actuator which concerns on this invention.

符号の説明Explanation of symbols

1 振動リニアアクチュエータ
2 永久磁石
3 ポールピース
4 弾性体
5 コイル
6 重量体
7 ハウジング本体
8 内径穴
9 可動子
10 基台プレート
11 リブ
12 主軸
13、14 端子基板
14a、14b 予備配線端子
14A、14B 平面端子
50 回路基板
100 機器筐体
1 Vibrating linear actuator
2 Permanent magnet
3 pole piece
4 Elastic body
5 coils
6 weight
7 Housing body
8 bore
9 Mover
10 Base plate
11 Ribs
12 Spindle
13, 14 Terminal board
14a, 14b Spare wiring terminal
14A, 14B planar terminal
50 circuit board
100 Equipment housing

Claims (7)

永久磁石を備える可動子と、前記可動子を収納するハウジング本体と、前記可動子と前記ハウジング本体とを連結して支持する薄板状の弾性体と、前記可動子を駆動させるための固定子側コイルと、を備える振動デバイスにおいて、
前記永久磁石は、可動子の振幅方向に着磁され、かつ永久磁石外周には分銅となる重量体を一体に備えており、また対向する前記コイルは、前記永久磁石の内径側に隙間を介して位置し、その円筒状に巻回されたコイル内径には、柱状のポールピースが中心を貫通する形で設けられていることを特徴とする振動リニアアクチュエータ。
A mover including a permanent magnet, a housing main body that houses the mover, a thin plate-like elastic body that connects and supports the mover and the housing main body, and a stator side for driving the mover A vibrating device comprising a coil,
The permanent magnet is magnetized in the amplitude direction of the mover, and has a weight body integrally serving as a weight on the outer periphery of the permanent magnet, and the opposed coils are disposed on the inner diameter side of the permanent magnet via a gap. An oscillating linear actuator characterized in that a columnar pole piece is provided in the inner diameter of the coil wound in a cylindrical shape so as to penetrate the center.
前記永久磁石の厚み方向中心となる磁界の中心位置と、前記コイルに通電された時に発生する磁界の中心位置とを振幅方向で一致させず、振幅方向での双方の位置関係が、一方のコイル端部側寄りにオフセットさせて配置したことを特徴とする請求項1に記載の振動リニアアクチュエータ。 The center position of the magnetic field that is the center of the permanent magnet in the thickness direction and the center position of the magnetic field that is generated when the coil is energized do not coincide with each other in the amplitude direction. 2. The vibration linear actuator according to claim 1, wherein the vibration linear actuator is arranged to be offset toward the end side. 前記可動子の外周面と前記ハウジング本体の側壁内面との隙間、及び前記可動子の内周面と前記コイルの外周面との隙間、を共に0.08mm〜0.15mmの範囲内で幅狭にし、可動子の動きによって変化する前記可動子の上面側と前記ハウジング本体の上面内壁とで形成される空間と、前記可動子の下面側と前記ハウジング本体の蓋部となる端子基板とで形成される空間、との間の空気の移動量を制限するためのエアーダンパー構造を備えたことを特徴とする請求項1または請求項2に記載の振動リニアアクチュエータ。 The gap between the outer peripheral surface of the mover and the side wall inner surface of the housing body, and the gap between the inner peripheral surface of the mover and the outer peripheral surface of the coil are both narrowed within a range of 0.08 mm to 0.15 mm, A space formed by the upper surface side of the mover and the inner wall of the upper surface of the housing main body, which is changed by the movement of the mover, and a terminal substrate serving as a lid portion of the housing main body and the lower surface side of the housing main body. The vibration linear actuator according to claim 1, further comprising an air damper structure for limiting an amount of air movement between the space and the space. 前記重量体は、タングステン、タンタル等の比重10以上の高比重合金を主成分とする非磁性材料の重りにより形成されていることを特徴とする請求項1〜請求項3のいずれか一項に記載の振動リニアアクチュエータ。 4. The weight according to claim 1, wherein the weight body is formed of a weight of a non-magnetic material mainly composed of high specific weight gold having a specific gravity of 10 or more such as tungsten or tantalum. The vibration linear actuator described. 前記重量体は、黄銅、銅等の比重8以上10未満の非磁性体材料の重りにより形成されていることを特徴とする請求項1〜請求項3のいずれか一項に記載の振動リニアアクチュエータ。 4. The vibration linear actuator according to claim 1, wherein the weight body is formed of a weight of a nonmagnetic material having a specific gravity of 8 or more and less than 10 such as brass or copper. . 前記端子基板の底面側が、半田リフロー対応の端子基板構造であることを特徴とする請求項1〜請求項5に記載の振動リニアアクチュエータ。 6. The vibration linear actuator according to claim 1, wherein the bottom surface side of the terminal substrate has a terminal substrate structure compatible with solder reflow. 前記端子基板の半田リフロー対応の端子形状が、同心円状に区切られた中心に位置する正極(又は負極)と、その外周に位置する環状帯体の負極(又は正極)領域と、により構成されていることを特徴とする請求項6に記載の振動リニアアクチュエータ。
The terminal shape corresponding to the solder reflow of the terminal board is constituted by a positive electrode (or negative electrode) located at the center divided concentrically and a negative electrode (or positive electrode) region of an annular band located on the outer periphery thereof. The vibrating linear actuator according to claim 6.
JP2004191100A 2004-06-29 2004-06-29 Oscillating linear actuator Withdrawn JP2006007161A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004191100A JP2006007161A (en) 2004-06-29 2004-06-29 Oscillating linear actuator
PCT/JP2005/011780 WO2006001436A1 (en) 2004-06-29 2005-06-28 Vibrating linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191100A JP2006007161A (en) 2004-06-29 2004-06-29 Oscillating linear actuator

Publications (1)

Publication Number Publication Date
JP2006007161A true JP2006007161A (en) 2006-01-12

Family

ID=35774977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191100A Withdrawn JP2006007161A (en) 2004-06-29 2004-06-29 Oscillating linear actuator

Country Status (2)

Country Link
JP (1) JP2006007161A (en)
WO (1) WO2006001436A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748592B1 (en) 2006-11-15 2007-08-10 김정훈 Subminiature linear vibrator
JP2007229582A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Reciprocating vibration generator
KR100793682B1 (en) 2007-01-16 2008-01-10 김정훈 Subminiature linear vibrator
WO2008060060A1 (en) * 2006-11-15 2008-05-22 Jung-Hoon Kim Subminiature linear vibrator
US7671493B2 (en) 2007-03-09 2010-03-02 Sony Corporation Vibration assembly, input device using the vibration assembly, and electronic equipment using the input device
JP2010104864A (en) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd Reciprocating vibration generator
WO2010087626A2 (en) * 2009-01-28 2010-08-05 엘지이노텍 주식회사 Linear vibrator
JP2010252616A (en) * 2009-03-23 2010-11-04 Sanyo Electric Co Ltd Flat vibration motor
KR100995000B1 (en) 2010-02-18 2010-11-18 자화전자(주) Linear vibration generating device
WO2011043536A1 (en) * 2009-10-05 2011-04-14 주식회사래모트론 Linear vibrator
US20110198949A1 (en) * 2010-02-16 2011-08-18 Sanyo Electric Co., Ltd. Vibration generator
WO2011108801A2 (en) * 2010-03-02 2011-09-09 주식회사 비에스이 Vibration motor
WO2011108800A2 (en) * 2010-03-02 2011-09-09 주식회사 비에스이 Vibration motor and a production method for the same
CN102205313A (en) * 2010-02-16 2011-10-05 三洋精密株式会社 Recirocating vibration generator
WO2011129475A1 (en) * 2010-04-16 2011-10-20 엘지이노텍 주식회사 Linear vibrator having a broad bandwidth, and mobile device
KR101085461B1 (en) * 2010-01-18 2011-11-21 한국과학기술원 Apparatus for small sized actuator using different elastic spring
KR101091411B1 (en) 2010-04-16 2011-12-07 엘지이노텍 주식회사 Linear vibrator and mobile device having broadband
KR101142284B1 (en) 2010-11-30 2012-05-07 자화전자(주) Linear vibration generating device
KR101163612B1 (en) 2010-12-01 2012-07-09 자화전자(주) Linear vibration generating device
KR101175356B1 (en) * 2010-08-18 2012-08-23 자화전자(주) Linear vibration generating device
CN102832778A (en) * 2011-06-16 2012-12-19 磁化电子株式会社 Linear vibration generating apparatus
KR101242525B1 (en) * 2012-07-19 2013-03-12 (주)엠투시스 Haptic actuator
KR101258914B1 (en) 2010-12-09 2013-04-29 한국과학기술원 Vibration generating module, handheld device using the same, method for generating vibration and recording medium thereof
CN103107670A (en) * 2011-11-09 2013-05-15 株式会社永进高科 Linear vibration device
KR101266793B1 (en) * 2011-03-09 2013-05-24 (주)엠투시스 Haptic actuator
JP2013115888A (en) * 2011-11-28 2013-06-10 Eishin Hi-Tech Co Ltd Linear vibration device
CN103312110A (en) * 2012-03-16 2013-09-18 可立新株式会社 Linear vibrator
WO2013157670A1 (en) * 2012-04-16 2013-10-24 (주)엠투시스 Haptic actuator
JP2013233537A (en) * 2012-04-10 2013-11-21 Hosiden Corp Vibrator
CN103516169A (en) * 2012-06-26 2014-01-15 三星电机株式会社 Linear vibrator
KR101439937B1 (en) * 2012-03-16 2014-09-17 크레신 주식회사 Linear vibrator
JP2015126673A (en) * 2013-12-27 2015-07-06 日本電産コパル株式会社 Vibration actuator, and personal digital assistant
KR20160133431A (en) 2014-03-17 2016-11-22 니혼 덴산 산쿄 가부시키가이샤 Linear actuator
KR20170037956A (en) 2014-07-30 2017-04-05 니혼 덴산 산쿄 가부시키가이샤 Linear actuator
KR101752718B1 (en) * 2010-11-18 2017-07-26 (주)파트론 Linear vibrator
KR101783628B1 (en) 2017-04-27 2017-10-24 주식회사 블루콤 Linear type vibration motor vibrated Verticality
CN107565789A (en) * 2016-07-01 2018-01-09 磁化电子株式会社 Oscillation actuator
KR20180044412A (en) 2016-01-29 2018-05-02 니혼 덴산 산쿄 가부시키가이샤 Actuator
KR20190017046A (en) 2016-08-09 2019-02-19 니혼 덴산 산쿄 가부시키가이샤 Linear actuator
DE112017003990T5 (en) 2016-08-09 2019-04-18 Nidec Sankyo Corporation linear actuator
WO2022003921A1 (en) * 2020-07-02 2022-01-06 フォスター電機株式会社 Oscillatory actuator

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327429B1 (en) * 2011-08-18 2013-11-08 조한중 Linear vibration motor
EP3198618B1 (en) * 2014-09-24 2021-05-19 Taction Technology Inc. Systems and methods for generating damped electromagnetically actuated planar motion for audio-frequency vibrations
US10573139B2 (en) 2015-09-16 2020-02-25 Taction Technology, Inc. Tactile transducer with digital signal processing for improved fidelity
US10390139B2 (en) 2015-09-16 2019-08-20 Taction Technology, Inc. Apparatus and methods for audio-tactile spatialization of sound and perception of bass
CN105720775B (en) * 2016-03-28 2019-08-20 歌尔股份有限公司 Vibrating motor and portable device
CN106329871A (en) * 2016-09-30 2017-01-11 歌尔股份有限公司 Linear vibration motor and electronic equipment
US11729555B2 (en) 2021-01-12 2023-08-15 Sound Solutions International Co., Ltd. Adjustable magnetic spring for actuator
CN113954591B (en) * 2021-09-23 2023-12-22 北京航空航天大学 Electromagnetic driven miniature amphibious robot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329542A (en) * 2001-05-02 2002-11-15 Shin Etsu Polymer Co Ltd Press contact type adapter
JP2003154315A (en) * 2001-11-22 2003-05-27 Matsushita Electric Ind Co Ltd Vibratory linear actuator
JP3863429B2 (en) * 2002-01-04 2006-12-27 学校法人東京電機大学 Linear vibration actuator
JP2003251278A (en) * 2002-03-07 2003-09-09 Nec Tokin Corp Multifunction vibration actuator

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229582A (en) * 2006-02-28 2007-09-13 Sanyo Electric Co Ltd Reciprocating vibration generator
KR100748592B1 (en) 2006-11-15 2007-08-10 김정훈 Subminiature linear vibrator
WO2008060060A1 (en) * 2006-11-15 2008-05-22 Jung-Hoon Kim Subminiature linear vibrator
JP2010509065A (en) * 2006-11-15 2010-03-25 キム,ジョン−フン Ultra-small linear vibration device
CN101541441B (en) * 2006-11-15 2011-01-19 信友电子(株) Subminiature linear vibrator
KR100793682B1 (en) 2007-01-16 2008-01-10 김정훈 Subminiature linear vibrator
US7671493B2 (en) 2007-03-09 2010-03-02 Sony Corporation Vibration assembly, input device using the vibration assembly, and electronic equipment using the input device
JP2010104864A (en) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd Reciprocating vibration generator
WO2010087626A3 (en) * 2009-01-28 2010-10-21 엘지이노텍 주식회사 Linear vibrator
WO2010087626A2 (en) * 2009-01-28 2010-08-05 엘지이노텍 주식회사 Linear vibrator
JP2010252616A (en) * 2009-03-23 2010-11-04 Sanyo Electric Co Ltd Flat vibration motor
WO2011043536A1 (en) * 2009-10-05 2011-04-14 주식회사래모트론 Linear vibrator
KR101085461B1 (en) * 2010-01-18 2011-11-21 한국과학기술원 Apparatus for small sized actuator using different elastic spring
CN102205313A (en) * 2010-02-16 2011-10-05 三洋精密株式会社 Recirocating vibration generator
JP2011189337A (en) * 2010-02-16 2011-09-29 Nihon Densan Seimitsu Kk Vibration generator
US8593018B2 (en) * 2010-02-16 2013-11-26 Nidec Seimitsu Corporation Vibration generator
US20110198949A1 (en) * 2010-02-16 2011-08-18 Sanyo Electric Co., Ltd. Vibration generator
CN102205313B (en) * 2010-02-16 2014-12-10 日本电产精密株式会社 Recirocating vibration generator
CN102859851A (en) * 2010-02-18 2013-01-02 磁化电子株式会社 Linear vibration generating device
WO2011102588A1 (en) * 2010-02-18 2011-08-25 Jahwa Electronics Co., Ltd. Linear vibration generating device
KR100995000B1 (en) 2010-02-18 2010-11-18 자화전자(주) Linear vibration generating device
WO2011108801A2 (en) * 2010-03-02 2011-09-09 주식회사 비에스이 Vibration motor
WO2011108800A2 (en) * 2010-03-02 2011-09-09 주식회사 비에스이 Vibration motor and a production method for the same
WO2011108801A3 (en) * 2010-03-02 2011-11-03 주식회사 비에스이 Vibration motor
WO2011108800A3 (en) * 2010-03-02 2011-11-03 주식회사 비에스이 Vibration motor and a production method for the same
KR101101713B1 (en) 2010-03-02 2012-01-05 주식회사 비에스이 Vibration motor and method of making the same
WO2011129475A1 (en) * 2010-04-16 2011-10-20 엘지이노텍 주식회사 Linear vibrator having a broad bandwidth, and mobile device
KR101091411B1 (en) 2010-04-16 2011-12-07 엘지이노텍 주식회사 Linear vibrator and mobile device having broadband
KR101175356B1 (en) * 2010-08-18 2012-08-23 자화전자(주) Linear vibration generating device
KR101752718B1 (en) * 2010-11-18 2017-07-26 (주)파트론 Linear vibrator
KR101142284B1 (en) 2010-11-30 2012-05-07 자화전자(주) Linear vibration generating device
KR101163612B1 (en) 2010-12-01 2012-07-09 자화전자(주) Linear vibration generating device
KR101258914B1 (en) 2010-12-09 2013-04-29 한국과학기술원 Vibration generating module, handheld device using the same, method for generating vibration and recording medium thereof
KR101266793B1 (en) * 2011-03-09 2013-05-24 (주)엠투시스 Haptic actuator
CN102832778A (en) * 2011-06-16 2012-12-19 磁化电子株式会社 Linear vibration generating apparatus
US20120319506A1 (en) * 2011-06-16 2012-12-20 Jahwa Electronics Co., Ltd Linear vibration generating apparatus
US8872394B2 (en) * 2011-06-16 2014-10-28 Jahwa Electronics Co., Ltd. Linear vibration generating apparatus
CN103107670A (en) * 2011-11-09 2013-05-15 株式会社永进高科 Linear vibration device
JP2013115888A (en) * 2011-11-28 2013-06-10 Eishin Hi-Tech Co Ltd Linear vibration device
US20130241322A1 (en) * 2012-03-16 2013-09-19 Cresyn Co., Ltd. Linear vibrator
WO2013137578A1 (en) * 2012-03-16 2013-09-19 크레신 주식회사 Linear oscillator
KR101439937B1 (en) * 2012-03-16 2014-09-17 크레신 주식회사 Linear vibrator
CN103312110A (en) * 2012-03-16 2013-09-18 可立新株式会社 Linear vibrator
JP2013233537A (en) * 2012-04-10 2013-11-21 Hosiden Corp Vibrator
WO2013157670A1 (en) * 2012-04-16 2013-10-24 (주)엠투시스 Haptic actuator
CN103516169A (en) * 2012-06-26 2014-01-15 三星电机株式会社 Linear vibrator
US9496777B2 (en) 2012-07-19 2016-11-15 M2Sys. Co., Ltd. Haptic actuator
WO2014014187A1 (en) * 2012-07-19 2014-01-23 (주)엠투시스 Haptic actuator
KR101242525B1 (en) * 2012-07-19 2013-03-12 (주)엠투시스 Haptic actuator
JP2015126673A (en) * 2013-12-27 2015-07-06 日本電産コパル株式会社 Vibration actuator, and personal digital assistant
KR20160133431A (en) 2014-03-17 2016-11-22 니혼 덴산 산쿄 가부시키가이샤 Linear actuator
US10411575B2 (en) 2014-03-17 2019-09-10 Nidec Sankyo Corporation Linear actuator
EP3236565A1 (en) 2014-03-17 2017-10-25 Nidec Sankyo Corporation Linear actuator
KR20170037956A (en) 2014-07-30 2017-04-05 니혼 덴산 산쿄 가부시키가이샤 Linear actuator
US10252295B2 (en) 2014-07-30 2019-04-09 Nidec Sankyo Corporation Linear actuator
KR20180044412A (en) 2016-01-29 2018-05-02 니혼 덴산 산쿄 가부시키가이샤 Actuator
CN107565789A (en) * 2016-07-01 2018-01-09 磁化电子株式会社 Oscillation actuator
US10389219B2 (en) 2016-07-01 2019-08-20 Jahwa Electronics Co., Ltd. Vibration actuator
DE112017003990T5 (en) 2016-08-09 2019-04-18 Nidec Sankyo Corporation linear actuator
DE112017004000T5 (en) 2016-08-09 2019-04-18 Nidec Sankyo Corporation linear actuator
KR20190017046A (en) 2016-08-09 2019-02-19 니혼 덴산 산쿄 가부시키가이샤 Linear actuator
DE112017004000B4 (en) * 2016-08-09 2020-10-29 Nidec Sankyo Corporation Linear actuator
US10951104B2 (en) 2016-08-09 2021-03-16 Nidec Sankyo Corporation Linear actuator
KR101783628B1 (en) 2017-04-27 2017-10-24 주식회사 블루콤 Linear type vibration motor vibrated Verticality
WO2022003921A1 (en) * 2020-07-02 2022-01-06 フォスター電機株式会社 Oscillatory actuator
JPWO2022003921A1 (en) * 2020-07-02 2022-01-06
JP7217810B2 (en) 2020-07-02 2023-02-03 フォスター電機株式会社 vibration actuator
EP4163019A4 (en) * 2020-07-02 2023-07-05 Foster Electric Company, Limited Oscillatory actuator

Also Published As

Publication number Publication date
WO2006001436A1 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP2006007161A (en) Oscillating linear actuator
KR101746007B1 (en) Linear type vibration motor vibrated Verticality
KR100735299B1 (en) A vertical vibrator
US9219401B2 (en) Vibrator and electronic device including the same
US8013480B2 (en) Linear vibration motor
US8937411B2 (en) Vibration generating device
KR100541113B1 (en) A vertical vibrator of pattern coil type
KR101070377B1 (en) vibration motor
KR101018451B1 (en) Vibration motor
KR100748592B1 (en) Subminiature linear vibrator
JP2010509065A (en) Ultra-small linear vibration device
KR20100119970A (en) Linear vibrator
CN107107112B (en) Linear vibration motor
JP2013223334A (en) Vibration generation device
JP4602788B2 (en) Vibration generator
JP2017070017A (en) Linear vibration motor
US20030117223A1 (en) Vibrating linear actuator
KR20160114313A (en) Haptic actuator
JP2002238089A (en) Electro-mechanical/acoustic converter
JP2017221905A (en) Linear vibration motor
KR100804023B1 (en) Vibrator
KR101198077B1 (en) Linear vibration actuator
WO2008004729A1 (en) Vibrator
JP2016131915A (en) Linear vibration motor
KR101266793B1 (en) Haptic actuator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904