JP2006005197A - Aligner - Google Patents

Aligner Download PDF

Info

Publication number
JP2006005197A
JP2006005197A JP2004180552A JP2004180552A JP2006005197A JP 2006005197 A JP2006005197 A JP 2006005197A JP 2004180552 A JP2004180552 A JP 2004180552A JP 2004180552 A JP2004180552 A JP 2004180552A JP 2006005197 A JP2006005197 A JP 2006005197A
Authority
JP
Japan
Prior art keywords
exposure
exposure apparatus
pattern
alignment
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004180552A
Other languages
Japanese (ja)
Inventor
Kura Yasunobu
蔵 安延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004180552A priority Critical patent/JP2006005197A/en
Publication of JP2006005197A publication Critical patent/JP2006005197A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aligner capable of simultaneously observing a plurality of alignment marks irrespective of the size of a pattern region depending on the device, and capable of designing a reticle without being bound by the arrangement places of the alignment marks. <P>SOLUTION: This aligner comprises a projection optical system for projecting a pattern on a first object onto a second object with exposure light; a plurality of measuring devices for illuminating the alignment marks on the second object in a place different from the exposure position of the second object with detection light having a wavelength different from that of the exposure light, detecting the positional information of the marks, and relatively aligning the first and the second objects; and a means for detecting and correcting the deformation of each pattern region of the second object resulting from the heat treatment during a semiconductor device process, and at least one of the measuring devices has a movable means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体デバイスまたは液晶ディスプレイ用パネルの製造方法に関し、特に半導体素子または液晶ディスプレイ用パネルの製造装置において、投影光学系によりレチクルまたはマスク面上の回路パターンの像をウエハまたはガラスプレート上の各パターン領域に順次投影露光して該ウエハまたはプレートの各パターン領域に転写して複数個の半導体デバイスを製造するために使用する。所謂ステッパまたはスキャナーと呼ばれる半導体素子または液晶ディスプレイ用パネル製造用の露光装置に好適なものである、特に高い重ね合わせ精度および露光動作の高速化に関するものである。また、本発明においては半導体デバイス製造用露光装置及び液晶ディスプレイ用パネル露光装置をスッテパと総称する。   The present invention relates to a method of manufacturing a semiconductor device or a liquid crystal display panel, and in particular, in a semiconductor device or liquid crystal display panel manufacturing apparatus, a projection optical system converts an image of a circuit pattern on a reticle or mask surface onto each wafer or glass plate. It is used to manufacture a plurality of semiconductor devices by sequentially projecting and exposing the pattern region to the pattern region of the wafer or plate. The present invention is particularly suitable for an exposure apparatus for manufacturing a semiconductor element or a liquid crystal display panel called a so-called stepper or scanner, and particularly relates to high overlay accuracy and high-speed exposure operation. In the present invention, an exposure apparatus for manufacturing a semiconductor device and a panel exposure apparatus for a liquid crystal display are collectively referred to as a stepper.

従来、半導体製造用の投影露光装置では、第1物体としてのレチクルの回路パターンを投影光学系により第2物体としてのウエハ上に投影し露光するが、この投影露光に先立て観察装置(検出手段)を用いてウエハ面上のアライメントマーク(AAマーク)を検出し、この検出結果に基づいてレチクルとウエハとの位置整合、所謂アライメントを行っている。   Conventionally, in a projection exposure apparatus for manufacturing a semiconductor, a reticle circuit pattern as a first object is projected and exposed on a wafer as a second object by a projection optical system. Prior to this projection exposure, an observation apparatus (detection means) is used. ) Is used to detect the alignment mark (AA mark) on the wafer surface, and based on the detection result, position alignment of the reticle and wafer, so-called alignment, is performed.

半導体集積回路のパターンが微細化するのに伴い、投影露光装置においては、デバイスプロセスの熱処理によって生じるウエハの変形量を検出し補正する必要が生じてきた。例えば特開昭64−89327号公報や特開平8−191045に開示されているように、TTL方式やオフアクシス方式の顕微鏡でレチクルとウエハの位置整合、所謂アライメントを行う機能が備えられていた。   As the pattern of a semiconductor integrated circuit is miniaturized, in a projection exposure apparatus, it has become necessary to detect and correct the amount of wafer deformation caused by heat treatment in a device process. For example, as disclosed in Japanese Patent Application Laid-Open No. 64-89327 and Japanese Patent Application Laid-Open No. 8-191045, a TTL type or off-axis type microscope has a function of aligning a reticle and a wafer, so-called alignment.

上記記述においてウエハの変形量を検出し補正する技術は解決されている。しかしながら、ガラスウエハに半導体デバイスをパターニングすると、デバイスプロセスの熱処理の影響による該ガラスウエハの変形量が大きいため、該変形量を精度良く測定するためには各パターン領域の少なくとも3箇所は測定しなければならず、前記アライメントマークを計測装置が検出できる位置に順次送り込まなければならない。   In the above description, the technique for detecting and correcting the deformation amount of the wafer has been solved. However, when a semiconductor device is patterned on a glass wafer, the deformation amount of the glass wafer due to the influence of the heat treatment of the device process is large. Therefore, in order to accurately measure the deformation amount, at least three locations in each pattern region must be measured. The alignment marks must be sequentially sent to a position where the measuring device can detect them.

デバイスプロセスの熱処理によってウエハが変形する。その変形量を検出するために各パターン領域の複数のアライメントマークを観察しているが、デバイスによってパターン領域の大きさが異なるため、1つのパターン内の複数のアライメントマークを同時に観察できないという問題がある。また、複数のアライメントマークを同時計測できるように該アライメントマークを配置すると、レチクル設計の自由度が小さくなってしまうという問題がある。   The wafer is deformed by the heat treatment of the device process. In order to detect the amount of deformation, a plurality of alignment marks in each pattern area are observed. However, since the size of the pattern area differs depending on the device, a plurality of alignment marks in one pattern cannot be observed simultaneously. is there. Moreover, if the alignment marks are arranged so that a plurality of alignment marks can be measured simultaneously, there is a problem that the degree of freedom in reticle design is reduced.

本発明は、このような従来の問題点に鑑み、アライメントマーク観察顕微鏡に移動手段を持たせることで、デバイスによるパターン領域の大きさに拘らず複数のアライメントマークを同時観察できるようにし、かつアライメントマークの配置場所に縛られることなくレチクル設計ができる露光装置を提供することである。   In view of such a conventional problem, the present invention provides a moving means to the alignment mark observation microscope so that a plurality of alignment marks can be observed simultaneously regardless of the size of the pattern region by the device, and the alignment is performed. It is an object of the present invention to provide an exposure apparatus capable of designing a reticle without being restricted by the mark arrangement location.

前記課題を解決するために、本発明では、露光光で第1物体のパターンを第2物体上に投影する投影光学系と該第2物体の露光位置とは異なる場所で、該露光光とは波長の異なる検出光で、該第2物体上の位置合わせマークを照明し、該マークの位置情報を検出し、該第1物体と該第2物体との相対的位置合わせを行う計測装置を複数有し、半導体デバイスプロセスの熱処理によって生じる該第2物体の各パターン領域の変形量を検出し補正する手段を有している露光装置において、該計測装置の少なくとも1つが移動可能な手段を有していることを特徴とする。   In order to solve the above-mentioned problem, in the present invention, the exposure light is different from the projection optical system that projects the pattern of the first object onto the second object with the exposure light and the exposure position of the second object. A plurality of measuring devices that illuminate an alignment mark on the second object with detection light having different wavelengths, detect positional information of the mark, and perform relative alignment between the first object and the second object And an exposure apparatus having means for detecting and correcting a deformation amount of each pattern region of the second object caused by heat treatment of the semiconductor device process, wherein at least one of the measurement apparatuses has movable means. It is characterized by.

また、本発明の好ましい態様によれば、前記計測手段は、移動可能な手段を有し、前記第2物体の各パターン領域内に配置された位置合わせマークを同時に観察できる手段を有している。また、前記移動手段は前記位置合わせマークの計測ポイントへ誤差無く正確に移動できる手段を有していることが望ましい。   According to a preferred aspect of the present invention, the measuring means has a movable means, and has means for simultaneously observing alignment marks arranged in each pattern area of the second object. . Further, it is desirable that the moving means has means capable of accurately moving to the measurement point of the alignment mark without error.

本発明によれば、デバイスによってパターン領域の大きさが異なっても、デバイスプロセスによるウエハの変形量を投影露光動作を妨げることなく短時間に精度良く計測することが可能になる。こうして、得られたウエハの変形量に対応する倍率変化等を公知の補正手段により適宜補正することができる。この結果、露光する回路パターン領域の大きさや、使用するウエハの種類にかかわらず常に安定した露光を維持することができ、像の重ね合わせ精度等が著しく向上しかつ高スループットの露光装置を提供することができる。   According to the present invention, it is possible to accurately measure the amount of deformation of a wafer due to a device process in a short time without interfering with the projection exposure operation even if the size of the pattern region differs depending on the device. In this way, a change in magnification corresponding to the deformation amount of the obtained wafer can be appropriately corrected by a known correction means. As a result, it is possible to always maintain stable exposure regardless of the size of the circuit pattern area to be exposed and the type of wafer to be used, and to provide a high-throughput exposure apparatus with significantly improved image overlay accuracy. be able to.

図1は本発明の一実施例に係わる露光装置の全体概略図である。同図において、露光光源1aを発した光は第1物体としてのレチクル3を照射し、そのパターン像を投影光学系4によって第2物体としてのウエハ5に転写する。ウエハ5は定盤8上に配置されたウエハステージ7の上に固定されている。レチクル3はレチクルステージ3aにレチクル位置合わせ装置(不図示)により位置決めされた後、保持されており、レチクルステージ3aはレチクルステージ駆動手段(不図示)によりX、Y、Z、θ方向に移動される。   FIG. 1 is an overall schematic view of an exposure apparatus according to an embodiment of the present invention. In the figure, light emitted from an exposure light source 1 a irradiates a reticle 3 as a first object, and the pattern image is transferred to a wafer 5 as a second object by a projection optical system 4. The wafer 5 is fixed on a wafer stage 7 disposed on a surface plate 8. The reticle 3 is positioned on the reticle stage 3a by a reticle aligning device (not shown) and then held. The reticle stage 3a is moved in the X, Y, Z, and θ directions by a reticle stage driving means (not shown). The

ウエハステージ7は駆動系(不図示)によってXY平面内(投影光学系4の光軸と垂直面内)に移動できるようになっており、その移動量はそれぞれ不図示のX及びY方向用のレーザー測長器でモニターしている。また、この可動ステージ7はZ方向(投影光学系4の光軸方向)にも移動可能であり、可動ステージ7のZ方向の位置も不図示のZ方向位置検出手段によりモニターしている。   The wafer stage 7 can be moved in an XY plane (in a plane perpendicular to the optical axis of the projection optical system 4) by a drive system (not shown), and the amount of movement is for X and Y directions not shown. Monitored with a laser measuring instrument. The movable stage 7 is also movable in the Z direction (the optical axis direction of the projection optical system 4), and the position of the movable stage 7 in the Z direction is monitored by a Z direction position detecting unit (not shown).

ウエハステージ7上にはウエハステージ基準マーク7aが載置され、レチクルステージ3a上にはレチクル基準プレート3bが載置される。2は第1計測手段としてのTTL−ONAXIS用のアライメント顕微鏡(以下TTL顕微鏡と略す)である。TTL顕微鏡2はレチクル基準マーク3bと投影レンズ4を通してウエハステージ7上のウエハステージ基準マーク7aを同時に観察し、レチクルステージとウエハステージの位置合わせを行う。また、経時変化に対して位置関係を補正することができるため、その位置関係は保たれている。   A wafer stage reference mark 7a is placed on the wafer stage 7, and a reticle reference plate 3b is placed on the reticle stage 3a. Reference numeral 2 denotes a TTL-ONAXIS alignment microscope (hereinafter abbreviated as a TTL microscope) as a first measuring means. The TTL microscope 2 simultaneously observes the wafer stage reference mark 7a on the wafer stage 7 through the reticle reference mark 3b and the projection lens 4, and aligns the reticle stage and the wafer stage. Further, since the positional relationship can be corrected with respect to the change over time, the positional relationship is maintained.

6a、6b、6c(6b、6cは図1に現れない)は第2計測手段としてのオフアクシス顕微鏡であり、これはTTL方式によらず露光される位置とは別の位置に置かれる。ウエハステージをオフアクシス顕微鏡の観察位置まで、TTL顕微鏡で観察したウエハステージ基準マーク7aを送り込み観察する。この送り込んだ量をレーザー測長器でモニターすることで第1計測装置と第2計測装置の位置合わせを行う。また、経時変化に対して位置関係を補正することができるため、その位置関係は保たれる。   Reference numerals 6a, 6b, and 6c (6b and 6c do not appear in FIG. 1) are off-axis microscopes as the second measuring means, which are placed at positions different from the exposure positions regardless of the TTL method. The wafer stage reference mark 7a observed with the TTL microscope is sent to the observation position of the wafer stage up to the observation position of the off-axis microscope. The first measuring device and the second measuring device are aligned by monitoring the amount fed in with a laser length measuring device. Further, since the positional relationship can be corrected with respect to a change with time, the positional relationship is maintained.

ウエハ5上には、前工程までに形成された回路パターンと、この回路パターンとある定まった位置関係に配置された複数の位置合わせマーク(アライメントマーク)5a、5b、5cが形成されている。前記オフアクシス顕微鏡6a、6b、6cでウエハ5上の該位置合わせマーク(アライメントマーク)5a、5b、5cのうち少なくとも2箇所を測定し、レチクル3との相対的な位置決めを行っている。   On the wafer 5, a circuit pattern formed up to the previous process and a plurality of alignment marks (alignment marks) 5a, 5b, 5c arranged in a certain positional relationship with the circuit pattern are formed. At least two of the alignment marks 5a, 5b, and 5c on the wafer 5 are measured by the off-axis microscopes 6a, 6b, and 6c, and the relative positioning with respect to the reticle 3 is performed.

投影光学系4は不図示の鏡筒定盤に担持されており、後述するようにウエハの変形による倍率の補正手段として投影光学系4を構成する複数のレンズのうち所定のレンズが移動できるようにレンズ駆動手段が配設される。   The projection optical system 4 is carried on a lens barrel surface plate (not shown). As will be described later, a predetermined lens among a plurality of lenses constituting the projection optical system 4 can be moved as means for correcting magnification by deformation of the wafer. The lens driving means is disposed on the screen.

図2、図3はそれぞれ本発明の一実施例に関する複数具備されたオフアクシス顕微鏡の一例を図示した概略図である。図2、図3においてはオフアクシス顕微鏡の駆動部は現れていない。6b、6cのオフアクシス顕微鏡は矢印の方向に移動可能であり、それぞれ光学スケールまたはレーザー測長器で位置関係をモニターしているため位置関係は保たれ、該オフアクシス顕微鏡6a、6b、6cはウエハ上の各パターン領域内に前工程までに形成された複数のウエハ位置合わせマーク(アライメントマーク)5a、5b、5cを同時に観察し、デバイスプロセスの熱処理によって生じるウエハの変形量を測定する。   2 and 3 are schematic views illustrating an example of a plurality of off-axis microscopes according to an embodiment of the present invention. 2 and 3, the driving unit of the off-axis microscope does not appear. The off-axis microscopes 6b and 6c are movable in the direction of the arrows, and the positional relationship is maintained because the positional relationship is monitored by an optical scale or a laser length measuring device. The off-axis microscopes 6a, 6b and 6c A plurality of wafer alignment marks (alignment marks) 5a, 5b, and 5c formed in each pattern region on the wafer up to the previous process are simultaneously observed to measure the deformation amount of the wafer caused by the heat treatment of the device process.

次にオフアクシス顕微鏡の移動手段ついて述べる。図4は本発明におけるオフアクシス顕微鏡駆動部の第一例である。   Next, moving means of the off-axis microscope will be described. FIG. 4 is a first example of an off-axis microscope driving unit in the present invention.

オフアクシス顕微鏡ユニット11をリニアモーター9でエアベアリング12を介して駆動し、移動量は10の光学スケールで読み取る。また、リニアモーター9はボールネジ等を介したステッピングモーター、光学スケール10はレーザー測長器を用いても構わない。停止させる方法として駆動モーターの励磁も考えられるが本発明においては熱の影響が懸念されるため、エアベアリング12の供給エアを落としマグネット13によるロックが望ましい。   The off-axis microscope unit 11 is driven by a linear motor 9 through an air bearing 12, and the amount of movement is read with an optical scale of 10. The linear motor 9 may be a stepping motor via a ball screw or the like, and the optical scale 10 may be a laser length measuring device. Although excitation of the drive motor can be considered as a method of stopping, in the present invention, there is a concern about the influence of heat. Therefore, it is desirable to drop the supply air of the air bearing 12 and lock with the magnet 13.

図5は本発明におけるオフアクシス顕微鏡駆動部の第二例である。   FIG. 5 shows a second example of an off-axis microscope driving unit according to the present invention.

第一例と異なる点はガイドに直動ガイド16用い、停止させる方法として板バネ15を介した吸着パット14とマグネット13によるロック機構をもつことを特徴とする。   The difference from the first example is that a linear motion guide 16 is used as a guide, and a locking mechanism is provided by a suction pad 14 and a magnet 13 via a leaf spring 15 as a stopping method.

本発明の実施例による投影露光装置の構成を示す概略図である。It is the schematic which shows the structure of the projection exposure apparatus by the Example of this invention. 図1の投影光学系及びオフアクシス顕微鏡の配置を上方からみた平面図で、あるデバイスの一例である。FIG. 2 is a plan view of the arrangement of the projection optical system and the off-axis microscope in FIG. 1 as viewed from above, and is an example of a device. 図1の投影光学系及びオフアクシス顕微鏡の配置を上方からみた平面図で、あるデバイスの一例である。FIG. 2 is a plan view of the arrangement of the projection optical system and the off-axis microscope in FIG. 1 as viewed from above, and is an example of a device. 本発明におけるオフアクシス顕微鏡の第一実施例の駆動部を示す概略図である。It is the schematic which shows the drive part of the 1st Example of the off-axis microscope in this invention. 本発明におけるオフアクシス顕微鏡の第二実施例の駆動部を示す概略図である。It is the schematic which shows the drive part of the 2nd Example of the off-axis microscope in this invention.

符号の説明Explanation of symbols

1a 露光光源
1b ミラー
1c 集光レンズ
2 TTLアライメント顕微鏡
3 レチクル
3a レチクルステージ
3b レチクル基準マーク
4 投影光学系
5 ウエハ
5a〜5c 位置合わせマーク
6a 基準オフアクシス顕微鏡
6b Y移動可能オフアクシス顕微鏡
6c X移動可能オフアクシス顕微鏡
7 ウエハステージ
7a ウエハステージ基準マーク
8 ウエハステージ定盤
9 リニアモーター
10 光学スケール
11 オフアクシス顕微鏡
12 エアベアリング
13 マグネット
14 吸着パット
15 板バネ
16 直動ガイド
DESCRIPTION OF SYMBOLS 1a Exposure light source 1b Mirror 1c Condensing lens 2 TTL alignment microscope 3 Reticle 3a Reticle stage 3b Reticle reference mark 4 Projection optical system 5 Wafer 5a-5c Alignment mark 6a Reference | standard off-axis microscope 6b Y movable off-axis microscope 6c X movable Off-axis microscope 7 Wafer stage 7a Wafer stage reference mark 8 Wafer stage surface plate 9 Linear motor 10 Optical scale 11 Off-axis microscope 12 Air bearing 13 Magnet 14 Suction pad 15 Leaf spring 16 Linear guide

Claims (5)

露光光で第1物体のパターンを第2物体上に投影する投影光学系と該第2物体の露光位置とは異なる場所で、該露光光とは波長の異なる検出光で、該第2物体上の位置合わせマークを照明し、該マークの位置情報を検出し、該第1物体と該第2物体との相対的位置合わせを行う計測装置を複数有し、半導体デバイスプロセスの熱処理によって生じる該第2物体の各パターン領域の変形量を検出し補正する手段を有する露光装置において、該計測装置の少なくとも1つが移動可能な手段を有していることを特徴とする露光装置。   The projection optical system for projecting the pattern of the first object onto the second object with the exposure light and the detection light having a wavelength different from the exposure position of the second object on the second object A plurality of measuring devices that illuminate the alignment mark of the first mark, detect position information of the mark, and perform relative alignment between the first object and the second object, and are generated by heat treatment of a semiconductor device process. An exposure apparatus having means for detecting and correcting a deformation amount of each pattern area of two objects, wherein at least one of the measurement apparatuses has movable means. 請求項1に記載の露光装置において、前記第1物体の回路パターンを前記第2物体上に投影して転写し半導体デバイスを製造する際、各パターンの露光領域内に複数配置された前記位置合わせマークを同時に計測することを特徴とする露光装置。   2. The exposure apparatus according to claim 1, wherein when the semiconductor device is manufactured by projecting and transferring the circuit pattern of the first object onto the second object, a plurality of the alignments arranged in the exposure region of each pattern. An exposure apparatus that measures marks simultaneously. 請求項1及び請求項2に記載の露光装置において、前記移動手段は直動駆動機構を具備し、直動ガイド等を介して、前記各パターンの露光領域内に複数配置された前記位置合わせマークを同時に観察できる位置に移動することを特徴とする露光装置。   3. The exposure apparatus according to claim 1, wherein the moving means includes a linear motion driving mechanism, and a plurality of the alignment marks arranged in the exposure area of each pattern via a linear motion guide or the like. The exposure apparatus is characterized in that it moves to a position where it can be observed simultaneously. 請求項3に記載の露光装置において、前記移動手段はレーザー測長器または光学スケール等の計測手段を具備し、前記計測装置の移動量および位置関係をモニターしていることを特徴とする露光装置。   4. The exposure apparatus according to claim 3, wherein the moving means includes measuring means such as a laser length measuring device or an optical scale, and monitors the moving amount and the positional relationship of the measuring apparatus. . 請求項3に記載の露光装置において、前記移動手段は前記位置合わせマークを同時に観察できる位置に移動した後に、静止するためのロック機構を具備していることを特徴とする露光装置。   4. The exposure apparatus according to claim 3, wherein the moving means includes a lock mechanism for stopping after moving the alignment mark to a position where it can be observed simultaneously.
JP2004180552A 2004-06-18 2004-06-18 Aligner Withdrawn JP2006005197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004180552A JP2006005197A (en) 2004-06-18 2004-06-18 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004180552A JP2006005197A (en) 2004-06-18 2004-06-18 Aligner

Publications (1)

Publication Number Publication Date
JP2006005197A true JP2006005197A (en) 2006-01-05

Family

ID=35773306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004180552A Withdrawn JP2006005197A (en) 2004-06-18 2004-06-18 Aligner

Country Status (1)

Country Link
JP (1) JP2006005197A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077926A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Pattern forming method, pattern forming apparatus, exposure method, exposure apparatus and device manufacturing method
WO2007097379A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
CN101738873A (en) * 2008-11-10 2010-06-16 优志旺电机株式会社 Exposure device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20210008542A (en) * 2018-07-18 2021-01-22 노바 메주어링 인스트루먼츠 엘티디. Time-domain optical measurement and inspection system for semiconductor devices

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2007077926A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Pattern forming method, pattern forming apparatus, exposure method, exposure apparatus and device manufacturing method
US8400614B2 (en) 2005-12-28 2013-03-19 Nikon Corporation Pattern formation method and pattern formation apparatus, exposure method and exposure apparatus, and device manufacturing method
JP2012074751A (en) * 2005-12-28 2012-04-12 Nikon Corp Exposure method and exposure device, and manufacturing method of device
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
WO2007097379A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
JP5195417B2 (en) * 2006-02-21 2013-05-08 株式会社ニコン Pattern forming apparatus, exposure apparatus, exposure method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
KR101495471B1 (en) 2006-02-21 2015-02-23 가부시키가이샤 니콘 Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN101738873A (en) * 2008-11-10 2010-06-16 优志旺电机株式会社 Exposure device
KR20210008542A (en) * 2018-07-18 2021-01-22 노바 메주어링 인스트루먼츠 엘티디. Time-domain optical measurement and inspection system for semiconductor devices
KR102290630B1 (en) 2018-07-18 2021-08-18 노바 메주어링 인스트루먼츠 엘티디. Time-domain optical measurement and inspection systems for semiconductor devices

Similar Documents

Publication Publication Date Title
TWI655517B (en) Exposure apparatus and method, and component manufacturing method
TWI585544B (en) An exposure apparatus and an exposure method, and an element manufacturing method
TWI420248B (en) Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and element manufacturing method
TWI495958B (en) Mobile body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, and component manufacturing method
JP2006005197A (en) Aligner
JPH10223528A (en) Projection aligner and aligning method
KR20080096433A (en) Exposure apparatus and device manufacturing method
JP3466893B2 (en) Positioning apparatus and projection exposure apparatus using the same
TWI405043B (en) Aberration measurement method, exposure apparatus, and device manufacturing method
US20100208228A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP6727554B2 (en) Exposure apparatus, flat panel display manufacturing method, device manufacturing method, and exposure method
JPH11233424A (en) Projection optical device, aberration measuring method, projection method, and manufacture of device
JP2004279332A (en) Method and instrument for measuring position, exposure method, and exposure device
JP2010067873A (en) Exposure method and exposure apparatus, and method for manufacturing device
JP2008270441A (en) Exposure apparatus and manufacturing method of device
JPH1154416A (en) Projection aligner and manufacture thereof
JP2023039136A (en) Exposure device, exposure method, and article manufacturing method
JP2007287898A (en) Mark member, measuring method, measuring apparatus, and aligner
JP2005197276A (en) Exposure method and exposure apparatus, and method of manufacturing electronic device using the exposure method
JP2001338858A (en) Alignment method, exposure method and device manufacturing method
JP2001093812A (en) Semiconductor aligner, alignment apparatus and method of manufacturing device
JP2005159302A (en) Alignment device, alignment method, exposure system, and exposure method
JP2006120777A (en) Wafer-imaging apparatus
JP2006005226A (en) Position measuring device and method, aligning device and method, exposure apparatus and method, and device manufacturing method
JP2002043211A (en) Aligner and exposure system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904