JP2006003116A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2006003116A
JP2006003116A JP2004177176A JP2004177176A JP2006003116A JP 2006003116 A JP2006003116 A JP 2006003116A JP 2004177176 A JP2004177176 A JP 2004177176A JP 2004177176 A JP2004177176 A JP 2004177176A JP 2006003116 A JP2006003116 A JP 2006003116A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic sensor
axis
biaxial
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004177176A
Other languages
Japanese (ja)
Inventor
Osamu Shimoe
治 下江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004177176A priority Critical patent/JP2006003116A/en
Publication of JP2006003116A publication Critical patent/JP2006003116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-size three-axis magnetic sensor having high sensitivity with respect to direction detection, and having excellent mass productivity. <P>SOLUTION: This magnetic sensor has: a two-axis magnetic sensor part having a magnetoresistive effect element formed such that the magnetoresistive effect element has sensitivity in a plane direction including orthogonal two axes; a magnetic member provided in the two-axis magnetic sensor part such that the magnetic member projects from the plane including the orthogonal two axes, bending a magnetic component in a third axis direction orthogonal to the orthogonal two axes to the plane direction including the orthogonal two axes, and making the two-axis magnetic sensor part detect it; and a signal processing means detecting output in three-axis directions on the basis of a resistance value of the magnetoresistive effect element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気センサに係わり、特に、地磁気を検知して方位を検出する方位センサに好適な磁気センサに関する。   The present invention relates to a magnetic sensor, and more particularly to a magnetic sensor suitable for an orientation sensor that detects geomagnetism and detects an orientation.

方位センサは、磁気を検知する感磁素子を用いて地磁気を基準とした地磁気方位を検出する磁気センサである。地磁気方位とは地磁気ベクトルの地面に対する水平方向の向きであり、通常、方位センサの一表面を基準とし、該表面に平行或いは直交する2軸方向で地磁気成分を検知し、これより地磁気方位を求める2軸磁気センサが用いられている。しかし、方位検出に当り、方位センサの基準表面が地面に対して傾いていると、その変動量に応じて検知される地磁気成分は変わってしまい、正しい方位が得られなくなる。また、実際には、日本国内では地磁気自身が地表面に対して水平ではなく、35度〜60度の範囲にわたり傾いており(伏角)、方位を地磁気から求めるためには、この傾きも考慮する必要がある。これら方位センサ自体の地表面からの傾きや伏角による誤差を補正して、より精度の高い方位を検出するためには、3軸方向で地磁気成分を検知すればよく、例えば特許文献1にはホール素子を用いた3軸方位センサが提案されている。   The direction sensor is a magnetic sensor that detects a geomagnetic direction based on the geomagnetism using a magnetosensitive element that detects magnetism. The geomagnetic direction is the horizontal direction of the geomagnetic vector with respect to the ground. Usually, the surface of one direction sensor is used as a reference, the geomagnetic component is detected in two axial directions parallel or perpendicular to the surface, and the geomagnetic direction is obtained from this. A biaxial magnetic sensor is used. However, if the reference surface of the azimuth sensor is tilted with respect to the ground for azimuth detection, the detected geomagnetic component changes according to the amount of variation, and the correct azimuth cannot be obtained. Actually, in Japan, the geomagnetism itself is not horizontal with respect to the ground surface, but is tilted over a range of 35 to 60 degrees (dip angle), and this tilt is also taken into account in order to determine the orientation from the geomagnetism. There is a need. In order to correct errors due to the inclination and dip of the azimuth sensor itself from the ground surface and detect a more accurate azimuth, it is only necessary to detect the geomagnetic component in three axial directions. A three-axis azimuth sensor using an element has been proposed.

ホール素子は素子面に垂直な磁界成分を検出する感磁素子であり、特許文献1に記載の3軸磁気センサは、支持体の表面上に、該表面に直交するZ軸方向を感磁方向とした一対のホール素子を該表面内で直交するX軸とY軸の各々の軸方向に配置するとともに、ホール素子の上方に磁気集束板を支持体表面に平行に配置し、磁気収束板をその外周端部がホール素子の近傍になるように配設している。このため、支持体表面に平行なX軸、Y軸方向の磁束は、磁気集束板で収束されて磁気収束板端部近傍でZ軸方向に広がるため、ホール素子で検知することができる。この時の例えばX軸方向に配置された一対のホール素子は、X軸方向の磁束だけでなくZ軸方向の磁束も検知し、その総量分が出力される。しかし、X軸方向の磁束は磁気収束板の両端部では逆向きのZ軸方向磁束として検知されるので、一対のホール素子の出力の差分をとることで、Z軸方向の磁束分をキャンセルしてX軸方向の磁束だけを検出することができると説明されている。また、Y軸方向の磁束も同様にして検出することができ、Z軸方向の磁束は全ホール素子の出力の和をとることで、X軸及びY軸方向の磁束分をキャンセルして検出できると説明されている。
特開2003−172633号公報(段落番号0029〜0034)
The Hall element is a magnetosensitive element that detects a magnetic field component perpendicular to the element surface. The triaxial magnetic sensor described in Patent Document 1 has a Z-axis direction orthogonal to the surface on the surface of the support. Are arranged in the axial direction of each of the X axis and the Y axis orthogonal to each other in the surface, and a magnetic focusing plate is arranged in parallel to the support surface above the Hall element, The outer peripheral end is arranged in the vicinity of the Hall element. For this reason, the magnetic fluxes in the X-axis and Y-axis directions parallel to the support surface are converged by the magnetic focusing plate and spread in the Z-axis direction in the vicinity of the end of the magnetic focusing plate, and thus can be detected by the Hall element. At this time, for example, the pair of Hall elements arranged in the X-axis direction detects not only the magnetic flux in the X-axis direction but also the magnetic flux in the Z-axis direction, and the total amount is output. However, since the magnetic flux in the X-axis direction is detected as opposite Z-axis magnetic flux at both ends of the magnetic flux converging plate, the magnetic flux component in the Z-axis direction is canceled by taking the difference between the outputs of the pair of Hall elements. It is described that only the magnetic flux in the X-axis direction can be detected. Further, the magnetic flux in the Y-axis direction can be detected in the same manner, and the magnetic flux in the Z-axis direction can be detected by canceling the magnetic flux components in the X-axis and Y-axis directions by taking the sum of the outputs of all the Hall elements. It is explained.
JP 2003-172633 A (paragraph numbers 0029 to 0034)

方位センサをモバイル端末機器に搭載するためには、外形が小さいこと、地磁気を検知できる感度をもつこと、安価に大量生産できることなどが求められる。特許文献1に開示されている3軸方位センサは、感磁素子としてホール素子を用いており、ホール素子は小型化、量産性には優れているが、100μT以下の地磁気に対して得られる出力電圧は1mV以下であり、半導体を用いているため抵抗体の熱雑音以外にホール素子自身の発生する雑音1/f雑音等があり、検知可能な分解能がmT程度と低く、地磁気の磁束密度がおよそ30μT前後であることを考えると、地磁気の測定を十分なS/Nで行うことは困難であり、精度高く方位を検出するという点では不十分である。また、検出すべき地磁気信号との相対比であるSN比を向上させ精度良く測定するためには、ランダムな雑音成分を長時間平均化すればよいが、測定に時間がかかるという問題がある。   In order to mount the azimuth sensor in a mobile terminal device, it is required that the outer shape is small, the sensor has a sensitivity to detect geomagnetism, and can be mass-produced at low cost. The triaxial azimuth sensor disclosed in Patent Document 1 uses a Hall element as a magnetosensitive element, and the Hall element is excellent in miniaturization and mass productivity, but an output obtained for geomagnetism of 100 μT or less. The voltage is 1 mV or less, and since the semiconductor is used, there is noise 1 / f noise generated by the Hall element itself in addition to the thermal noise of the resistor, the detectable resolution is as low as mT, and the magnetic flux density of the geomagnetism is low. Considering that it is around 30 μT, it is difficult to measure geomagnetism with sufficient S / N, and it is insufficient in terms of detecting the direction with high accuracy. Further, in order to improve the SN ratio, which is a relative ratio to the geomagnetic signal to be detected, and to measure with high accuracy, random noise components may be averaged for a long time, but there is a problem that the measurement takes time.

従って、本発明の目的は、方位検出に十分な感度を有し、小型で量産性にも優れた3軸磁気センサを提供することである。   Accordingly, an object of the present invention is to provide a triaxial magnetic sensor that has sufficient sensitivity for azimuth detection, is small, and has excellent mass productivity.

一般に、磁気抵抗効果素子は基板上にパターニングされた薄膜強磁性体からなり、この薄膜の電気抵抗が磁気抵抗効果素子に印加されている磁界によって変化するため、磁気抵抗効果素子の抵抗値の変化分Rは、薄膜磁性体の磁化方向と電流の方向との成す角度をθとして、R(θ)=ΔR・cosθであらわされる(ΔRは抵抗変化の最大値)。その金属薄膜の厚さは通常数十ナノメートルで、その面内寸法(数10マイクロメートルから数百マイクロメートル)より十分に小さいため、磁化は薄膜の面内に向いている。電流も通常面方向を流れていることから、磁気抵抗効果素子は面に平行な磁界に対して感度を持ち、面に垂直方向には感度を持たないという特徴がある。これより、面内に感度を有する薄型化された2軸磁気センサを実現することができ、既にこのような2軸センサは市場に提供されている。また、磁気抵抗効果素子は、ホール素子より高い感度を持ち、地磁気に対して数mVの出力を得ることができるばかりでなく、金属薄膜でできているため、発生する雑音も小さく高いS/Nで地磁気を検知できる。本発明者は、これらの技術的背景をもとに鋭意検討し、本発明を完成したものである。 In general, a magnetoresistive effect element is made of a thin film ferromagnetic material patterned on a substrate, and the electric resistance of the thin film changes depending on a magnetic field applied to the magnetoresistive effect element. The fraction R is expressed as R (θ) = ΔR · cos 2 θ, where θ is the angle between the magnetization direction of the thin film magnetic material and the current direction (ΔR is the maximum resistance change). The thickness of the metal thin film is usually several tens of nanometers, which is sufficiently smaller than the in-plane dimension (several tens of micrometers to several hundreds of micrometers), so that the magnetization is directed in the plane of the thin film. Since the current also normally flows in the plane direction, the magnetoresistive element has a characteristic that it has sensitivity to a magnetic field parallel to the plane and has no sensitivity in the direction perpendicular to the plane. Thus, a thinned two-axis magnetic sensor having in-plane sensitivity can be realized, and such a two-axis sensor has already been provided to the market. In addition, the magnetoresistive element has higher sensitivity than the Hall element, and not only can obtain an output of several mV with respect to geomagnetism, but also is made of a metal thin film, so that generated noise is small and high. Can detect geomagnetism. The inventor has intensively studied based on these technical backgrounds, and has completed the present invention.

本発明は、直交する2軸を含む面方向に感度を有するように形成された磁気抵抗効果素子を備えた2軸磁気センサ部と、2軸磁気センサ部に前記直交2軸を含む面から突出するように設けられ、前記直交2軸と直交する第3軸方向の磁気成分を、直交2軸を含む面方向に曲げて前記2軸磁気センサ部で検知させる磁性部材と、前記磁気抵抗効果素子の抵抗値をもとに3軸方向の出力を検出する信号処理手段とを有することを特徴としている。   The present invention includes a two-axis magnetic sensor unit having a magnetoresistive effect element formed so as to have sensitivity in a plane direction including two orthogonal axes, and a two-axis magnetic sensor unit protruding from a plane including the two orthogonal axes. A magnetic member that is provided so as to be bent in a plane direction that includes the orthogonal two axes and that is detected by the two-axis magnetic sensor unit, and the magnetoresistive effect element And signal processing means for detecting outputs in the three-axis directions based on the resistance value.

さらに本発明は前記2軸磁気センサ部を挟んで前記磁性部材とは反対側にさらに第2の磁性部材を設けることを特徴とする。また、前記磁性部材は膜体であることが好ましい。   Furthermore, the present invention is characterized in that a second magnetic member is further provided on the side opposite to the magnetic member with the biaxial magnetic sensor portion interposed therebetween. The magnetic member is preferably a film body.

また、本発明における前記2軸磁気センサ部は、平行な対辺対を少なくとも2組有する平面コイルと、該コイル面に平行な平面に形成された4組の磁気抵抗効果素子対を有し、磁気抵抗効果素子対のうち2組の各一方の磁気抵抗効果素子2個それぞれの長手方向が前記平面コイルの対辺対の同じ1辺のみと交差していて、他方の磁気抵抗効果素子2個それぞれの長手方向が前記対辺対の前記1辺の対辺のみと交差しているとともに、前記磁気抵抗効果素子対のうち他の2組の各一方の磁気抵抗効果素子2個それぞれの長手方向が他の対辺対の同じ1辺のみと交差していて、他方の磁気抵抗効果素子2個それぞれの長手方向が前記他の対辺対の前記1辺の対辺のみと交差して、平面コイルの同じ辺と交差している磁気抵抗効果素子同士の長手方向は非平行になっていることが好ましい。
また、本発明における前記2軸磁気センサ部は、各磁気抵抗効果素子対の一方の端子同士は接続され、そこから取り出された中間電位出力が信号処理手段に入力されていることが望ましい。
The biaxial magnetic sensor unit according to the present invention includes a planar coil having at least two pairs of parallel opposite sides, and four pairs of magnetoresistive effect element pairs formed on a plane parallel to the coil surface. The longitudinal direction of each of the two magnetoresistive effect elements in each of the two pairs of the resistive effect element intersects only the same one side of the opposite side pair of the planar coil, and each of the other two magnetoresistive effect elements. The longitudinal direction intersects only the opposite side of the one side of the opposite side pair, and the longitudinal direction of each of the two other magnetoresistive effect elements of the other two sets of the magnetoresistive effect element pair is the other opposite side. It intersects only with the same one side of the pair, and the longitudinal direction of each of the other two magnetoresistive elements intersects only with the opposite side of the one side of the other pair of opposite sides and intersects with the same side of the planar coil. Of the magnetoresistive elements Preferably it is in the non-parallel.
In the biaxial magnetic sensor unit according to the present invention, it is desirable that one terminal of each magnetoresistive element pair is connected, and an intermediate potential output taken out from the two terminals is input to the signal processing means.

さらに本発明は、前記4組の磁気抵抗効果素子対からなる集合体、前記平面コイルおよび前記磁性部材が2軸磁気センサ部の中心に対して4回対称性を有する形状であることを特徴とする。   Furthermore, the present invention is characterized in that the assembly composed of the four pairs of magnetoresistive effect elements, the planar coil, and the magnetic member have a four-fold symmetry with respect to the center of the biaxial magnetic sensor unit. To do.

本発明の磁気センサは、その基本構造は、面内に形成した磁気抵抗効果素子を備えた2軸センサ部と該面に垂直方向の磁界を面方向に導く磁性部材からなり、小型で薄型かつ高精度な3軸磁気センサを実現する。特に、方位センサとして地図情報を利用する携帯型の端末や携帯型電子機器等に搭載すると、搭載した機器自体の姿勢や測定場所に係わらず方位を精度高く検出することができ有効である。   The basic structure of the magnetic sensor of the present invention is composed of a biaxial sensor portion having a magnetoresistive effect element formed in a plane and a magnetic member for guiding a magnetic field perpendicular to the plane in the plane direction. A highly accurate three-axis magnetic sensor is realized. In particular, when mounted on a portable terminal or portable electronic device that uses map information as an azimuth sensor, the azimuth can be detected with high accuracy regardless of the orientation of the mounted device itself and the measurement location.

本発明の磁気センサは、面内方向に感度を有する磁気抵抗効果素子を用いて一面の直交2軸(X、Y)方向で磁気を検知する2軸磁気センサ部と、2軸磁気センサ部に前記直交2軸を含む面から突出するように設けられ、前記直交2軸と直交する第3軸方向(Z方向)の磁気成分を、直交2軸を含む面方向に曲げて前記2軸磁気センサ部で検知させる磁性部材を備え、磁気抵抗効果素子の抵抗値変化を処理して磁気成分を3軸方向で検出するものである。すなわち、第3軸方向の磁気成分は磁性部材で収束されるため、該磁性部材端部近傍ではもともと第3軸方向であった磁気成分が曲げられて2軸(X、Y)方向の成分を有することとなり、かかる成分が2軸磁気センサ部で検出されるのである。これによって、2軸磁気センサ部以外に新たな磁気センサ部を必要とすることなく3軸の磁気センサを構成することが可能となる。   The magnetic sensor of the present invention includes a two-axis magnetic sensor unit that detects magnetism in two orthogonal (X, Y) directions on one surface using a magnetoresistive effect element having sensitivity in the in-plane direction, and a two-axis magnetic sensor unit. The biaxial magnetic sensor is provided so as to protrude from a plane including the two orthogonal axes, and a magnetic component in a third axis direction (Z direction) orthogonal to the orthogonal two axes is bent in a plane direction including the two orthogonal axes. A magnetic member to be detected by the unit is provided, a change in the resistance value of the magnetoresistive effect element is processed, and a magnetic component is detected in three axial directions. That is, since the magnetic component in the third axis direction is converged by the magnetic member, the magnetic component that was originally in the third axis direction is bent near the end of the magnetic member, and the component in the biaxial (X, Y) direction is changed. This component is detected by the biaxial magnetic sensor unit. This makes it possible to configure a triaxial magnetic sensor without requiring a new magnetic sensor unit other than the biaxial magnetic sensor unit.

また、前記2軸磁気センサ部を挟んで前記磁性部材とは反対側にさらに第2の磁性部材を設けることにより、第3軸方向の磁気成分をより効果的に2軸磁気センサ部に導き検出させることができる。この場合磁性部材と第2の磁性部材とを2軸平面方向によりずらして配置することによって、第3軸方向の磁気成分をより2軸平面方向に向けやすくなる。
以下、実施の形態をもとに、2軸センサ部と磁性部材の組み合わせや構成について具体的に説明する。なお、以降の説明では磁気抵抗効果素子をMR素子と略す。
Further, by providing a second magnetic member on the opposite side of the magnetic member across the biaxial magnetic sensor unit, the magnetic component in the third axial direction is more effectively guided to the biaxial magnetic sensor unit and detected. Can be made. In this case, by arranging the magnetic member and the second magnetic member so as to be shifted in the biaxial plane direction, the magnetic component in the third axis direction can be more easily directed in the biaxial plane direction.
Hereinafter, the combination and configuration of the biaxial sensor unit and the magnetic member will be specifically described based on the embodiment. In the following description, the magnetoresistive element is abbreviated as MR element.

(第1の実施の形態)図1は、本発明の1実施形態を説明する方位センサの外観図である。基板13表面に平行で互いに直交するように設定した2軸(X、Y軸)方向で地磁気成分を検知する2軸磁気センサ部10と、2軸磁気センサ部上に配置され前記2軸を含む面に対して垂直方向(Z軸)の磁界を集める磁性部材1とを備えている。磁性部材1は、2軸磁気センサ部表面に形成された保護絶縁膜12に例えばエポキシ系接着剤で固定され、表面には防錆コーティングが施されている。磁性部材1は、2軸磁気センサ部10に配設された複数のMR素子R(図4参照)に対し、後述する所定の位置関係になるように位置決めされており、磁性部材1で集められた磁束は前記2軸磁界センサ部10に導かれ、増幅検知回路で3軸方向の地磁気成分に分離されて出力される。   (First Embodiment) FIG. 1 is an external view of an orientation sensor for explaining one embodiment of the present invention. A biaxial magnetic sensor unit 10 that detects geomagnetic components in two axial (X, Y axis) directions set so as to be orthogonal to each other and parallel to the surface of the substrate 13, and includes the two axes arranged on the biaxial magnetic sensor unit. And a magnetic member 1 that collects a magnetic field perpendicular to the surface (Z-axis). The magnetic member 1 is fixed to a protective insulating film 12 formed on the surface of the biaxial magnetic sensor unit with, for example, an epoxy adhesive, and the surface is coated with a rust preventive coating. The magnetic member 1 is positioned so as to have a predetermined positional relationship described later with respect to a plurality of MR elements R (see FIG. 4) disposed in the biaxial magnetic sensor unit 10, and is collected by the magnetic member 1. The magnetic flux is guided to the two-axis magnetic field sensor unit 10 and separated into three-axis geomagnetic components by an amplification detection circuit and output.

まず、本発明の磁気センサに係る2軸磁気センサ部10について詳しく説明する。2軸磁気センサ部10は、感磁素子としてのMR素子Rと、MR素子Rにバイアス磁界を印加する平面コイルCを有しており、ウエハ状のシリコン基板上に半導体製造プロセス等を用いて多数個形成した後、切り離して個々の2軸磁気センサ部10とするとよい。2軸磁気センサ部10では、基板13の表面部にMR素子Rが形成され、その上に絶縁膜を介して平面コイルCが形成されており、例えば基板のサイズは縦横が2mm×2mm、厚さが0.3mm、成膜したMR素子Rや平面コイルCなどの薄膜部分の厚さは0.1〜10μmである。図2はMR素子Rと平面コイルCの関係を示す展開斜視図である。   First, the biaxial magnetic sensor unit 10 according to the magnetic sensor of the present invention will be described in detail. The biaxial magnetic sensor unit 10 includes an MR element R as a magnetosensitive element and a planar coil C that applies a bias magnetic field to the MR element R, and a semiconductor manufacturing process or the like is performed on a wafer-like silicon substrate. After forming a large number, it is preferable to separate them into individual biaxial magnetic sensor units 10. In the biaxial magnetic sensor unit 10, the MR element R is formed on the surface portion of the substrate 13, and the planar coil C is formed thereon via an insulating film. For example, the size of the substrate is 2 mm × 2 mm in length and width, thickness The thickness of thin film portions such as the formed MR element R and planar coil C is 0.1 to 10 μm. FIG. 2 is a developed perspective view showing the relationship between the MR element R and the planar coil C. FIG.

図2において、平面コイルCは薄膜プロセスで作成されたもので、平行な対辺対を少なくとも2組有する平面コイルであり(ここでは正方形)、数十回巻かれている。この平面コイル面と対向した面に、平面コイルCの外形寸法を放射状に8等分したような、略台形状の4組の磁気抵抗効果素子対(8個のMR素子R)が配列されたMR素子集合体が形成されている。1個のMR素子は、ミアンダ(つづら折)状のパターンとするとよい。つづら折の長い方の部分が感磁部であり、感磁部の長手方向が略放射状となるように8個のMR素子の各々が配置されている。図2に示すように、平面コイルC或いはMR素子集合体の辺に沿った方向をX軸及びY軸方向とすると、前記8個のMR素子は、対向する辺の向かい合うMR素子を対と考えると、X軸方向の2組のMR素子対(Rx1、Rx2),(Rx3、Rx4)と、Y軸方向の2組のMR素子対(Ry1、Ry2),(Ry3、Ry4)とになる。   In FIG. 2, a planar coil C is produced by a thin film process, and is a planar coil having at least two pairs of parallel opposite sides (here, a square) and wound several tens of times. On the surface opposed to the planar coil surface, four substantially trapezoidal magnetoresistive element pairs (eight MR elements R) are arranged such that the outer dimension of the planar coil C is radially divided into eight equal parts. An MR element assembly is formed. One MR element is preferably a meandering pattern. The longer part of the zigzag is the magnetic sensing part, and each of the eight MR elements is arranged so that the longitudinal direction of the magnetic sensing part is substantially radial. As shown in FIG. 2, when the directions along the sides of the planar coil C or the MR element assembly are the X-axis and Y-axis directions, the eight MR elements are considered to be a pair of MR elements facing opposite sides. Then, two MR element pairs (Rx1, Rx2), (Rx3, Rx4) in the X-axis direction and two MR element pairs (Ry1, Ry2), (Ry3, Ry4) in the Y-axis direction are obtained.

ここでMR素子の配置及び電気的な接続について、X軸方向の2組のMR素子対(Rx1、Rx2)、(Rx3、Rx4)をもとに説明する。2組のMR素子対の各一方のMR素子Rx1、Rx4のそれぞれの感磁部長手方向(以降、単に長手方向と略す)は、平面コイルCの対辺対の同じ1辺C11のみと45度の角度で交差している。他方のMR素子Rx2、Rx3の長手方向は、平面コイルCの前記対辺対の1辺の対辺すなわち辺C12のみと45度の角度で交差している。そして、平面コイルの同じ辺C11(C12)と交差している磁気抵抗効果素子同士Rx1、Rx4(Rx2、Rx3)の長手方向は非平行であり、図2の例では直交している。また、MR素子Rx1の長手方向とMR素子Rx2の長手方向およびRx3の長手方向とRx4の長手方向はともに非平行であり、図2の例では直交している。これらMR素子Rx1とRx2の一方の端部同士およびRx3とRx4の一方の端部同士(図2でMR素子集合体の内部側にある端部)は接続されており、MR素子Rx1およびRx3の他方の端部(図2でMR素子集合体の外部側にある端部)は電源(Vcc)に接続され、MR素子Rx2およびRx4の他方の端部(図2でMR素子集合体の外部側にある端部)は接地端子(GND)に接続されている。即ち、MR素子Rx1とMR素子Rx2およびMR素子Rx3とMR素子Rx4とはそれぞれ直列に接続されている。なお、本実施例ではMR素子の長手方向とコイルの対辺対の1辺との交差角度は45度としたが、30度よりも大きく90度以内であればよい。   Here, the arrangement and electrical connection of the MR elements will be described based on the two MR element pairs (Rx1, Rx2) and (Rx3, Rx4) in the X-axis direction. The longitudinal direction (hereinafter simply referred to as the longitudinal direction) of each MR element Rx1 and Rx4 of each of the two MR element pairs is 45 degrees with only one side C11 of the opposite side pair of the planar coil C. Intersect at an angle. The longitudinal direction of the other MR element Rx2, Rx3 intersects only one side of the opposite side of the planar coil C, that is, only the side C12 at an angle of 45 degrees. The longitudinal directions of the magnetoresistive elements Rx1, Rx4 (Rx2, Rx3) intersecting the same side C11 (C12) of the planar coil are non-parallel, and are orthogonal in the example of FIG. Further, the longitudinal direction of the MR element Rx1, the longitudinal direction of the MR element Rx2, the longitudinal direction of Rx3, and the longitudinal direction of Rx4 are both non-parallel, and are orthogonal in the example of FIG. One end portions of these MR elements Rx1 and Rx2 and one end portions of Rx3 and Rx4 (the end portion on the inner side of the MR element assembly in FIG. 2) are connected, and the MR elements Rx1 and Rx3 are connected to each other. The other end (the end on the outside of the MR element assembly in FIG. 2) is connected to the power supply (Vcc), and the other end of the MR elements Rx2 and Rx4 (the outside of the MR element assembly in FIG. 2) Is connected to a ground terminal (GND). That is, MR element Rx1 and MR element Rx2 and MR element Rx3 and MR element Rx4 are connected in series. In this embodiment, the crossing angle between the longitudinal direction of the MR element and one side of the opposite side of the coil is 45 degrees, but it may be larger than 30 degrees and within 90 degrees.

他のMR素子対についても、そのMR素子は前記MR素子対(Rx1、Rx2)、(Rx3、Rx4)で説明したと同様に配置、接続されている。即ち、前記MR素子対の各一方のMR素子Ry1,Ry4の長手方向は平面コイルCの対辺対の1辺C13のみと、各他方のMR素子Ry2,Ry3の長手方向は平面コイルCの前記対辺対の1辺の対辺C14のみと45度の角度で交差している。そして、平面コイルの同じ辺C13(C14)と交差している磁気抵抗効果素子同士Ry1、Ry4(Ry2、Ry3)の長手方向は非平行であり、図2の例では直交している。そして、MR素子Ry1,Ry3それぞれの長手方向は、そのMR素子対の対応するMR素子Ry2,Ry4の長手方向と非平行であり、図2の例では直交している。また、MR素子Ry1とRy2の一方の端部(図2でMR素子集合体の内側にある端部)同士、MR素子Ry3とRy4の一方の端部(図2でMR素子集合体の内側にある端部)同士それぞれは接続されており、MR素子対(Ry1、Ry2)及び(Ry3、Ry4)は各々直列に接続されている。   For other MR element pairs, the MR elements are arranged and connected in the same manner as described for the MR element pairs (Rx1, Rx2) and (Rx3, Rx4). That is, the longitudinal direction of each MR element Ry1, Ry4 of the MR element pair is only one side C13 of the opposite side pair of the planar coil C, and the longitudinal direction of each other MR element Ry2, Ry3 is the opposite side of the planar coil C. It intersects with only one side C14 of the pair at an angle of 45 degrees. The longitudinal directions of the magnetoresistive elements Ry1, Ry4 (Ry2, Ry3) intersecting the same side C13 (C14) of the planar coil are non-parallel, and are orthogonal in the example of FIG. The longitudinal directions of the MR elements Ry1 and Ry3 are not parallel to the longitudinal directions of the corresponding MR elements Ry2 and Ry4 of the MR element pair, and are orthogonal in the example of FIG. Also, one end of MR elements Ry1 and Ry2 (the end inside MR element assembly in FIG. 2), and one end of MR elements Ry3 and Ry4 (inside MR element assembly in FIG. 2) Each end portion is connected to each other, and the MR element pairs (Ry1, Ry2) and (Ry3, Ry4) are respectively connected in series.

図2で示す2軸磁気センサ部10の電気的な構造模式図を図3に示す。図2から理解できるように、平面コイルCに直流電流を流した時、平面コイル面に平行な面には、コイルの内側から外へ、あるいは外から内側へ向いた直流磁界が生じるので、MR素子に直流バイアス磁界が印加されることになる。直流バイアスをかけることによって、MR素子の動作点を磁界に対して感度の高い領域に設定することが可能となる。特に、高感度を得る観点からMR素子の長手方向とバイアス磁界方向との角度を略45度とすることが好ましい。図3に示すように、平面コイルCに右回りの電流Icが流れるとMR素子Rx1とRx4には+X方向の磁界が、MR素子Rx2とRx3には−X方向の磁界が印加されて、X軸方向の地磁気成分を検知することができる。また、MR素子Ry1とRy4には+Y方向の磁界が、MR素子Ry2とRy3には−Y方向の磁界が印加されて、Y軸方向の地磁気成分を検知することができる。   FIG. 3 shows a schematic diagram of the electrical structure of the biaxial magnetic sensor unit 10 shown in FIG. As can be understood from FIG. 2, when a DC current is passed through the planar coil C, a DC magnetic field is generated on the surface parallel to the planar coil surface from the inside of the coil to the outside or from the outside to the inside. A DC bias magnetic field is applied to the element. By applying a DC bias, the operating point of the MR element can be set in a region sensitive to a magnetic field. In particular, from the viewpoint of obtaining high sensitivity, the angle between the longitudinal direction of the MR element and the bias magnetic field direction is preferably about 45 degrees. As shown in FIG. 3, when a clockwise current Ic flows through the planar coil C, a magnetic field in the + X direction is applied to the MR elements Rx1 and Rx4, and a magnetic field in the -X direction is applied to the MR elements Rx2 and Rx3. An axial geomagnetic component can be detected. Further, a magnetic field in the + Y direction is applied to the MR elements Ry1 and Ry4, and a magnetic field in the -Y direction is applied to the MR elements Ry2 and Ry3, so that the geomagnetic component in the Y-axis direction can be detected.

ここで、リセットが負電流、バイアスを正電流とし、8個のMR素子Rx1〜Rx4及びRy1〜Ry4の抵抗値をrx1〜rx4及びry1〜ry4として、図3及び図5の一部を参照しながら、より詳細に説明する。それぞれの抵抗値は、2軸の外部磁界Hx,Hyに対して適切にバイアスを掛けられたMR素子の線形領域で次のように変化させることができる。なお8個のMR素子の動作点(バイアス磁界のみ)での抵抗値をすべて等しくr0とおいた。
rx1=r0−Kx×Hx+Ky×Hy
rx2=r0+Kx×Hx+Ky×Hy
rx3=r0+Kx×Hx−Ky×Hy
rx4=r0−Kx×Hx−Ky×Hy
ry1=r0+Kx×Hx−Ky×Hy
ry2=r0+Kx×Hx+Ky×Hy
ry3=r0−Kx×Hx+Ky×Hy
ry4=r0−Kx×Hx−Ky×Hy
Here, the reset is a negative current, the bias is a positive current, and the resistance values of the eight MR elements Rx1 to Rx4 and Ry1 to Ry4 are rx1 to rx4 and ry1 to ry4. However, it demonstrates in detail. The respective resistance values can be changed in the linear region of the MR element appropriately biased with respect to the biaxial external magnetic fields Hx and Hy as follows. The resistance values at the operating points (only bias magnetic field) of the eight MR elements were all set equal to r0.
rx1 = r0−Kx × Hx + Ky × Hy
rx2 = r0 + Kx × Hx + Ky × Hy
rx3 = r0 + Kx × Hx−Ky × Hy
rx4 = r0−Kx × Hx−Ky × Hy
ry1 = r0 + Kx × Hx−Ky × Hy
ry2 = r0 + Kx × Hx + Ky × Hy
ry3 = r0−Kx × Hx + Ky × Hy
ry4 = r0−Kx × Hx−Ky × Hy

X軸ブリッジからの二つの出力、すなわち磁気抵抗効果素子対rx1/rx2とrx3/rx4の中間電位出力Vx、Vxを信号処理手段に入力して演算させることにより以下に示すように容易にX軸方向の磁気成分に対応した出力を得ることができる。中間電位出力Vx、Vxの差を増幅した電圧X1に比例する量は次式で求められる。
X1∝Vx−Vx
∝(rx2−rx1)−(rx4−rx3)
=(Kx×Hx+Ky×Hy+Kx×Hx−Ky×Hy)
−(−Kx×Hx−Ky×Hy−Kx×Hx+Ky×Hy)
=(2×Kx×Hx)−(−2×Kx×Hx)
=4×Kx×Hx
同様にY軸ブリッジからの出力に比例する量は次式のように求められる。
Y1∝Vy−Vy
∝(ry2−ry1)−(ry4−ry3)
=4×Ky×Hy
このように、2軸磁気センサ部を本発明の構成とすることにより、磁気抵抗効果素子対の中間電位出力を用いてX、Y軸用出力端子からはそれぞれの軸に対応する出力を独立に得ることができる。また、パルス的なリセット電流とバイアス電流を反転してこの動作を行なうと、ブリッジから符号の反転した信号成分出力を得ることができる。この2回の測定出力の差をとることによって、直流的なオフセットや、雑音の減少を図れ、信号出力を2倍とすることができる。
By inputting the two outputs from the X-axis bridge, that is, the intermediate potential outputs Vx + and Vx of the magnetoresistive effect element pairs rx1 / rx2 and rx3 / rx4 to the signal processing means and calculating them, the following can be easily performed. An output corresponding to the magnetic component in the X-axis direction can be obtained. An amount proportional to the voltage X1 obtained by amplifying the difference between the intermediate potential outputs Vx + and Vx is obtained by the following equation.
X1αVx + -Vx -
∝ (rx2-rx1)-(rx4-rx3)
= (Kx × Hx + Ky × Hy + Kx × Hx−Ky × Hy)
− (− Kx × Hx−Ky × Hy−Kx × Hx + Ky × Hy)
= (2 * Kx * Hx)-(-2 * Kx * Hx)
= 4 x Kx x Hx
Similarly, an amount proportional to the output from the Y-axis bridge is obtained as follows.
Y1αVy + -Vy -
∝ (ry2-ry1)-(ry4-ry3)
= 4 x Ky x Hy
As described above, by configuring the two-axis magnetic sensor unit according to the present invention, the output corresponding to each axis can be independently generated from the output terminals for the X and Y axes using the intermediate potential output of the magnetoresistive effect element pair. Obtainable. When this operation is performed by inverting the pulsed reset current and bias current, a signal component output with the sign reversed can be obtained from the bridge. By taking the difference between the two measurement outputs, the DC offset and noise can be reduced, and the signal output can be doubled.

次に、2軸磁気センサ部10の感磁面に対して垂直方向(Z軸)の磁界を集め2軸磁気センサ部に導く磁性部材1について説明する。磁性部材1は、Z軸方向の地磁気成分を効率よくかき集めるとともにXY方向へ曲げるための手段であり、図7にも示すように、Z軸方向に突出するように取り付けられ、Z軸方向の磁束を集めてZ軸方向成分の磁束密度が最も高くなる平坦状或いは曲面状の端面を有している。図7に示すように、磁界が矢印方向にある場合、Z軸方向に開放された上端面1aがZ軸方向の磁界を集める部位となり、2軸磁気センサ部10の表面もしくはそれを構成する基板13の表面に取り付けられる下端面1bが、前記上端面1aで集めた磁界を2軸磁気センサ部側に放出する部位となる。下端面1bは、2軸磁気センサ部10の表面もしくはそれを構成する基板13の表面に対して平行であってもよいし、2軸磁界センサ部10を構成するMR素子Rの面方向を向くように形成してもよい。要は、MR素子Rに磁力線を有効に導く形状であればよい。   Next, the magnetic member 1 that collects a magnetic field perpendicular to the magnetic sensitive surface of the biaxial magnetic sensor unit 10 (Z axis) and guides it to the biaxial magnetic sensor unit will be described. The magnetic member 1 is a means for efficiently collecting the geomagnetic component in the Z-axis direction and bending it in the XY direction, and is attached so as to protrude in the Z-axis direction as shown in FIG. And has a flat or curved end surface in which the magnetic flux density in the Z-axis direction component is the highest. As shown in FIG. 7, when the magnetic field is in the direction of the arrow, the upper end surface 1 a opened in the Z-axis direction becomes a part that collects the magnetic field in the Z-axis direction, or the surface of the biaxial magnetic sensor unit 10 or the substrate constituting it. The lower end surface 1b attached to the surface of 13 serves as a portion for releasing the magnetic field collected on the upper end surface 1a to the biaxial magnetic sensor unit side. The lower end surface 1b may be parallel to the surface of the biaxial magnetic sensor unit 10 or the surface of the substrate 13 constituting the biaxial magnetic sensor unit 10, and faces the surface direction of the MR element R constituting the biaxial magnetic field sensor unit 10. You may form as follows. In short, any shape that effectively guides the lines of magnetic force to the MR element R may be used.

前記磁性部材1は、強磁性体で透磁率が高い材料を用いることが望ましい。例えば酸化物磁性材料、鉄系磁性材料の他、パーマロイ、軟磁性アモルファス材料、ナノ結晶軟磁性材料などであって、箔、細線、薄帯もしくは薄板の形状のものを用いるとよい。   The magnetic member 1 is preferably made of a ferromagnetic material having a high magnetic permeability. For example, in addition to oxide magnetic materials and iron-based magnetic materials, permalloy, soft magnetic amorphous materials, nanocrystalline soft magnetic materials, and the like may be used in the form of foil, thin wire, ribbon, or thin plate.

前記磁性部材1は、前記2軸磁気センサ部10の表面もしくは基板13の表面に略平行な断面が十字型であり、4回の回転対称軸を持っている。十字型の磁性部材1は、例えば、高透磁率の薄板を張り合わせて組み立てたり、断面十字型の棒材もしくは線材を適当な長さに切断したり、十字型の基体の表面に高透磁率材料の膜をメッキ等の製膜方法により被着させたり、十字型の基体の表面に箔もしくは薄帯の高透磁率材料を貼り付けたりして形成することができる。磁性部材全体として集磁の機能を発揮するのであれば、前記基体は非磁性や低透磁率の材料で構成されていても良いが、高効率の集磁をなし、小型化を追求するためには、高透磁率材料のみで磁性部材を構成することが望ましい。特に、前記磁性部材をスパッタ、めっき等の成膜手段によって作製した膜体とすることによって製造工程を簡略化するとともに低背の磁気センサを構成することができる。   The magnetic member 1 has a cross-shaped cross section substantially parallel to the surface of the biaxial magnetic sensor unit 10 or the surface of the substrate 13 and has four rotational symmetry axes. For example, the cross-shaped magnetic member 1 can be assembled by laminating high magnetic permeability thin plates, or a cross-shaped cross-shaped bar or wire can be cut to an appropriate length, or a high-permeability material can be formed on the surface of the cross-shaped substrate. This film can be formed by depositing the film by a film forming method such as plating, or by attaching a foil or a thin high magnetic permeability material to the surface of the cross-shaped substrate. If the magnetic member as a whole exhibits the function of collecting magnetism, the substrate may be made of a non-magnetic or low-permeability material. It is desirable that the magnetic member is composed of only a high permeability material. In particular, the manufacturing process can be simplified and a low-profile magnetic sensor can be configured by using the magnetic member as a film body produced by film forming means such as sputtering or plating.

前記磁性部材1の高さ(Z軸方向への突出高さ)hは、図1、7では誇張して示しているが、500μm程度である。なお、より小型・低背の磁気センサとする場合には、前記磁性部材の高さは低いほうが有利であり、その場合好ましくは10μm以下である。また、十字型断面における断面積(厚さt×長さs)はMR素子集合体の大きさによって適宜設定されるが、第3軸(Z)方向の磁気成分を高効率で2磁気センサ部に導く観点からは、厚さtは十字型の一つの羽部分が一つのMR素子からはみ出さない範囲とすることが好ましい。   Although the height (projection height in the Z-axis direction) h of the magnetic member 1 is exaggerated in FIGS. 1 and 7, it is about 500 μm. In the case of a smaller and lower-profile magnetic sensor, it is advantageous that the height of the magnetic member is lower, and in that case, it is preferably 10 μm or less. The cross-sectional area (thickness t × length s) in the cross-shaped cross section is appropriately set according to the size of the MR element assembly. However, the magnetic component in the third axis (Z) direction can be efficiently converted into two magnetic sensor units. From the viewpoint of leading to the above, it is preferable that the thickness t is in a range in which one cross-shaped wing portion does not protrude from one MR element.

以上説明したように、第1の実施形態の磁気センサは、2軸磁気センサ部10上に、十字型の磁性部材1を保護絶縁膜12を介して配置した構成である。図4は前記した2軸磁気センサ部10におけるMR素子Rと磁性部材1との平面的な配置を示す図であり、図5はMR素子からの出力を加減算し振幅を大きくするための増幅器の回路接続図である。図4に示すように、磁性部材1は、2軸磁気センサ部10の有するMR素子集合体の中心にその十字の中心をほぼ一致させるとともに、十字の羽(フィン)をX、Y軸から角度φ回転させて配置される。角度φは0度より大きく、45度未満の範囲とするが、略中間の23度程度に設定することが望ましい。さらに、対称性を考えて45度の整数倍を加えても同様である。従って、1個おきの4個のMR素子(rx1、ry4、rx3、ry2:第1感磁素子)の上に磁性部材1の十字の羽(フィン)が配置され、他の4個のMR素子(ry1、rx2、ry3、rx4:第2感磁素子)の上にはフィンは配置されないことになる。即ち、第1感磁素子は前記磁性部材1から大きな磁界を受け、第2感磁素子が磁性部材1から受ける磁界は第1の感磁素子より小さい。なお、第1感磁素子または第2感磁素子のいずれか一方のグループについて、つづら折の向きを変えて感磁部の長手方向が中心を向く方向とは略直交するように配置して、第1感磁素子と第2感磁素子のZ軸方向磁界成分に対する感度を変えることも可能である。また、第1感磁素子と第2感磁素子を交互に隣り合うように配置しているので、測定信号のノイズを相殺してより高精度の測定を行うことができる。また、図2、図4に示すようにMR素子集合体および平面コイルをX,Y平面方向において2軸磁気センサ部の中心に対して4回対称性を有する形状とし、磁性部材も同様に4回対称性を有する形状とすることで、以下に示すようにX、Y軸に加えてZ軸方向の磁気成分も容易に演算・検出することができる。なお、4回対称性を有する磁性部材の形状は、上記十字形状の他、例えば正方形等を用いることができる。   As described above, the magnetic sensor according to the first embodiment has a configuration in which the cross-shaped magnetic member 1 is disposed on the biaxial magnetic sensor unit 10 via the protective insulating film 12. FIG. 4 is a diagram showing a planar arrangement of the MR element R and the magnetic member 1 in the biaxial magnetic sensor unit 10 described above, and FIG. 5 shows an amplifier for adding and subtracting the output from the MR element to increase the amplitude. It is a circuit connection diagram. As shown in FIG. 4, the magnetic member 1 has the center of the cross substantially coincided with the center of the MR element assembly of the biaxial magnetic sensor unit 10, and the cross wings (fins) are angled from the X and Y axes. It is arranged by rotating φ. The angle φ is larger than 0 degree and less than 45 degrees, but it is desirable to set it to about 23 degrees in the middle. Furthermore, the same applies when an integer multiple of 45 degrees is added in consideration of symmetry. Therefore, the cross-shaped wings (fins) of the magnetic member 1 are arranged on every other four MR elements (rx1, ry4, rx3, ry2: first magnetosensitive element), and the other four MR elements. Fins are not disposed on (ry1, rx2, ry3, rx4: second magnetosensitive element). That is, the first magnetosensitive element receives a large magnetic field from the magnetic member 1 and the magnetic field received by the second magnetosensitive element from the magnetic member 1 is smaller than the first magnetosensitive element. In addition, with respect to either one of the first magnetosensitive element or the second magnetosensitive element, the direction of the zigzag is changed so that the longitudinal direction of the magnetosensitive part is substantially perpendicular to the center, It is also possible to change the sensitivity of the first magnetosensitive element and the second magnetosensitive element to the Z-axis direction magnetic field component. In addition, since the first magnetosensitive element and the second magnetosensitive element are alternately arranged adjacent to each other, it is possible to perform measurement with higher accuracy by canceling noise of the measurement signal. Further, as shown in FIGS. 2 and 4, the MR element assembly and the planar coil are shaped to have a 4-fold symmetry with respect to the center of the biaxial magnetic sensor portion in the X and Y plane directions, and the magnetic member is similarly 4 By adopting a shape having rotational symmetry, it is possible to easily calculate and detect the magnetic component in the Z-axis direction in addition to the X and Y axes as shown below. In addition to the cross shape, for example, a square or the like can be used as the shape of the magnetic member having fourfold symmetry.

次に、3軸方向の地磁気成分の検知方法について図4、5をもとに説明する。
上記構造の磁気センサにおいては、磁性部材1の近傍では磁力線が曲がり、磁気抵抗素子はZ軸磁界Hzに対しても抵抗変化を引き起こすようになる。十字の磁性体からの距離の差によって、第1感磁素子と第2感磁素子とでは異なる抵抗値となるが、ここでは簡単化するために、第1感磁素子の4個のMR素子のみが等しく影響を受け、第2感磁素子の4個のMR素子は影響を受けないものとすると、各MR素子は次のように抵抗変化が起きる。なお、十字形の対称性から明らかなように、Hzに対する感度の係数の差があれば同様の結論を得ることができる。
rx1=r0−Kx×Hx+Ky×Hy−Kz×Hz
rx2=r0+Kx×Hx+Ky×Hy
rx3=r0+Kx×Hx−Ky×Hy−Kz×Hz
rx4=r0−Kx×Hx−Ky×Hy
ry1=r0+Kx×Hx−Ky×Hy
ry2=r0+Kx×Hx+Ky×Hy−Kz×Hz
ry3=r0−Kx×Hx+Ky×Hy
ry4=r0−Kx×Hx−Ky×Hy−Kz×Hz
Next, a method for detecting the geomagnetic component in the triaxial direction will be described with reference to FIGS.
In the magnetic sensor having the above structure, the magnetic lines of force are bent in the vicinity of the magnetic member 1, and the magnetoresistive element causes a resistance change even with respect to the Z-axis magnetic field Hz. The resistance values of the first magnetosensitive element and the second magnetosensitive element are different depending on the difference in distance from the cross magnetic body. Here, for the sake of simplicity, the four MR elements of the first magnetosensitive element are used. Assuming that only the four MR elements of the second magnetosensitive element are not affected, the resistance change occurs in each MR element as follows. As is clear from the symmetry of the cross shape, the same conclusion can be obtained if there is a difference in sensitivity coefficient with respect to Hz.
rx1 = r0−Kx × Hx + Ky × Hy−Kz × Hz
rx2 = r0 + Kx × Hx + Ky × Hy
rx3 = r0 + Kx × Hx−Ky × Hy−Kz × Hz
rx4 = r0−Kx × Hx−Ky × Hy
ry1 = r0 + Kx × Hx−Ky × Hy
ry2 = r0 + Kx × Hx + Ky × Hy−Kz × Hz
ry3 = r0−Kx × Hx + Ky × Hy
ry4 = r0−Kx × Hx−Ky × Hy−Kz × Hz

図5をもとに、前述した2軸の場合と同様に各軸の出力を求める。
1)X軸に対して
X1∝Vx−Vx
∝(rx2−rx1)−(rx4−rx3)
=(Kx×Hx+Ky×Hy+Kx×Hx−Ky×Hy+Kz×Hz)
−(−Kx×Hx−Ky×Hy−Kx×Hx+Ky×Hy−Kz×Hz)
=4×Kx×Hx
2)Y軸に対して
Y1∝Vy−Vy
∝(ry2−ry1)−(ry4−ry3)
=(Kx×Hx+Ky×Hy−Kz×Hz−Kx×Hx+Ky×Hy)
−(−Kx×Hx−Ky×Hy−Kz×Hz+Kx×Hx−Ky×Hy)
=4×Ky×Hy
3)Z軸に対して
Z1∝Vz−Vz
∝(rx2+rx4−rx1−rx3)−(ry2+ry4−ry1−ry3)
=(Kx×Hx+Ky×Hy−Kx×Hx−Ky×Hy+Kx×Hx−Ky×Hy
+Kz×Hz−Kx×Hx+Ky×Hy+Kz×Hz)
−(Kx×Hx+Ky×Hy−Kz×Hz−Kx×Hx−Ky×Hy−Kz×Hz
−Kx×Hx+Ky×Hy+Kx×Hx−Ky×Hy)
=(+Kz×Hz+Kz×Hz)−(−Kz×Hz−Kz×Hz)
=4×Kz×Hz
以上、X軸、Y軸と同様、Z軸に対しても独立な出力が得られることがわかる。このように、4組の磁気抵抗効果素子対の中間電位出力を信号処理手段に入力し、演算させることによって、2つのブリッジで素子数や端子数を増やさずに1つの増幅器の追加のみで3軸の磁界検出を可能としている。
Based on FIG. 5, the output of each axis is obtained in the same manner as in the case of the two axes described above.
X1αVx + -Vx with respect to 1) X-axis -
∝ (rx2-rx1)-(rx4-rx3)
= (Kx × Hx + Ky × Hy + Kx × Hx−Ky × Hy + Kz × Hz)
− (− Kx × Hx−Ky × Hy−Kx × Hx + Ky × Hy−Kz × Hz)
= 4 x Kx x Hx
Y1αVy + -Vy respect 2) Y-axis -
∝ (ry2-ry1)-(ry4-ry3)
= (Kx * Hx + Ky * Hy-Kz * Hz-Kx * Hx + Ky * Hy)
− (− Kx × Hx−Ky × Hy−Kz × Hz + Kx × Hx−Ky × Hy)
= 4 x Ky x Hy
3) Z1αVz + -Vz to the Z-axis -
∝ (rx2 + rx4-rx1-rx3)-(ry2 + ry4-ry1-ry3)
= (Kx * Hx + Ky * Hy-Kx * Hx-Ky * Hy + Kx * Hx-Ky * Hy
+ Kz × Hz-Kx × Hx + Ky × Hy + Kz × Hz)
− (Kx × Hx + Ky × Hy−Kz × Hz−Kx × Hx−Ky × Hy−Kz × Hz
−Kx × Hx + Ky × Hy + Kx × Hx−Ky × Hy)
= (+ Kz × Hz + Kz × Hz) − (− Kz × Hz−Kz × Hz)
= 4 x Kz x Hz
As described above, it is understood that independent outputs can be obtained for the Z axis as well as the X axis and the Y axis. In this way, the intermediate potential outputs of the four pairs of magnetoresistive effect element pairs are input to the signal processing means and operated, so that the number of elements and the number of terminals can be increased by two bridges without adding one amplifier, and 3 The magnetic field of the shaft can be detected.

平面コイルおよび4組のミアンダ状MR素子を有する2軸磁気センサ部ならびに磁性部材を用いた上述の実施形態の構造の磁気センサを試作し、3軸磁界検知性能を評価した。磁性部材1は、厚さtが10μmのナノ結晶軟磁性材料(日立金属製ファインメット(登録商標))箔を、一辺の長さsが500μmで、高さhが400μmの十字形に形成した。また、MR素子にはパーマロイ膜を用いた。図6に図5に示すX1、Y1、Z1軸用増幅器からの出力電圧の例を示す。図6(a)はX軸方向に磁界を印加した時の各軸X1、Y1、Z1に表われる出力を示す図である。図6(b)、(c)は、同様にY軸またはZ軸に磁界を印加した時の各軸X1、Y1、Z1に表われる出力を示す図である。いずれも、磁界印加軸の出力が、他の軸からほぼ独立して得られていることがわかる。なお、数式的に演算を行って必要のない軸からの不要な成分を消す処理などを行なうことで、より高精度な出力を得ることが可能である。なお、磁性部材として一辺が500μmの立方体フェライト磁性体を用い、そのコーナー部が前記十字形の一辺と同じ向きになるようにセットした磁気センサも試作し評価したが、上記十字型磁性部材の場合と同様にZ軸方向の磁界も検出する3軸磁気センサとして機能することが確認された。   A magnetic sensor having the structure of the above-described embodiment using a planar coil and a four-axis magnetic sensor unit having four meander-like MR elements and a magnetic member was prototyped, and the three-axis magnetic field detection performance was evaluated. The magnetic member 1 is formed of a nanocrystalline soft magnetic material (Finemet (registered trademark) made by Hitachi Metals) having a thickness t of 10 μm in a cross shape having a side length s of 500 μm and a height h of 400 μm. . A permalloy film was used for the MR element. FIG. 6 shows an example of the output voltage from the X1, Y1, and Z1 axis amplifiers shown in FIG. FIG. 6A is a diagram showing outputs appearing on the respective axes X1, Y1, and Z1 when a magnetic field is applied in the X-axis direction. FIGS. 6B and 6C are diagrams showing outputs appearing on the respective axes X1, Y1, and Z1 when a magnetic field is similarly applied to the Y-axis or the Z-axis. In either case, it can be seen that the output of the magnetic field application axis is obtained almost independently from the other axes. Note that it is possible to obtain a more accurate output by performing a mathematical operation to eliminate unnecessary components from unnecessary axes. Note that a magnetic sensor using a cubic ferrite magnetic body having a side of 500 μm as a magnetic member and having a corner portion set in the same direction as one side of the cross shape was also prototyped and evaluated. It was confirmed that it functions as a three-axis magnetic sensor that also detects a magnetic field in the Z-axis direction.

(第2の実施の形態)図8に示す第2の実施の形態の磁気センサは、第1の実施の形態の磁気センサに備えた磁性部材(以降、第1磁性部材と称する)1に、さらに第2の磁性部材11を付加した構成である。第2の磁性部材は、第1磁性部材1から放出された磁束を2軸磁気センサ部10のMR素子が受けやすい向きに矯正するものである。即ち、かかる第2の磁性部材は、元はZ軸の磁界成分であった磁界(磁性部材1からの磁界)をMR素子の感磁方向(X、Y平面方向)に導く作用を有しており、該Z軸成分をよりいっそう感磁方向に近づけ、感度を向上する効果をもたらす。第2の磁性部材11には第1磁性部材1と同様、透磁率の高い材料を用いることが望ましい。第2磁性部材11は、前記2軸磁気センサ部を挟んで前記磁性部材とは反対側に設けられる。この場合第1磁性部材と第2の磁性部材とを2軸平面方向にずらして配置することによって、第3軸方向の磁気成分をより2軸平面方向に向けやすくなる。図8の例では、裏面側は図示されていないが、第2の磁性部材11のMR素子集合体部と対向する部分は中抜きされている。この第2磁性部材11は、前記と同様、2軸磁気センサ部形成のウエハ製造工程で、フォトリソグラフィーやマスクパターニング等の手法を用いて成膜して形成するとよいが、ウエハ製造工程の後に軟磁性体のシートを貼り付けて形成してもよい。この第2の磁性部材11の形状は、中抜きされた矩形或いは円形の一枚ものとした方が第1磁性部材1からの磁界を効率よくMR素子Rに導くことができるが、面内磁界分布を乱さないようにするためには、複数の分割形状とすることが好ましい。さらにその分割形状を放射状とすることが望ましい。また、平面の総面積は第1磁性部材1の集磁面1aの面積より大きい方が好ましい。また、磁気センサがプラスチック封止される場合、端子として用いられるリードフレーム材そのものを、又はリードフレーム材に接着された或いはリードフレーム材に成膜された磁性体を第2磁性部材として用いることもできる。この場合、チップ単価に直接関係するウエハのチップサイズにとらわれず、大きな面積を有効に利用できるため感度を高めることができる。   (Second Embodiment) The magnetic sensor of the second embodiment shown in FIG. 8 is a magnetic member (hereinafter referred to as a first magnetic member) 1 provided in the magnetic sensor of the first embodiment. Further, the second magnetic member 11 is added. The second magnetic member corrects the magnetic flux emitted from the first magnetic member 1 so that the MR element of the biaxial magnetic sensor unit 10 can easily receive the magnetic flux. That is, the second magnetic member has a function of guiding a magnetic field (magnetic field from the magnetic member 1), which was originally a Z-axis magnetic field component, in the magnetosensitive direction (X and Y plane directions) of the MR element. Thus, the Z-axis component is brought closer to the magnetosensitive direction, and the sensitivity is improved. As with the first magnetic member 1, it is desirable to use a material with high magnetic permeability for the second magnetic member 11. The second magnetic member 11 is provided on the opposite side of the magnetic member with the biaxial magnetic sensor portion interposed therebetween. In this case, by disposing the first magnetic member and the second magnetic member in the biaxial plane direction, the magnetic component in the third axis direction can be more easily directed in the biaxial plane direction. In the example of FIG. 8, the back side is not shown, but the portion of the second magnetic member 11 that faces the MR element assembly is hollowed out. The second magnetic member 11 may be formed by film formation using a technique such as photolithography or mask patterning in the wafer manufacturing process for forming the biaxial magnetic sensor portion, as described above. You may form by sticking the sheet | seat of a magnetic body. The shape of the second magnetic member 11 can be such that the magnetic field from the first magnetic member 1 can be efficiently guided to the MR element R when the hollowed out rectangular or circular one is used. In order not to disturb the distribution, a plurality of divided shapes are preferable. Further, it is desirable that the divided shape is radial. Further, the total area of the plane is preferably larger than the area of the magnetic collecting surface 1 a of the first magnetic member 1. When the magnetic sensor is sealed with plastic, the lead frame material itself used as a terminal, or a magnetic body bonded to the lead frame material or formed on the lead frame material may be used as the second magnetic member. it can. In this case, the sensitivity can be increased because a large area can be used effectively without being limited by the chip size of the wafer, which is directly related to the chip unit price.

(第3の実施の形態)本発明の第3実施の形態の磁気センサの磁性部材2は、MR素子Rを構成するミアンダ状の磁性体パターンに沿って重なるように形成されている。図9にミアンダ状パターンを短手方向に切断した断面略図を示すが、磁性部材2となる磁性体は、その幅が前記パターンの幅より狭く、その断面形状は略矩形状或いは正方形状とし、ミアンダ状パターンを構成する個々のMR素子部の中心からずれた端部に位置するように形成されている。この構成では、磁性部材2は、2軸磁気センサ部を形成するウエハ製造工程において成膜によって形成することが好ましい。この場合、2軸磁気センサ部を形成した後に別工程で磁性部材を取り付ける必要がないので、製造効率が高く量産性に優れている。また、この構造の磁気センサは、磁性部材2が各MR素子に分散されて作用するので高さを小さくすることができ、よって磁気センサ全体の高さを前記の2軸磁界センサ部高さとほとんど同等に抑えることができる。例えば磁性部材を0.1〜10μmの膜厚の膜体とすることで低背の3軸磁気センサを構成することができる。また、磁力線の向きを正確に各MR素子のパターンに導入できるので、すべてのMR素子がZ軸磁界に対して抵抗変化を引き起こし、高い感度を得ることができる。また、すべてのMR素子に磁界を導入し、その向きによって出力信号の変化方向が変わることを利用して出力を増大することも可能である。なお、図9では、磁性部材2はMR素子Rの上部に成膜された平面コイルCの上部に形成されているが、MR素子Rと平面コイルCの間に形成してもよい。   (Third Embodiment) A magnetic member 2 of a magnetic sensor according to a third embodiment of the present invention is formed so as to overlap along a meander-like magnetic body pattern constituting the MR element R. FIG. 9 shows a schematic cross-sectional view of the meander-shaped pattern cut in the short direction. The magnetic material to be the magnetic member 2 is narrower than the width of the pattern, and the cross-sectional shape is substantially rectangular or square. It is formed so as to be located at an end portion shifted from the center of each MR element portion constituting the meander pattern. In this configuration, the magnetic member 2 is preferably formed by film formation in the wafer manufacturing process for forming the biaxial magnetic sensor unit. In this case, since it is not necessary to attach a magnetic member in a separate process after forming the biaxial magnetic sensor portion, the manufacturing efficiency is high and the mass productivity is excellent. Also, the magnetic sensor having this structure can be reduced in height because the magnetic member 2 is dispersed and acts on each MR element, so that the overall height of the magnetic sensor is almost equal to the height of the two-axis magnetic field sensor section. It can be suppressed equally. For example, a low-profile three-axis magnetic sensor can be configured by using a magnetic member having a film thickness of 0.1 to 10 μm. In addition, since the direction of the lines of magnetic force can be accurately introduced into the pattern of each MR element, all MR elements cause a resistance change with respect to the Z-axis magnetic field, and high sensitivity can be obtained. It is also possible to increase the output by introducing a magnetic field to all MR elements and utilizing the change direction of the output signal depending on its direction. In FIG. 9, the magnetic member 2 is formed above the planar coil C formed on the MR element R, but may be formed between the MR element R and the planar coil C.

第1の実施形態の磁気センサの外観略図である。1 is a schematic external view of a magnetic sensor according to a first embodiment. 第1の実施形態の磁気センサの磁気抵抗効果素子と平面コイルの配置を示す斜視図である。It is a perspective view which shows arrangement | positioning of the magnetoresistive effect element and planar coil of the magnetic sensor of 1st Embodiment. 第1の実施形態の磁気センサの電気的構成を示す模式図である。It is a schematic diagram which shows the electrical structure of the magnetic sensor of 1st Embodiment. 第1の実施形態の磁気センサの磁気抵抗効果素子と磁性部材の配置を示す平面図である。It is a top view which shows arrangement | positioning of the magnetoresistive effect element and magnetic member of the magnetic sensor of 1st Embodiment. 第1の実施形態の磁気センサの増幅出力用電気回路図である。It is an electric circuit diagram for amplification output of the magnetic sensor of the first embodiment. 実施例1の磁気センサの3軸方向磁界検出出力の例である。3 is an example of a triaxial magnetic field detection output of the magnetic sensor according to the first embodiment. 図1の磁気センサの縦断面略図である。It is a longitudinal cross-sectional schematic diagram of the magnetic sensor of FIG. 2軸磁気センサ部を挟んで第1の磁性部材とは反対側に第2の磁性部材を配置した磁気センサの外観略図である。It is the external appearance schematic of the magnetic sensor which has arrange | positioned the 2nd magnetic member on the opposite side to the 1st magnetic member on both sides of the biaxial magnetic sensor part. 磁性部材を磁気抵抗効果素子のパターンに沿って形成した磁気センサの断面略図である。It is the cross-sectional schematic of the magnetic sensor which formed the magnetic member along the pattern of the magnetoresistive effect element.

符号の説明Explanation of symbols

1、2:磁性部材、 1a:磁性部材の上端面、 1b:磁性部材の下端面、
10:2軸磁気センサ部、 11:第2の磁性部材、 12:保護絶縁膜、
13:基板、14:Z軸方向磁気成分、 R:磁気抵抗効果素子、 C:平面コイル
1, 2: Magnetic member, 1a: Upper end surface of magnetic member, 1b: Lower end surface of magnetic member,
10: biaxial magnetic sensor unit, 11: second magnetic member, 12: protective insulating film,
13: Substrate, 14: Z-axis direction magnetic component, R: Magnetoresistive element, C: Planar coil

Claims (6)

直交する2軸を含む面方向に感度を有するように形成された磁気抵抗効果素子を備えた2軸磁気センサ部と、2軸磁気センサ部に前記直交2軸を含む面から突出するように設けられ、前記直交2軸と直交する第3軸方向の磁気成分を、直交2軸を含む面方向に曲げて前記2軸磁気センサ部で検知させる磁性部材と、前記磁気抵抗効果素子の抵抗値をもとに3軸方向の出力を検出する信号処理手段とを有することを特徴とする磁気センサ。   A biaxial magnetic sensor unit having a magnetoresistive effect element formed so as to have sensitivity in a plane direction including two orthogonal axes, and a biaxial magnetic sensor unit provided so as to protrude from the plane including the orthogonal two axes A magnetic member that causes the magnetic component in the third axis direction orthogonal to the two orthogonal axes to be bent in a plane direction including the orthogonal two axes and detected by the two-axis magnetic sensor unit; and a resistance value of the magnetoresistive element. A magnetic sensor characterized by comprising signal processing means for detecting outputs in three axial directions. 前記2軸磁気センサ部を挟んで前記磁性部材とは反対側にさらに第2の磁性部材を設けることを特徴とする請求項1に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein a second magnetic member is further provided on a side opposite to the magnetic member across the biaxial magnetic sensor unit. 前記磁性部材は膜体であることを特徴とする請求項1又は2に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetic member is a film body. 前記2軸磁気センサ部は、平行な対辺対を少なくとも2組有する平面コイルと、該コイル面に平行な平面に形成された4組の磁気抵抗効果素子対を有し、磁気抵抗効果素子対のうち2組の各一方の磁気抵抗効果素子2個それぞれの長手方向が前記平面コイルの対辺対の同じ1辺のみと交差していて、他方の磁気抵抗効果素子2個それぞれの長手方向が前記対辺対の前記1辺の対辺のみと交差しているとともに、前記磁気抵抗効果素子対のうち他の2組の各一方の磁気抵抗効果素子2個それぞれの長手方向が他の対辺対の同じ1辺のみと交差していて、他方の磁気抵抗効果素子2個それぞれの長手方向が前記他の対辺対の前記1辺の対辺のみと交差して、平面コイルの同じ辺と交差している磁気抵抗効果素子同士の長手方向は非平行になっていることを特徴とする請求項1〜3のいずれかに記載の磁気センサ。   The biaxial magnetic sensor unit includes a planar coil having at least two pairs of parallel opposite sides and four pairs of magnetoresistive effect element pairs formed in a plane parallel to the coil surface. The longitudinal direction of each of the two magnetoresistive elements in each of the two sets intersects only the same one side of the opposite side pair of the planar coil, and the longitudinal direction of each of the other two magnetoresistive elements is the opposite side. One side of the pair that intersects only the opposite side of the one side and the longitudinal direction of each of the two other magnetoresistive effect elements in the other two sets is the same as the other side pair Magnetoresistive effect in which the longitudinal direction of each of the other two magnetoresistive elements intersects only the opposite side of the one side of the other opposite side pair and the same side of the planar coil. The longitudinal direction of the elements is not parallel The magnetic sensor according to claim 1, characterized in that. 各磁気抵抗効果素子対の一方の端子同士は接続され、そこから取り出された中間電位出力が信号処理手段に入力されていることを特徴とする請求項4に記載の磁気センサ。   5. The magnetic sensor according to claim 4, wherein one terminal of each magnetoresistive effect element pair is connected to each other, and an intermediate potential output taken out therefrom is inputted to the signal processing means. 前記4組の磁気抵抗効果素子対からなる集合体、前記平面コイルおよび前記磁性部材が2軸磁気センサ部の中心に対して4回対称性を有する形状であることを特徴とする請求項5に記載の磁気センサ。   6. The assembly comprising the four pairs of magnetoresistive effect element pairs, the planar coil, and the magnetic member have a four-fold symmetry with respect to the center of the biaxial magnetic sensor unit. The magnetic sensor described.
JP2004177176A 2004-06-15 2004-06-15 Magnetic sensor Pending JP2006003116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177176A JP2006003116A (en) 2004-06-15 2004-06-15 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177176A JP2006003116A (en) 2004-06-15 2004-06-15 Magnetic sensor

Publications (1)

Publication Number Publication Date
JP2006003116A true JP2006003116A (en) 2006-01-05

Family

ID=35771639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177176A Pending JP2006003116A (en) 2004-06-15 2004-06-15 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2006003116A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066262A (en) * 2008-09-08 2010-03-25 Robert Bosch Gmbh Magnetic field sensor device for measuring spatial component of magnetic field
JP2012127788A (en) * 2010-12-15 2012-07-05 Alps Electric Co Ltd Magnetic sensor
JP2013524761A (en) * 2010-04-08 2013-06-17 クアルコム,インコーポレイテッド Wireless power antenna alignment system for cars
WO2013118498A1 (en) 2012-02-07 2013-08-15 旭化成エレクトロニクス株式会社 Magnetic sensor and magnetic detection method thereof
WO2014156108A1 (en) 2013-03-26 2014-10-02 旭化成エレクトロニクス株式会社 Magnetic sensor and method for detecting magnetism thereof
JP2015517657A (en) * 2012-05-10 2015-06-22 アレグロ・マイクロシステムズ・エルエルシー Method and apparatus for magnetic field sensor with integrated coil
JP2016048256A (en) * 2009-09-25 2016-04-07 エバースピン テクノロジーズ インコーポレイテッドEverSpin Technologies, Inc. Three axis magnetic field sensor
US9525129B2 (en) 2010-03-31 2016-12-20 Everspin Technologies, Inc. Methods of manufacturing a magnetic field sensor
WO2017077871A1 (en) * 2015-11-06 2017-05-11 Tdk株式会社 Magnetic sensor
JP2017187429A (en) * 2016-04-07 2017-10-12 アルプス電気株式会社 Magnetic sensor, and manufacturing method for the same
CN107894574A (en) * 2017-09-30 2018-04-10 航天东方红卫星有限公司 A kind of method that coil magnetometer carries out heat-control multilayer cladding
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
EP2413153B1 (en) * 2009-03-26 2018-11-21 Aichi Steel Corporation Magnetic detection device
KR101923741B1 (en) 2010-04-08 2018-11-29 퀄컴 인코포레이티드 Wireless power transmission in electric vehicles
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
CN110573895A (en) * 2017-04-25 2019-12-13 柯尼卡美能达株式会社 Magnetic sensor
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11346898B2 (en) 2017-12-27 2022-05-31 Asahi Kasei Microdevices Corporation Magnetic sensor module and IC chip employed in same
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066262A (en) * 2008-09-08 2010-03-25 Robert Bosch Gmbh Magnetic field sensor device for measuring spatial component of magnetic field
EP2413153B1 (en) * 2009-03-26 2018-11-21 Aichi Steel Corporation Magnetic detection device
JP2016048256A (en) * 2009-09-25 2016-04-07 エバースピン テクノロジーズ インコーポレイテッドEverSpin Technologies, Inc. Three axis magnetic field sensor
USRE46428E1 (en) 2009-09-25 2017-06-06 Everspin Technologies, Inc. Three axis magnetic field sensor
USRE49404E1 (en) 2009-09-25 2023-01-31 Everspin Technologies, Inc. Three axis magnetic field sensor
US9525129B2 (en) 2010-03-31 2016-12-20 Everspin Technologies, Inc. Methods of manufacturing a magnetic field sensor
US10276789B2 (en) 2010-03-31 2019-04-30 Everspin Technologies, Inc. Methods of manufacturing a magnetic field sensor
US11024799B2 (en) 2010-03-31 2021-06-01 Everspin Technologies, Inc. Methods of manufacturing a magnetic field sensor
US11678584B2 (en) 2010-03-31 2023-06-13 Everspin Technologies, Inc. Methods of manufacturing a magnetic field sensor
US9553261B2 (en) 2010-03-31 2017-01-24 Everspin Technologies, Inc. Methods of manufacturing a magnetic field sensor
US9893274B2 (en) 2010-03-31 2018-02-13 Everspin Technologies, Inc. Methods of manufacturing a magnetic field sensor
JP2013524761A (en) * 2010-04-08 2013-06-17 クアルコム,インコーポレイテッド Wireless power antenna alignment system for cars
KR101923741B1 (en) 2010-04-08 2018-11-29 퀄컴 인코포레이티드 Wireless power transmission in electric vehicles
US11938830B2 (en) 2010-04-08 2024-03-26 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US11491882B2 (en) 2010-04-08 2022-11-08 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US10493853B2 (en) 2010-04-08 2019-12-03 Witricity Corporation Wireless power transmission in electric vehicles
KR101830454B1 (en) * 2010-04-08 2018-03-29 퀄컴 인코포레이티드 Wireless power antenna alignment adjustment system for vehicles
JP2012127788A (en) * 2010-12-15 2012-07-05 Alps Electric Co Ltd Magnetic sensor
WO2013118498A1 (en) 2012-02-07 2013-08-15 旭化成エレクトロニクス株式会社 Magnetic sensor and magnetic detection method thereof
US9599681B2 (en) 2012-02-07 2017-03-21 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detecting method of the same
JP2015517657A (en) * 2012-05-10 2015-06-22 アレグロ・マイクロシステムズ・エルエルシー Method and apparatus for magnetic field sensor with integrated coil
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
KR20140133820A (en) 2013-03-26 2014-11-20 아사히 가세이 일렉트로닉스 가부시끼가이샤 Magnetic sensor and magnetic detection method thereof
WO2014156108A1 (en) 2013-03-26 2014-10-02 旭化成エレクトロニクス株式会社 Magnetic sensor and method for detecting magnetism thereof
US9453890B2 (en) 2013-03-26 2016-09-27 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detecting method of the same
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
WO2017077871A1 (en) * 2015-11-06 2017-05-11 Tdk株式会社 Magnetic sensor
JPWO2017077871A1 (en) * 2015-11-06 2018-08-16 Tdk株式会社 Magnetic sensor
JP2017187429A (en) * 2016-04-07 2017-10-12 アルプス電気株式会社 Magnetic sensor, and manufacturing method for the same
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
CN110573895A (en) * 2017-04-25 2019-12-13 柯尼卡美能达株式会社 Magnetic sensor
CN110573895B (en) * 2017-04-25 2022-04-29 柯尼卡美能达株式会社 Magnetic sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
CN107894574A (en) * 2017-09-30 2018-04-10 航天东方红卫星有限公司 A kind of method that coil magnetometer carries out heat-control multilayer cladding
CN107894574B (en) * 2017-09-30 2019-10-18 航天东方红卫星有限公司 A kind of method that coil magnetometer carries out heat-control multilayer cladding
US11346898B2 (en) 2017-12-27 2022-05-31 Asahi Kasei Microdevices Corporation Magnetic sensor module and IC chip employed in same
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Similar Documents

Publication Publication Date Title
JP2006003116A (en) Magnetic sensor
JP5157611B2 (en) Magnetic sensor and manufacturing method thereof
JP5152495B2 (en) Magnetic sensor and portable information terminal device
JP4626728B2 (en) Magnetic detector
EP2003462B1 (en) Magnetic sensor and production method thereof
US9599681B2 (en) Magnetic sensor and magnetic detecting method of the same
EP3199963B1 (en) Magnetic field sensor with multiple sense layer magnetization orientations
JPH11352143A (en) Acceleration sensor
JP3573100B2 (en) Compass and direction measurement method
WO2006106490A2 (en) Multi-axis accelerometer with magnetic field detectors
JP2009216390A (en) Triaxial magnetic sensing device, and manufacturing method therefor
JP2016223894A (en) Magnetic sensor
JP2009122041A (en) Composite sensor
JP6126348B2 (en) Magnetic sensor and magnetic detection method thereof
JP6199548B2 (en) Magnetic sensor and magnetic detection method thereof
JP2006234615A (en) Magnetic sensor element, its manufacturing method, and electronic goniometer
JP6226447B2 (en) Magnetic sensor and magnetic detection method thereof
US20150160308A1 (en) Orthogonal fluxgate sensor
JP6993956B2 (en) Magnetic sensor device
JP3961265B2 (en) Magnetic sensor
JP5240657B2 (en) Sensing element, sensing device, orientation detection device, and information device
JP2003167039A (en) Magnetic sensor and azimuth detecting system using the magnetic sensor
KR100649781B1 (en) 3-axis Magnetic Sensor Using Magnetoimpedance Sensor and All-Orientation Magnetic Sensor Using the Same
KR101090967B1 (en) Electronic compass and method of fabricating the same
JP4404364B2 (en) Compact acceleration geomagnetic detector using magnetic acceleration sensor