JP2006001821A - Apparatus and method of forming quartz glass - Google Patents

Apparatus and method of forming quartz glass Download PDF

Info

Publication number
JP2006001821A
JP2006001821A JP2004182846A JP2004182846A JP2006001821A JP 2006001821 A JP2006001821 A JP 2006001821A JP 2004182846 A JP2004182846 A JP 2004182846A JP 2004182846 A JP2004182846 A JP 2004182846A JP 2006001821 A JP2006001821 A JP 2006001821A
Authority
JP
Japan
Prior art keywords
quartz glass
side plates
molding
mold
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004182846A
Other languages
Japanese (ja)
Other versions
JP4419701B2 (en
Inventor
Tetsuya Abe
哲也 阿邊
Shoji Yajima
昭司 矢島
Eiko Suzuki
瑛子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004182846A priority Critical patent/JP4419701B2/en
Publication of JP2006001821A publication Critical patent/JP2006001821A/en
Application granted granted Critical
Publication of JP4419701B2 publication Critical patent/JP4419701B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/50Structural details of the press-mould assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method of forming quartz glass by which the strain or the crack of quartz glass hardly occurs in the hot press forming and the manufacture of a mold is facilitated. <P>SOLUTION: The apparatus is provided with the mold 15 having a hollow part 21 in which the quartz glass is housed and comprising a material having larger coefficient of expansion than that of the quartz glass, a pressing part 23 and a heating means 13. The quartz glass in the hollow part 21 is pressed in the pressing part 23 while being heated by the heating means 13 to be formed into a prescribed shape. The mold 15 has a plurality of side plates 19 combined to be contact with each other and forming the side surface surroundings, an engaging means 16a, 24 and a spacer 30. The hollow part 21 is formed inside the side plates 19 and the spacer 30 and is constituted so that an engaging state is kept in the forming and the engaging state is released by the force in the outward direction which is loaded on the spacer 30 and the side plates 19 based on the difference of the coefficient of the expansion between the mold 15 and the quartz glass in the cooling after the forming and the side plates 19 and the spacer 30 are separated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、石英ガラスより膨張係数の大きい材料からなるモールド内に石英ガラスを収容して加熱加圧成形することにより、石英ガラスを所定形状に成形する装置および成形方法に関する。   The present invention relates to an apparatus and a molding method for forming a quartz glass into a predetermined shape by accommodating the quartz glass in a mold made of a material having a larger expansion coefficient than that of the quartz glass and performing heat and pressure molding.

i線より短波長の光源を用いた投影露光装置の照明光学系あるいは投影光学系
のレンズ、ミラー、レチクル等の光学部材では、材料として石英ガラスが多用されている。この石英ガラスは、例えば、火炎加水分解により透明石英ガラスを製造する直接法などの方法で合成されている。
Quartz glass is often used as a material for the illumination optical system of a projection exposure apparatus that uses a light source having a wavelength shorter than the i-line or an optical member such as a lens, mirror, or reticle of the projection optical system. This quartz glass is synthesized by, for example, a direct method for producing transparent quartz glass by flame hydrolysis.

直接法では、石英ガラス製バーナにて支燃性ガス(酸素含有ガス、例えば、酸素ガス)及び可燃性ガス(水素含有ガス、例えば、水素ガスあるいは天然ガス)を混合・燃焼させ、前記バーナの中心部から原料ガスとして高純度のケイ素化合物(例えば、四塩化ケイ素ガス)をキャリアガス(通常酸素ガス)で希釈して噴出させ、前記原料ガスを周囲の前記酸素ガス及び水素ガスの燃焼により反応(加水分解反応)させて石英ガラス微粒子を発生させ、その前記石英ガラス微粒子を、前記バーナ下方に配置され、回転および揺動および引き下げ運動を行う不透明石英ガラス板からなるターゲット上に堆積させ、同時に前記酸素ガス及び水素ガスの燃焼熱により溶融・ガラス化して石英ガラスインゴットを得ている。   In the direct method, a combustion-supporting gas (oxygen-containing gas, for example, oxygen gas) and a combustible gas (hydrogen-containing gas, for example, hydrogen gas or natural gas) are mixed and burned in a quartz glass burner. A high purity silicon compound (for example, silicon tetrachloride gas) is diluted as a source gas from the center with a carrier gas (usually oxygen gas) and ejected, and the source gas reacts by combustion of the surrounding oxygen gas and hydrogen gas (Hydrolysis reaction) to generate quartz glass fine particles, and the quartz glass fine particles are deposited on a target made of an opaque quartz glass plate disposed under the burner and performing rotation, swinging and lowering movement, A quartz glass ingot is obtained by melting and vitrification by the combustion heat of the oxygen gas and hydrogen gas.

この方法によると、比較的大きな径の石英ガラスインゴットを得易いため、インゴットからブロックを切り出して所望の形状,大きさの光学部材を製造することができる。   According to this method, since it is easy to obtain a quartz glass ingot having a relatively large diameter, an optical member having a desired shape and size can be manufactured by cutting out a block from the ingot.

また、近年、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面を有する光学部材を得るため、予め形成されたインゴット等の石英ガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている。   In recent years, in order to obtain an optical member having a large surface, such as a large lens or reticle, or a large liquid crystal display, a quartz glass lump such as a pre-formed ingot is formed into a flat shape by heating and pressing. The molding method which expands is utilized.

この成形方法では、石英ガラス塊をモールド内に収容して加熱した状態で、加圧部により加圧することにより成形を行い、その後モールド内で徐冷したり、更にアニール処理を行い、1対向面の面積が拡大された所定形状の成形体を得ている。   In this molding method, a quartz glass lump is accommodated in a mold and heated, and then molded by being pressed by a pressure unit, and then slowly cooled in the mold or further subjected to an annealing treatment. A molded body having a predetermined shape with an enlarged area is obtained.

このような加熱加圧成形を行うものとしては、例えば、グラファイト製のモールド内で、絶対圧が0.1Torr以上大気圧以下のヘリウムガス雰囲気下に、1700℃以上の温度に加熱加圧成形し、ついで1100〜1300℃まで急冷する方法が知られている。また、石英ガラスとモールドの型材との熱膨張率差に起因する応力を緩和する構造を有するグラファイト製のモールドを用いて1600℃〜1700℃で加圧成形する方法(下記、特許文献1参照。)や、そのグラファイト製のモールドが2分割以上の縦型構造である成型装置が提案されている(下記、特許文献2及び3参照。)。更には、黒鉛製のモールド内面に石英粉末からなる被覆層を設けて、1550℃〜1700℃で加圧成形する方法(下記、特許文献4参照。)も知られている。このような加熱加圧成形においては、不純物の混入を防止して成形時の耐熱強度を確保するため、グラファイトから肉厚に形成されたモールドが用いられている。   For example, the heat and pressure molding is performed in a graphite mold by heat and pressure molding at a temperature of 1700 ° C. or higher in a helium gas atmosphere having an absolute pressure of 0.1 Torr or higher and atmospheric pressure or lower. Then, a method of rapidly cooling to 1100 to 1300 ° C. is known. Also, a method of pressure molding at 1600 ° C. to 1700 ° C. using a graphite mold having a structure that relieves stress caused by a difference in thermal expansion coefficient between quartz glass and a mold mold (see Patent Document 1 below). ) And a molding apparatus in which the graphite mold has a vertical structure with two or more divisions (see Patent Documents 2 and 3 below). Furthermore, a method of forming a coating layer made of quartz powder on the inner surface of a graphite mold and performing pressure molding at 1550 ° C. to 1700 ° C. (see Patent Document 4 below) is also known. In such heat and pressure molding, a mold made of graphite is used in order to prevent impurities from being mixed and to ensure heat resistance strength during molding.

このグラファイトの膨張係数は石英ガラスの膨張係数より著しく大きく、グラファイトが8×10−6/℃であるのに対し、石英ガラスが5.5×10−7/℃である。そのため、成形後、モールド内に石英ガラスが収容された状態で冷却されると、石英ガラスの収縮量よりモールドの収縮量が大きくなるため、冷却時に石英ガラスがモールドにより圧迫され、その結果、石英ガラスに歪みや割れが生じ易い。そのため、特許文献1乃至3などでは、予め歪を回避する構造が採用されている。
特公平4−54626号公報。 特開昭56−129621号公報。 特開昭57−67031号公報。 特開2002−22020号公報。
The expansion coefficient of this graphite is significantly larger than that of quartz glass, and graphite is 8 × 10 −6 / ° C., whereas quartz glass is 5.5 × 10 −7 / ° C. For this reason, after the molding, when the quartz glass is cooled while being accommodated in the mold, the amount of shrinkage of the mold becomes larger than the amount of shrinkage of the quartz glass. Glass tends to be distorted and broken. Therefore, Patent Documents 1 to 3 and the like employ a structure that avoids distortion in advance.
Japanese Patent Publication No. 4-54626. JP-A-56-129621. JP-A-57-67031. Japanese Patent Application Laid-Open No. 2002-22020.

しかしながら、このような加熱加圧成形により多種類の形状の石英ガラスを歩留良く成形するには、成形する石英ガラスの大きさの種類の分だけモールドを準備する必要がある。そのため、石英ガラスの収縮量とモールドの収縮量の差により石英ガラスに生じる歪や割れを回避する構造を、それぞれのモールドに設けなければならず、モールドの製造に手間を要するという問題点があった。   However, in order to form various types of quartz glass with high yield by such heat and pressure molding, it is necessary to prepare molds corresponding to the size of the type of quartz glass to be molded. For this reason, each mold must be provided with a structure that avoids the distortion and cracking that occurs in the quartz glass due to the difference between the shrinkage of the quartz glass and the shrinkage of the mold. It was.

そこで、この発明では、石英ガラスの加熱加圧成形において、成形時の石英ガラスの歪や割れを生じにくく、しかも、部品の共通化が図れてモールドの製造が容易な石英ガラスの成形装置および成形方法を提供することを課題とする。   Accordingly, in the present invention, in quartz glass heating and pressure molding, quartz glass molding apparatus and molding that are difficult to cause distortion and cracking of quartz glass during molding, and that are easy to manufacture molds by sharing parts. It is an object to provide a method.

上記課題を解決する請求項1に記載の発明は、石英ガラスを収容可能な中空部を有し、該石英ガラスより膨張係数の大きい材料からなるモールドと、前記中空部の内部に移動可能に配置された加圧部と、前記中空部に収容された前記石英ガラスを加熱する加熱手段とを備え、前記中空部内の石英ガラスを前記加熱手段で加熱しつつ前記加圧部により加圧して所定形状に成形する成型装置であって、前記モールドは、互いに当接した状態で組合されて側面周囲を形成する複数の側板と、該組合された複数の側板の前記側面周囲に嵌合される嵌合手段と、前記複数の側板の少なくとも一つの内面に隣接して配置されるスペーサとを有し、前記中空部は、組合された前記複数の側板及び前記スペーサの内側に形成され、前記成形時には前記嵌合手段により嵌合状態が維持されるとともに、該成形後の冷却時には、前記モールドと前記石英ガラスとの膨張係数の相違に基づいて前記複数の側板に負荷される外方向の力により前記嵌合手段の嵌合状態が解除されて、前記側板が前記スペーサを介して移動することにより、前記複数の側板同士が離間するように、前記複数の側板と嵌合手段との嵌合面がテーパ形状に形成されていることを特徴とする。   The invention according to claim 1, which solves the above-mentioned problem, has a hollow part that can accommodate quartz glass, and is arranged so as to be movable inside the hollow part, a mold made of a material having a larger expansion coefficient than the quartz glass. And a heating means for heating the quartz glass accommodated in the hollow part, and the quartz glass in the hollow part is pressurized by the pressure part while being heated by the heating means. A molding apparatus for forming a plurality of side plates that are combined in a state of being in contact with each other to form a periphery of a side surface, and a fitting that is fitted around the side surface of the plurality of combined side plates. Means and a spacer disposed adjacent to at least one inner surface of the plurality of side plates, and the hollow portion is formed inside the plurality of side plates and the spacers combined, and during the molding, Mating means The fitting state is further maintained, and at the time of cooling after the molding, the fitting means is subjected to an outward force applied to the plurality of side plates based on a difference in expansion coefficient between the mold and the quartz glass. When the fitting state is released and the side plate moves through the spacer, the fitting surfaces of the plurality of side plates and the fitting means are formed in a tapered shape so that the plurality of side plates are separated from each other. It is characterized by being.

請求項2に記載の発明は、請求項1に記載の構成に加え、前記全ての側板毎に独立した前記スペーサが配置されていることを特徴とする。   The invention described in claim 2 is characterized in that, in addition to the configuration described in claim 1, the independent spacers are arranged for all the side plates.

請求項3に記載の発明は、請求項1又は2に記載の構成に加え、前記嵌合手段は、前記複数の側板の外側に嵌合された枠形状の支持リングを有し、前記外方向の力により前記嵌合面同士が摺動して前記支持リングが抜け方向に移動することにより、前記複数の側板同士が互いに離間する方向に移動するように構成されたことを特徴とする。   According to a third aspect of the present invention, in addition to the configuration according to the first or second aspect, the fitting means includes a frame-shaped support ring fitted to the outside of the plurality of side plates, and the outward direction. The plurality of side plates move in a direction away from each other when the fitting surfaces slide with each other and the support ring moves in the removal direction.

請求項4に記載の発明は、請求項1乃至3の何れか一つに記載の構成に加え、前記嵌合手段は、前記複数の側板の下端部が嵌合される凹部を備えた底部を有し、前記外方向の力により前記複数の側板が前記底部の凹部から抜け方向に移動することにより、前記複数の側板同士が互いに離間する方向に移動するように構成されたことを特徴とする。   According to a fourth aspect of the present invention, in addition to the configuration according to any one of the first to third aspects, the fitting means includes a bottom portion having a concave portion into which lower end portions of the plurality of side plates are fitted. And the plurality of side plates move in a direction away from each other by moving the plurality of side plates out of the recesses of the bottom by the outward force. .

請求項5に記載の発明は、請求項1乃至4の何れか一つに記載の構成に加え、前記中空部の横断面形状が略多角形状を呈し、該形状のコーナー部が前記スペーサの端部によりR形状に形成されていることを特徴とする。   According to a fifth aspect of the present invention, in addition to the structure according to any one of the first to fourth aspects, the hollow section has a substantially polygonal cross-sectional shape, and the corner portion of the shape is an end of the spacer. It is formed in the R shape by the part.

請求項6に記載の発明は、請求項1乃至4の何れか一つに記載の発明は、前記中空部の横断面形状が略多角形状を呈し、該形状のコーナー部が前記スペーサの端部により鈍角となるように複数の傾斜面が形成されたことを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 4, wherein the hollow section has a substantially polygonal cross-sectional shape, and a corner portion of the shape is an end of the spacer. A plurality of inclined surfaces are formed so as to have an obtuse angle.

請求項7に記載の石英ガラスの成形方法は、モールド内に配置された塊状の石英ガラスを加熱加圧成形する石英ガラスの成形方法において、前記モールドは、底部と、該底部の上部に配置された側壁部と、該側壁部の内側に隣接して配置されたスペーサとを有し、加熱手段により前記石英ガラスを加熱しつつ、加圧手段により前記石英ガラスを加圧成形することを特徴とする。   The method for molding quartz glass according to claim 7 is a method for molding quartz glass in which a block of quartz glass disposed in a mold is heated and pressed, and the mold is disposed at a bottom portion and an upper portion of the bottom portion. A side wall portion and a spacer disposed adjacent to the inside of the side wall portion, and the quartz glass is pressure-molded by a pressing means while the quartz glass is heated by a heating means. To do.

請求項1又は2に記載の発明によれば、モールドが、互いに当接した状態で組合されて側面周囲を形成する複数の側板と、その複数の側板の少なくとも一つの内面に隣接して配置されるスペーサと、これらを組合わせて内側に中空部が形成された状態で嵌合される嵌合手段を有するので、異なる成形工程において、厚み等の異なるスペーサと交換すれば、容易に中空部の大きさを変更することができる。そのため、複数の側壁及び嵌合手段を共通に用いて、異なる大きさの石英ガラスを形成することができるため、モールドの製造が容易である。   According to the invention described in claim 1 or 2, the mold is disposed adjacent to at least one inner surface of the plurality of side plates which are combined in a state of being in contact with each other to form the periphery of the side surface. And a fitting means that fits these in a state in which the hollow portion is formed inside by combining them, so that the hollow portion can be easily replaced by replacing the spacer with a different thickness in a different molding process. The size can be changed. Therefore, since a plurality of side walls and fitting means can be used in common to form quartz glass having different sizes, the mold can be easily manufactured.

しかも、成形時には嵌合状態が維持されるとともに、成形後の冷却時には、モールドと石英ガラスとの膨張係数の相違に基づいて複数の側板に負荷される外方向の力により嵌合状態が解除されて、側板がスペーサを介して移動することにより複数の側板同士が離間するように、嵌合面にテーパ形状が形成されているので、成形後の冷却時に、膨張係数の差に基づいて石英ガラスとモールドとの収縮量に差が生じると、嵌合手段の嵌合状態が解除されて、スペーサ及び側板が分割し、応力を解放することができ、石英ガラスの割れや歪みを抑制することができる。   In addition, the fitting state is maintained during molding, and during the cooling after molding, the fitting state is released by an outward force applied to a plurality of side plates based on the difference in expansion coefficient between the mold and quartz glass. Since the fitting surface is tapered so that the side plates move through the spacers, the quartz glass is formed on the basis of the difference in expansion coefficient during cooling after molding. When there is a difference in the amount of shrinkage between the mold and the mold, the fitting state of the fitting means is released, the spacer and the side plate are divided, the stress can be released, and the cracking and distortion of the quartz glass can be suppressed. it can.

請求項3に記載の発明によれば、嵌合手段が複数の側板の外側に嵌合された枠形状の支持リングを有し、外方向の力により嵌合面同士が摺動して支持リングが抜け方向に移動することにより、複数の側板同士が互いに離間する方向に移動するように構成されているので、モールドの組立及び分解の際に複数の側板及び嵌合手段の着脱が容易であり、また、共通の側壁及び嵌合手段を用いるため、中空部の面積等の平面形状を変更しても同じ動作が得られ、冷却時の歪みや割れの発生を確実に防止することができる。   According to the invention described in claim 3, the fitting means has a frame-shaped support ring fitted on the outside of the plurality of side plates, and the fitting surfaces slide with each other by an outward force. Since the plurality of side plates move in a direction away from each other by moving in the removal direction, it is easy to attach and detach the plurality of side plates and fitting means when assembling and disassembling the mold. In addition, since the common side wall and the fitting means are used, the same operation can be obtained even if the planar shape such as the area of the hollow portion is changed, and the occurrence of distortion and cracking during cooling can be reliably prevented.

請求項4に記載の発明によれば、嵌合手段が複数の側板の下端部が嵌合される凹部を備えた底部を有し、外方向の力により複数の側板が底部の凹部から抜け方向に移動することにより、複数の側板同士が互いに離間する方向に移動するように構成されているので、モールドの組立及び分解の際に複数の側板及び嵌合手段の着脱が容易であり、また、共通の側壁及び嵌合手段を用いるため、中空部の面積等の平面形状を変更しても同じ動作が得られ、冷却時の歪みや割れの発生を確実に防止することができる。   According to invention of Claim 4, a fitting means has a bottom part provided with the recessed part by which the lower end part of a some side plate is fitted, and a some side plate is the direction which pulls out from the recessed part of a bottom part by external force. Since the plurality of side plates are configured to move in a direction away from each other, the plurality of side plates and the fitting means can be easily attached and detached when the mold is assembled and disassembled. Since the common side wall and the fitting means are used, the same operation can be obtained even if the planar shape such as the area of the hollow portion is changed, and the occurrence of distortion and cracking during cooling can be reliably prevented.

請求項5に記載の発明によれば、中空部の横断面形状が略多角形状を呈し、該形状のコーナー部がスペーサの端部によりR形状に形成されているので、成形された石英ガラスのコーナー部に応力が集中されるのを防止することができ、コーナー部の歪みや割れを防止して石英ガラスを成形し易く、歩留まりを大幅に向上し易い。   According to the invention of claim 5, since the cross-sectional shape of the hollow portion is substantially polygonal and the corner portion of the shape is formed in an R shape by the end of the spacer, Stress can be prevented from concentrating on the corner portion, distortion and cracking of the corner portion can be prevented, quartz glass can be easily formed, and the yield can be greatly improved.

請求項6に記載の発明によれば、中空部の横断面形状が略多角形状を呈し、該形状のコーナー部がスペーサの端部により鈍角となるように複数の傾斜面が形成されているので、成形された石英ガラスのコーナー部に応力が集中されるのを防止することができ、コーナー部の歪みや割れを防止して石英ガラスを成形し易く、歩留まりを大幅に向上し易い。   According to the invention described in claim 6, since the cross-sectional shape of the hollow portion has a substantially polygonal shape, and the plurality of inclined surfaces are formed such that the corner portion of the shape has an obtuse angle with the end portion of the spacer. It is possible to prevent stress from being concentrated on the corner portion of the formed quartz glass, and it is easy to mold the quartz glass by preventing distortion and cracking of the corner portion, and it is easy to greatly improve the yield.

請求項7に記載の石英ガラスの成形方法によれば、側壁部の内側に隣接してスペーサを配置したモールドにより石英ガラスを加圧成形するので、異なる成形工程において、厚み等の異なるスペーサと交換すれば、側壁部を共通に用いて、異なる大きさの石英ガラスを成形することができる。   According to the method for molding quartz glass according to claim 7, since quartz glass is pressure-molded by a mold in which spacers are arranged adjacent to the inside of the side wall portion, it is exchanged with spacers having different thicknesses in different molding processes. Then, different sizes of quartz glass can be formed using the side wall portion in common.

[実施の形態1]
以下、この発明の実施の形態1について説明する。
[Embodiment 1]
Embodiment 1 of the present invention will be described below.

図1乃至図3はこの実施の形態の成形装置を示す。   1 to 3 show a molding apparatus according to this embodiment.

この成形装置10は、四塩化ケイ素、シラン、有機ケイ素等のケイ素化合物を原料して製造される合成石英ガラスのインゴットやその一部、または、Ge、Ti、B、F、Al等の屈折率を変化させる成分を添加した合成石英ガラスのインゴットやその一部等の石英ガラスから、例えば、大型の液晶用マスク、半導体用マスク等のレチクル(フォトマスク)用基板、結像光学系の大型のレンズ材料などのように広い面を有する板状体やその他の大型ガラスブロックを成形するための装置である。   This molding apparatus 10 is composed of an ingot of synthetic quartz glass or a part thereof manufactured from a silicon compound such as silicon tetrachloride, silane, or organic silicon, or a refractive index of Ge, Ti, B, F, Al, or the like. From quartz glass such as synthetic quartz glass ingots and parts thereof with added components that change the size of, for example, large liquid crystal masks, reticles for photomasks such as semiconductor masks, and large optical imaging systems It is an apparatus for molding a plate-like body having a wide surface such as a lens material or other large glass blocks.

この成形装置10では、金属製の真空チャンバー11の内壁に、全面にわたって設けられた断熱材12と、断熱材12の縦壁内に設けられた加熱手段としてのカーボンヒータ13とが設けられ、更に、真空チャンバー11内部の略中央部に中空部21を有するモールド15が収容されている。   In this molding apparatus 10, a heat insulating material 12 provided over the entire surface and a carbon heater 13 as a heating means provided in the vertical wall of the heat insulating material 12 are provided on the inner wall of a metal vacuum chamber 11, and A mold 15 having a hollow portion 21 is accommodated in a substantially central portion inside the vacuum chamber 11.

このモールド15は、底板16及び受板17を備えた底部18と、この底部18の上部に配置された側壁部20とを備えて、側壁部20の内側に中空部21が形成されている。   The mold 15 includes a bottom portion 18 including a bottom plate 16 and a receiving plate 17, and a side wall portion 20 disposed above the bottom portion 18, and a hollow portion 21 is formed inside the side wall portion 20.

側壁部20は、複数の側板19と、この複数の側板19の内面19a側に隣接して配置された複数のスペーサ30とが組合わされ、複数の側板19の外周側面19b周囲に嵌合手段としての支持リング24が嵌合して構成されている。   The side wall portion 20 is a combination of a plurality of side plates 19 and a plurality of spacers 30 arranged adjacent to the inner surface 19 a side of the plurality of side plates 19, and as a fitting means around the outer peripheral side surface 19 b of the plurality of side plates 19. The support ring 24 is fitted and configured.

スペーサ30は、一方の面が中空部21の壁面を構成する内面30aとなり、他方の面が側板の内面19aと隣接した状態で配置される外面30bとなる四角形状の板材である。この実施の形態では、スペーサ30の外面30bは側板19の内面19aの略全面に接しており、全ての複数の側板19毎にぞれぞれ独立したスペーサ30が接触した状態で配置されている。また、スペーサ30の両側縁には、内面30a側に配向する傾斜側面30cを有しており、互いに当接した状態で配置されている。   The spacer 30 is a quadrangular plate material in which one surface is an inner surface 30a constituting the wall surface of the hollow portion 21, and the other surface is an outer surface 30b arranged in a state adjacent to the inner surface 19a of the side plate. In this embodiment, the outer surface 30b of the spacer 30 is in contact with the substantially entire surface of the inner surface 19a of the side plate 19, and each of the plurality of side plates 19 is arranged with the independent spacer 30 in contact therewith. . Further, the side edges of the spacer 30 have inclined side surfaces 30c oriented toward the inner surface 30a, and are arranged in contact with each other.

側板19は、一方の面がスペーサ30と接触する内面19aとなり、他方の面が側壁部20の側面周囲を構成する外面19bとなる四角形状の板材である。この側板19の両側には、内面19a側に配向する傾斜側面19cを有し、互いに当接して配置されている。上端部19d及び下端部19eには、それぞれ外面19b側に配向するテーパ形状の嵌合面19f、19gを有している。同様に   The side plate 19 is a rectangular plate material in which one surface is an inner surface 19 a that contacts the spacer 30 and the other surface is an outer surface 19 b that forms the periphery of the side surface of the side wall portion 20. On both sides of the side plate 19, there are inclined side surfaces 19 c oriented toward the inner surface 19 a and are disposed in contact with each other. The upper end portion 19d and the lower end portion 19e have tapered fitting surfaces 19f and 19g respectively oriented to the outer surface 19b side. As well

支持リング24は、中空に形成された4角形状の枠であり、側板19の嵌合面19fと一致するテーパ形状の嵌合面24aを内側に有している。   The support ring 24 is a quadrangular frame formed in a hollow shape, and has a tapered fitting surface 24 a that coincides with the fitting surface 19 f of the side plate 19 on the inner side.

そして、この側壁部20は、傾斜側面19c同士を面接触させて当接させて4枚の側板19を四角筒状に組み合わせ、更に、この内側にスペーサ30を隣接させた状態で組み合わせ、この状態で4枚の側板19の周囲に支持リング24を装着して、側板19の嵌合面19fに支持リング24の嵌合面24aを嵌合させることにより形成されている。   And this side wall part 20 makes the inclined side surfaces 19c contact each other, abuts the four side plates 19 in a square tube shape, and further combines the spacers 30 adjacent to each other in this state. Thus, the support ring 24 is mounted around the four side plates 19, and the fitting surface 24 a of the support ring 24 is fitted to the fitting surface 19 f of the side plate 19.

また、底部18の底板16には、側壁部20の下端部19gを挿入可能な嵌合手段としての凹部16aが形成されている。この凹部16aには、4枚の側板19の嵌合面19gと一致するテーパ形状の嵌合面16bが形成されている。   Further, the bottom plate 16 of the bottom portion 18 is formed with a concave portion 16a as a fitting means into which the lower end portion 19g of the side wall portion 20 can be inserted. A tapered fitting surface 16b that coincides with the fitting surfaces 19g of the four side plates 19 is formed in the recess 16a.

そして、前記のように組立てられて、スペーサ30を側板19a面に配置した状態の側板19の下端部19e側を、この凹部16aに挿入することにより、嵌合面19gの周囲に凹部16の嵌合面16bを嵌合させ、更に、中空部21内の下端部、即ち、スペーサ30の内側の下部に受板17を配置することにより、モールド15が形成されている。   Then, by inserting the lower end 19e side of the side plate 19 assembled with the spacer 30 on the surface of the side plate 19a into the recess 16a, the recess 16 is fitted around the fitting surface 19g. The mold 15 is formed by fitting the mating surface 16 b and disposing the receiving plate 17 at the lower end portion in the hollow portion 21, that is, the lower portion inside the spacer 30.

このモールド15の中空部21は、図3に示すように、横断面形状が四角形状を呈し、全てのコーナー部27がR形状に形成されている。このR形状は、スペーサ30の両側縁に形成された曲面形状を連続させることにより形成されている。   As shown in FIG. 3, the hollow portion 21 of the mold 15 has a quadrangular cross-sectional shape, and all corner portions 27 are formed in an R shape. The R shape is formed by continuing curved surface shapes formed on both side edges of the spacer 30.

さらに、中空部21には、塊状の石英ガラス25が配置された状態で、中空部21の形状に対応する形状の加圧部としての天板23が移動可能に配置されている。   Furthermore, a top plate 23 as a pressurizing portion having a shape corresponding to the shape of the hollow portion 21 is movably disposed in the hollow portion 21 in a state where the massive quartz glass 25 is disposed.

天板23は、押圧面23b(上面)を、真空チャンバー11の外部に配設された成形手段としての油圧シリンダのシリンダロッド26で押圧することにより、天板23の加圧面23aで塊状の石英ガラス25を加圧可能に構成されている。   The top plate 23 presses the pressing surface 23b (upper surface) with a cylinder rod 26 of a hydraulic cylinder as molding means disposed outside the vacuum chamber 11, so that a block of quartz is formed on the pressing surface 23a of the top plate 23. The glass 25 can be pressurized.

なお、シリンダロッド26を備えた油圧シリンダは、外部から供給する油圧を調整することにより加圧されて移動するように構成されているが、詳細な図示は省略されている。   The hydraulic cylinder provided with the cylinder rod 26 is configured to be pressurized and moved by adjusting the hydraulic pressure supplied from the outside, but the detailed illustration is omitted.

これらの底板16、受板17、側板19、スペーサ30、支持リング24、及び天板23は、何れも石英ガラス25の成形時の温度及び圧力に対する耐熱性及び強度を有し、且つ、成形時に石英ガラス25と接触しても不純物を混入しにくい材料から形成されており、ここでは全て、石英ガラスの膨張係数より大きい膨張係数を有するグラファイトにより形成されている。   These bottom plate 16, receiving plate 17, side plate 19, spacer 30, support ring 24, and top plate 23 all have heat resistance and strength against the temperature and pressure at the time of forming the quartz glass 25, and at the time of forming It is made of a material that hardly mixes impurities even when it comes into contact with the quartz glass 25, and here, it is all made of graphite having an expansion coefficient larger than that of quartz glass.

このうち、側板19及びスペーサ30には成形時に大きな曲げ方向の力が負荷される。そのため、側板19の板厚を成形時に負荷する圧力に応じて選択するのがよく、例えば、成形時の成形圧力が天板23の加圧面23aの単位面積当たりに換算した圧力の0.3〜5.0Kg/cmの場合、好ましくは20〜70mm、特に、30〜50mmの範囲とするのが好適である。板厚が薄いと、側板19が撓んで、冷却時に石英ガラス25を圧縮する応力が増加し易くなる。 Among these, a large bending direction force is applied to the side plate 19 and the spacer 30 during molding. Therefore, it is preferable to select the thickness of the side plate 19 according to the pressure applied at the time of molding. For example, the molding pressure at the time of molding is 0.3 to 0.3 of the pressure converted per unit area of the pressing surface 23a of the top plate 23. In the case of 5.0 kg / cm 2 , it is preferably 20 to 70 mm, particularly 30 to 50 mm. When the plate thickness is thin, the side plate 19 is bent, and the stress for compressing the quartz glass 25 during cooling is likely to increase.

また、スペーサ30の板厚は、好ましくは10mm〜50mmがよく、特に、20mm〜40mmの範囲とするのが好適である。これらの板厚が薄いと、取り扱いが難しく破損しやすくなり、一方、板厚が厚いと、電熱に余分な時間を要することとなる。   The plate thickness of the spacer 30 is preferably 10 mm to 50 mm, particularly preferably 20 mm to 40 mm. If these plate thicknesses are thin, handling becomes difficult and they are easily damaged, whereas if the plate thickness is thick, extra time is required for electric heating.

この成形装置10では、モールド15の側板19の嵌合面19fと支持リング24の嵌合面24aとのテーパ形状、並びに、側板19の嵌合面19gと凹部16aの嵌合面16bとのテーパ形状は、何れも成形時に嵌合状態を維持できるとともに、成形後の冷却時には嵌合状態を解除できるように設定されている。   In this molding apparatus 10, the taper shape of the fitting surface 19f of the side plate 19 of the mold 15 and the fitting surface 24a of the support ring 24, and the taper of the fitting surface 19g of the side plate 19 and the fitting surface 16b of the recess 16a. Each of the shapes is set so that the fitting state can be maintained at the time of molding and the fitting state can be released at the time of cooling after molding.

即ち、側板19の嵌合面19fと支持リング24の嵌合面24a、並びに側板19の嵌合面19fと凹部16aの嵌合面16bには、それぞれ嵌合状態とすることにより、互いに相対移動を抑制する摩擦力が作用している。この状態で、各スペーサ30を介して各側壁19に外方向の力が負荷されると、嵌合面19f、24a間、並びに嵌合面19g、16b間には、テーパ形状に応じたぬけ方向の力が作用する。ここでは、抜け方向の力が、嵌合状態の摩擦力より小さい範囲では、各嵌合面19f、24a間、並びに嵌合面19g、16b間は摺動することなく、嵌合状態を維持することができる。一方、抜け方向の力が嵌合状態の摩擦力より大きくなると、各嵌合面19f、24a間、並びに嵌合面19g、16b間が摺動して嵌合状態が解除される。   That is, the fitting surface 19f of the side plate 19 and the fitting surface 24a of the support ring 24, and the fitting surface 19f of the side plate 19 and the fitting surface 16b of the recess 16a are moved relative to each other by being in a fitted state. The friction force which suppresses is acting. In this state, when an outward force is applied to each side wall 19 via each spacer 30, there is a gap direction between the fitting surfaces 19f and 24a and between the fitting surfaces 19g and 16b according to the taper shape. The force of acts. Here, in a range in which the force in the pulling direction is smaller than the frictional force in the fitted state, the fitted state is maintained without sliding between the fitted surfaces 19f and 24a and between the fitted surfaces 19g and 16b. be able to. On the other hand, when the force in the pulling direction becomes larger than the frictional force in the fitted state, the fitted state is released by sliding between the fitted surfaces 19f and 24a and between the fitted surfaces 19g and 16b.

従って、この成形装置10では、成形時に石英ガラス25が天板23により加圧されて変形することにより生じる側板19の外方向の力では、嵌合面19f、24a間、並びに嵌合面19g、16b間の嵌合状態が維持されるテーパ形状となっている。   Therefore, in this molding apparatus 10, the outward force of the side plate 19 generated by the quartz glass 25 being pressed and deformed by the top plate 23 during molding causes the fitting surfaces 19f, 24a and the fitting surfaces 19g, It is a taper shape in which the fitting state between 16b is maintained.

同時に、成形後の冷却時に、モールド15と石英ガラス25との膨張係数の相違による収縮量の差から各側板19に支持リング24及び凹部16aに対して外方向となる力が作用した場合には、各嵌合面19f、24a間、並びに嵌合面19g、16b間が摺動して、嵌合状態が解除されるテーパ形状となっている。   At the same time, when cooling force after molding is applied to each side plate 19 due to a difference in shrinkage due to a difference in expansion coefficient between the mold 15 and the quartz glass 25, an outward force acts on the support ring 24 and the recess 16a. Each of the fitting surfaces 19f and 24a and between the fitting surfaces 19g and 16b slide to form a tapered shape in which the fitting state is released.

このようなテーパ形状は、各嵌合面の性状等により適宜選択することができるが、例えば、成形時の天板23による圧力が0.3〜5.0Kg/cmの範囲
の場合、各嵌合面のテーパ形状を60°〜75°の仰角となるように設定するのが好ましい。
Such a taper shape can be appropriately selected depending on the properties of each fitting surface, etc. For example, when the pressure by the top plate 23 at the time of molding is in the range of 0.3 to 5.0 Kg / cm 2 , The tapered shape of the fitting surface is preferably set so as to have an elevation angle of 60 ° to 75 °.

次に、以上のような構成の成形装置10により、塊状の石英ガラス25を加熱加圧成形する場合について説明する。まず、真空チャンバー11内に底板16、受板17、側板19、スペーサ30及び支持リング24を組合わせてモールド15を形成する。そして、モールド15の中空部21内に塊状の石英ガラス25を配置し、その上部に天板23を配置し、更に、天板23の押圧面23bに油圧シリンダのシリンダロッド26の押圧部位26aを当接させてセットする。この実施の形態では、塊状の石英ガラス25として合成石英ガラスインゴットを用いている。   Next, a case where the massive quartz glass 25 is subjected to heat and pressure molding by the molding apparatus 10 having the above configuration will be described. First, the mold 15 is formed by combining the bottom plate 16, the receiving plate 17, the side plate 19, the spacer 30 and the support ring 24 in the vacuum chamber 11. A massive quartz glass 25 is disposed in the hollow portion 21 of the mold 15, a top plate 23 is disposed thereon, and a pressing portion 26 a of the cylinder rod 26 of the hydraulic cylinder is provided on the pressing surface 23 b of the top plate 23. Set it in contact. In this embodiment, a synthetic quartz glass ingot is used as the massive quartz glass 25.

そして、真空チャンバー11内を不活性ガスで置換し、カーボンヒータ13により中空部21内の塊状の石英ガラス25を加熱して、結晶化温度以上軟化点以下、具体的には1570℃〜1670℃に昇温して成形を行う。   Then, the inside of the vacuum chamber 11 is replaced with an inert gas, and the massive quartz glass 25 in the hollow portion 21 is heated by the carbon heater 13, so that the crystallization temperature is equal to or higher than the softening point, specifically, 1570 ° C. to 1670 ° C. The temperature is raised to 2 and molding is performed.

成形時には、各油圧シリンダのシリンダロッド26を油圧で下方へ移動させて、シリンダロッド26の押圧部位26aで天板23の押圧面23bを押圧する。これにより、天板23が底部側の加圧方向に移動し、天板23の加圧面23aにより塊状の石英ガラス25が加圧される。   At the time of molding, the cylinder rod 26 of each hydraulic cylinder is moved downward by hydraulic pressure, and the pressing surface 23b of the top plate 23 is pressed by the pressing portion 26a of the cylinder rod 26. Thereby, the top plate 23 moves in the pressing direction on the bottom side, and the massive quartz glass 25 is pressed by the pressing surface 23 a of the top plate 23.

ここでは、成形初期の段階で天板23の圧力を小さくし、最終段階で最大加圧力となるようにしている。例えば、初期の段階では天板23の加圧面23aの単位面積当りに換算した圧力を0.3〜1.5Kg/cmとし、成形の最終段階
では1.0〜5.0Kg/cmとすることができる。また、天板23の下降速
度を、例えば5〜20cm/minとすることができる。このような圧力や下降速度の範囲にすることにより、石英ガラス25を徐々に変形させ易く、モールド15に局部的に大きな力が負荷されにくくすることができる。
Here, the pressure of the top plate 23 is reduced at the initial stage of molding, and the maximum applied pressure is set at the final stage. For example, the pressure converted to per unit area of the pressing surface 23a of the top plate 23 at an early stage and 0.3~1.5Kg / cm 2, at the final stage of molding 1.0~5.0Kg / cm 2 can do. Moreover, the descent | fall speed of the top plate 23 can be 5-20 cm / min, for example. By setting the pressure and the descending speed in such a range, the quartz glass 25 can be easily deformed gradually, and a large force can be hardly applied to the mold 15 locally.

天板23により石英ガラス25を加圧する間、複数のスペーサ30及び複数の側板19には、石英ガラス25を介して天板23の押圧力が外方向の力として負荷される。成形の最終段階では、天板23より下側の中空部21の体積が石英ガラス25の体積となり、内部に空隙が無くなるように予め設定された所定量分シリンダーロッド26及び天板23が移動することにより、最終的に天板23の圧力が複数のスペーサ30及び複数の側板19に負荷される。   While the quartz glass 25 is pressed by the top plate 23, the pressing force of the top plate 23 is applied as an outward force to the plurality of spacers 30 and the plurality of side plates 19 through the quartz glass 25. In the final stage of molding, the volume of the hollow portion 21 below the top plate 23 becomes the volume of the quartz glass 25, and the cylinder rod 26 and the top plate 23 are moved by a predetermined amount so that there is no gap inside. As a result, the pressure of the top plate 23 is finally applied to the plurality of spacers 30 and the plurality of side plates 19.

そのとき、複数の側板19の上端部19dが支持リング24の貫通孔24aに嵌合した状態で維持されるため、複数の側板19の上端部19dは外方向に移動することはない。また、同時に複数のスペーサ30も外方向に移動することはない。更に、複数の側板19の下端部19eが底板16の凹部16aに嵌合した状態で維持されるため、複数の側板19の下端部19eが外方向に移動することはない。また、同時に複数のスペーサ30も外方向に移動することはない。従って、成形時には、モールド15の中空部21の形状が確実に維持される。   At that time, since the upper end portions 19d of the plurality of side plates 19 are maintained in a state of being fitted into the through holes 24a of the support ring 24, the upper end portions 19d of the plurality of side plates 19 do not move outward. Further, the plurality of spacers 30 do not move outward at the same time. Furthermore, since the lower end portions 19e of the plurality of side plates 19 are maintained in a state of being fitted in the recesses 16a of the bottom plate 16, the lower end portions 19e of the plurality of side plates 19 do not move outward. Further, the plurality of spacers 30 do not move outward at the same time. Therefore, at the time of molding, the shape of the hollow portion 21 of the mold 15 is reliably maintained.

そして、塊状の石英ガラス25が所定形状の板状体に成形された段階で、天板23による加圧を終了する。   Then, when the massive quartz glass 25 is formed into a plate-shaped body having a predetermined shape, the pressurization by the top plate 23 is finished.

加圧終了後、板状の石英ガラス25を、モールド15内に配置した状態のまま適宜冷却速度を設定して冷却を行う。   After the pressurization is completed, the plate-like quartz glass 25 is cooled by appropriately setting the cooling rate while being placed in the mold 15.

このとき、成形直後の石英ガラス25はモールド15の中空部21の内壁に密着した状態で配置されており、この状態から温度が低下すると、温度変化に応じた石英ガラス25及びモールド15とが熱収縮を起こす。このときの収縮量はそれぞれの膨張係数に応じたものとなるため、モールド15の収縮量が石英ガラス25より大きくなる。   At this time, the quartz glass 25 immediately after molding is disposed in close contact with the inner wall of the hollow portion 21 of the mold 15, and when the temperature is lowered from this state, the quartz glass 25 and the mold 15 corresponding to the temperature change are heated. Causes contraction. Since the shrinkage at this time is in accordance with the respective expansion coefficients, the shrinkage of the mold 15 is larger than that of the quartz glass 25.

そのため、枠状の支持リング24が収縮すると、その内周の嵌合面24aに当接する側板19の上端部19dの嵌合面19fを内側に圧迫する。しかし、石英ガラス25の収縮が少ないため、スペーサ30及び側板19の上端部は内側に移動できず、その結果、支持リング24に側板19から外方向の力が負荷される。これにより、側板19の嵌合面19fと支持リング24の嵌合面24aとの嵌合状態が解除されて、支持リング24が側板19から上側の抜け方向に移動する。   Therefore, when the frame-shaped support ring 24 contracts, the fitting surface 19f of the upper end portion 19d of the side plate 19 that abuts on the inner circumferential fitting surface 24a is pressed inward. However, since the quartz glass 25 is less contracted, the upper ends of the spacer 30 and the side plate 19 cannot move inward, and as a result, an outward force is applied to the support ring 24 from the side plate 19. Thereby, the fitting state of the fitting surface 19f of the side plate 19 and the fitting surface 24a of the support ring 24 is released, and the support ring 24 moves from the side plate 19 in the upward removal direction.

また、底板16の収縮により凹部16aが収縮すると、その内周面に当接する側板19の下端部19eの嵌合面19gが内側に圧迫される。しかし、石英ガラス25の収縮が少ないため、スペーサ30及び側板19の下端部は内側に移動できず、側板19から凹部16aに外方向の力が負荷される。これにより、側板19の嵌合面19gと凹部16aの嵌合面16bとの嵌合状態が解除されて、側板19が凹部16aから上側の抜け方向に移動すると同時にスペーサ30も側板19に連動して上側の抜け方向に移動する。   When the recess 16a contracts due to the contraction of the bottom plate 16, the fitting surface 19g of the lower end portion 19e of the side plate 19 in contact with the inner peripheral surface thereof is pressed inward. However, since the quartz glass 25 is less contracted, the lower ends of the spacer 30 and the side plate 19 cannot move inward, and an outward force is applied from the side plate 19 to the recess 16a. Thereby, the fitting state of the fitting surface 19g of the side plate 19 and the fitting surface 16b of the concave portion 16a is released, and the spacer 30 is also interlocked with the side plate 19 at the same time as the side plate 19 moves in the upward direction from the concave portion 16a. Move in the upward direction.

このようにして嵌合面の嵌合状態が解除されることにより、複数のスペーサ30同士及び複数の側板19同士が離間する方向に移動し、成形された石英ガラス25がモールド15により圧縮されることを防止することができる。そして、十分に冷却することにより、成形が完了する。   In this way, when the fitting state of the fitting surface is released, the plurality of spacers 30 and the plurality of side plates 19 are moved away from each other, and the molded quartz glass 25 is compressed by the mold 15. This can be prevented. And shaping | molding is completed by fully cooling.

以上のような石英ガラス25の成形装置10によれば、互いに当接した状態で組合されて側面周囲を形成する複数の側板19と、この複数の側板19の内面に隣接して配置されるスペーサ30とを組合わせて中空部21が形成されており、この状態で複数の側板19の側面19b周囲に底板16の凹部16aまたは支持リング24とが嵌合されているので、異なる成形工程において、同一の複数の側板19を用いるとともに、同一の底部16及び支持リング24を用いても、厚さの異なるスペーサ30に交換すれば、容易に中空部21の大きさを変更することが可能である。そのため、側壁19、底部16、支持リング24等を共通に用いて、異なる大きさの石英ガラスを成形することができる。   According to the molding apparatus 10 for the quartz glass 25 as described above, a plurality of side plates 19 that are combined in contact with each other to form the periphery of the side surface, and a spacer that is disposed adjacent to the inner surfaces of the plurality of side plates 19. 30 and the hollow portion 21 is formed, and in this state, the concave portion 16a of the bottom plate 16 or the support ring 24 is fitted around the side surface 19b of the plurality of side plates 19, so in different molding steps, Even when the same side plate 19 and the same bottom 16 and support ring 24 are used, the size of the hollow portion 21 can be easily changed by replacing the spacer 30 with a different thickness. . Therefore, different sizes of quartz glass can be formed using the side wall 19, the bottom portion 16, the support ring 24, and the like in common.

しかも、複数の側板19の側面周囲に底板16の凹部16aまたは支持リング24とが成形時に嵌合状態を維持するとともに、成形後の冷却時に嵌合状態を解除できるように構成されているので、成形後の冷却時には、嵌合状態が解除されることにより複数のスペーサ30とともに連動して複数の側板19が離間されて応力を解放することができる。そのため、成形された石英ガラス25の割れや歪みを抑制することができる。   In addition, the recesses 16a of the bottom plate 16 or the support ring 24 around the side surfaces of the plurality of side plates 19 are configured to maintain a fitted state during molding, and can be released from the fitted state during cooling after molding. At the time of cooling after molding, the fitting state is released, so that the plurality of side plates 19 are separated together with the plurality of spacers 30 to release the stress. Therefore, it is possible to suppress cracking and distortion of the formed quartz glass 25.

また、枠形状の支持リング24がスペーサ30を内側に配置した状態で組合わせた複数の側板19の外側に嵌合するものであるため、モールド15の組立又は分解の際に複数の側板19を組合わせて支持リング24内に挿入又は脱離すれば、容易に着脱することができる。同時に、この支持リング24が側板19の側面19b周囲に嵌合するものであって、外方向の力により抜け方向に移動可能となっているので、冷却時の石英ガラス25の歪みや割れの発生も防止することができる。   In addition, since the frame-shaped support ring 24 is fitted to the outside of the plurality of side plates 19 combined with the spacers 30 arranged on the inside, the plurality of side plates 19 are attached when the mold 15 is assembled or disassembled. If they are combined and inserted into or removed from the support ring 24, they can be easily detached. At the same time, the support ring 24 is fitted around the side surface 19b of the side plate 19 and can be moved in the pulling direction by an external force, so that the quartz glass 25 is distorted or cracked during cooling. Can also be prevented.

更に、底板16の凹部16aが、スペーサ30を内側に配置した状態で組合わせた複数の側板19の下端部19eの外表面に嵌合するものであるため、モールド15の組立又は分解の際に複数の側板19を組合わせて底板16の凹部16a内に挿入又は脱離すれば、容易に着脱することができる。同時に、この凹部16aが側板19の側面19b周囲に嵌合するものであって、外方向の力により抜け方向に移動可能となっているので、冷却時の石英ガラス25の歪みや割れの発生も防止することができる。   Furthermore, since the concave portion 16a of the bottom plate 16 is fitted to the outer surface of the lower end portions 19e of the plurality of side plates 19 combined with the spacers 30 disposed inside, when the mold 15 is assembled or disassembled. If a plurality of side plates 19 are combined and inserted into or removed from the recess 16a of the bottom plate 16, they can be easily attached and detached. At the same time, the concave portion 16a is fitted around the side surface 19b of the side plate 19 and can be moved in the pull-out direction by an external force. Therefore, distortion and cracking of the quartz glass 25 during cooling can occur. Can be prevented.

そのため、この複数の側板19と支持リング24や底板16とを用いて、異なるスペーサ30を配置することにより異なる形状の石英ガラスを成形するとしても、全く同一に石英ガラス25の歪みや割れの発生を防止することができる。   Therefore, even if quartz glass having a different shape is formed by disposing different spacers 30 by using the plurality of side plates 19 and the support ring 24 and the bottom plate 16, the distortion and cracking of the quartz glass 25 are exactly the same. Can be prevented.

また、中空部21の横断面形状が略四角形形状を呈し、コーナー部27がR形状に形成されているので、成形された四角形形状の石英ガラス25において、コーナー部27に応力が集中されることを防止でき、コーナー部27の歪みや割れを防止して成形することができ、歩留まりを大幅に向上し易い。   Moreover, since the cross-sectional shape of the hollow portion 21 has a substantially square shape and the corner portion 27 is formed in an R shape, stress is concentrated on the corner portion 27 in the formed quartz glass 25 having a square shape. Can be prevented, distortion and cracking of the corner portion 27 can be prevented, and the yield can be greatly improved.

なお、上記の実施の形態1では、板状の石英ガラス25を成形する例について説明したが、板状体以外の成形体であっても、この発明は適宜適用可能である。   In the first embodiment described above, an example in which the plate-like quartz glass 25 is formed has been described. However, the present invention can be appropriately applied to a molded body other than the plate-shaped body.

また、上記実施の形態では、全ての側板19のそれぞれにスペーサ30を配置して、スペーサ30の内面30aだけで中空部21の内表面を形成したが、少ない数のスペーサ30を用いて、中空部21の内表面の一部を側壁19の内面19aで構成することも可能であり、また、成形可能であれば、異なる形状のスペーサ30を用いることも可能である。   Further, in the above embodiment, the spacers 30 are arranged on each of the side plates 19 and the inner surface of the hollow portion 21 is formed only by the inner surface 30a of the spacer 30, but the hollow space is formed by using a small number of spacers 30. A part of the inner surface of the portion 21 can be constituted by the inner surface 19a of the side wall 19, and a spacer 30 having a different shape can be used if it can be molded.

更に、上記では、複数の側板19とスペーサ30とが共にグラファイトからなり、両者が直接接触して配置された例について説明したが、各側板10とスペーサ30との間に、例えば、フエルトカーボン等のように熱膨張係数が異なる部材を配置して、加熱加圧後に側板19とスペーサ30が接合されること防止してもよい。   Further, in the above description, an example in which the plurality of side plates 19 and the spacers 30 are both made of graphite and are disposed in direct contact with each other is described. However, for example, felt carbon or the like is provided between each side plate 10 and the spacers 30. As described above, members having different thermal expansion coefficients may be arranged to prevent the side plate 19 and the spacer 30 from being joined after heating and pressing.

また、上記では、天板23を1本の油圧シリンダのシリンダロッド26で押圧する例について説明したが、複数のシリンダロッド26を用いて天板23を押圧してもよく、更に、油圧シリンダでなく、他の機械的な成形手段を用いることも可能である。   Moreover, although the example which presses the top plate 23 with the cylinder rod 26 of one hydraulic cylinder was demonstrated above, you may press the top plate 23 using the several cylinder rod 26, and also with a hydraulic cylinder, It is also possible to use other mechanical forming means.

更に、上記では、結晶化温度以上軟化点温度以下の温度で成形する例について説明したが、石英ガラス25の結晶化温度以上で成形すればよく、例えば軟化点より高い温度であってもよい。
[発明の実施の形態2]
Further, in the above description, the example of forming at a temperature not lower than the crystallization temperature and not higher than the softening point temperature has been described. However, the forming may be performed at a temperature higher than the crystallization temperature of the quartz glass 25. For example, the temperature may be higher than the softening point.
[Embodiment 2 of the Invention]

次に、実施の形態2について説明する。図4はこの実施の形態2の成形装置を示す。   Next, a second embodiment will be described. FIG. 4 shows a molding apparatus according to the second embodiment.

この実施の形態2の成形装置10では、横断面形状が略四角形形状の中空部21において、コーナー部27を形成するスペーサ30の側縁に、鈍角となるように複数の傾斜辺29を設けた他は、実施の形態1の成形装置10と同一の構成を有している。   In the molding apparatus 10 according to the second embodiment, in the hollow portion 21 having a substantially square cross-sectional shape, a plurality of inclined sides 29 are provided on the side edge of the spacer 30 forming the corner portion 27 so as to have an obtuse angle. Others have the same configuration as the molding apparatus 10 of the first embodiment.

このような成形装置10であっても、成形された略四角形形状の石英ガラス25において、コーナー部27に応力が集中されるのを防止することができるため、コーナー部27の歪みや割れを防止し易く、実施の形態1と同様に歩留まりを大幅に向上し易い。   Even in such a molding apparatus 10, stress can be prevented from being concentrated on the corner portion 27 in the formed substantially square-shaped quartz glass 25, so that distortion and cracking of the corner portion 27 can be prevented. As in the first embodiment, the yield can be greatly improved.

以下、実施例について説明する。
比較例1
Examples will be described below.
Comparative Example 1

直径400mm、長さ500mm、重さ138Kgの四塩化ケイ素を原料として、直接法により製造された合成石英インゴットを、1辺が560mmの四方形状を有する四つ割のグラファイト製モールド15に入れ、熱間成形機にセットした。このインゴットの上面に厚さ30mmの天板23を置き、このインゴットの下面に厚さ30mmの受板17を置いた。更に、天板23にシリンダロッド26を配置した。   A synthetic quartz ingot produced by a direct method using silicon tetrachloride having a diameter of 400 mm, a length of 500 mm and a weight of 138 kg as a raw material is placed in a quadrilateral graphite mold 15 having a quadrilateral shape with a side of 560 mm. It was set in a hot molding machine. A top plate 23 having a thickness of 30 mm was placed on the upper surface of the ingot, and a receiving plate 17 having a thickness of 30 mm was placed on the lower surface of the ingot. Further, a cylinder rod 26 is disposed on the top plate 23.

この後、真空ポンプにて、真空チャンバー11内の圧力を50Paまで減圧した後、純粋な窒素ガスを圧力3×10Paまで充填させた。 Then, after reducing the pressure in the vacuum chamber 11 to 50 Pa with a vacuum pump, pure nitrogen gas was filled to a pressure of 3 × 10 4 Pa.

そして、昇温を開始し、3時間で1620℃まで昇温させ、1620℃で0.5時間保持した。   Then, temperature increase was started, the temperature was increased to 1620 ° C. in 3 hours, and held at 1620 ° C. for 0.5 hour.

その後、シリンダロッド26により、初期荷重を3.5ton、プレス速度を5mm/secにて天板23を押圧し、インゴットの成形を行った。シリンダロッド26の変位ストロークが天板23より下側の中空部21に空隙が無くなる計算上の位置に達したところで加圧を終了し、カーボンヒータ13の温度を下げて300℃まで急冷した。   Thereafter, the top plate 23 was pressed by the cylinder rod 26 at an initial load of 3.5 ton and a pressing speed of 5 mm / sec to form an ingot. When the displacement stroke of the cylinder rod 26 reached a calculated position where the hollow portion 21 below the top plate 23 had no gap, pressurization was terminated, and the temperature of the carbon heater 13 was lowered and rapidly cooled to 300 ° C.

この後、モールド15を取り出して、成形品を取り出した。成形品は一辺が560mmで、高さが200mmであった。   Then, the mold 15 was taken out and the molded product was taken out. The molded product had a side of 560 mm and a height of 200 mm.

成形品を観察したところ、全面が透明であったが、四隅の角部に若干の割れが生じていた。また、四隅に残留歪みが若干残っていた。そして、この成形品からは有効角材として1辺が460mm、厚さ180mm、重さ84kgの板状体が採取できた。
実施例1
When the molded product was observed, the entire surface was transparent, but some cracks occurred at the corners of the four corners. Also, some residual strain remained at the four corners. From this molded product, a plate-like body having a side of 460 mm, a thickness of 180 mm, and a weight of 84 kg was obtained as an effective square.
Example 1

モールド15として、一辺が560mmの四方形状で、スペーサ30の板厚が30mmでコーナー部がR40のものを使用した。他は、比較例1と同一にして成形品を成形した。成形品は一辺が500mmで、高さが252mmであった。   As the mold 15, a square shape having a side of 560 mm, a spacer 30 with a plate thickness of 30 mm, and a corner portion of R40 was used. Otherwise, the molded product was molded in the same manner as in Comparative Example 1. The molded product had a side of 500 mm and a height of 252 mm.

成形品を観察したところ、全面が透明であったが、四隅のR形状には割れを確認できず、成形品の周辺15mmを除いて歪みを確認できなかった。そして、この成形品からは有効角材として1辺が460mm、厚さ235mm、重さ109kgの板状体が採取できた。
実施例2
When the molded product was observed, the entire surface was transparent, but cracks could not be confirmed in the R shape at the four corners, and no distortion could be confirmed except for 15 mm around the periphery of the molded product. A plate-like body having a side of 460 mm, a thickness of 235 mm, and a weight of 109 kg was collected from the molded product as an effective square.
Example 2

モールド15として、一辺が560mmの四方形状で、スペーサ30の板厚が30mmで、コーナー部に傾斜面が34mmで2つの分割線を有する12角形状のものを使用した他は、比較例1と同一にして成形品を成形した。成形品は一辺が500mmで、高さが253mmであった。   Comparative Example 1 is the same as the mold 15 except that a square shape with a side of 560 mm, a spacer 30 with a plate thickness of 30 mm, a corner portion with an inclined surface of 34 mm and two dividing lines is used. A molded product was molded in the same manner. The molded product had a side of 500 mm and a height of 253 mm.

成形品を観察したところ、全面が透明であったが、四隅には割れ及び残留歪みを確認できなかった。そして、この成形品からは有効角材として1辺が470mm、厚さ235mm、重さ114kgの板状体が採取できた。
実施例3
When the molded product was observed, the entire surface was transparent, but no cracks and residual strain could be confirmed at the four corners. A plate-like body having a side of 470 mm, a thickness of 235 mm, and a weight of 114 kg could be collected from this molded product as an effective square.
Example 3

モールド15として、一辺が560mmの四方形状で、スペーサ30の板厚が20mmで、コーナー部に傾斜面が34mmで2つの分割線を有する12角形状のものを使用した他は、比較例1と同一にして成形品を成形した。成形品は一辺が520mmで、高さが233mmであった。   Comparative Example 1 is the same as that of Comparative Example 1 except that the mold 15 has a square shape with a side of 560 mm, the plate thickness of the spacer 30 is 20 mm, and the corner portion has an inclined surface of 34 mm and two dividing lines. A molded product was molded in the same manner. The molded product had a side of 520 mm and a height of 233 mm.

成形品を観察したところ、全面が透明であったが、四隅には割れ及び残留歪みを確認できなかった。そして、この成形品からは有効角材として1辺が480mm、厚さ213mm、重さ108kgの板状体が採取できた。   When the molded product was observed, the entire surface was transparent, but no cracks and residual strain could be confirmed at the four corners. From this molded product, a plate-like body having a side of 480 mm, a thickness of 213 mm, and a weight of 108 kg was collected as an effective square.

この発明の実施の形態1の成形装置を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the shaping | molding apparatus of Embodiment 1 of this invention. 同実施の形態の成形装置のモールドを示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the mold of the shaping | molding apparatus of the embodiment. 同実施の形態の成形装置の側壁部の横端面図である。It is a horizontal end view of the side wall part of the shaping | molding apparatus of the embodiment. この発明の実施の形態2の成形装置の側壁部の横端面図である。It is a lateral end view of the side wall part of the shaping | molding apparatus of Embodiment 2 of this invention.

符号の説明Explanation of symbols

10 成形装置
11 真空チャンバー
13 カーボンヒータ
15 モールド
16 底板
16a 凹部(嵌合手段)
18 底部
19 側板
20 側壁部
20a、20b テーパ部
21 中空部
23 天板(加圧部)
24 支持リング(嵌合手段)
25 石英ガラス
26 シリンダロッド(成形手段)
30 スペーサ
DESCRIPTION OF SYMBOLS 10 Molding apparatus 11 Vacuum chamber 13 Carbon heater 15 Mold 16 Bottom plate 16a Recessed part (fitting means)
18 bottom part 19 side plate 20 side wall part 20a, 20b taper part 21 hollow part 23 top plate (pressurizing part)
24 Support ring (fitting means)
25 Quartz glass 26 Cylinder rod (Molding means)
30 Spacer

Claims (7)

石英ガラスを収容可能な中空部を有し、該石英ガラスより膨張係数の大きい材料からなるモールドと、前記中空部の内部に移動可能に配置された加圧部と、前記中空部に収容された前記石英ガラスを加熱する加熱手段とを備え、前記中空部内の石英ガラスを前記加熱手段で加熱しつつ前記加圧部により加圧して所定形状に成形する成型装置であって、
前記モールドは、互いに当接した状態で組合されて側面周囲を形成する複数の側板と、該組合された複数の側板の前記側面周囲に嵌合される嵌合手段と、前記複数の側板の少なくとも一つの内面に隣接して配置されるスペーサとを有し、
前記中空部は、組合された前記複数の側板及び前記スペーサの内側に形成され、
前記成形時には前記嵌合手段により嵌合状態が維持されるとともに、該成形後の冷却時には、前記モールドと前記石英ガラスとの膨張係数の相違に基づいて前記複数の側板に負荷される外方向の力により前記嵌合手段の嵌合状態が解除されて、前記側板が前記スペーサを介して移動することにより、前記複数の側板同士が離間するように、前記複数の側板と嵌合手段との嵌合面がテーパ形状に形成されていることを特徴とする石英ガラスの成形装置。
A hollow part that can accommodate quartz glass, a mold made of a material having a larger expansion coefficient than that of the quartz glass, a pressure part that is movably disposed inside the hollow part, and a hollow part that is accommodated in the hollow part A heating device that heats the quartz glass, and is a molding apparatus that presses the quartz glass in the hollow portion with the heating unit while being heated by the heating unit and forms the glass into a predetermined shape.
The mold includes a plurality of side plates that are combined in a state of being in contact with each other to form a side surface periphery, a fitting unit that is fitted around the side surface of the plurality of combined side plates, and at least one of the plurality of side plates. A spacer disposed adjacent to one inner surface;
The hollow portion is formed on the inner side of the combined side plates and the spacer,
The fitting state is maintained by the fitting means at the time of the molding, and at the time of cooling after the molding, the outward load applied to the plurality of side plates is based on the difference in expansion coefficient between the mold and the quartz glass. The fitting state between the plurality of side plates and the fitting means is such that the fitting state of the fitting means is released by force, and the side plates move through the spacer, so that the plurality of side plates are separated from each other. An apparatus for forming quartz glass, wherein a mating surface is formed in a tapered shape.
前記全ての複数の側板毎に独立した前記スペーサが配置されていることを特徴とする請求項1に記載の石英ガラスの成形装置。 The quartz glass molding apparatus according to claim 1, wherein the spacers are arranged independently for each of the plurality of side plates. 前記嵌合手段は、前記複数の側板の外側に嵌合された枠形状の支持リングを有し、前記外方向の力により前記嵌合面同士が摺動して前記支持リングが抜け方向に移動することにより、前記複数の側板同士が互いに離間する方向に移動するように構成されたことを特徴とする請求項1又は2に記載の石英ガラスの成形装置。 The fitting means has a frame-shaped support ring that is fitted to the outside of the plurality of side plates, and the fitting surfaces slide with each other by the outward force so that the support ring moves in the removal direction. The quartz glass forming apparatus according to claim 1, wherein the plurality of side plates are configured to move in directions away from each other. 前記嵌合手段は、前記複数の側板の下端部が嵌合される凹部を備えた底部を有し、前記外方向の力により前記複数の側板が前記底部の凹部から抜け方向に移動することにより、前記複数の側板同士が互いに離間する方向に移動するように構成されたことを特徴とする請求項1乃至3の何れか一つに記載の石英ガラスの成形装置。 The fitting means has a bottom portion with a recess into which the lower end portions of the plurality of side plates are fitted, and the plurality of side plates move in a direction of removal from the recess of the bottom portion by the outward force. The quartz glass molding apparatus according to any one of claims 1 to 3, wherein the plurality of side plates are configured to move in directions away from each other. 前記中空部の横断面形状が略多角形状を呈し、該形状のコーナー部が前記スペーサの側縁によりR形状に形成されていることを特徴とする請求項1乃至4の何れか一つに記載の石英ガラスの成形装置。 The cross-sectional shape of the hollow portion has a substantially polygonal shape, and the corner portion of the shape is formed in an R shape by a side edge of the spacer. Quartz glass molding equipment. 前記中空部の横断面形状が略多角形状を呈し、該形状のコーナー部が前記スペーサの側縁により鈍角となるように複数の傾斜面が形成されたことを特徴とする請求項1乃至4の何れか一つに記載の石英ガラスの成形装置。 The cross-sectional shape of the said hollow part exhibits substantially polygonal shape, and the some inclined surface was formed so that the corner part of this shape might become an obtuse angle by the side edge of the said spacer. The apparatus for molding quartz glass according to any one of the above. モールド内に配置された塊状の石英ガラスを加熱加圧成形する石英ガラスの成形方法において、
前記モールドは、底部と、該底部の上部に配置された側壁部と、該側壁部の内側に隣接して配置されたスペーサとを有し、加熱手段により前記石英ガラスを加熱しつつ、加圧手段により前記石英ガラスを加圧成形することを特徴とする石英ガラスの成形方法。
In the method for forming quartz glass, in which the massive quartz glass placed in the mold is heated and pressed,
The mold includes a bottom portion, a side wall portion disposed at an upper portion of the bottom portion, and a spacer disposed adjacent to the inside of the side wall portion, and pressurizing while heating the quartz glass by a heating unit. A method for molding quartz glass, characterized in that the quartz glass is pressure-molded by means.
JP2004182846A 2004-06-21 2004-06-21 Quartz glass molding equipment Expired - Fee Related JP4419701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182846A JP4419701B2 (en) 2004-06-21 2004-06-21 Quartz glass molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182846A JP4419701B2 (en) 2004-06-21 2004-06-21 Quartz glass molding equipment

Publications (2)

Publication Number Publication Date
JP2006001821A true JP2006001821A (en) 2006-01-05
JP4419701B2 JP4419701B2 (en) 2010-02-24

Family

ID=35770526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182846A Expired - Fee Related JP4419701B2 (en) 2004-06-21 2004-06-21 Quartz glass molding equipment

Country Status (1)

Country Link
JP (1) JP4419701B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195603A (en) * 2009-02-23 2010-09-09 Nikon Corp Glass mold and method for producing glass molding
JP2011162392A (en) * 2010-02-09 2011-08-25 Tosoh Quartz Corp Mold material for production of quartz glass molding and method for producing quartz glass molding
WO2012039331A1 (en) * 2010-09-21 2012-03-29 株式会社ニコン Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010195603A (en) * 2009-02-23 2010-09-09 Nikon Corp Glass mold and method for producing glass molding
JP2011162392A (en) * 2010-02-09 2011-08-25 Tosoh Quartz Corp Mold material for production of quartz glass molding and method for producing quartz glass molding
KR20130112029A (en) * 2010-09-21 2013-10-11 가부시키가이샤 니콘 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate
KR101865977B1 (en) * 2010-09-21 2018-06-08 가부시키가이샤 니콘 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate
WO2012039331A1 (en) * 2010-09-21 2012-03-29 株式会社ニコン Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate
CN102958854A (en) * 2010-09-21 2013-03-06 株式会社尼康 Glass forming mold, glass forming device, glass forming method, and method for manufacturing photomask substrate

Also Published As

Publication number Publication date
JP4419701B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4281397B2 (en) Quartz glass molding equipment
JP4419701B2 (en) Quartz glass molding equipment
TWI447080B (en) Method and apparatus for manufacturing curved glass sheet
JP4374964B2 (en) Quartz glass molding method and molding apparatus
JP5812005B2 (en) Mold for glass molding, glass molding apparatus, glass molding method, and photomask substrate manufacturing method
JP4465974B2 (en) Quartz glass molding equipment
JP4341277B2 (en) Method of forming quartz glass
JP4288413B2 (en) Quartz glass molding method and molding apparatus
JP5292994B2 (en) Method and apparatus for forming quartz glass
KR101096477B1 (en) Method and apparatus for forming a quartz glass
EP1783103B1 (en) Method for forming quartz glass
JP4760137B2 (en) Method of forming quartz glass
JPS6183638A (en) Quartz glass forming
JP4559784B2 (en) Optical element manufacturing method
JP4094210B2 (en) Manufacturing method of glass optical element and molding die for glass optical element used therefor
JP2006169033A (en) Forming method and forming apparatus for quartz glass
JP3128007B2 (en) Quartz glass mold
JPS632421Y2 (en)
JP5387036B2 (en) Glass mold and method for producing glass molded body
JP2003063832A (en) Mold for forming optical element
JP2934937B2 (en) Method for molding glass optical element and press device used for this method
JP2013129547A (en) Method for molding microlens array
JP2002053332A (en) Method and device for molding synthetic quartz glass
JP2010195683A (en) Method for producing optical element
JP2007145626A (en) Apparatus for producing optical glass element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4419701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees