JP2005351753A - Method and instrument for measuring concentration of ice water by ultrasonic wave - Google Patents

Method and instrument for measuring concentration of ice water by ultrasonic wave Download PDF

Info

Publication number
JP2005351753A
JP2005351753A JP2004172684A JP2004172684A JP2005351753A JP 2005351753 A JP2005351753 A JP 2005351753A JP 2004172684 A JP2004172684 A JP 2004172684A JP 2004172684 A JP2004172684 A JP 2004172684A JP 2005351753 A JP2005351753 A JP 2005351753A
Authority
JP
Japan
Prior art keywords
ice
ultrasonic
ice water
concentration
water slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004172684A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hattori
一裕 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2004172684A priority Critical patent/JP2005351753A/en
Publication of JP2005351753A publication Critical patent/JP2005351753A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an instrument for measuring a concentration of ice water capable of measuring precisely an ice concentration under transportation, in a real time, using an ultrasonic wave, when transporting an ice water slurry coming out from an ice maker, an ice water slurry used in an air-conditioning system using ice heat reserve or the like, to a desired place. <P>SOLUTION: When measuring the ice concentration in the ice water slurry under a flowing condition in a pipe, ultrasonic oscillators 6, 7 are attached to one side or both sides on a pipe line side face to transmit the ultrasonic waves toward the ice water slurry S by the ultrasonic oscillators, frontward diffraction or rearward diffraction is received, and reception signals thereof are computation-processed to calculate the ice concentration. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、たとえば製氷機から出てきた氷水スラリーや、氷蓄熱を利用した空調システムで使用される氷水スラリー等を所望の場所に輸送する際に、輸送中の氷濃度を超音波を用いて、リアルタイムにかつ精度良く測定する氷水濃度測定方法及び装置に関する。   For example, when transporting ice water slurry from an ice making machine or ice water slurry used in an air conditioning system using ice heat storage to a desired place, the concentration of ice during transportation is measured using ultrasonic waves. The present invention relates to an ice water concentration measuring method and apparatus for measuring accurately in real time.

従来製氷機等から出てきた氷水スラリーの氷と水との割合を知るために、光を照射し、入射された光が氷に当ると、幾分散乱され、反対側の受光部には強度が落ちた光を受光することにより、その相対的な強さで水と氷との割合を求める手法があるが、しかしこの方法は、二次冷媒や海水の氷水など、透明度の低い溶液に対して適していない。
そこで透明度の低い溶液でも使用でき、氷には散乱されるという超音波の性質を利用し、超音波を氷水スラリーに照射し、波の反射、散乱、吸収などによって生じる入射波の減衰を測定することによって、氷の濃度を測定する方法が提案されている。
In order to know the ratio of ice to water in the ice water slurry that came out of conventional ice machines, etc., when light is irradiated and the incident light hits the ice, it is somewhat scattered and the light receiving part on the opposite side has intensity There is a method to obtain the ratio of water and ice by receiving the light that falls, but this method is suitable for solutions with low transparency such as secondary refrigerant or seawater ice water. Is not suitable.
Therefore, it can be used in solutions with low transparency and utilizes the property of ultrasonic waves that are scattered by ice. Ultrasonic waves are applied to the ice water slurry and the attenuation of incident waves caused by wave reflection, scattering, absorption, etc. is measured. Thus, a method for measuring the concentration of ice has been proposed.

たとえば特許文献1(特開2002−277446号公報)には、一対の超音波発信子と超音波受信子とからなる超音波センサーを、測定対象のスラリー搬送管の管軸を挟んで相対するように、かつ同スラリー搬送管の周りにスラリー搬送管と同心で回転可能なように、スラリー搬送管の外周に装着される超音波固定手段と、前記超音波受信子の出力信号を入力として、予め測定されたスラリー搬送管のスラリー濃度と同スラリー搬送管を通過した超音波の強さと関係に基づいて、前記出力信号に対するスラリー濃度を算出する演算手段とを有してなる氷水スラリー等の氷濃度測定装置が記載されている。   For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-277446), an ultrasonic sensor including a pair of ultrasonic transmitters and ultrasonic receivers is opposed to each other with a tube axis of a slurry transport pipe to be measured interposed therebetween. And an ultrasonic fixing means mounted on the outer periphery of the slurry transport pipe so that it can rotate concentrically with the slurry transport pipe around the slurry transport pipe, and an output signal of the ultrasonic receiver as an input in advance. Ice concentration of ice water slurry or the like having arithmetic means for calculating the slurry concentration with respect to the output signal based on the measured slurry concentration of the slurry conveying tube and the intensity of the ultrasonic wave passing through the slurry conveying tube A measuring device is described.

また特許文献2(特開2003−98158号公報)には、密閉されたスラリー搬送路の鉛直方向上下に互いに対向して配置された超音波発信子と超音波受信子とからなる超音波センサーと、前記超音波センサーの出力信号を入力として、予め測定されたスラリー搬送路中のスラリー濃度と、そのスラリーが流れる搬送路を通過した超音波の強さとの関係に基づいて、前記出力信号に対応するスラリー濃度を算出する演算手段と、を有してなり、前記超音波センサーは、スラリー搬送路の上下面が、互いに対向する水平面をなしている位置に配置されている氷水スラリー等の氷濃度測定装置が記載されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-98158) discloses an ultrasonic sensor including an ultrasonic transmitter and an ultrasonic receiver that are arranged to face each other vertically above and below a sealed slurry conveyance path. Using the output signal of the ultrasonic sensor as an input, it corresponds to the output signal based on the relationship between the slurry concentration measured in advance in the slurry conveyance path and the intensity of the ultrasonic wave passing through the conveyance path through which the slurry flows. The ultrasonic sensor is configured to calculate an ice concentration of an ice water slurry or the like disposed at a position where the upper and lower surfaces of the slurry conveyance path are opposed to each other. A measuring device is described.

特開2002−277446号公報JP 2002-277446 A 特開2003−98158号公報JP 2003-98158 A

これら特許文献1及び2に開示された手段は、簡単な構成で、スラリーの流れを阻害することなく、かつスラリー中の氷などの固体粒子の流動状態に影響され難い、等の長所を有する反面、搬送管内で超音波振動子が発信した超音波の多重散乱が起こり、受信側振動子に多重散乱したさまざまな波が到達するため、氷濃度を演算する場合に精度がそれほど向上せず、また超音波発信子から発信され、搬送管と氷水スラリーとを通過して、超音波受信子で受信した超音波の減衰量を検知し、受信された超音波の減衰量と氷の濃度を予め校正しておくことで、搬送管内を輸送中の氷の濃度を間接的に推算するので、必ずしもリアムタイムでの測定が可能とはならず、かつその精度も良好とはいえなかった。   While these means disclosed in Patent Documents 1 and 2 have a simple configuration, they do not impede the flow of the slurry, and are not easily affected by the flow state of solid particles such as ice in the slurry, but have the advantages such as The multiple scattering of the ultrasonic wave transmitted from the ultrasonic transducer in the transport pipe occurs, and various waves that are multiple scattered arrive at the receiving transducer, so the accuracy is not improved so much when calculating the ice concentration. Transmitted from the ultrasonic transmitter, passes through the transport pipe and ice water slurry, detects the attenuation of the ultrasonic wave received by the ultrasonic receiver, and calibrates the received ultrasonic attenuation and ice concentration in advance. By doing so, the concentration of ice being transported in the transport pipe is indirectly estimated, so it is not always possible to measure in real time and the accuracy is not good.

本発明は、かかる従来技術の課題に鑑み、上記従来技術の問題点を解消し、搬送管内を輸送中の氷水スラリーの氷の濃度をリアルタイムにかつ精度良く測定できる氷水スラリー中の氷濃度測定方法及び装置を提供することを目的とする。   In view of the problems of the prior art, the present invention eliminates the problems of the prior art and measures the concentration of ice in ice water slurry in real time and with high accuracy, which can accurately measure the ice concentration of the ice water slurry being transported in the transport pipe. And an apparatus.

本発明は、かかる目的を達成するもので、その第1の手段は、管内を流動状態にある氷スラリー中の氷濃度をリアルタイムに測定するに際し、超音波振動子を管路側面の一方に取り付けて、同超音波振動子により氷水スラリーに向けて超音波を送信するとともに、氷粒による超音波の後方散乱を受信し、同受信信号を演算処理して氷濃度を算出する氷水濃度測定方法に係る。   The present invention achieves such an object, and the first means thereof is to attach an ultrasonic transducer to one of the side surfaces of the pipe line when measuring the ice concentration in the ice slurry flowing in the pipe in real time. In addition, the ultrasonic transducer transmits ultrasonic waves toward the ice water slurry, receives backscattering of ultrasonic waves due to ice particles, and calculates the ice concentration by calculating the ice concentration by processing the received signals. Related.

また第2の手段は、管内を流動状態にある氷スラリー中の氷濃度をリアルタイムに測定するに際し、一対の送信用及び受信用超音波振動子を管路側面の互いに対向する位置に取り付け、前記送信用超音波振動子により氷水スラリーに超音波を送信し、前記受信用超音波振動子により氷粒による超音波の前方散乱又は後方散乱を受信し、同受信信号を演算処理して氷濃度を算出する氷水濃度測定方法に係る。   Further, the second means attaches a pair of transmitting and receiving ultrasonic transducers at positions facing each other on the side surface of the pipe line when measuring the ice concentration in the ice slurry in a flow state in the pipe in real time, The transmitting ultrasonic transducer transmits ultrasonic waves to the ice water slurry, the receiving ultrasonic transducer receives ultrasonic forward scatter or back scatter due to ice particles, and calculates the ice concentration by processing the received signal. It relates to the ice water concentration measurement method to be calculated.

また本発明の第3の手段は、前記第1の手段(方法)又は第2の手段(方法)を実現するための装置として、氷水スラリーを流動する管路に介装され、氷水スラリーの流動速度を減速するため断面積を拡大した容積部を設け、同容積部の側面を互いに対向する平行な面に形成し、同平行面の対向位置にそれぞれ受信用超音波振動子及び送信用超音波振動子を両者の電極面が互いに平行になるように取り付けたことを特徴とする。   The third means of the present invention is an apparatus for realizing the first means (method) or the second means (method), and is interposed in a pipe line for flowing the ice water slurry. In order to reduce the speed, a volume part with an enlarged cross-sectional area is provided, and side surfaces of the volume part are formed on parallel surfaces facing each other, and a receiving ultrasonic transducer and a transmission ultrasonic wave are respectively positioned at opposite positions of the parallel surface. The vibrator is mounted such that both electrode surfaces are parallel to each other.

本発明の第1の手段において、まず計測装置には、信号の送信及び受信を共に行なう超音波振動子を氷水スラリーの搬送管の途中に取り付ける。与えられた電圧振動によって前記超音波振動子は同一周波数で振動し、搬送管内を流動する氷水スラリーに超音波を送信する。搬送管内を流動する氷水スラリー中の氷濃度が高くなると、氷粒によって散乱される超音波の強度が次第に変化し、信号を送信した超音波振動子によって散乱された波(後方散乱)を反射信号として受信する。周波数の範囲は、たとえば10kHz〜10MHzである。
受信した信号を信号処理回路で、増幅、ノイズ処理、振幅検波、平均化演算、及び揺らぎの計測(計算値の分散計算)等の処理を行ない、搬送管内を流動する氷水スラリーの氷濃度を算出し、直流電圧もしくは直流電流で取り出す。
In the first means of the present invention, first, an ultrasonic transducer that performs both transmission and reception of signals is attached to the measuring device in the middle of the ice water slurry transport pipe. Due to the applied voltage vibration, the ultrasonic vibrator vibrates at the same frequency, and transmits ultrasonic waves to the ice-water slurry flowing in the conveying tube. When the ice concentration in the ice water slurry flowing in the transport pipe increases, the intensity of the ultrasonic wave scattered by the ice particles gradually changes, and the wave scattered by the ultrasonic transducer that transmitted the signal (backscattering) is reflected as a reflected signal. As received. The frequency range is, for example, 10 kHz to 10 MHz.
The received signal is processed by the signal processing circuit such as amplification, noise processing, amplitude detection, averaging operation, and fluctuation measurement (dispersion calculation of calculated values), and the ice concentration of the ice-water slurry flowing in the transport pipe is calculated. Then, take it out with DC voltage or DC current.

また本発明の第2の手段において、計測装置には、信号の送信を行なう超音波振動子と受信を行なう超音波振動子とを氷水スラリーの搬送管の途中に互いに対向する位置に取り付ける。望ましくは、対向位置の超音波振動子の電極面が平行になるように設置する。
与えられた電圧振動によって前記送信用超音波振動子は同一周波数で振動し、搬送管内を流動する氷水スラリーに超音波を送信する。搬送管内を流動する氷水スラリー中の氷濃度が高くなると、氷粒によって前方に散乱される超音波の強度及び透過してくる超音波の位相が次第に変化する。同時に、氷粒によって後方に散乱される超音波の強度も変化する。
In the second means of the present invention, an ultrasonic transducer for transmitting a signal and an ultrasonic transducer for receiving a signal are attached to the measuring device at positions facing each other in the middle of the ice water slurry transport pipe. Desirably, it is installed so that the electrode surface of the ultrasonic transducer at the opposite position is parallel.
The ultrasonic transducer for transmission vibrates at the same frequency by the applied voltage vibration, and transmits ultrasonic waves to the ice-water slurry flowing in the carrier tube. When the ice concentration in the ice water slurry flowing in the transport pipe increases, the intensity of the ultrasonic wave scattered forward by the ice particles and the phase of the transmitted ultrasonic wave gradually change. At the same time, the intensity of the ultrasound scattered back by the ice particles also changes.

前方に散乱された信号は、透過信号として送信用振動子の対向位置に設置した受信用超音波振動子によって受信する。一方後方に散乱された信号は、送信用の超音波振動子によって反射信号として受信する。周波数の範囲は、たとえば10kHz〜10MHzである。
透過側と反射側で受信した信号をそれぞれ信号処理回路で、増幅、ノイズ処理、振幅検波、平均化演算、及び揺らぎの計測(計算値の分散計算)等の処理を行ない、それぞれの氷濃度に対する信号強度の変化特性と位相の変化特性とから、搬送管内を流動する氷水スラリーの氷濃度を算出し、直流電圧もしくは直流電流で取り出す。
The signal scattered forward is received as a transmission signal by a reception ultrasonic transducer installed at a position opposite to the transmission transducer. On the other hand, the signal scattered backward is received as a reflected signal by the ultrasonic transducer for transmission. The frequency range is, for example, 10 kHz to 10 MHz.
The signal received on the transmission side and the reflection side is processed by the signal processing circuit, such as amplification, noise processing, amplitude detection, averaging calculation, and fluctuation measurement (dispersion calculation of the calculated value). The ice concentration of the ice-water slurry flowing in the carrier tube is calculated from the signal intensity change characteristic and the phase change characteristic, and is taken out by a DC voltage or a DC current.

また本発明の第3の手段において、氷水スラリーを断面積を拡大した容積部に導入して減速させた状態で、氷濃度を計測することにより計測精度に正確を期するとともに、同容積部の互いに対向する平行な側面に取り付けた受信用超音波振動子及び送信用超音波振動子から超音波を発信することにより、両超音波振動子間の信号の送受信を正確に行い、氷濃度測定の精度向上を可能としている。   In the third means of the present invention, the ice concentration is accurately measured by measuring the ice concentration in a state where the ice water slurry is introduced and decelerated into the volume part having an enlarged cross-sectional area. By transmitting ultrasonic waves from the receiving ultrasonic transducer and the transmitting ultrasonic transducer attached to the parallel side surfaces facing each other, signals can be transmitted and received accurately between the two ultrasonic transducers. The accuracy can be improved.

次に氷水スラリーの場合の計測データ例を説明する。
(1)位相情報(対向位置での送信用及び受信用超音波振動子での検出例)
水中の音波伝播速度は1、500m/s、氷中の音波伝播速度は3,230m/sと2倍以上の違いがある。氷水スラリー中の氷濃度が増加すると、検出される信号の位相が進む。従ってこの位相の進み度と氷濃度との関係に基づいて、位相の進み度から氷濃度を推算できる。
Next, an example of measurement data in the case of ice water slurry will be described.
(1) Phase information (example of detection by transmitting and receiving ultrasonic transducers at opposite positions)
The propagation speed of sound waves in water is 1,500 m / s, and the propagation speed of sound waves in ice is 3,230 m / s, which is more than twice the difference. As the ice concentration in the ice water slurry increases, the phase of the detected signal advances. Therefore, based on the relationship between the degree of phase advance and the ice concentration, the ice concentration can be estimated from the degree of phase advance.

(2)前方散乱の信号強度変化(対向位置での送信用及び受信用超音波振動子での検出例)
氷濃度が増加すると、検出される振幅が大きくなる。たとえば水のみの場合に比べて、氷濃度(IPF)10%程度で検出電圧比較で約30%大きくなる。なお検出電圧は低周波ノイズをとるフィルタの時定数のよって変化するため、電圧比で算出する。従ってこの検出電圧と氷濃度との相関から、氷濃度を推算できる。
(3)後方散乱の信号強度変化(送信用振動子での受信による検出)
氷濃度が増加すると、散乱されて戻ってくる信号の強度が大きくなる。従ってこの信号強度と氷濃度との相関から、氷濃度を推算できる。
(2) Change in signal intensity due to forward scattering (detection example using ultrasonic transducers for transmission and reception at opposite positions)
As the ice concentration increases, the detected amplitude increases. For example, compared to the case of water alone, the ice voltage (IPF) is about 10% and the detected voltage comparison is about 30% larger. Since the detection voltage varies depending on the time constant of the filter that takes low frequency noise, it is calculated by the voltage ratio. Therefore, the ice concentration can be estimated from the correlation between the detected voltage and the ice concentration.
(3) Change in signal intensity due to backscattering (detection by reception with a transmitting transducer)
As the ice concentration increases, the intensity of the scattered and returning signal increases. Therefore, the ice concentration can be estimated from the correlation between the signal intensity and the ice concentration.

本発明の第1の手段又は第2の手段において、好ましくは、前記受信用超音波振動子又は前記送信用超音波振動子にバーストパルスの電圧信号を与える。与えられた電圧信号によってこれら超音波振動子は信号周波数で振動し、搬送管内を流動する氷水スラリーに超音波を送信する。バーストパルスとは、間欠的に発生するパルス信号のことで、その波形は、たとえば正弦波、矩形波等が適当である。
連続した正弦波又はパルス波を送ると、搬送管内で多重散乱が起こり、受信用超音波振動子に多重散乱したさまざまな波がやって来る可能性があり、測定が困難となるおそれがある。そこで多重散乱を避けるために、バーストパルスの電圧信号を前記受信用超音波振動子又は前記送信用超音波振動子に与える。またバーストパルスを与えると、後方散乱等の物理現象を観測するのが容易になる利点もある。
In the first means or the second means of the present invention, preferably, a voltage signal of a burst pulse is given to the reception ultrasonic transducer or the transmission ultrasonic transducer. These ultrasonic vibrators vibrate at a signal frequency according to a given voltage signal, and transmit ultrasonic waves to the ice-water slurry flowing in the transport pipe. The burst pulse is a pulse signal that is generated intermittently, and its waveform is, for example, a sine wave or a rectangular wave.
When a continuous sine wave or pulse wave is sent, multiple scattering occurs in the carrier tube, and various scattered waves may come to the receiving ultrasonic transducer, which may make measurement difficult. Therefore, in order to avoid multiple scattering, a voltage signal of a burst pulse is given to the reception ultrasonic transducer or the transmission ultrasonic transducer. In addition, when a burst pulse is applied, there is an advantage that it is easy to observe a physical phenomenon such as backscattering.

また本発明の第1の手段又は第2の手段において、好ましくは、超音波振動子を取り付ける周辺の管路を、たとえばウレタンなどの音響インピーダンスが管内を流動する氷水スラリーのうち水に近似した物質で構成することである。
この理由は、氷水スラリーと超音波振動子とを隔離するスラリー搬送管等の隔壁が超音波振動子から送信した送信信号を氷水スラリーに入射する前に反射して戻してしまい、計測の邪魔をしてしまうのを防ぐため、氷水スラリーと超音波振動子とを隔離するためである。
Further, in the first means or the second means of the present invention, preferably, a material similar to water in an ice water slurry in which an acoustic impedance flows in the pipe, such as urethane, is disposed around a pipe line around which an ultrasonic transducer is attached. It is composed of.
The reason for this is that a partition such as a slurry transport tube that separates the ice-water slurry from the ultrasonic vibrator reflects and returns the transmission signal transmitted from the ultrasonic vibrator before entering the ice-water slurry. This is because the ice-water slurry and the ultrasonic vibrator are separated from each other in order to prevent this.

また本発明の第1の手段又は第2の手段において、好ましくは、超音波振動子として、セラミック圧電素子の超音波振動子を使用する。
セラミック圧電素子の超音波振動子は、素子の厚みによって周波数を決定することができ、高分子材料などで製造でき、取り扱いが便利である。
In the first means or the second means of the present invention, preferably, an ultrasonic vibrator of a ceramic piezoelectric element is used as the ultrasonic vibrator.
The ultrasonic vibrator of a ceramic piezoelectric element can determine the frequency according to the thickness of the element, can be manufactured from a polymer material, and is easy to handle.

また本発明の第1の手段において、好ましくは、前記超音波振動子を、送信周波数の異なる超音波振動子を複数組み込んで構成するか、あるいは本発明の第2の手段において、好ましくは、前記一対の送信用及び受信用超音波振動子を、送信周波数の異なる一対の送信用及び受信用超音波振動子を複数組組み込んで構成する。
氷粒による超音波の後方散乱強度の変化特性は周波数によって異なるため、複数の周波数を用いることによって、より精度の高い氷濃度の計測が可能となる。
In the first means of the present invention, preferably, the ultrasonic vibrator is configured by incorporating a plurality of ultrasonic vibrators having different transmission frequencies, or in the second means of the present invention, preferably A pair of ultrasonic transducers for transmission and reception are configured by incorporating a plurality of pairs of ultrasonic transducers for transmission and reception having different transmission frequencies.
Since the change characteristic of the backscattering intensity of the ultrasonic wave due to the ice particles varies depending on the frequency, the ice concentration can be measured with higher accuracy by using a plurality of frequencies.

また本発明の第2の手段において、好ましくは、管路側面を互いに対向する平行な面に形成し、同平行面の対向位置にそれぞれ受信用超音波振動子及び送信用超音波振動子を両者の電極面が互いに平行になるように取り付ける。このように構成すれば、両超音波振動子間の信号の送受信が正確に行われる。両超音波振動子間の間隔は、広すぎると、信号が必要以上に減衰する。逆に狭いと、氷水スラリーの流動の障害となるので、これらの問題が生じない適度な間隔とするのが望ましい。   In the second means of the present invention, preferably, the pipe side surfaces are formed in parallel surfaces facing each other, and the reception ultrasonic transducer and the transmission ultrasonic transducer are both placed at opposite positions of the parallel surfaces. Are attached so that their electrode surfaces are parallel to each other. If comprised in this way, the transmission / reception of the signal between both ultrasonic transducer | vibrators will be performed correctly. If the distance between the two ultrasonic transducers is too wide, the signal is attenuated more than necessary. On the contrary, if it is narrow, it becomes an obstacle to the flow of the ice water slurry, so it is desirable to set an appropriate interval that does not cause these problems.

また本発明の第3の手段において、好ましくは、受信用超音波振動子が受信した前方散乱信号又は後方散乱信号を低周波ノイズを除去するハイパスフィルタ及び増幅器を経た後、それぞれ基準値と比較し、その後演算装置に送って氷濃度を算出する。この信号演算処理工程により、氷濃度をリアルタイムに演算することができる。   In the third means of the present invention, preferably, the forward scattered signal or the back scattered signal received by the receiving ultrasonic transducer is passed through a high-pass filter and an amplifier for removing low-frequency noise, and then compared with a reference value. Then, it sends to the arithmetic unit to calculate the ice concentration. By this signal calculation processing step, the ice concentration can be calculated in real time.

以上のように、本発明の方法によれば、管内を流動状態にある氷スラリー中の氷濃度をリアルタイムに測定するに際し、超音波振動子を管路側面の一方に取り付けて、同超音波振動子により氷水スラリーに向けて超音波を送信するとともに、氷粒による超音波の後方散乱を受信し、又は一対の送信用及び受信用超音波振動子を管路側面の互いに対向する位置に取り付け、前記送信用超音波振動子により氷スラリーに超音波を送信し、前記受信用超音波振動子により氷粒による超音波の前方散乱又は後方散乱を受信し、しかる後、同受信信号を演算処理して氷濃度を算出することにより、リアルタイムにて精度良く氷濃度を求めることができる。   As described above, according to the method of the present invention, when measuring the ice concentration in the ice slurry flowing in the tube in real time, an ultrasonic transducer is attached to one of the side surfaces of the pipe, The ultrasonic wave is transmitted to the ice water slurry by the child, and the backscattering of the ultrasonic wave due to the ice particles is received, or the pair of transmitting and receiving ultrasonic transducers are attached to the mutually opposing positions on the side surface of the pipe line, The transmission ultrasonic transducer transmits ultrasonic waves to the ice slurry, and the reception ultrasonic transducer receives ultrasonic forward scatter or back scatter due to ice particles, and then performs processing on the received signals. By calculating the ice concentration, the ice concentration can be accurately obtained in real time.

さらに本発明装置によれば、前記第1の手段(方法)又は第2の手段(方法)を実現するための装置として、氷水スラリーを流動する管路に介装され、氷水スラリーの流動速度を減速するため断面積を拡大した容積部を設け、同容積部の側面を互いに対向する平行な面に形成し、同平行面の対向位置にそれぞれ受信用超音波振動子及び送信用超音波振動子を両者の電極面が互いに平行になるように取り付けたことにより、氷濃度測定の精度向上を可能としている。   Furthermore, according to the device of the present invention, as a device for realizing the first means (method) or the second means (method), the ice water slurry is interposed in a conduit for flowing the ice water slurry, and the flow rate of the ice water slurry is controlled. A volume part with an enlarged cross-sectional area is provided for deceleration, and side surfaces of the volume part are formed on parallel surfaces facing each other, and a reception ultrasonic transducer and a transmission ultrasonic transducer are respectively disposed at opposite positions of the parallel surface. Is attached so that both electrode surfaces are parallel to each other, it is possible to improve the accuracy of ice concentration measurement.

従って、本発明は、二次冷媒や海水の氷水スラリーなど、透明度の低い氷水スラリーに対してもその濃度を精度良く測定することができる。従って各請求項に記載された「氷水スラリー」には、清水などの透明度の高い氷水スラリーのみならず、二次冷媒や海水の氷水スラリーなど、透明度の低い氷水スラリーも含まれることは言うまでもない。   Therefore, this invention can measure the density | concentration accurately also with respect to ice water slurry with low transparency, such as a secondary coolant and the ice water slurry of seawater. Therefore, it is needless to say that the “ice water slurry” described in each claim includes not only highly transparent ice water slurry such as fresh water but also low water ice slurry such as secondary coolant and seawater ice water slurry.

また、本発明によれば、好ましくは、前記受信用超音波振動子又は前記送信用超音波振動子にバーストパルスの電圧信号を与えることにより、搬送管内で多重散乱を起こすことなく、氷濃度の測定精度がさらに向上するとともに、また超音波振動子を取り付ける周辺の管路を音響インピーダンスが管内を流動する氷水スラリーのうち水に近似した物質で構成することにより、超音波振動子から送信した送信信号がスラリー搬送管の管壁等で誤反射するのを防止して、氷濃度の測定精度をさらに向上させることができ、また好ましくは、超音波振動子として、セラミック圧電素子の超音波振動子を使用することにより、素子の厚みによって周波数を決定することができて、取り扱いが便利であり、また好ましくは、前記超音波振動子を、送信周波数の異なる超音波振動子を複数組み込んで構成することにより、さらに氷濃度の測定を向上でき、また好ましくは、管路側面を互いに対向する平行な面に形成し、同平行面の対向位置にそれぞれ受信用超音波振動子及び送信用超音波振動子を両者の電極面が互いに平行になるように取り付けることにより、両超音波振動子間の信号の送受信が正確に行われて、氷濃度測定の精度向上につなげることができる。   In addition, according to the present invention, preferably, by applying a voltage signal of a burst pulse to the reception ultrasonic transducer or the transmission ultrasonic transducer, the ice concentration can be reduced without causing multiple scattering in the carrier tube. The measurement accuracy is further improved, and the transmission line sent from the ultrasonic transducer is constructed by constructing the peripheral pipe to which the ultrasonic transducer is attached with a substance that approximates water among the ice-water slurry in which the acoustic impedance flows in the tube. It is possible to prevent the signal from being erroneously reflected on the wall of the slurry carrying pipe, and to further improve the accuracy of measuring the ice concentration. Preferably, the ultrasonic vibrator is an ultrasonic vibrator of a ceramic piezoelectric element. The frequency can be determined according to the thickness of the element, and the handling is convenient. By incorporating multiple ultrasonic transducers with different numbers, it is possible to further improve the ice concentration measurement. Preferably, the pipe side surfaces are formed as parallel surfaces facing each other, and are positioned at the opposite positions of the parallel surfaces. By installing the ultrasonic transducer for reception and the ultrasonic transducer for transmission so that both electrode surfaces are parallel to each other, signal transmission and reception between the ultrasonic transducers can be performed accurately, and ice concentration measurement It can lead to improvement of accuracy.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
図1は本発明の第1実施例に係る全体説明図、図2及び図3は前記第1実施例に係る、氷水スラリー搬送管に装着された氷濃度測定装置の横断面図及び立面図、図4は前記第1実施例に係る氷濃度測定装置のブロック図、図5は本発明の第2実施例に係る氷濃度測定装置の斜視図、図6はバーストパルスの一例を示す線図である。
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
FIG. 1 is an overall explanatory view according to a first embodiment of the present invention, and FIGS. 2 and 3 are a cross-sectional view and an elevation view of an ice concentration measuring apparatus mounted on an ice water slurry transport pipe according to the first embodiment. 4 is a block diagram of the ice concentration measuring apparatus according to the first embodiment, FIG. 5 is a perspective view of the ice concentration measuring apparatus according to the second embodiment of the present invention, and FIG. 6 is a diagram showing an example of a burst pulse. It is.

第1実施例に係る全体説明図を示す図1において、1は、氷水スラリーSを貯留する蓄氷槽で、内部に貯留される氷水スラリーSは攪拌器2で常時攪拌され、また蓄氷槽1には氷水スラリーSを輸送する氷水スラリー搬送管3が連結され、氷水スラリーSはポンプ5で同搬送管3を通って輸送され、蓄氷熱を利用した空調システム等の利用に供される。4は搬送管3に装着された本発明に係る氷濃度測定装置である。
なお氷蓄熱システムで氷水スラリーを搬送する場合、図1とは異なり、蓄氷槽1に戻る戻り配管をなくし、代わりに補給水を蓄氷槽1に追加する場合がある。また単に氷水スラリーの濃度を測定するだけのために循環用として戻りの配管を取り付ける場合もある。
In FIG. 1 which shows the whole explanatory drawing which concerns on 1st Example, 1 is an ice storage tank which stores the ice water slurry S, and the ice water slurry S stored inside is always stirred with the stirrer 2, and also an ice storage tank 1 is connected to an ice water slurry transport pipe 3 for transporting the ice water slurry S, and the ice water slurry S is transported through the transport pipe 3 by a pump 5 for use in an air conditioning system using ice storage heat. . Reference numeral 4 denotes an ice concentration measuring apparatus according to the present invention, which is attached to the transfer tube 3.
In addition, when conveying ice water slurry by an ice thermal storage system, unlike FIG. 1, the return piping which returns to the ice storage tank 1 may be eliminated, and makeup water may be added to the ice storage tank 1 instead. In some cases, a return pipe is attached for circulation only to measure the concentration of the ice water slurry.

第1実施例に係る氷水スラリー搬送管3に装着された氷濃度測定装置の横断面図及び立面図を示す図2及び図3において、3a及び3bは、搬送管3の途中で、一部拡大されて互いに鉛直方向に平行に配置された側壁であり、この部分に一対の送信用超音波振動子6及び受信用超音波振動子7が、これら振動子の電極面が平行になるように配設されている。8は、搬送管3のうち、超音波振動子6及び7の周辺部が音響インピーダンスが管内を流動する氷水スラリーのうち水に近似したウレタンでつくられた部分である。矢印aは氷水スラリーの流動方向を示す。   In FIGS. 2 and 3 showing a cross-sectional view and an elevational view of the ice concentration measuring device mounted on the ice water slurry transport pipe 3 according to the first embodiment, 3a and 3b are partly in the middle of the transport pipe 3. The side walls are enlarged and arranged parallel to each other in the vertical direction. A pair of ultrasonic transducer for transmission 6 and ultrasonic transducer for reception 7 are arranged in this part so that the electrode surfaces of these transducers are parallel to each other. It is arranged. Reference numeral 8 denotes a portion of the transport pipe 3 where the peripheral portions of the ultrasonic vibrators 6 and 7 are made of urethane that approximates water in an ice-water slurry having an acoustic impedance flowing in the pipe. Arrow a indicates the flow direction of the ice water slurry.

第1実施例に係る氷濃度測定装置のブロック図を示す図4において、パルス信号発信源(たとえば矩形波、正弦波等を発生)11で発生したパルスは、バーストパルス生成回路12にてバーストパルス、たとえば図6に一例を示す矩形波等に変換されて、増幅器13を経て増幅され、送信用超音波振動子6にバーストパルスの電圧信号を与える。
送信用超音波振動子6は、このバーストパルスの電圧信号による周波数に基づいて氷水スラリーSに超音波を送信し、前方に散乱された信号fは、透過信号として対向位置に設定された受信用超音波振動子7によって受信され、一方後方に散乱された信号rは、同じ送信用超音波振動子6により反射信号として受信される。
In FIG. 4 showing a block diagram of the ice concentration measuring apparatus according to the first embodiment, a pulse generated by a pulse signal transmission source (for example, generating a rectangular wave, a sine wave, etc.) 11 is a burst pulse generated by a burst pulse generation circuit 12. For example, it is converted into a rectangular wave or the like shown in FIG. 6 as an example, amplified through an amplifier 13, and a burst pulse voltage signal is applied to the transmitting ultrasonic transducer 6.
The transmission ultrasonic transducer 6 transmits ultrasonic waves to the ice water slurry S based on the frequency of the voltage signal of the burst pulse, and the signal f scattered forward is a reception signal set at the opposite position as a transmission signal. The signal r received by the ultrasonic transducer 7 and scattered backward is received as a reflected signal by the same transmitting ultrasonic transducer 6.

受信用超音波振動子7により受信した前方散乱信号fは、ハイパスフィルタ14で低周波ノイズを除去された後、増幅器15で増幅され、その後比較器19及び20で、その強度及び位相をそれぞれ基準値と比較処理され、演算装置21に送られる。
また送信用超音波振動子6により反射信号として受信された後方散乱信号rは、ハイパスフィルタ16で低周波ノイズを除去された後、増幅器17で増幅され、その後比較器18で基準値と比較処理された後、演算装置21に送られる。
これらの信号f及びrに対し、演算装置21で、振幅検波、平均化演算、及び揺らぎの計測(計算値の分散計算)等の処理を行ない、搬送管3内を流動する氷水スラリーの氷濃度を算出し、直流電圧もしくは直流電流で取り出す。
The forward scattered signal f received by the receiving ultrasonic transducer 7 is subjected to low-frequency noise removal by the high-pass filter 14 and then amplified by the amplifier 15, and then compared with the comparator 19 and 20 for the intensity and phase, respectively. The value is compared and sent to the arithmetic unit 21.
The backscattered signal r received as a reflected signal by the transmitting ultrasonic transducer 6 is amplified by the amplifier 17 after the low-frequency noise is removed by the high-pass filter 16 and then compared with the reference value by the comparator 18. Is sent to the arithmetic unit 21.
For these signals f and r, the arithmetic device 21 performs processing such as amplitude detection, averaging calculation, fluctuation measurement (calculation of dispersion of calculated values), and the like, and the ice concentration of the ice water slurry flowing in the transport pipe 3 Is calculated and taken out by DC voltage or DC current.

かかる第1実施例において、氷粒による超音波の前方散乱又は後方散乱を受信し、同受信信号を演算処理して氷濃度を算出する。この場合、送信用超音波振動子6にはバーストパルスの電圧信号を与えるため、搬送管3内での多重散乱を防止でき、氷濃度の測定精度を向上できるとともに、超音波振動子6,7を取り付ける部分の管壁8を音響インピーダンスが管内を流動する氷水スラリーのうち水に近似したウレタンで構成しているため、超音波振動子6から送信した送信信号がスラリー搬送管3の管壁等で誤反射するのを防止して、氷濃度の測定精度をさらに向上させることができ、更に管路側面を互いに対向する平行壁3a及び3bに形成し、同平行面の対向位置にそれぞれ送信用超音波振動子6及び受信用超音波振動子7を両者の電極面が互いに平行になるように取り付けることにより、両超音波振動子間の信号の送受信が正確に行われて、氷濃度測定の精度向上につなげることができる。
この場合、平行壁3a及び3bは、拡大されているため、ここで氷水スラリーSの流速が減速されるため、氷濃度の測定精度がさらに向上する。
In the first embodiment, forward scattering or backward scattering of ultrasonic waves due to ice particles is received, and the received signal is processed to calculate the ice concentration. In this case, since a burst pulse voltage signal is applied to the transmitting ultrasonic transducer 6, multiple scattering within the carrier tube 3 can be prevented, and the measurement accuracy of ice concentration can be improved. Since the pipe wall 8 of the portion to which the pipe is attached is made of urethane whose acoustic impedance is flowing in the pipe and is similar to water, the transmission signal transmitted from the ultrasonic vibrator 6 is the pipe wall of the slurry carrying pipe 3 and the like. In this case, it is possible to further improve the accuracy of measuring the ice concentration, and further, the side surfaces of the pipes are formed on the parallel walls 3a and 3b facing each other, and are transmitted to the opposite positions of the parallel surfaces. By attaching the ultrasonic transducer 6 and the receiving ultrasonic transducer 7 so that the electrode surfaces of the ultrasonic transducer 6 and the receiving ultrasonic transducer 7 are parallel to each other, signals can be accurately transmitted and received between the ultrasonic transducers. For accuracy It can lead to.
In this case, since the parallel walls 3a and 3b are enlarged, the flow rate of the ice water slurry S is reduced here, so that the accuracy of measuring the ice concentration is further improved.

次に本発明の第2実施例を図5に基づいて説明する。第2実施例に係る氷濃度測定装置を示す図5において、氷水スラリーを搬送する配管23の途中に、ウレタンでつくられた測定管部材28を挿入する。測定管部材28は、内部に、前後を氷水スラリー搬送管23と連結して、氷水スラリーの流路となる管状の空隙部28aを有し、その外面を平坦にして、その平坦面28bに送受信兼用の超音波振動子26を装着する。31は超音波振動子26にパルス信号を送るパルス信号発信源であり、矢印aは氷水スラリーの流動方向を示す。   Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 5 showing the ice concentration measuring apparatus according to the second embodiment, a measuring tube member 28 made of urethane is inserted in the middle of a pipe 23 for conveying ice water slurry. The measuring tube member 28 is connected to the ice water slurry transport tube 23 at the front and back thereof, and has a tubular gap portion 28a serving as a flow path for the ice water slurry. The outer surface of the measuring tube member 28 is flattened and transmitted to and received from the flat surface 28b. A combined ultrasonic transducer 26 is attached. Reference numeral 31 denotes a pulse signal transmission source that sends a pulse signal to the ultrasonic transducer 26, and an arrow a indicates the flow direction of the ice water slurry.

第2実施例の装置において、パルス信号発信源31からバーストパルスの電圧信号が送受信兼用の超音波振動子26に送られ、与えられた電圧信号によって超音波振動子26は信号周波数で振動し、測定管部材28内を流動する氷水スラリーに超音波を送信する。氷粒に当たって後方に散乱された信号は送受信兼用の超音波振動子26によって反射信号として受信する。
この反射信号を図示しない信号処理回路で、増幅、ノイズ処理、振幅検波、平均化演算、及び揺らぎの計測(計算値の分散計算)等の処理を行ない、氷濃度に対する信号強度の変化特性と位相の変化特性とから、搬送管23内を流動する氷水スラリーの氷濃度を算出し、直流電圧もしくは直流電流で取り出す。
In the apparatus of the second embodiment, a burst pulse voltage signal is sent from the pulse signal transmission source 31 to the ultrasonic transducer 26 for both transmission and reception, and the ultrasonic transducer 26 vibrates at the signal frequency by the applied voltage signal, Ultrasonic waves are transmitted to the ice water slurry flowing in the measuring tube member 28. A signal scattered backward by hitting the ice particles is received as a reflected signal by the ultrasonic transducer 26 for both transmitting and receiving.
This reflected signal is processed by a signal processing circuit (not shown) such as amplification, noise processing, amplitude detection, averaging calculation, and fluctuation measurement (dispersion calculation of the calculated value), and the signal intensity change characteristics and phase with respect to ice concentration. From the change characteristics, the ice concentration of the ice water slurry flowing in the transport pipe 23 is calculated and taken out by a DC voltage or a DC current.

従って第2実施例によれば、送受信兼用の超音波振動子26からバーストパルスに基づく超音波を送信し、氷粒等に当たって後方に散乱された信号を同超音波振動子26で受信し、氷濃度に対する信号強度の変化特性と位相の変化特性とから、搬送管23内を流動する氷水スラリーの氷濃度を算出しているため、リアルタイムでかつ精度良い氷濃度を測定することができる。
さらに超音波振動子26にバーストパルスの電圧信号を与えることにより、搬送管23内で多重散乱を起こすことなく、氷濃度の測定精度がさらに向上するとともに、超音波振動子26を取り付ける周辺の管路を音響インピーダンスが管内を流動する氷水スラリーのうち水に近似したウレタンで構成することにより、超音波振動子から送信した送信信号が測定管部材28の管壁等で誤反射するのを防止して、氷濃度の測定精度をさらに向上させることができる。
Therefore, according to the second embodiment, an ultrasonic wave based on a burst pulse is transmitted from the ultrasonic transducer 26 which is used for both transmission and reception, and a signal scattered backward by hitting an ice particle or the like is received by the ultrasonic transducer 26, and the ice Since the ice concentration of the ice water slurry flowing in the transport pipe 23 is calculated from the signal intensity change characteristic and the phase change characteristic with respect to the concentration, the ice concentration can be measured in real time with high accuracy.
Further, by giving a voltage signal of a burst pulse to the ultrasonic transducer 26, the accuracy of measuring the ice concentration is further improved without causing multiple scattering in the transport tube 23, and the peripheral tube to which the ultrasonic transducer 26 is attached is provided. By configuring the path with urethane that is similar to water among the ice-water slurry in which the acoustic impedance flows in the tube, the transmission signal transmitted from the ultrasonic transducer is prevented from being erroneously reflected by the tube wall of the measurement tube member 28 or the like. Thus, the accuracy of measuring the ice concentration can be further improved.

本発明によれば、たとえば製氷機から出てきた氷水スラリーや、氷蓄熱を利用した空調システムで使用される氷水スラリー等を所望の場所に輸送する際に、氷水スラリー中の氷濃度を、超音波を用いて、リアルタイムでかつ精度良く、測定することができる氷水濃度測定方法及び装置を提供することができる。   According to the present invention, for example, when transporting ice water slurry from an ice maker or ice water slurry used in an air conditioning system using ice heat storage to a desired location, the ice concentration in the ice water slurry is increased. It is possible to provide an ice water concentration measurement method and apparatus capable of measuring in real time and with high accuracy using sound waves.

図1は本発明の第1実施例に係る全体説明図である。FIG. 1 is an overall explanatory view according to the first embodiment of the present invention. 前記第1実施例に係る、氷水スラリー搬送管に装着された氷濃度測定装置の横断面図である。It is a cross-sectional view of the ice concentration measuring apparatus attached to the ice water slurry transport pipe according to the first embodiment. 前記第1実施例に係る、氷水スラリー搬送管に装着された氷濃度測定装置の立面図である。It is an elevational view of an ice concentration measuring device mounted on an ice water slurry transport pipe according to the first embodiment. 前記第1実施例に係る氷濃度測定装置のブロック図である。It is a block diagram of the ice concentration measuring apparatus which concerns on the said 1st Example. 本発明の第2実施例に係る氷濃度測定装置の斜視図である。It is a perspective view of the ice concentration measuring apparatus which concerns on 2nd Example of this invention. バーストパルスの一例を示す線図である。It is a diagram which shows an example of a burst pulse.

符号の説明Explanation of symbols

1 蓄氷槽
3、23 氷水スラリー搬送管
3a,3b 平行壁
4 氷濃度測定装置
6 送信用超音波振動子
7 受信用超音波振動子
8 ウレタン部
11、31 パルス信号発信源
12 バーストパルス生成回路
13,15、17 増幅器
14、16 ハイパスフィルタ
18,19,20 比較器
21 演算装置
26 送受信兼用超音波振動子
28 測定管部材
28b 平坦面
a 氷水スラリー流動方向
S 氷水スラリー
1 Ice storage tank 3, 23 Ice water slurry transport pipe 3a, 3b Parallel wall
4 Ice Concentration Measuring Device 6 Transmitting Ultrasonic Vibrator 7 Receiving Ultrasonic Vibrator 8 Urethane Unit 11, 31 Pulse Signal Transmission Source 12 Burst Pulse Generation Circuits 13, 15, 17 Amplifiers 14, 16 High-Pass Filters 18, 19, 20 Comparator 21 Computing device 26 Transmission / reception ultrasonic transducer 28 Measuring tube member 28b Flat surface a Ice water slurry flow direction S Ice water slurry

Claims (9)

管内を流動状態にある氷水スラリー中の氷濃度をリアルタイムに測定するに際し、超音波振動子を管路側面の一方に取り付けて、同超音波振動子により氷水スラリーに向けて超音波を送信するとともに、氷粒による超音波の後方散乱を受信し、同受信信号を演算処理して氷濃度を算出することを特徴とする超音波による氷水濃度測定方法。   When measuring the ice concentration in the ice water slurry that is flowing in the pipe in real time, an ultrasonic transducer is attached to one side of the pipe, and ultrasonic waves are transmitted toward the ice water slurry by the ultrasonic transducer. A method for measuring ice water concentration using ultrasonic waves, comprising: receiving backscattering of ultrasonic waves caused by ice particles; and calculating the ice concentration by computing the received signal. 管内を流動状態にある氷水スラリー中の氷濃度をリアルタイムに測定するに際し、一対の送信用及び受信用超音波振動子を管路側面の互いに対向する位置に取り付け、前記送信用超音波振動子により氷水スラリーに超音波を送信し、前記受信用超音波振動子により氷粒による超音波の前方散乱又は後方散乱を受信し、同受信信号を演算処理して氷濃度を算出することを特徴とする超音波による氷水濃度測定方法。   When measuring the ice concentration in the ice water slurry in a flow state in the tube in real time, a pair of transmitting and receiving ultrasonic transducers are attached to the mutually opposite positions on the side of the pipe, and the transmitting ultrasonic transducer Ultrasonic waves are transmitted to the ice water slurry, ultrasonic wave front scattering or back scattering is received by the receiving ultrasonic transducer, and the received signal is processed to calculate the ice concentration. An ice water concentration measurement method using ultrasonic waves. 前記受信用超音波振動子又は前記送信用超音波振動子にバーストパルスの電圧信号を与えることを特徴とする請求項1又は2のいずれの項記載の超音波による氷水濃度測定方法。   3. The method for measuring ice water concentration by ultrasonic waves according to claim 1, wherein a burst pulse voltage signal is applied to the reception ultrasonic transducer or the transmission ultrasonic transducer. 前記超音波振動子を取り付ける周辺の管路を、音響インピーダンスが管内を流動する氷水スラリーのうち水に近似した物質で構成したことを特徴とする請求項1又は2のいずれかの項記載の超音波による氷水濃度測定方法。   The superconductor according to any one of claims 1 and 2, wherein a peripheral pipe line to which the ultrasonic vibrator is attached is made of a material whose acoustic impedance is close to water among ice-water slurries flowing in the pipe. Ice water concentration measurement method by sound wave. 前記超音波振動子として、セラミック圧電素子の超音波振動子を使用することを特徴とする請求項1又は2のいずれかの項記載の超音波による氷水濃度測定方法。   The ultrasonic water concentration measurement method using ultrasonic waves according to claim 1 or 2, wherein an ultrasonic vibrator of a ceramic piezoelectric element is used as the ultrasonic vibrator. 前記超音波振動子を、送信周波数の異なる超音波振動子を複数組み込んで構成したことを特徴とする請求項1記載の超音波による氷水濃度測定方法。   2. The method for measuring ice water concentration by ultrasonic waves according to claim 1, wherein the ultrasonic vibrator is constructed by incorporating a plurality of ultrasonic vibrators having different transmission frequencies. 前記一対の送信用及び受信用超音波振動子を、送信周波数の異なる一対の送信用及び受信用超音波振動子を複数組組み込んで構成したことを特徴とする請求項2記載の超音波による氷水濃度測定方法。   The ultrasonic ice water according to claim 2, wherein the pair of transmitting and receiving ultrasonic transducers are configured by incorporating a plurality of pairs of transmitting and receiving ultrasonic transducers having different transmission frequencies. Concentration measurement method. 氷水スラリーを流動する管路に介装され、氷水スラリーの流動速度を減速するため断面積を拡大した容積部を設け、同容積部の側面を互いに対向する平行な面に形成し、同平行面の対向位置にそれぞれ受信用超音波振動子及び送信用超音波振動子を両者の電極面が互いに平行になるように取り付けたことを特徴とする超音波による氷水濃度測定装置。   A volume part with an enlarged cross-sectional area is provided in order to reduce the flow rate of the ice water slurry, and the side surfaces of the same volume part are formed as parallel surfaces facing each other. An ultrasonic ice water concentration measuring device, wherein an ultrasonic transducer for reception and an ultrasonic transducer for transmission are attached so that their electrode surfaces are parallel to each other at opposite positions. 前記受信用超音波振動子が受信した前方散乱信号又は後方散乱信号を低周波ノイズを除去するハイパスフィルタ及び増幅器を介してそれぞれ基準値と比較し、その後演算装置に送って氷濃度を算出することを特徴とする請求項8記載の超音波による氷水濃度測定装置。   The forward scatter signal or the back scatter signal received by the ultrasonic transducer for reception is compared with a reference value through a high-pass filter and an amplifier that remove low-frequency noise, and then sent to an arithmetic device to calculate the ice concentration. The apparatus for measuring ice water concentration by ultrasonic waves according to claim 8.
JP2004172684A 2004-06-10 2004-06-10 Method and instrument for measuring concentration of ice water by ultrasonic wave Pending JP2005351753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172684A JP2005351753A (en) 2004-06-10 2004-06-10 Method and instrument for measuring concentration of ice water by ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172684A JP2005351753A (en) 2004-06-10 2004-06-10 Method and instrument for measuring concentration of ice water by ultrasonic wave

Publications (1)

Publication Number Publication Date
JP2005351753A true JP2005351753A (en) 2005-12-22

Family

ID=35586361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172684A Pending JP2005351753A (en) 2004-06-10 2004-06-10 Method and instrument for measuring concentration of ice water by ultrasonic wave

Country Status (1)

Country Link
JP (1) JP2005351753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081022A1 (en) * 2008-01-15 2009-07-22 Linde Aktiengesellschaft Method and device for freezing pipes
US8550703B2 (en) 2010-09-27 2013-10-08 Sartorius Stedim North America Inc. Systems and methods for use in freezing or thawing biopharmaceutical materials
CN110779985A (en) * 2019-11-05 2020-02-11 重庆大学 Industrial formaldehyde solution on-line continuous detection and self-cleaning device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912890A (en) * 1971-11-23 1974-02-04
JPS62500612A (en) * 1984-10-23 1987-03-12 ロフラ−、フリ−ドリッヒ Ultrasonic measurement method for solid concentration and particle size distribution
JPH0627695B2 (en) * 1989-11-13 1994-04-13 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Method of measuring particle size distribution and concentration in suspension using ultrasound
JPH06105397A (en) * 1992-09-18 1994-04-15 Hitachi Medical Corp Ultrasonic wave probe
JP2002135895A (en) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd Ultrasonic transmitter-receiver
JP2002277446A (en) * 2001-03-16 2002-09-25 Hitachi Ltd Slurry concentration measuring apparatus and ice water heat accumulation system therewith
JP2003098158A (en) * 2001-09-27 2003-04-03 Hitachi Ltd Apparatus for measuring concentration of slurry and ice water heat reserve system comprising it
JP2003202327A (en) * 2001-12-28 2003-07-18 Nishihara Environment Technology Inc Ultrasonic sludge concentration measuring system
JP2004504600A (en) * 2000-07-14 2004-02-12 エービービー エービー Active acoustic spectroscopy
JP2004516468A (en) * 2000-12-18 2004-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ultrasonic size measurement method and apparatus for particles in suspension

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912890A (en) * 1971-11-23 1974-02-04
JPS62500612A (en) * 1984-10-23 1987-03-12 ロフラ−、フリ−ドリッヒ Ultrasonic measurement method for solid concentration and particle size distribution
JPH0627695B2 (en) * 1989-11-13 1994-04-13 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Method of measuring particle size distribution and concentration in suspension using ultrasound
JPH06105397A (en) * 1992-09-18 1994-04-15 Hitachi Medical Corp Ultrasonic wave probe
JP2004504600A (en) * 2000-07-14 2004-02-12 エービービー エービー Active acoustic spectroscopy
JP2002135895A (en) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd Ultrasonic transmitter-receiver
JP2004516468A (en) * 2000-12-18 2004-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ultrasonic size measurement method and apparatus for particles in suspension
JP2002277446A (en) * 2001-03-16 2002-09-25 Hitachi Ltd Slurry concentration measuring apparatus and ice water heat accumulation system therewith
JP2003098158A (en) * 2001-09-27 2003-04-03 Hitachi Ltd Apparatus for measuring concentration of slurry and ice water heat reserve system comprising it
JP2003202327A (en) * 2001-12-28 2003-07-18 Nishihara Environment Technology Inc Ultrasonic sludge concentration measuring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081022A1 (en) * 2008-01-15 2009-07-22 Linde Aktiengesellschaft Method and device for freezing pipes
US8550703B2 (en) 2010-09-27 2013-10-08 Sartorius Stedim North America Inc. Systems and methods for use in freezing or thawing biopharmaceutical materials
CN110779985A (en) * 2019-11-05 2020-02-11 重庆大学 Industrial formaldehyde solution on-line continuous detection and self-cleaning device

Similar Documents

Publication Publication Date Title
TW577978B (en) Doppler-type ultrasonic flowmeter
US7673526B2 (en) Apparatus and method of lensing an ultrasonic beam for an ultrasonic flow meter
CN107923880A (en) Turbidity transducer based on ultrasonic measurement
JP2002520584A (en) Induction mode flow measurement system
JP2001526787A (en) How to measure density and mass flow
WO2011078691A3 (en) Measuring apparatus
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
RU2708904C1 (en) Method and system for ultrasonic overhead flow measurement and body for measurement
JPS582620B2 (en) Bubble detection method and device
JP2005351753A (en) Method and instrument for measuring concentration of ice water by ultrasonic wave
CN103932737A (en) Cardiovascular blood flow velocity sensor
JP2005156401A (en) Clamp-on type doppler type ultrasonic flow velocity distribution meter
JPH1048009A (en) Ultrasound temperature current meter
JP4403280B2 (en) Method for measuring physical properties of soft thin film and apparatus therefor
JP5345006B2 (en) Ultrasonic flow meter
JP4687293B2 (en) Doppler ultrasonic flow velocity distribution meter
KR100482226B1 (en) Method and apparatus for measuring the amount of flowing in gas pipe using sonic waves
JP3036172B2 (en) Liquid level detector in pressure vessel
JP2005241628A (en) Doppler ultrasonic flow velocity distribution meter
JP2011127948A (en) Flow velocity measuring device
JP6674252B2 (en) Clamp-on ultrasonic flowmeter
JPH0610255Y2 (en) Ultrasonic transceiver
JP3368305B2 (en) Ultrasonic flow meter
JPH0324607B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101001