JP2005351600A - Aluminum heat exchanger and its scale deposition preventing method - Google Patents

Aluminum heat exchanger and its scale deposition preventing method Download PDF

Info

Publication number
JP2005351600A
JP2005351600A JP2004175696A JP2004175696A JP2005351600A JP 2005351600 A JP2005351600 A JP 2005351600A JP 2004175696 A JP2004175696 A JP 2004175696A JP 2004175696 A JP2004175696 A JP 2004175696A JP 2005351600 A JP2005351600 A JP 2005351600A
Authority
JP
Japan
Prior art keywords
aluminum
heat exchanger
water
heat
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004175696A
Other languages
Japanese (ja)
Inventor
Junichi Oshiro
準一 大代
Yasuhiko Tanaka
庸彦 田中
Takeshi Ebihara
健 海老原
Noriomi Okazaki
徳臣 岡崎
Ryuta Okamoto
隆太 岡本
Yasuo Iguchi
泰男 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Nikkei Heat Exchanger Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Nikkei Heat Exchanger Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd, Nikkei Heat Exchanger Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2004175696A priority Critical patent/JP2005351600A/en
Publication of JP2005351600A publication Critical patent/JP2005351600A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum heat exchanger of a parallel flow type to be advantageously used as a heat exchanger for a building air conditioning system which can be smaller and lighter while using heat medium water, and to provide a scale deposition preventing method for preventing the deposition of scale which results in lower heat exchanging efficiency and heat exchanger pipe clogging. <P>SOLUTION: A plurality of heat exchanger pipes formed of aluminum or aluminum alloy are constituted by flat tubes which have partition walls e sectioned in the pipes to form a plurality of sectioned flow paths in approximate parallel and which have thicknesses (a) of 1.5-3 mm and hole widths (c) 3 mm or less. They have hydromechanical diameters of 1.3-3.0 mm. Corrugated fins formed of aluminum or aluminum alloy are arranged between the heat exchanger pipes, and they have heights (h) of 6-12 mm. The aluminum heat exchanger uses water as heat medium. The scale deposition preventing method uses the heat medium water which is produced by adding aluminum anticorrosive agent to treatment water subjected to previous scale deposition preventing treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、温水や冷水を熱媒体とするアルミ製熱交換器及びそのスケール付着防止方法に係り、特に限定するものではないが、水を熱媒体として用いるパラレルフロー型アルミ製熱交換器であって、ビルやオフィス等の大規模な屋内空間の空調機器において用いるのに好適なアルミ製熱交換器及びそのスケール付着防止方法に関する。   The present invention relates to an aluminum heat exchanger using hot water or cold water as a heat medium and a method for preventing scale adhesion, and is not particularly limited, but is a parallel flow type aluminum heat exchanger using water as a heat medium. In particular, the present invention relates to an aluminum heat exchanger suitable for use in an air conditioner in a large-scale indoor space such as a building or an office, and a method for preventing scale adhesion.

一般に、ビル全体の空調を管理したり、あるいは、各オフィスごとの空調を管理するような比較的大規模な屋内空間の空調機器に用いられる熱交換器(以下、「ビル空調システム用熱交換器」という)には、熱媒体として水道水、工業用水、地下水等の淡水が使用されており、熱伝導性や耐食性に優れた材料が必要であるために、銅パイプ製で1穴の熱交換管を備えた銅製熱交換器が用いられており、また、このような銅製熱交換器で用いる熱媒体としては、熱交換管の水力直径が通常8mm以上であるので、水中のスケール成分(主としてカルシウム分やマグネシウム分)が熱交換管の内壁面にスケールとなって付着し難く、また、この熱交換管を閉塞する虞が比較的少なく、更に、スケール付着防止のための対策が比較的容易であるために、必要により以下のようなスケール付着防止の対策を講じて水(温水や冷水)が用いられている。   In general, heat exchangers used for air conditioning equipment in relatively large indoor spaces that manage the air conditioning of the entire building or the air conditioning of each office (hereinafter referred to as “heat exchangers for building air conditioning systems”). )) Uses fresh water such as tap water, industrial water, and groundwater as a heat medium, and requires materials with excellent thermal conductivity and corrosion resistance. A copper heat exchanger having a pipe is used, and as a heat medium used in such a copper heat exchanger, since the hydraulic diameter of the heat exchange pipe is usually 8 mm or more, a scale component in water (mainly Calcium and magnesium) are less likely to adhere to the inner wall of the heat exchange tube as scale, and there is relatively little risk of clogging the heat exchange tube, and measures to prevent scale adhesion are relatively easy. To be Required by taking steps of the scale adhesion prevention as follows water (hot and cold water) is used.

すなわち、このように熱媒体として水を用いる銅製熱交換器のスケール付着防止の手段として、例えば、H型カチオン交換樹脂とpH検出手段とを設け、冷却水の一部又は全部をH型カチオン交換樹脂に通じて冷却水中のスケール成分を除去すると共に冷却水のpH値を検出し、このpH値によってH型カチオン交換樹脂を通過する冷却水の量を制御することによりスケールの発生を抑制する方法(特公昭55-28,759号公報参照)、熱媒体としての水中にEDTA等のキレート剤を所定の割合で添加し、スケールの発生を防止する方法(特開昭61-174,990号や特開2000-246,286号の各公報参照)、冷却水を炭酸カルシウム粒子及び/又はシリカゲル粒子と接触させてスケール成分を除去すると共に冷却水中に水中の固体表面に粘稠なゼラチン状のフィルム(スライム)が形成されるのを防止するスライムコントロール剤を添加する方法(特開2002-273,477号公報参照)等が知られている。   That is, for example, an H-type cation exchange resin and a pH detection means are provided as means for preventing scale adhesion of a copper heat exchanger that uses water as a heat medium in this way, and part or all of the cooling water is H-type cation exchange. A method of suppressing the generation of scale by removing the scale component in the cooling water through the resin and detecting the pH value of the cooling water and controlling the amount of the cooling water passing through the H-type cation exchange resin by this pH value (See Japanese Patent Publication No. 55-28,759), a method of preventing the generation of scale by adding a chelating agent such as EDTA to water as a heat medium at a predetermined ratio (Japanese Patent Laid-Open Nos. 61-174,990 and 2000-2000). No. 246,286), cooling water is brought into contact with calcium carbonate particles and / or silica gel particles to remove scale components and the gelatinous film is viscous on a solid surface in water in cooling water A method of adding a slime control agent that prevents the formation of (slime) (see JP-A-2002-273,477) is known.

一方、車両用として用いられる空調機器については、小型で軽量であることが要求されることから、アルミニウム又はアルミニウム合金(以下、「アルミニウム材」という)の加工性、伝熱性及び軽量性を利用し、互いに所定の間隔を置いて平行に配設され、熱媒体の入口と出口とを有する一対のヘッダパイプと、アルミニウム材で形成され、上記一対のヘッダパイプ間に架設されて互いに平行な複数の熱媒流路を形成する複数の熱交換管(凝縮管)とを有するパラレルフロー型アルミ製熱交換器が用いられている。また、このパラレルフロー型アルミ製熱交換器においては、伝熱面積を効率良く確保するために、その熱交換管の水力直径が通常0.38mmφにまでなるため、水中のスケール成分によるスケールが熱交換管の内壁面に付着し易く、また、容易に熱交換管の閉塞が起こり易く、更に、アルミニウム材製の熱交換管の腐食の問題も発生するため、熱媒体としては、フロンガス等の非水系の熱媒体が用いられている(例えば、特公平5-87,752号、特公平7-62,596号、特開平9-68,395号等の各公報参照)。   On the other hand, air-conditioning equipment used for vehicles is required to be small and lightweight, and therefore uses the workability, heat conductivity, and lightness of aluminum or aluminum alloy (hereinafter referred to as “aluminum material”). A pair of header pipes arranged parallel to each other at a predetermined interval and having a heat medium inlet and outlet, and a plurality of aluminum pipes formed between the pair of header pipes and parallel to each other. A parallel flow type aluminum heat exchanger having a plurality of heat exchange tubes (condensation tubes) forming a heat medium flow path is used. Further, in this parallel flow type aluminum heat exchanger, the hydraulic diameter of the heat exchange pipe is usually up to 0.38 mmφ in order to efficiently secure the heat transfer area, so that the scale due to the scale component in the water is heated. It is easy to adhere to the inner wall surface of the exchange pipe, and the heat exchange pipe is easily clogged. Further, the heat exchange pipe made of aluminum also has a problem of corrosion. An aqueous heat medium is used (see, for example, Japanese Patent Publication No. 5-87,752, Japanese Patent Publication No. 7-62,596, Japanese Patent Application Laid-Open No. 9-68,395, etc.).

しかるに、近年、ビル空調システム用熱交換器においても、地球環境保全という理由から、高性能化、省スペース化、軽量化、リサイクルの簡素化等の要請も高まっている。しかし、従来の空調機器では、熱媒体として水の使用は特に問題にならないが、熱交換管の伝熱面積を容易には増やすことができず、更なる高性能化、省スペース化等が困難な状況にあった。   However, in recent years, demands for higher performance, space saving, lighter weight, simplified recycling, and the like are also increasing in the heat exchangers for building air conditioning systems because of the conservation of the global environment. However, in conventional air-conditioning equipment, the use of water as a heat medium is not particularly problematic, but the heat transfer area of the heat exchange tube cannot be increased easily, making it difficult to achieve higher performance and space saving. There was a situation.

そこで、加工性や熱伝導性に優れた特性を有し、熱交換管の伝熱面積が大きいパラレルフロー型アルミ製熱交換器を使用することが考えられる。しかしながら、このパラレルフロー型アルミ製熱交換器は、元々自動車室内空調用として開発されてきたために、熱媒体としてフロンガス等の非水系のものを使用し、高性能かつ省スペース化が進められてきた。このため、熱媒体が通る熱交換管の熱媒流路はその伝熱面積を可能な限り大きくするために、極めて細い管束の集合となっているほか、アルミニウム材が比較的水道水や工業用水等の淡水に対して耐食性が悪く、このために、温水や冷水を熱媒体とするパラレルフロー型アルミ製熱交換器がビル空調システム用熱交換器として試みられたことがない。   Therefore, it is conceivable to use a parallel flow type aluminum heat exchanger having excellent workability and heat conductivity and a large heat transfer area of the heat exchange tube. However, since this parallel flow type aluminum heat exchanger was originally developed for use in air conditioning in automobiles, non-aqueous materials such as chlorofluorocarbon were used as the heat medium, and high performance and space saving were promoted. . For this reason, the heat medium flow path of the heat exchange pipe through which the heat medium passes is a collection of extremely thin tube bundles in order to make the heat transfer area as large as possible, and the aluminum material is comparatively tap water or industrial water. Therefore, a parallel flow type aluminum heat exchanger using hot water or cold water as a heat medium has not been tried as a heat exchanger for a building air conditioning system.

更に、車両用ラジエーター等については、熱交換管としてアルミニウム材で形成された扁平チューブが用いられている(例えば、特開2004-17,116号、特開平8-134,574号、特開平7-83,594号等の各公報参照)。しかしながら、これら車両用ラジエーター等に用いられている扁平チューブは、薄板から形成される電縫管、ろう付管であることから、その管内部が1孔あるいは2孔程度の長孔構造となっており、ビル空調システム用熱交換器の熱媒体としての水の移動に必要なポンプ圧(通常0.5MPa以上)には耐えられない。
特公昭55-28,759号公報 特開昭61-174,990号公報 特開2000-246,286号公報 特開2002-273,477号公報 特公平5-87,752号公報 特公平7-62,596号公報 特開平9-68,395号公報 特開2004-17,116号公報 特開平8-134,574号公報 特開平7-83,594号公報
Further, for vehicle radiators and the like, flat tubes made of aluminum material are used as heat exchange tubes (for example, JP-A Nos. 2004-17, 116, 8-134,574, 7-83,594, etc.). (See the publications). However, since the flat tubes used in these vehicle radiators are electric sewing tubes and brazing tubes formed from thin plates, the inside of the tube has a long hole structure of about one or two holes. Therefore, it cannot withstand the pump pressure (usually 0.5 MPa or more) necessary for the movement of water as the heat medium of the heat exchanger for the building air conditioning system.
Japanese Patent Publication No.55-28,759 JP 61-174,990 JP 2000-246,286 Japanese Patent Laid-Open No. 2002-273,477 Japanese Patent Publication No. 5-87,752 Japanese Patent Publication No.7-62,596 JP-A-9-68,395 Japanese Unexamined Patent Publication No. 2004-17,116 Japanese Patent Laid-Open No. 8-134,574 JP-A-7-83,594

そこで、本発明者らは、温水や冷水を熱媒体とする小型化や軽量化等が可能なパラレルフロー型等のアルミ製熱交換器であって、ビル空調システム用熱交換器として有利に用いることができるアルミ製熱交換器とそのスケール付着防止方法について鋭意検討した結果、水力直径が1.3〜3.0mmのアルミニウム材で形成された熱交換管を用いることにより、また、熱媒体として予めスケール付着防止処理された処理水にアルミ防食剤を添加してなる熱媒水を用いることにより、目的を達成できることを見出し、本発明を完成した。   Accordingly, the present inventors are aluminum heat exchangers such as a parallel flow type that can be reduced in size and weight using hot water or cold water as a heat medium, and are advantageously used as heat exchangers for building air conditioning systems. As a result of intensive studies on an aluminum heat exchanger that can be used and a method for preventing scale adhesion, a heat exchange tube formed of an aluminum material having a hydraulic diameter of 1.3 to 3.0 mm is used. The inventors have found that the purpose can be achieved by using heat transfer water obtained by adding an aluminum anticorrosive to treated water that has been subjected to scale adhesion prevention treatment in advance, thereby completing the present invention.

従って、本発明の目的は、熱媒体として水を用いる小型化や軽量化等が可能なパラレルフロー型等のアルミ製熱交換器であって、ビル空調システム用熱交換器として有利に用いることができるアルミ製熱交換器を提供することにある。   Accordingly, an object of the present invention is a parallel flow type aluminum heat exchanger that can be reduced in size and weight using water as a heat medium, and is advantageously used as a heat exchanger for a building air conditioning system. It is to provide an aluminum heat exchanger that can be used.

また、本発明の他の目的は、温水や冷水を熱媒体とするパラレルフロー型等のアルミ製熱交換器において、熱交換効率の低下や熱交換管閉塞の原因となるスケールの付着を可及的に防止することができ、小型化や軽量化等が可能であって、ビル空調システム用熱交換器として有利に用いることができるアルミ製熱交換器のスケール付着防止方法を提供することにある。   In addition, another object of the present invention is to enable the adhesion of scales that cause a decrease in heat exchange efficiency and blockage of heat exchange pipes in a parallel flow type aluminum heat exchanger using hot water or cold water as a heat medium. It is intended to provide a method for preventing scale adhesion of an aluminum heat exchanger that can be reduced in size, reduced in weight, etc., and can be advantageously used as a heat exchanger for a building air conditioning system. .

すなわち、本発明は、互いに所定の間隔を置いて配設され、熱媒体の入口と出口とを有する一対のヘッダパイプと、アルミニウム又はアルミニウム合金で形成され、上記一対のヘッダパイプ間に架設されて複数の熱媒流路を形成する複数の熱交換管と、アルミニウム又はアルミニウム合金で形成されて上記各熱交換管の間に配設されたフィンとを有し、熱媒体として水を用いるアルミ製熱交換器であり、上記各熱交換管は、管内部に互いに区画されて略平行な複数の区画流路を形成する隔壁eを備えた厚さa1.5〜3mm及び孔幅c3mm以下の扁平チューブで構成されてその水力直径が1.3〜3.0mmであり、また、上記フィンが高さh6〜12mmのコルゲートフィンであることを特徴とするアルミ製熱交換器である。   That is, the present invention is formed of a pair of header pipes arranged at predetermined intervals and having a heat medium inlet and outlet, and aluminum or an aluminum alloy, and spanned between the pair of header pipes. Aluminum having a plurality of heat exchange pipes forming a plurality of heat medium flow paths and fins formed of aluminum or aluminum alloy and disposed between the heat exchange pipes, and using water as a heat medium Each of the heat exchange tubes is a flat plate having a thickness a1.5 to 3 mm and a hole width c3 mm or less provided with partition walls e that are partitioned from each other to form a plurality of substantially parallel partitioned flow paths. An aluminum heat exchanger characterized in that it is made of a tube and has a hydraulic diameter of 1.3 to 3.0 mm, and the fin is a corrugated fin having a height of h6 to 12 mm.

また、本発明は、互いに所定の間隔を置いて配設され、熱媒体の入口と出口とを有する一対のヘッダパイプと、アルミニウム又はアルミニウム合金で形成され、上記一対のヘッダパイプ間に架設されて複数の熱媒流路を形成する複数の熱交換管と、アルミニウム又はアルミニウム合金で形成されて上記各熱交換管の間に配設されたコルゲートフィンとを有し、上記各熱交換管の水力直径が1.3〜3.0mmであるアルミ製熱交換器のスケール付着防止方法であり、熱媒体として、予めスケール付着防止処理された処理水にアルミ防食剤を添加してなる熱媒水を用いることを特徴とするアルミ製熱交換器のスケール付着防止方法である。   In addition, the present invention is a pair of header pipes arranged at a predetermined interval and having a heat medium inlet and outlet, and formed of aluminum or an aluminum alloy, and spanned between the pair of header pipes. A plurality of heat exchange pipes forming a plurality of heat medium flow paths, and corrugated fins formed of aluminum or aluminum alloy and disposed between the heat exchange pipes. This is a method for preventing scale adhesion of an aluminum heat exchanger having a diameter of 1.3 to 3.0 mm, and heat medium water obtained by adding an aluminum anticorrosive to treated water that has been previously treated to prevent scale adhesion as a heat medium. A method for preventing scale adhesion of an aluminum heat exchanger.

本発明の熱交換器は、互いに所定の間隔を置いて配設され、熱媒体の入口と出口とを有する一対のヘッダパイプと、アルミニウム又はアルミニウム合金で形成され、上記一対のヘッダパイプ間に架設されて複数の熱媒流路を形成する複数の熱交換管と、アルミニウム又はアルミニウム合金で形成されて上記各熱交換管の間に配設されたコルゲートフィンとを有するアルミ製熱交換器であり、好ましくは一対のヘッダパイプが互いに平行に配置され、また、複数の熱交換管がこれら一対のヘッダパイプ間に互いに平行に架設された、いわゆるパラレルフロー型等のアルミ製熱交換器である。   The heat exchanger of the present invention is formed of a pair of header pipes arranged at predetermined intervals and having a heat medium inlet and outlet, and aluminum or aluminum alloy, and is installed between the pair of header pipes. An aluminum heat exchanger having a plurality of heat exchange tubes that form a plurality of heat medium flow paths and corrugated fins formed of aluminum or an aluminum alloy and disposed between the heat exchange tubes. Preferably, it is a so-called parallel flow type aluminum heat exchanger in which a pair of header pipes are arranged in parallel to each other and a plurality of heat exchange pipes are laid in parallel between the pair of header pipes.

ここで、上記各熱交換管については、所望の熱交換効率を達成するために扁平チューブであることが必要であり、また、この管内部には管内部を互いに区画する隔壁eを有し、これによって管内部が好ましくは断面略四角形状で互いに略平行な複数の区画流路に形成されている必要がある。そして、この区画流路の孔幅cについては、少なくとも3mm以下である必要があり、扁平チューブの肉厚dによっても異なるが、好ましくは1.5mm以上2.5mm以下程度であるのがよい。この区画流路の孔幅cは、孔幅cを広くするに従って肉厚dを厚くする必要が生じ、この孔幅cが3mmを超えると、扁平チューブの肉厚dを0.4mm以上にしない限り、ビル空調用熱交換器として所望される耐圧強度0.5MPaを満足できなくなり、反対に、扁平チューブの肉厚dをあまり厚くすると、熱交換器重量が嵩むだけでなく、扁平チューブの厚さaを変えない限り必然的に水力直径が小さくなり、この水力直径が1.5mmより小さくなると後述する弊害が生じ、また、通路断面形状を変えずに扁平チューブの厚さaを厚くすると、空気側伝熱面積の減少、通気抵抗の増大等の問題が生じるので好ましくない。   Here, for each of the heat exchange tubes, it is necessary to be a flat tube in order to achieve a desired heat exchange efficiency, and inside the tube has a partition wall e that partitions the inside of the tube from each other, As a result, the inside of the tube is preferably formed into a plurality of partitioned flow paths having a substantially square cross section and substantially parallel to each other. Further, the hole width c of the partition channel needs to be at least 3 mm or less, and is preferably 1.5 mm or more and 2.5 mm or less, although it depends on the thickness d of the flat tube. As for the hole width c of the partition channel, it is necessary to increase the thickness d as the hole width c is increased. When the hole width c exceeds 3 mm, the thickness d of the flat tube is not set to 0.4 mm or more. As long as the pressure strength 0.5MPa desired for a building air conditioner heat exchanger cannot be satisfied, conversely, if the thickness d of the flat tube is made too thick, not only the weight of the heat exchanger increases, but also the thickness of the flat tube Unless the hydraulic diameter a is changed, the hydraulic diameter is inevitably reduced, and if this hydraulic diameter is smaller than 1.5 mm, the adverse effects described later occur, and if the thickness a of the flat tube is increased without changing the passage cross-sectional shape, This is not preferable because problems such as a reduction in air-side heat transfer area and an increase in ventilation resistance occur.

また、熱交換管として用いる扁平チューブの厚さaについては、1.5mm以上3mm以下、好ましくは1.5mm以上2.5mm以下であることが必要であり、このチューブ厚さaが1.5mmより小さいと、必然的に区画流路の高さが低くなり、水力直径が小さくなって冷房運転時の遷移流速が3m/秒を超えてエロージョン発生の原因になり、また、チューブ厚さaが3mmを超えると、フィン高さhを大きくしない限り扁平チューブの厚さa/チューブピッチ(h+a)の比が大きくなり、空気側の抵抗が大きくなると共に、空気側の伝熱面積が減少し、同一ファンを用いた場合には風量不足、及び空気側の伝熱面積不足による熱交換性能の低下が生じ、このフィン高さhを12mmを超えて高くするとフィン効率(フィンの全表面が扁平チューブの極近傍の温度に等しいと仮定した場合の熱交換量に対する実際のフィン表面の熱交換量)が0.8より低くなり、熱交換効率が低下する。   Further, the thickness a of the flat tube used as the heat exchange tube needs to be 1.5 mm or more and 3 mm or less, preferably 1.5 mm or more and 2.5 mm or less, and the tube thickness a is 1.5 mm. If it is smaller, the height of the partition channel is inevitably lowered, the hydraulic diameter becomes smaller, the transition flow velocity during cooling operation exceeds 3 m / sec, and erosion occurs, and the tube thickness a is If it exceeds 3 mm, the ratio of flat tube thickness a / tube pitch (h + a) increases unless the fin height h is increased, the air side resistance increases, and the air heat transfer area decreases, When the same fan is used, the heat exchange performance is degraded due to insufficient air volume and insufficient heat transfer area on the air side. If the fin height h is increased beyond 12 mm, the fin efficiency (the entire surface of the fin is a flat tube). The immediate vicinity of The actual heat exchange amount on the fin surface with respect to the heat exchange amount when it is assumed to be equal to the temperature of (2) is lower than 0.8, and the heat exchange efficiency is lowered.

そして、各熱交換管の間に配設されるコルケートフィンについては、その高さhが6mm以上12mm以下である必要があり、このフィン高さhが6mmより低いと、熱交換効率上要求される扁平チューブの厚さa/ピッチチューブ(h+a)の比が0.2以下という条件を満たすことが難しくなり、反対に、フィン高さhが12mmを超えると、フィン効率が0.8より低くなり、熱交換効率が低下する。   And about the corrugated fin arrange | positioned between each heat exchange pipe, the height h needs to be 6 mm or more and 12 mm or less, and when this fin height h is lower than 6 mm, it is required on heat exchange efficiency. It becomes difficult to satisfy the condition that the ratio of thickness a / pitch tube (h + a) of the flat tube to be 0.2 or less. On the contrary, when the fin height h exceeds 12 mm, the fin efficiency is more than 0.8. It becomes low and heat exchange efficiency falls.

本発明のアルミ製熱交換器において、上記各熱交換管は、その水力直径が1.3mm以上3.0mm以下である必要があり、水力直径が1.3mmより小さいと水側の圧力損失が大きくなって熱媒体である水が流れ難くなり、冷房運転時に遷移流速として3m/秒以上の流速が必要になってエロージョンが発生するという問題が生じ、反対に、3.0mmを超えると通水断面積に対して水側の伝熱面積が低下し、熱交換効率が低下して大規模な屋内空間用空調機器の熱交換器として用いることが困難になる。ここで、「水力直径」とは、熱交換管の流路の断面積(mm2)に4を乗じ、得られた値を流路の濡れ周囲長(mm)で除した値(mm)である。 In the aluminum heat exchanger of the present invention, each of the heat exchange tubes must have a hydraulic diameter of 1.3 mm to 3.0 mm. If the hydraulic diameter is less than 1.3 mm, the pressure loss on the water side is reduced. It becomes large and it becomes difficult for water as a heat medium to flow, and there is a problem that erosion occurs because a flow rate of 3 m / sec or more is required as a transition flow rate during cooling operation. The heat transfer area on the water side is reduced with respect to the cross-sectional area, the heat exchange efficiency is lowered, and it becomes difficult to use it as a heat exchanger for a large-scale indoor air conditioner. Here, the “hydraulic diameter” is the value (mm) obtained by multiplying the cross-sectional area (mm 2 ) of the flow path of the heat exchange pipe by 4 and dividing the obtained value by the wet perimeter of the flow path (mm). is there.

ここで、上記熱交換管が扁平チューブで形成され、上記水力直径が3.0mmを超えた場合について検討してみると、(1):扁平チューブの厚さaを厚くせずに水力直径だけを大きくすると、短辺に対して長辺が非常に大きな穴形状となり、ビル空調システム用熱交換器として使用可能な耐圧強度を発現させることができず、(2):扁平チューブの厚さaを厚くして水力直径を大きくすると、フィン高さhが一定の場合には、フィン高さh+扁平チューブの厚さaに対するフィン高さhの割合が小さくなって空気側圧力損失が増大して風量が減少し、あるいは、空気側伝熱面積が低下して、熱交換効率が低下し、(3):上記(2)の場合においてフィン高さhの割合が変わらないようにすると、フィン高さhが高くなってフィン効率が低下し、この場合も熱交換効率が低下する。   Here, when the heat exchange tube is formed of a flat tube and the hydraulic diameter exceeds 3.0 mm, (1): only the hydraulic diameter without increasing the thickness a of the flat tube If the size is increased, the shape of the hole becomes very large with respect to the short side, and the pressure resistance that can be used as a heat exchanger for a building air conditioning system cannot be expressed. (2): Flat tube thickness a When the hydraulic diameter is increased by increasing the thickness of the fin, if the fin height h is constant, the ratio of the fin height h + the fin height h to the flat tube thickness a decreases, and the air-side pressure loss increases. If the air volume decreases or the air side heat transfer area decreases, the heat exchange efficiency decreases, and (3): If the ratio of the fin height h is not changed in the case of (2) above, the fin height As h increases, fin efficiency decreases. Exchange efficiency is reduced.

更に、本発明においては、好ましくは上記扁平チューブの肉厚dを0.2mm以上0.5mm以下、好ましくは0.3mm以上0.4mm以下とするのがよく、このチューブ肉厚dが0.2mmより薄くなると、扁平チューブの耐圧強度が低下し、所望の耐圧強度(例えば0.5MPa)を達成することが困難になり、反対に、チューブ肉厚dを0.5mmより厚くしても、材料費が嵩んで製品重量が増すだけであり、また、流路断面積を減らす方向にチューブ肉厚dを厚くすると、所望の水力直径を保てなくなる。   Further, in the present invention, the thickness d of the flat tube is preferably 0.2 mm or more and 0.5 mm or less, and preferably 0.3 mm or more and 0.4 mm or less. If the thickness is less than 2 mm, the pressure resistance of the flat tube decreases, and it becomes difficult to achieve a desired pressure resistance (for example, 0.5 MPa). Conversely, even if the tube thickness d is greater than 0.5 mm, The material cost increases and the product weight only increases, and if the tube thickness d is increased in the direction of reducing the cross-sectional area of the flow path, the desired hydraulic diameter cannot be maintained.

本発明において、熱媒体としては水が用いられるが、この熱媒体としての水については、必要により、エチレングリコール、プロピレングリコール等の不凍液や、種々のアルミ防食剤等の添加物が添加されていてもよい。   In the present invention, water is used as the heat medium, but the water as the heat medium contains additives such as antifreeze liquids such as ethylene glycol and propylene glycol and various aluminum anticorrosives as necessary. Also good.

ところで、熱交換管における熱伝導率はこの管内を流れる熱媒体の流れにより大きく変わり、熱伝導率を高くするためには管内の流れを乱流にすることが必要である。このため、下記の式で表されるレイノルズ数(Re)については、2,700以上、好ましくは3,000以上であることが必要である。
Re=ρ・u・De/η
(ρ:熱媒体の密度、η:熱媒体の粘性係数、De:熱交換管の孔の水力直径、u:熱交換管内の熱媒体の流速)
そして、水を熱媒体とするビル空調システム用熱交換器において、熱媒体の温度は、冷房時には5〜10℃、好ましくは7℃であり、暖房時には40〜50℃、好ましくは45℃である。
By the way, the heat conductivity in the heat exchange pipe varies greatly depending on the flow of the heat medium flowing in the pipe, and it is necessary to make the flow in the pipe turbulent in order to increase the heat conductivity. For this reason, the Reynolds number (Re) represented by the following formula needs to be 2,700 or more, preferably 3,000 or more.
Re = ρ · u · De / η
(Ρ: density of the heat medium, η: viscosity coefficient of the heat medium, De: hydraulic diameter of the hole of the heat exchange pipe, u: flow velocity of the heat medium in the heat exchange pipe)
And in the heat exchanger for building air conditioning systems using water as a heat medium, the temperature of the heat medium is 5 to 10 ° C., preferably 7 ° C. during cooling, and 40 to 50 ° C., preferably 45 ° C. during heating. .

そこで、水力直径が1.3〜3.0mmである熱交換管を使用した場合、冷房時に乱流になるためには、水力直径が1.3mmのときに約2.5m/秒以上の流速が必要であり、また、水力直径が3.0mmのときに約1.2m/秒以上の流速が必要であり、更に、熱交換管内面のエロージョンは流速が3m/秒以上で発生し易いので、この冷房時の流速としては1.2m/秒以上3.0m/秒以下であるのがよい。また、暖房時に乱流になるためには、水力直径が1.3mmのとき約1.1m/秒以上の流速が必要であって、水力直径が3.0mmのとき約0.5m/秒以上の流速が必要であり、また、熱交換管内面のエロージョンは流速が3m/秒以上で発生し易いので、この暖房時の流速としては0.5m/秒以上3.0m/秒以下であるのがよい。   Therefore, when using a heat exchange tube with a hydraulic diameter of 1.3 to 3.0 mm, in order to become turbulent during cooling, a flow velocity of about 2.5 m / sec or more when the hydraulic diameter is 1.3 mm. In addition, when the hydraulic diameter is 3.0 mm, a flow velocity of about 1.2 m / second or more is required. Furthermore, erosion of the inner surface of the heat exchange tube is likely to occur at a flow velocity of 3 m / second or more. The flow rate during cooling is preferably 1.2 m / second or more and 3.0 m / second or less. Also, in order to become turbulent during heating, a flow velocity of about 1.1 m / sec or more is required when the hydraulic diameter is 1.3 mm, and about 0.5 m / sec or more when the hydraulic diameter is 3.0 mm. Since the erosion of the inner surface of the heat exchange tube is likely to occur at a flow rate of 3 m / second or more, the flow velocity during heating is 0.5 m / second or more and 3.0 m / second or less. Is good.

上述した本発明のアルミ製熱交換器を、例えばビル空調システム用熱交換器として実際に使用するに際しては、熱媒体として水を用いるので、熱交換管内にスケールが付着してこの熱交換管が閉塞するのを防止することが必要であり、本発明においては、このアルミ製熱交換器のスケール付着防止方法として、予めスケール付着防止処理された処理水にアルミ防食剤を添加してなる熱媒水を熱媒体として用いる。   When the above-described aluminum heat exchanger of the present invention is actually used, for example, as a heat exchanger for a building air conditioning system, water is used as a heat medium. It is necessary to prevent clogging, and in the present invention, as a method for preventing scale adhesion of this aluminum heat exchanger, a heat medium obtained by adding an aluminum anticorrosive to treated water that has been subjected to scale adhesion prevention treatment in advance. Water is used as the heating medium.

ここで、予めスケール付着防止処理された処理水とは、水道水や工業用水等の未処理水を適当な方法で脱スケール処理して得られたスケール成分の含有量の少ない、好ましくはカルシウムイオン濃度5mg/L以下、より好ましくはカルシウムイオン濃度3mg/L以下の淡水を始めとして、本発明のアルミ製熱交換器が組み込まれた熱交換サイクルの熱媒経路の中に、あるいは、この熱媒経路の外に適当な処理手段を設け、この処理手段においてアルミ製熱交換器の各熱交換管内でのスケール成分の析出に先駆けて優先的にスケール成分を析出させて得られる淡水も含まれる。脱スケール処理して得られた処理水のカルシウムイオン濃度が5mg/Lを超えると、長期間運転を続けた際にカルシウム主体のスケールが析出して熱交換管が閉塞する虞がある。   Here, the treated water that has been subjected to the scale adhesion prevention treatment in advance is a small amount of scale components obtained by descaling untreated water such as tap water or industrial water by an appropriate method, preferably calcium ions. In addition to fresh water with a concentration of 5 mg / L or less, more preferably with a calcium ion concentration of 3 mg / L or less, in the heat medium path of the heat exchange cycle in which the aluminum heat exchanger of the present invention is incorporated, or this heat medium Appropriate processing means is provided outside the path, and fresh water obtained by preferentially precipitating the scale component prior to precipitation of the scale component in each heat exchange tube of the aluminum heat exchanger in this processing means is also included. If the calcium ion concentration of the treated water obtained by descaling exceeds 5 mg / L, the scale mainly composed of calcium may be deposited and the heat exchange tube may be blocked when the operation is continued for a long time.

このような予めスケール付着防止処理された処理水としては、具体的には、先ず、未処理水をイオン交換樹脂により脱カルシウム処理して得られた淡水を挙げることができる。この目的で用いられるイオン交換樹脂としては、弱酸性又は強酸性の陽イオン交換樹脂、モノベットイオン交換樹脂を挙げることができ、具体的には、例えばオルガノ社製イオン交換樹脂アンバーライト商品名、IRC50、IR120B、MB−2等を例示することができる。   Specific examples of the treated water that has been subjected to scale adhesion prevention treatment in advance include fresh water obtained by decalcifying untreated water with an ion exchange resin. Examples of the ion exchange resin used for this purpose include weakly acidic or strongly acidic cation exchange resins and monovet ion exchange resins. Specifically, for example, an ion exchange resin Amberlite trade name manufactured by Organo Corporation, IRC50, IR120B, MB-2 etc. can be illustrated.

また、他の処理水としては、未処理水に酸を添加しスケール成分を析出させて分離除去して(酸添加処理)得られた淡水を挙げることができる。この目的で用いられる酸としては、リン酸、硝酸、塩素酸、硫酸等の鉱酸や、シュウ酸、クエン酸、酢酸等の有機酸を挙げることができ、アルミニウム材の腐食性の観点から、好ましくはリン酸やシュウ酸である。   Other treated water includes fresh water obtained by adding an acid to untreated water and precipitating a scale component to separate and remove (acid addition treatment). Examples of acids used for this purpose include mineral acids such as phosphoric acid, nitric acid, chloric acid, and sulfuric acid, and organic acids such as oxalic acid, citric acid, and acetic acid. From the viewpoint of the corrosiveness of the aluminum material, Phosphoric acid and oxalic acid are preferred.

更に、他の処理水としては、未処理水中のスケール成分と結合して水に易溶性のキレート化合物を形成し、スケール成分の析出を抑制する適当なキレート剤を添加し、スケール成分の析出を可及的に抑制するキレート剤添加処理により得られた淡水を挙げることができる。この目的で添加されるキレート剤としては、例えば、イミノ二酢酸、ニトリロ三酢酸、エチレンジアミン四酢酸(EDTA)、シクロヘキサンジアミン四酢酸、エチルエーテルジアミン四酢酸、グリコールエーテルジアミン四酢酸、プロピレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸等のアミノカルボン酸又はその金属塩、シュウ酸、クエン酸等の多価カルボン酸又はその金属塩、リン酸等の無機酸又はその金属塩等を挙げることができる。このキレート剤の添加量は、未処理水中に含まれるスケール成分の量によって定まり、例えばスケール成分としてのアルカリ土類金属イオン1mmol当り通常10mmol以上5000mmol以下、好ましくは100mmol以上1000mmol以下であるのがよい。   In addition, as other treated water, a chelate compound that is easily soluble in water is formed by combining with the scale component in untreated water, and an appropriate chelating agent that suppresses the precipitation of the scale component is added. The fresh water obtained by the chelating agent addition process which suppresses as much as possible can be mentioned. Examples of the chelating agent added for this purpose include iminodiacetic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), cyclohexanediaminetetraacetic acid, ethyl etherdiaminetetraacetic acid, glycol etherdiaminetetraacetic acid, propylenediaminetetraacetic acid, Examples include aminocarboxylic acids such as diethylenetriaminepentaacetic acid and triethylenetetraminehexaacetic acid or metal salts thereof, polyvalent carboxylic acids such as oxalic acid and citric acid or metal salts thereof, inorganic acids such as phosphoric acid or metal salts thereof, and the like. it can. The amount of the chelating agent to be added is determined by the amount of the scale component contained in the untreated water. For example, the amount is usually 10 to 5000 mmol, preferably 100 to 1000 mmol, per 1 mmol of alkaline earth metal ion as the scale component. .

また、予めスケール付着防止処理された処理水の他の例としては、未処理水をヒーターで所定の温度、通常60℃以上100℃以下、好ましくは70℃以上80℃以下に加熱して未処理水のスケール成分を上記ヒーターの伝熱表面に優先的に析出させる加熱処理される淡水を挙げることができる。この目的で用いられるヒーターとしては、例えばステンレス被覆電気ヒーター等のものを挙げることができ、後に伝熱面に析出したスケールの除去を考慮すると、好ましくは伝熱面をフッ素樹脂で被覆した、谷口製商品名Uフロンヒーターであるのがよい。   As another example of treated water that has been subjected to scale adhesion prevention treatment in advance, untreated water is heated with a heater to a predetermined temperature, usually 60 ° C. or higher and 100 ° C. or lower, preferably 70 ° C. or higher and 80 ° C. or lower. Examples thereof include heat-treated fresh water that preferentially deposits a water scale component on the heat transfer surface of the heater. Examples of the heater used for this purpose include stainless steel-coated electric heaters, and in consideration of removal of scales deposited on the heat transfer surface later, the heat transfer surface is preferably coated with a fluororesin. The product name U-Freon heater is good.

更にまた、処理水の他の例としては、少なくとも各熱交換管が形成する熱媒流路内の流速より早い流速で流れる高速流路内に未処理水を流して未処理水のスケール成分を高速流路内に優先的に析出させる高速通水処理される淡水を挙げることができる。ここで、高速流路内での流速は、各熱交換管が形成する熱媒流路内の流速より少しでも早ければよいが、好ましくは1.1〜5.0倍程度、より好ましくは1.5〜5.0倍であるのがよい。   Furthermore, as another example of the treated water, the scale component of the untreated water is obtained by flowing the untreated water into the high-speed flow path that flows at a flow rate faster than the flow rate in the heat medium flow path formed by each heat exchange pipe. Examples thereof include fresh water that is preferentially deposited in a high-speed flow path and is subjected to a high-speed water flow treatment. Here, the flow rate in the high-speed flow path may be a little faster than the flow rate in the heat medium flow path formed by each heat exchange pipe, but is preferably about 1.1 to 5.0 times, more preferably 1 .5 to 5.0 times is preferable.

また、上記の処理水に添加されるアルミ防食剤としては、アルミニウムと淡水とが接触する系において淡水中に添加され、アルミニウムの腐食を防止することができるものであれば特に制限はなく、従来よりこの種のアルミ防蝕剤として用いられているものを使用することができ、例えば、大塚化学社製商品名「シャダンR」、千代田ケミカル社製商品名「チオライトC−412」等のリン酸系防食剤、ケイ酸ソーダ3号(Na2O・3SiO2;日本化学工業社製)、ニックリ社製商品名「冷温水20−L」等のケイ酸系防食剤、日本ペイント社製商品名「アルサーフ#1200」等のクロム酸系防食剤、千代田ケミカル社製商品名「チオライトC−372A」等のアミン系防食剤、等を例示することができる。これらのうち、リン酸系防食剤やケイ酸系防食剤は、アルミニウム材に対する防食性能に優れているだけでなく、動物や人間、更には環境に対する安全性が高く、特に好ましいものである。 The aluminum anticorrosive added to the treated water is not particularly limited as long as it is added to fresh water in a system where aluminum and fresh water are in contact with each other and can prevent corrosion of aluminum. What is used more as this kind of aluminum corrosion inhibitor can be used, for example, phosphoric acid type | system | groups, such as Otsuka Chemical Co., Ltd. brand name "Shadan R", Chiyoda Chemical Co., Ltd. brand name "Thiolite C-412", etc. Anti-corrosive agent, sodium silicate 3 (Na 2 O 3SiO 2 ; manufactured by Nippon Kagaku Kogyo Co., Ltd.), Nikuri Co., Ltd. trade name “cold hot water 20-L”, etc. Examples thereof include chromic acid-based anticorrosives such as “Alsurf # 1200” and amine-based anticorrosives such as “Thiolite C-372A” manufactured by Chiyoda Chemical Co., Ltd. Among these, phosphoric acid-based anticorrosives and silicic acid-based anticorrosives are particularly preferable because they are not only excellent in anticorrosion performance against aluminum materials but also have high safety for animals, humans, and the environment.

本発明のスケール付着防止方法において、熱媒水を構成する処理水中に添加されるアルミ防食剤の添加量については、アルミ防食剤の種類によって異なり、防食性能が発現する有効量であるということができるが、例えば、上記シャダンR(大塚化学社製商品名)の場合には通常0.1g/L以上100g/L以下、好ましくは0.1g/L以上10g/L以下であり、また、ケイ酸ソーダ3号(Na2O・3SiO2)の場合には通常0.1g/L以上100g/L以下、好ましくは0.1g/L以上10g/L以下であるのがよい。 In the scale adhesion prevention method of the present invention, the amount of the aluminum anticorrosive added to the treated water constituting the heat transfer water varies depending on the type of the aluminum anticorrosive and is an effective amount that exhibits anticorrosion performance. For example, in the case of the above-mentioned Shadan R (trade name, manufactured by Otsuka Chemical Co., Ltd.), it is usually 0.1 g / L or more and 100 g / L or less, preferably 0.1 g / L or more and 10 g / L or less. In the case of acid soda No. 3 (Na 2 O · 3SiO 2 ), it is usually 0.1 g / L or more and 100 g / L or less, preferably 0.1 g / L or more and 10 g / L or less.

また、本発明方法で使用する熱媒水中には、上記のアルミ防食剤以外に第三成分として、例えば、エチレングリコール等の凍結防止剤、パラオキシ安息香酸(パラベン)等の防腐剤等を目的に応じて適宜添加することができる。   In addition, in the heat transfer water used in the method of the present invention, in addition to the above-mentioned aluminum anticorrosive agent, for example, antifreezing agents such as ethylene glycol, preservatives such as paraoxybenzoic acid (paraben), etc. It can be added as appropriate.

本発明のアルミ製熱交換器は、従来の径の大きな銅配管の熱交換器と比較して体積当りの性能に優れており、小型化が可能であると共に軽量化も可能であり、熱媒体として水を用いるビル等の比較的大規模な屋内空間の空調機器に用いられる熱交換器(ビル空調システム用熱交換器)として有用である。   The aluminum heat exchanger of the present invention is superior in performance per volume as compared with a heat exchanger of a copper pipe having a large diameter, and can be downsized and reduced in weight. It is useful as a heat exchanger (a heat exchanger for a building air-conditioning system) used for air conditioning equipment in a relatively large-scale indoor space such as a building that uses water.

また、本発明のアルミ製熱交換器のスケール付着防止方法によれば、温水や冷水を熱媒体としてパラレルフロー型等のアルミ製熱交換器を用いても、熱交換効率の低下や熱交換管閉塞の原因となるスケールの付着を可及的に防止することができ、小型化や軽量化等が可能であって、アルミニウム材の腐食の問題も解決することができ、ビル空調システム用熱交換器に好適に適用することができる。   In addition, according to the method for preventing scale adhesion of an aluminum heat exchanger according to the present invention, even if an aluminum heat exchanger such as a parallel flow type using hot water or cold water as a heat medium is used, the heat exchange efficiency is reduced or the heat exchange tube is used. It is possible to prevent the scale from causing blockage as much as possible, reduce the size and weight, and solve the problem of corrosion of aluminum materials. Heat exchange for building air conditioning system It can be suitably applied to a vessel.

以下、実験例、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described based on experimental examples, examples, and comparative examples.

〔実験例1:水力直径と圧力損失との関係〕
アルミニウム合金(JIS A1050)を用い、押出成形により表1に示す孔の形状、大きさ及び数を有する扁平チューブ(熱交換管)を作製し、孔形状が丸孔である場合には1m/秒及び3m/秒の流速で、また、孔形状が四角孔である場合には1m/秒の流速でそれぞれ水を流し、各熱交換管の水力直径に対する圧力損失を調べた。
結果を表1及び図1に示す。
[Experimental example 1: Relationship between hydraulic diameter and pressure loss]
Using an aluminum alloy (JIS A1050), a flat tube (heat exchange tube) having the shape, size, and number of holes shown in Table 1 is prepared by extrusion molding. If the hole shape is a round hole, it is 1 m / sec. When the hole shape was a square hole, water was allowed to flow at a flow rate of 1 m / second, and the pressure loss with respect to the hydraulic diameter of each heat exchange tube was examined.
The results are shown in Table 1 and FIG.

Figure 2005351600
Figure 2005351600

この表1の結果から明らかなように、水力直径が1.0mm以下であると圧力損失が著しく増大することが判る。圧力損失が増大すると熱媒体である水または水を主成分とする液体の搬送手段であるポンプが大きなものが必要になる。従って、この圧力損失の点からは、水力直径は1.0mm以上、好ましくは1.3mm以上であるのがよい。   As is apparent from the results of Table 1, it can be seen that the pressure loss is remarkably increased when the hydraulic diameter is 1.0 mm or less. When the pressure loss increases, a large pump as a heat transfer medium or a pump for transporting liquid mainly composed of water is required. Therefore, from this point of pressure loss, the hydraulic diameter should be 1.0 mm or more, preferably 1.3 mm or more.

〔実験例2:熱交換管の形状と耐圧強度との関係〕
アルミニウム合金(JIS A1050)を用い、押出成形により図2に示す形状(四角孔及び孔数4)及び表2に示すサイズを有する12種類の扁平チューブ(熱交換管)A〜Lを作製し、各扁平チューブA〜Lに0.5MPaの内圧をかけたときのチューブ厚さaの増加量(加圧時厚さ増加量)及びその後に内圧をゼロに戻したときのチューブ厚さaの残留増加量(開放時厚さ残留量)とをそれぞれマイクロメータで測定し、各扁平チューブA〜Lが塑性変形を起すときの内圧(変形圧)を調べた。
結果を表2に示す。
[Experimental example 2: Relationship between shape of heat exchange tube and pressure resistance]
Using aluminum alloy (JIS A1050), 12 types of flat tubes (heat exchange tubes) A to L having the shape shown in FIG. 2 (square holes and the number of holes 4) and the sizes shown in Table 2 were prepared by extrusion molding. Increase amount of tube thickness a when an internal pressure of 0.5 MPa is applied to each flat tube A to L (thickness increase amount during pressurization), and residual tube thickness a when the internal pressure is subsequently returned to zero The amount of increase (residual amount of thickness when opened) was measured with a micrometer, and the internal pressure (deformation pressure) when each flat tube A to L caused plastic deformation was examined.
The results are shown in Table 2.

Figure 2005351600
Figure 2005351600

〔実験例3:熱交換管(扁平チューブ)厚さaと空気側圧力損失の関係〕
扁平チューブとコルゲートフィンの幅寸法が共に16mmで熱交換領域の前面面積が0.3m×0.6m=0.18m2の大きさの熱交換器であって、下記の表3に示すフィン高さh及びフィンピッチを有する5種類の扁平チューブを備えた熱交換器を製作し、風速2m/秒及び5m/秒で空気を通過させたときの空気側の圧力損失を求めた。
結果を図3に示す。
[Experimental Example 3: Relationship between heat exchange tube (flat tube) thickness a and air-side pressure loss]
The flat tube and the corrugated fin are both 16 mm wide and the heat exchange area has a front area of 0.3 m × 0.6 m = 0.18 m 2 , and the fin height shown in Table 3 below. A heat exchanger having five types of flat tubes having a length h and a fin pitch was manufactured, and the pressure loss on the air side when air was passed at a wind speed of 2 m / sec and 5 m / sec was obtained.
The results are shown in FIG.

Figure 2005351600
Figure 2005351600

〔実験例4:フィン高さh、熱交換管(扁平チューブ)厚さaと空気側伝熱面積の関係〕
扁平チューブとコルゲートフィンの幅寸法が共に16mmでフィンピッチが1.4mmであり、熱交換領域の前面面積が1m×1m=1m2の大きさがである熱交換器であって、下記の表4に示す5種類のチューブ厚さa及び3種類のフィン高さhの組合せからなる15種類の熱交換器をモデルとして伝熱面積を計算し、扁平チューブのチューブ厚さa及びコルゲートフィンのフィン高さhが空気側の伝熱面積に及ぼす影響を調べた。
結果を図4に示す。
[Experimental Example 4: Relationship between fin height h, heat exchange tube (flat tube) thickness a, and air side heat transfer area]
The flat tube and corrugated fins are both 16mm wide and 1.4mm wide, and the heat exchange area has a front area of 1m x 1m = 1m 2. The heat transfer area is calculated using 15 types of heat exchangers consisting of combinations of 5 types of tube thickness a and 3 types of fin height h shown in 4 as models, and the tube thickness a of flat tubes and fins of corrugated fins are calculated. The effect of the height h on the heat transfer area on the air side was investigated.
The results are shown in FIG.

Figure 2005351600
Figure 2005351600

上記実験例3及び実験例4の結果から明らかなように、フィン高さhを変えずに扁平チューブのチューブ厚さaを厚くすると、フィン高さhの比率で低下して通風面積が低下し、空気側の圧力損失が大きくなり、また、空気側の伝熱面積が低下し、熱交換性能も低下する。また、チューブ厚さaを厚くすると共にフィン高さhも高くすると、空気側の圧力損失や空気側の伝熱面積の低下はなくなるが、フィン効率が低下して熱交換性能も低下する。   As is clear from the results of Experimental Example 3 and Experimental Example 4, when the tube thickness a of the flat tube is increased without changing the fin height h, the ratio of the fin height h decreases and the ventilation area decreases. In addition, the pressure loss on the air side increases, the heat transfer area on the air side decreases, and the heat exchange performance also decreases. Further, when the tube thickness a is increased and the fin height h is increased, the pressure loss on the air side and the heat transfer area on the air side are not reduced, but the fin efficiency is lowered and the heat exchange performance is also lowered.

〔実験例5:フィン高さhとフィン効率の関係〕
熱伝導度190W/m・Kのアルミニウム合金(JIS A3003)を用い、フィン板厚0.1mm及びフィン幅16mmであって、フィン高さhの異なる6種類のコルゲートフィンを調製し、扁平チューブに接合幅14mmの大きさで接合し、空気側の熱伝導率を50W/m2・Kとしてコルゲートフィンのフィン高さhに対するフィン効率を調べた。
結果を図5に示す。
[Experimental example 5: Relationship between fin height h and fin efficiency]
Using aluminum alloy (JIS A3003) with a thermal conductivity of 190 W / m · K, six corrugated fins with fin plate thickness of 0.1 mm and fin width of 16 mm and different fin heights h were prepared and used as flat tubes. Joining was performed with a joining width of 14 mm, and the fin efficiency with respect to the fin height h of the corrugated fin was examined with the thermal conductivity on the air side being 50 W / m 2 · K.
The results are shown in FIG.

この図5に示す結果から明らかなように、空気側の圧力損失を降下させるためにフィン高さhを高くすると、フィン効率が低下し、熱交換器の性能が低下することが判明した。   As is clear from the results shown in FIG. 5, it was found that increasing the fin height h to lower the pressure loss on the air side decreases the fin efficiency and the performance of the heat exchanger.

〔実験例6:好ましい管内流速の検討〕
水の温度(℃)と粘度(μPa・s)との関係は図6に示す通りであり、また、水の温度(℃)と密度(kg/m3)との関係は図7に示す通りであり、熱交換管内の熱伝導率を上げるためには熱交換管内の流れを乱流にする必要があり、このためにレイノルズ数は2,700以上、好ましくは3,000以上が必要であり、水力直径が1.0mm、1.5mm、2.0mm、2.5mm、3.0mm及び3.5mmの場合における温度(℃)と遷移流速(m/s)との関係を求めると、図8に示す通りである。
[Experimental example 6: Examination of preferable flow velocity in pipe]
The relationship between water temperature (° C.) and viscosity (μPa · s) is as shown in FIG. 6, and the relationship between water temperature (° C.) and density (kg / m 3 ) is as shown in FIG. In order to increase the thermal conductivity in the heat exchange tube, it is necessary to make the flow in the heat exchange tube turbulent. For this reason, the Reynolds number is 2,700 or more, preferably 3,000 or more. When the relationship between the temperature (° C) and the transition flow velocity (m / s) when the hydraulic diameter is 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm, As shown in FIG.

〔実験例7:扁平チューブの孔幅cと厚さaの検討〕
熱伝導度190W/m・Kのアルミニウム合金(JIS A3003)を用い、肉厚d0.3mm−孔幅c1.3mm、肉厚d0.3mm−孔幅c3.2mm、及び肉厚d0.2mm−孔幅c1.3mmの3種の熱交換管を製作し、0.5MPaの内圧をかけたときのチューブ厚さaの増加量とその後に内圧をゼロに戻したときのチューブ厚さaの残留増加量とをそれぞれマイクロメータで調べた。
結果を図9に示す。
[Experimental Example 7: Examination of hole width c and thickness a of flat tube]
Using aluminum alloy (JIS A3003) with thermal conductivity of 190 W / m · K, wall thickness d0.3mm-hole width c1.3mm, wall thickness d0.3mm-hole width c3.2mm, and wall thickness d0.2mm-hole Three types of heat exchange tubes with a width of c1.3mm were manufactured, and the increase in tube thickness a when an internal pressure of 0.5 MPa was applied, and the residual increase in tube thickness a when the internal pressure was subsequently returned to zero Each amount was examined with a micrometer.
The results are shown in FIG.

〔実験例8:従来のフィンプレート型熱交換器との比較〕
本発明の熱交換器として、図10に示されているように、扁平チューブ10とコルゲートフィン11とを交互に積層して構成され、前面面積:幅600mm×高さ300mm、扁平チューブ10:材質A1050、厚さa2mm、幅21mm、穴数8、及びピッチ10mm、並びに、コルゲートフィン11:材質A3003、幅21mm、高さh8.0mm、及びピッチ1.4mmのパラレルフロー型(PF型)アルミ製熱交換器を用い、空気側としてこの熱交換器の前面面積と略同じ断面形状及び大きさのダクトを用い、このダクトの中に熱交換器を据え付けて熱交換性能試験装置を構成し、空気側には温度25℃の空気を風速(Va)2.0〜4.5m/sで流すと共に、水側には温度15℃の水を流速0.8m/s、1.2m/s、及び2.0m/sで流し、均一な温度の空気を均一な風速で通過させたときの熱交換量を測定し、その結果から伝熱係数を求め、空気側の風速に対する伝熱係数の関係を求めた。
結果を図11に実線で示す。
[Experiment 8: Comparison with conventional fin plate heat exchanger]
As shown in FIG. 10, the heat exchanger of the present invention is configured by alternately laminating flat tubes 10 and corrugated fins 11, and has a front area: width 600 mm × height 300 mm, flat tube 10: material. A1050, thickness a2mm, width 21mm, number of holes 8, pitch 10mm, and corrugated fin 11: material A3003, parallel flow type (PF type) aluminum with width 21mm, height h8.0mm, and pitch 1.4mm Using a heat exchanger, using a duct having the same cross-sectional shape and size as the front area of the heat exchanger on the air side, installing a heat exchanger in this duct, and configuring a heat exchange performance test device, On the side, air at a temperature of 25 ° C. flows at a wind speed (Va) of 2.0 to 4.5 m / s, and on the water side, water at a temperature of 15 ° C. flows at a flow rate of 0.8 m / s, 1.2 m / s, and When flowing at 2.0 m / s and passing air at a uniform temperature at a uniform wind speed The amount of heat exchange was measured, the heat transfer coefficient was determined from the result, and the relationship of the heat transfer coefficient to the wind speed on the air side was determined.
The result is shown by a solid line in FIG.

また、比較として、前面面積:幅600mm×高さ300mm、熱交換器の厚さ:88mm、銅1穴チューブ:材質:りん脱酸銅継ぎ目無し管、列数4列、径9.53mm、及びピッチ25.4mm、並びに、フィン:材質A3003、及びピッチ3.6mmの従来のフィンプレート型(T&F型)熱交換器を用い、上記の本発明の場合と全く同様にして、熱交換性能試験装置を構成し、熱交換量を測定し、その結果から伝熱係数を求め、空気側の風速に対する伝熱係数の関係を求めた。
本発明の場合と同様に、結果を図11に破線で示す。
Also, for comparison, front area: width 600 mm × height 300 mm, heat exchanger thickness: 88 mm, copper 1 hole tube: material: phosphorous deoxidized copper seamless tube, 4 rows, diameter 9.53 mm, and Using a conventional fin plate type (T & F type) heat exchanger with a pitch of 25.4 mm and fins: material A3003 and a pitch of 3.6 mm, a heat exchange performance test apparatus exactly as in the case of the present invention described above. The amount of heat exchange was measured, the heat transfer coefficient was obtained from the result, and the relationship of the heat transfer coefficient to the wind speed on the air side was obtained.
As in the case of the present invention, the results are shown in broken lines in FIG.

図11に示す本発明のパラレルフロー型(PF型)アルミ製熱交換器の結果と従来のフィンプレート型(T&F型)熱交換器の結果との比較から明らかなように、本発明の熱交換器は、熱媒体である水の流速が1m/s前後では従来の熱交換器と略同じ伝熱係数の値を示すが、水の流速が2m/sになると従来の熱交換器の場合より明らかに高い伝熱係数を示した。なお、この実験例8では、略同等の空気側の圧力損失を示す熱交換器として比較するため、本発明の熱交換器としては熱交換器厚さ21mm及びフィンピッチ1.4mmのPF型熱交換器が用いられ、また、従来型の熱交換器としては熱交換器厚さ100mm及びフィンピッチ3.6mmのT&F型熱交換器が用いられているので、熱交換器の大きさ(体積)を考慮すると、本発明の熱交換器は1/5程度の体積で従来の熱交換器と同等程度の性能を示すことが分かる。   As is apparent from a comparison between the results of the parallel flow type (PF type) aluminum heat exchanger of the present invention shown in FIG. 11 and the results of the conventional fin plate type (T & F type) heat exchanger, the heat exchange of the present invention. The heat exchanger shows the same heat transfer coefficient value as the conventional heat exchanger when the flow velocity of water, which is the heat medium, is around 1 m / s, but when the flow velocity of water is 2 m / s, it is higher than that of the conventional heat exchanger. It clearly showed a high heat transfer coefficient. In this experimental example 8, in order to compare as a heat exchanger exhibiting substantially the same air-side pressure loss, the heat exchanger of the present invention is a PF type heat exchanger having a heat exchanger thickness of 21 mm and a fin pitch of 1.4 mm. An exchanger is used, and as a conventional heat exchanger, a T & F type heat exchanger having a heat exchanger thickness of 100 mm and a fin pitch of 3.6 mm is used. In view of the above, it can be seen that the heat exchanger of the present invention exhibits a performance equivalent to that of a conventional heat exchanger with a volume of about 1/5.

〔スケール付着防止方法の実施例及び比較例〕
〔アルミ製熱交換器の構成〕
以下の実施例及び比較例で用いられたアルミ製熱交換器は、アルミニウム合金(JIS 3003)により円筒状に形成され、互いに平行に配置された一対のヘッダーパイプ(大きさ:直径25mmφ×厚さ1.6mm)と、アルミニウム合金(JIS 1050)により多孔扁平管状に形成され、上記の一対のヘッダーパイプ間に架設された20本の熱交換管(1本の大きさ:218mm×22mm×厚さ2mm、水力直径:1.5mm)と、アルミニウム合金(JIS BAS272P)により波板状に形成され、平行に配置された熱交換管の間に取り付けられた21本の熱交フィン(1本の大きさ:864mm×22mm×厚さ0.1mm)とにより構成されたパラレルフロー型アルミ製熱交換器であり、一方のヘッダーパイプに熱媒体入口が、また、他方のヘッダーパイプに熱媒体出口がそれぞれ設けられている。
[Example of scale adhesion prevention method and comparative example]
[Configuration of aluminum heat exchanger]
The aluminum heat exchanger used in the following examples and comparative examples is a pair of header pipes (size: diameter 25 mmφ × thickness) formed in a cylindrical shape by aluminum alloy (JIS 3003) and arranged parallel to each other. 1.6 heat) and 20 heat exchange tubes (one size: 218mm x 22mm x thickness) formed in a porous flat tube with aluminum alloy (JIS 1050) and spanned between the pair of header pipes. 21 heat exchange fins (one size), formed in a corrugated plate made of aluminum alloy (JIS BAS272P) with 2mm hydraulic diameter: 1.5mm and mounted between heat exchange tubes arranged in parallel : 864mm × 22mm × thickness 0.1mm) parallel flow type aluminum heat exchanger, with one header pipe having a heat medium inlet and the other header pipe having a heat medium outlet ing.

〔運転試験装置〕
また、以下の実施例及び比較例で用いられた運転試験装置の基本構造は、熱媒体として用いられる熱媒水を収容する熱媒体槽と上記アルミ製熱交換器の熱媒体入口との間をポンプを介してパイプラインで接続し、また、上記アルミ製熱交換器の熱媒体出口と上記熱媒体槽との間をパイプラインで接続して構成され、熱媒体槽→ポンプ→アルミ製熱交換器の熱媒体入口→アルミ製熱交換器の熱媒体出口→熱媒体槽の熱媒流路を有する。
[Operation test equipment]
In addition, the basic structure of the operation test apparatus used in the following examples and comparative examples is between the heat medium tank that stores the heat medium water used as the heat medium and the heat medium inlet of the aluminum heat exchanger. It is connected by a pipeline through a pump, and it is also configured by connecting a pipeline between the heat medium outlet of the aluminum heat exchanger and the heat medium tank. Heat medium tank → pump → aluminum heat exchange The heat medium inlet of the vessel → the heat medium outlet of the aluminum heat exchanger → the heat medium flow path of the heat medium tank.

〔試験方法〕
上記の運転試験装置において、以下に示す各実施例及び比較例のスケール付着防止方法を適用し、試験方法:内部循環試験、熱媒水の液量:100L、循環液温度:7:00〜17:00の間は60℃でそれ以外はヒーターオフ、及び液循環:熱交換管内流速1m/秒(φ25mm配管を24mm/分)で8時間(9:00-17:00)/1日の条件で6ヶ月間に亘って熱媒水を通水し、その間における熱媒水のカルシウムイオン濃度(Ca濃度:mg/L)を測定し、また、熱媒流路のスケール付着防止効果と耐食性とを調べた。
〔Test method〕
In the above operation test apparatus, the scale adhesion prevention methods of the following examples and comparative examples are applied, and the test method: internal circulation test, the amount of heat transfer water: 100 L, the circulating fluid temperature: 7: 00 to 17 : 60 ° C during 00, heater off, otherwise liquid circulation: heat exchange pipe flow rate 1m / sec (φ25mm pipe 24mm / min) 8 hours (9: 00-17: 00) / 1 day In 6 months, heat transfer water is passed through and the calcium ion concentration (Ca concentration: mg / L) of the heat transfer water is measured. I investigated.

上記熱媒流路のスケール付着防止効果と防食効果については、1ヵ月後、3ヵ月後、及び6ヵ月後に、試験品である熱交換器を取り出し、熱交換管の内面が観察できるように切り出して、マイクロゲージを用いて肉厚減少の大きさを測定し、全面腐食の有無を確認し、更に、焦点目盛りのついた光学顕微鏡を用いて焦点深度法により表面から非接触で最大孔食深さ(μm)を調べると共に、測定に用いた熱交換管について管の詰り状況を目視観察により調べ、この管の詰り状況を○:スケールの付着が認められない、△:スケールの付着が認められるが管の詰りまでは認められない、及び、×:スケールによる管の詰りが認められる、の3段階で評価し、また、上記最大孔食深さ(μm)と管の詰り状況との結果から○:腐食の発生がなく、スケールによる詰りも認められない、△:腐食の発生はないが、スケールの付着が認められる、及び×:腐食の発生、又は、スケールによる詰りのいずれかが認められる、の基準で総合評価を行った。
なお、以下の実施例及び比較例において、全面腐食は認められなかった。
About the scale adhesion prevention effect and anticorrosion effect of the heat medium flow path, after 1 month, 3 months, and 6 months, take out the heat exchanger as a test product and cut out so that the inner surface of the heat exchange tube can be observed Then, measure the thickness reduction using a micro gauge to confirm the presence or absence of overall corrosion, and then use the optical microscope with a focal scale to focus on the maximum pitting depth without contact from the surface using the focal depth method. In addition to examining the thickness (μm), the heat exchange tube used for the measurement was checked for clogging of the tube by visual observation. The clogging of this tube was checked: ○: no scale adhered, Δ: scale adhered It is evaluated in three stages, that is, it is not recognized until the tube is clogged, and x: the tube is clogged due to the scale, and from the result of the above maximum pitting corrosion depth (μm) and the clogged state of the tube. ○: There is no corrosion and the scale C: No clogging is observed, Δ: No corrosion occurs, but scale adherence is observed, and X: Corrosion occurs, or clogging due to scale is observed. It was.
In the following examples and comparative examples, no overall corrosion was observed.

実施例1〜4及び比較例1
弱酸性陽イオン交換樹脂(オルガノ社製商品名:アンバーライトIRC50)又はモノベットイオン交換樹脂(オルガノ社製商品名:MB-2)を用い、これに水道水〔分析値(mg/L):Ca:30, Mg:5.8, Na:9.0, Fe:0.03, Cu<0.005, SiO2:23.4, Cl-:12.4, SO4 2-:28, PO4 2-:<0.2;比抵抗(Ω・cm):4200〕を通水してCa濃度が検出限界(<0.01mg/L)以下の処理水Aを調製し、更に、このCa濃度検出限界以下の処理水Aに水道水を添加してCa濃度が3mg/Lの処理水B、5mg/Lの処理水C、及び10mg/Lの処理水Dをそれぞれ調製した。
Examples 1 to 4 and Comparative Example 1
Weakly acidic cation exchange resin (trade name: Amberlite IRC50, manufactured by Organo Corporation) or monobet ion exchange resin (trade name: MB-2, manufactured by Organo Corporation), and tap water [analytical value (mg / L): Ca: 30, Mg: 5.8, Na: 9.0, Fe: 0.03, Cu <0.005, SiO 2: 23.4, Cl -: 12.4, SO 4 2-: 28, PO 4 2-: <0.2; resistivity (Omega · cm): 4200] to prepare treated water A with a Ca concentration below the detection limit (<0.01 mg / L), and tap water is added to the treated water A below this Ca concentration detection limit. Treated water B with a Ca concentration of 3 mg / L, treated water C with 5 mg / L, and treated water D with 10 mg / L were prepared.

次に、Ca濃度の異なる4種の処理水A〜D中に、アルミ防食剤としてリン酸系防食剤〔大塚化学社製商品名:シャダンR(組成;PO4:173g/L, K:122g/L, NO2:17g/L, Na:9g/L, NO3:0.2g/L)〕6g/L又はケイ酸系防食剤〔日本化学工業社製ケイ酸ソーダ3号(Na2O・3SiO2)〕0.5g/Lを添加し、各実施例1〜4及び比較例1の熱媒水を調製した。 Next, in 4 types of treated waters A to D having different Ca concentrations, phosphoric acid-based anticorrosive as aluminum anticorrosive [trade name: Shadan R (composition; PO4: 173g / L, K: 122g / L, NO2: 17 g / L, Na: 9 g / L, NO3: 0.2 g / L)] 6 g / L or silicic acid-based anticorrosive agent [Nippon Chemical Industry Co., Ltd. sodium silicate 3 (Na 2 O 3SiO 2 ) 0.5 g / L was added to prepare heat transfer water for each of Examples 1 to 4 and Comparative Example 1.

得られた各実施例1〜4及び比較例1の熱媒水を上記の試験運転装置に充填し、上記の試験方法により内部循環試験を行って、上記のパラレルフロー型アルミ製熱交換器におけるスケール付着防止効果を調べた。
結果を表5に示す。
In each of the parallel flow type aluminum heat exchangers, the obtained heat transfer water of each of Examples 1 to 4 and Comparative Example 1 was filled in the test operation apparatus, and an internal circulation test was performed by the test method. The effect of preventing scale adhesion was investigated.
The results are shown in Table 5.

実施例5
水道水にリン酸0.01g/Lを添加し、軽く攪拌しながら1日放置した。その後、水酸化ナトリウム(NaOH)を添加してpH8に調整し、析出したリン酸カルシウムを網目1μmのフィルターでろ過し、得られたろ液を処理水Eとした。
この処理水にアルミ防食剤としてリン酸系防食剤(大塚化学社製商品名:シャダンR)6g/Lを添加し、実施例5の熱媒水とした。
得られた実施例5の熱媒水を用い、上記実施例1と同様にして上記パラレルフロー型アルミ製熱交換器におけるスケール付着防止効果を調べた。
結果を表5に示す。
Example 5
To the tap water, 0.01 g / L of phosphoric acid was added and allowed to stand for 1 day with gentle stirring. Thereafter, sodium hydroxide (NaOH) was added to adjust the pH to 8, and the precipitated calcium phosphate was filtered with a filter having a mesh size of 1 μm, and the obtained filtrate was used as treated water E.
To this treated water, 6 g / L of a phosphoric acid-based anticorrosive (trade name: Shadan R, manufactured by Otsuka Chemical Co., Ltd.) was added as an aluminum anticorrosive, and the heat transfer water of Example 5 was obtained.
Using the obtained heat transfer water of Example 5, the scale adhesion preventing effect in the parallel flow type aluminum heat exchanger was examined in the same manner as in Example 1.
The results are shown in Table 5.

実施例6
リン酸に代えてシュウ酸0.001mol/Lを用いた以外は、上記実施例5と同様に、カルシウム分をシュウ酸カルシウムとして除去して処理水Fとし、これにリン酸系防食剤(大塚化学社製商品名:シャダンR)6g/Lを添加して実施例6の熱媒水とした。
得られた実施例6の熱媒水を用い、上記実施例1と同様にして上記パラレルフロー型アルミ製熱交換器におけるスケール付着防止効果を調べた。
結果を表5に示す。
Example 6
Except for using 0.001 mol / L of oxalic acid instead of phosphoric acid, the calcium content was removed as calcium oxalate to obtain treated water F in the same manner as in Example 5 above. Chemical brand product name: Shadan R) 6 g / L was added to obtain the heat transfer water of Example 6.
Using the obtained heat transfer water of Example 6, the scale adhesion preventing effect in the parallel flow type aluminum heat exchanger was examined in the same manner as in Example 1.
The results are shown in Table 5.

実施例7〜11
水道水にキレート剤としてEDTA(実施例7)、イミノ二酢酸(実施例8)、オキシン(実施例9)、リンゴ酸(実施例10)、又は酒石酸(実施例11)を0.1mol/Lの割合で添加し、更にリン酸系防食剤(大塚化学社製商品名:シャダンR)6g/Lを添加して実施例7〜11の熱媒水とした。
得られた実施例7〜11の熱媒水を用い、上記実施例1と同様にして上記パラレルフロー型アルミ製熱交換器におけるスケール付着防止効果を調べた。
Examples 7-11
0.1 mol / L of EDTA (Example 7), iminodiacetic acid (Example 8), oxine (Example 9), malic acid (Example 10), or tartaric acid (Example 11) as a chelating agent in tap water Further, 6 g / L of a phosphoric acid anticorrosive (trade name: Shadan R, manufactured by Otsuka Chemical Co., Ltd.) was added to obtain heat transfer water of Examples 7 to 11.
Using the obtained heat transfer water of Examples 7 to 11, the scale adhesion preventing effect in the parallel flow type aluminum heat exchanger was examined in the same manner as in Example 1.

実施例12
図12に示すように、上記パラレルフロー型アルミ製熱交換器1と、熱媒体槽2と、ポンプ3との間をパイプライン4で接続して構成された上記の試験運転装置の基本構造において、その熱媒体槽2に、ポンプ5と加熱処理槽6とをパイプライン7で接続して構成された熱媒体加熱装置を付設した。また、上記熱媒体槽2と加熱処理槽6には、それぞれ表面をフッ素樹脂で被覆した谷口製Uフロンヒーター2a,6aを設置した。
Example 12
As shown in FIG. 12, in the basic structure of the test operation apparatus configured by connecting the parallel flow type aluminum heat exchanger 1, the heat medium tank 2, and the pump 3 with a pipeline 4. The heat medium tank 2 was provided with a heat medium heating device configured by connecting the pump 5 and the heat treatment tank 6 with a pipeline 7. The heat medium tank 2 and the heat treatment tank 6 were provided with Taniguchi U-Flon heaters 2a and 6a, respectively, whose surfaces were coated with a fluororesin.

また、水道水にリン酸系防食剤(大塚化学社製商品名:シャダンR)6g/Lを添加して熱媒水とし、この熱媒水100Lを熱媒体加熱装置が付設された試験運転装置に充填し、熱媒体槽2では上記試験条件の60℃に加温すると共に、加熱処理槽6では80℃に加熱し、上記実施例1と同様にして上記パラレルフロー型アルミ製熱交換器におけるスケール付着防止効果を調べた。
結果を表5に示す。
In addition, 6 g / L of phosphate-based anticorrosive (trade name: Shadan R, manufactured by Otsuka Chemical Co., Ltd.) is added to tap water to make a heat transfer water, and 100 L of this heat transfer water is a test operation device provided with a heat transfer medium heating device. In the heat medium tank 2, the heating medium tank 2 is heated to 60 ° C., and the heat treatment tank 6 is heated to 80 ° C. In the same manner as in Example 1, the parallel flow aluminum heat exchanger is used. The effect of preventing scale adhesion was investigated.
The results are shown in Table 5.

実施例13
図13に示すように、上記と同じ試験運転装置の基本構造において、その熱媒体槽2に、ポンプ5とダミーの熱交換器8とをパイプライン7で接続して構成された高速通水処理装置を付設した。なお、上記熱媒体槽2には谷口製Uフロンヒーター2aが設置されている。
Example 13
As shown in FIG. 13, in the same basic structure of the test operation apparatus as described above, a high-speed water flow treatment constituted by connecting a pump 5 and a dummy heat exchanger 8 to the heat medium tank 2 through a pipeline 7. A device was attached. The heat medium tank 2 is provided with a Taniguchi U-Freon heater 2a.

また、水道水にリン酸系防食剤(大塚化学社製商品名:シャダンR)6g/Lを添加して熱媒水とし、この熱媒水100Lを高速通水処理装置が付設された試験運転装置に充填し、アルミ製熱交換器1ではその熱交換管内を熱媒水が流速1m/秒で流れるようにすると共に、高速通水処理装置のダミーの熱交換器8ではその熱交換管内を熱媒水が流速2m/秒で流れるようにし、上記実施例1と同様にして上記パラレルフロー型アルミ製熱交換器におけるスケール付着防止効果を調べた。
結果を表5に示す。
In addition, 6 g / L of phosphate-based anticorrosive (trade name: Shadan R, manufactured by Otsuka Chemical Co., Ltd.) is added to tap water to make heat transfer water, and 100 L of this heat transfer water is a test operation with a high-speed water treatment device. In the aluminum heat exchanger 1, the heat transfer water flows through the heat exchange pipe at a flow rate of 1 m / sec. In the dummy heat exchanger 8 of the high-speed water treatment apparatus, the heat exchange pipe passes through the heat exchange pipe. The heat transfer water was allowed to flow at a flow rate of 2 m / second, and the scale adhesion preventing effect in the parallel flow type aluminum heat exchanger was examined in the same manner as in Example 1.
The results are shown in Table 5.

比較例2〜6
熱媒体として、水道水そのもの(比較例2)、水道水にリン酸系防食剤(大塚化学社製商品名:シャダンR)6g/Lを添加して得られた熱媒水(比較例3)、水道水にケイ酸系防食剤(日本化学工業社製ケイ酸ソーダ3号)0.5g/Lを添加して得られた熱媒水(比較例4)、Ca濃度検出限界以下の処理水A(比較例5)、及びCa濃度検出限界以下の処理水Aにキレート剤として酒石酸0.1mol/Lを添加した熱媒水(比較例6)を用い、上記実施例1と同様にして上記パラレルフロー型アルミ製熱交換器におけるスケール付着防止効果を調べた。
結果を表5に示す。
Comparative Examples 2-6
As a heat medium, tap water itself (Comparative Example 2), heat medium water obtained by adding 6 g / L of a phosphoric acid-based anticorrosive (trade name: Shadan R, manufactured by Otsuka Chemical Co., Ltd.) to tap water (Comparative Example 3) , Heat medium water (Comparative Example 4) obtained by adding 0.5 g / L of silicic acid-based anticorrosive agent (Nippon Chemical Industry Co., Ltd. sodium silicate 3) to tap water, treated water below the Ca concentration detection limit A (Comparative Example 5) and heat medium water (Comparative Example 6) in which tartaric acid 0.1 mol / L was added as a chelating agent to treated water A below the Ca concentration detection limit were used in the same manner as in Example 1 above. The effect of preventing scale adhesion in a parallel flow aluminum heat exchanger was investigated.
The results are shown in Table 5.

Figure 2005351600
Figure 2005351600

上記実施例1〜6及び比較例1〜5の結果から、処理水中のカルシウムイオン濃度を5mg/L以下にすると共にアルミ防食剤を添加することにより、パラレルフロー型アルミ熱交換器に熱媒体として水を用いても、熱交換管内でのスケール付着を防止できると共にこのアルミニウム製の熱交換管の腐食を確実に防止できることが判明した。   From the results of Examples 1 to 6 and Comparative Examples 1 to 5, the calcium ion concentration in the treated water was reduced to 5 mg / L or less and an aluminum anticorrosive was added to the parallel flow type aluminum heat exchanger as a heat medium. It has been found that even when water is used, scale adhesion in the heat exchange tube can be prevented and corrosion of the aluminum heat exchange tube can be reliably prevented.

また、実施例7〜11の結果から、キレート剤添加とアルミ防食剤添加とを併用することによってもスケール付着防止効果が得られ、更に、実施例12及び13の結果から、加熱処理や高速通水処理によりアルミ製熱交換器以外の場所にスケールを優先的に析出させることによっても、アルミニウム製の熱交換管の腐食を確実に防止できることが判明した。   Further, from the results of Examples 7 to 11, the effect of preventing scale adhesion can be obtained by using both the addition of the chelating agent and the addition of the aluminum anticorrosive agent. It has also been found that corrosion of the aluminum heat exchange tube can be reliably prevented by preferentially depositing the scale in a place other than the aluminum heat exchanger by water treatment.

本発明のアルミ製熱交換器は、熱媒体として水を用いる小型化や軽量化等が可能なパラレルフロー型等のアルミ製熱交換器であって、ビルやオフィス等の大規模な屋内空間用空調機器の熱交換器として有利に用いることができる。   The aluminum heat exchanger of the present invention is a parallel flow type aluminum heat exchanger that can be reduced in size and weight using water as a heat medium, and is used for large-scale indoor spaces such as buildings and offices. It can be advantageously used as a heat exchanger for air-conditioning equipment.

また、本発明のアルミ製熱交換器のスケール付着防止方法によれば、温水や冷水を熱媒体とするパラレルフロー型等のアルミ製熱交換器において、腐食し易いアルミニウム材製の熱交換管の腐食を完全に防止できると共に、熱交換効率の低下や熱交換管閉塞の原因となるスケールの付着を可及的に防止することができ、しかも、小型化や軽量化等が可能であるので、ビルやオフィス等の大規模な屋内空間用空調機器の熱交換器に好適に適用することができる。   In addition, according to the method for preventing scale adhesion of an aluminum heat exchanger according to the present invention, in a parallel flow type aluminum heat exchanger using hot water or cold water as a heat medium, an aluminum material heat exchange tube which is easily corroded is used. Corrosion can be completely prevented, scale heat can be reduced as much as possible, which can reduce heat exchange efficiency and block the heat exchange tube, and can be reduced in size and weight. It can be suitably applied to a heat exchanger of a large-scale indoor space air conditioner such as a building or office.

図1は、異なる孔の形状、大きさ及び数を有する熱交換管(扁平チューブ)を用いて調べた水力直径−圧力損失の関係を示すグラフ図である。FIG. 1 is a graph showing the relationship between hydraulic diameter and pressure loss investigated using heat exchange tubes (flat tubes) having different shapes, sizes and numbers of holes. 図2は、本発明の実験例2で形成された熱交換管(扁平チューブ)の形状を示す部分斜視説明図である。FIG. 2 is a partial perspective explanatory view showing the shape of a heat exchange tube (flat tube) formed in Experimental Example 2 of the present invention.

図3は、本発明の実験例3で得られたチューブ厚さa/チューブピッチの比と通気抵抗との関係を示すグラフ図である。FIG. 3 is a graph showing the relationship between the ratio of the tube thickness a / tube pitch and the ventilation resistance obtained in Experimental Example 3 of the present invention. 図4は、本発明の実験例4で得られたチューブ厚さaと空気側伝熱面積との関係を示すグラフ図である。FIG. 4 is a graph showing the relationship between the tube thickness a and the air-side heat transfer area obtained in Experimental Example 4 of the present invention.

図5は、本発明の実験例5で得られたフィン高さhとフィン効率との関係を示すグラフ図である。FIG. 5 is a graph showing the relationship between the fin height h and the fin efficiency obtained in Experimental Example 5 of the present invention. 図6は、本発明の実験例6で用いた熱媒体(水)の温度と粘度との関係を示すグラフ図である。FIG. 6 is a graph showing the relationship between the temperature and viscosity of the heat medium (water) used in Experimental Example 6 of the present invention.

図7は、本発明の実験例6で用いた熱媒体(水)の温度と密度との関係を示すグラフ図である。FIG. 7 is a graph showing the relationship between the temperature and density of the heat medium (water) used in Experimental Example 6 of the present invention. 図8は、本発明の実験例6で求められた熱交換管(扁平チューブ)の水力直径と熱媒体(水)の温度と遷移流速との関係を示すグラフ図である。FIG. 8 is a graph showing the relationship between the hydraulic diameter of the heat exchange tube (flat tube), the temperature of the heat medium (water), and the transition flow velocity obtained in Experimental Example 6 of the present invention.

図9は、本発明の実験例7で得られた熱交換管(扁平チューブ)の孔幅cと厚さaとの関係を示すグラフ図である。FIG. 9 is a graph showing the relationship between the hole width c and the thickness a of the heat exchange tube (flat tube) obtained in Experimental Example 7 of the present invention. 図10は、本発明の実験例7で用いられたパラレルフロー型アルミ製熱交換器の要部(扁平チューブとコルゲートフィンからなる熱交換部)を示す部分斜視説明図である。FIG. 10 is a partial perspective explanatory view showing the main part of the parallel flow type aluminum heat exchanger used in Experimental Example 7 of the present invention (a heat exchanging part composed of a flat tube and a corrugated fin). 図11は、本発明の実験例8で得られた熱交換器の熱交換通過風速と伝熱係数との関係を示すグラフ図である。FIG. 11 is a graph showing the relationship between the heat exchange passing wind speed and the heat transfer coefficient of the heat exchanger obtained in Experimental Example 8 of the present invention.

図12は、本発明の実施例12に係る熱媒体加熱装置が付設された試験運転装置を示す説明図である。FIG. 12 is an explanatory view showing a test operation device provided with a heat medium heating device according to Example 12 of the present invention. 図13は、本発明の実施例13に係る高速通水処理装置が付設された試験運転装置を示す説明図である。FIG. 13 is an explanatory view showing a test operation device provided with a high-speed water flow treatment device according to Example 13 of the present invention.

符号の説明Explanation of symbols

1…パラレルフロー型アルミ製熱交換器、2…熱媒体槽、2a,6a…ヒーター、3,5…ポンプ、4,7…パイプライン、6…加熱処理槽、8…ダミーの熱交換器、10……扁平チューブ、11……コルゲートフィン。   DESCRIPTION OF SYMBOLS 1 ... Parallel flow type aluminum heat exchanger, 2 ... Heat-medium tank, 2a, 6a ... Heater, 3, 5 ... Pump, 4, 7 ... Pipeline, 6 ... Heat processing tank, 8 ... Dummy heat exchanger, 10 …… flat tube, 11 …… corrugated fin.

Claims (11)

互いに所定の間隔を置いて配設され、熱媒体の入口と出口とを有する一対のヘッダパイプと、アルミニウム又はアルミニウム合金で形成され、上記一対のヘッダパイプ間に架設されて複数の熱媒流路を形成する複数の熱交換管と、アルミニウム又はアルミニウム合金で形成されて上記各熱交換管の間に配設されたフィンとを有し、熱媒体として水を用いるアルミ製熱交換器であり、
上記各熱交換管は、管内部に互いに区画されて略平行な複数の区画流路を形成する隔壁eを備えた厚さa1.5〜3mm及び孔幅c3mm以下の扁平チューブで構成されてその水力直径が1.3〜3.0mmであり、また、
上記フィンが、高さh6〜12mmのコルゲートフィンであることを特徴とするアルミ製熱交換器。
A pair of header pipes arranged at predetermined intervals and having a heat medium inlet and outlet, and formed of aluminum or an aluminum alloy, and a plurality of heat medium flow paths installed between the pair of header pipes A heat exchanger tube made of aluminum or an aluminum alloy, and fins disposed between the heat exchanger tubes and using water as a heat medium.
Each of the heat exchange pipes is composed of a flat tube having a thickness a1.5 to 3 mm and a hole width c3 mm or less provided with partition walls e which are partitioned from each other to form a plurality of substantially parallel partition flow paths. The hydraulic diameter is 1.3-3.0 mm, and
The aluminum heat exchanger, wherein the fin is a corrugated fin having a height of h6 to 12 mm.
各熱交換管は、その肉厚dが0.2〜0.5mmである請求項1に記載のアルミ製熱交換器。   2. The aluminum heat exchanger according to claim 1, wherein each heat exchange tube has a wall thickness d of 0.2 to 0.5 mm. 熱交換管内における熱媒体である水の流速が、冷房時1.2〜3.0m/sである請求項1又は2に記載のアルミ製熱交換器。   The aluminum heat exchanger according to claim 1 or 2, wherein a flow rate of water as a heat medium in the heat exchange pipe is 1.2 to 3.0 m / s during cooling. 熱交換管内における熱媒体である水の流速が、暖房時0.5〜3.0m/sである請求項1又は2に記載のアルミ製熱交換器。   The aluminum heat exchanger according to claim 1 or 2, wherein a flow rate of water as a heat medium in the heat exchange pipe is 0.5 to 3.0 m / s during heating. 互いに所定の間隔を置いて配設され、熱媒体の入口と出口とを有する一対のヘッダパイプと、アルミニウム又はアルミニウム合金で形成され、上記一対のヘッダパイプ間に架設されて複数の熱媒流路を形成する複数の熱交換管と、アルミニウム又はアルミニウム合金で形成されて上記各熱交換管の間に配設されたコルゲートフィンとを有し、上記各熱交換管の水力直径が1.3〜3.0mmであるアルミ製熱交換器のスケール付着防止方法であり、
熱媒体として、予めスケール付着防止処理された処理水にアルミ防食剤を添加してなる熱媒水を用いることを特徴とするアルミ製熱交換器のスケール付着防止方法。
A pair of header pipes arranged at predetermined intervals and having a heat medium inlet and outlet, and formed of aluminum or an aluminum alloy, and a plurality of heat medium flow paths installed between the pair of header pipes A plurality of heat exchange tubes, and corrugated fins formed of aluminum or aluminum alloy and disposed between the heat exchange tubes, the hydraulic diameter of each of the heat exchange tubes is 1.3 to It is a method for preventing scale adhesion of an aluminum heat exchanger that is 3.0 mm,
A method for preventing scale adhesion of an aluminum heat exchanger, wherein a heat medium water obtained by adding an aluminum anticorrosive agent to treated water that has been subjected to scale adhesion prevention treatment in advance is used as the heat medium.
処理水が、カルシウムイオン濃度5mg/L以下の淡水である請求項5に記載のアルミ製熱交換器のスケール付着防止方法。   The method of preventing scale adhesion of an aluminum heat exchanger according to claim 5, wherein the treated water is fresh water having a calcium ion concentration of 5 mg / L or less. 処理水が、未処理水をイオン交換樹脂により脱カルシウム処理して得られた淡水である請求項6に記載のアルミ製熱交換器のスケール付着防止方法。   The method for preventing scale adhesion of an aluminum heat exchanger according to claim 6, wherein the treated water is fresh water obtained by decalcifying untreated water with an ion exchange resin. 処理水が、未処理水に酸を添加しスケール成分を析出させて分離除去する酸添加処理により得られた淡水である請求項6に記載のアルミ製熱交換器のスケール付着防止方法。   The method for preventing adhesion of scale in an aluminum heat exchanger according to claim 6, wherein the treated water is fresh water obtained by an acid addition treatment in which an acid is added to untreated water to precipitate and remove a scale component. 処理水が、未処理水にキレート剤を添加してスケール成分の析出を抑制するキレート剤添加処理により得られた水である請求項5に記載のアルミ製熱交換器のスケール付着防止方法。   The method for preventing adhesion of scale in an aluminum heat exchanger according to claim 5, wherein the treated water is water obtained by a chelating agent addition treatment that suppresses precipitation of scale components by adding a chelating agent to untreated water. スケール付着防止処理が、未処理水をヒーターで所定の温度に加熱する加熱処理であり、未処理水のスケール成分を上記ヒーターの伝熱表面に優先的に析出させて除去する請求項5に記載のアルミ製熱交換器のスケール付着防止方法。   The scale adhesion prevention treatment is a heat treatment in which untreated water is heated to a predetermined temperature with a heater, and scale components of the untreated water are preferentially precipitated and removed on the heat transfer surface of the heater. To prevent scale adhesion of aluminum heat exchangers. スケール付着防止処理が、少なくとも各熱交換管が形成する熱媒流路内の流速より早い流速で流れる高速流路内に未処理水を流す高速通水処理であり、未処理水のスケール成分を高速流路内に優先的に析出させて除去する請求項5に記載のアルミ製熱交換器のスケール付着防止方法。   The scale adhesion prevention treatment is a high-speed water flow treatment in which untreated water is flowed into a high-speed flow path that flows at a flow rate faster than the flow velocity in the heat medium flow path formed by each heat exchange pipe. The method for preventing adhesion of scale in an aluminum heat exchanger according to claim 5, wherein the aluminum heat exchanger is preferentially deposited and removed in a high-speed flow path.
JP2004175696A 2004-06-14 2004-06-14 Aluminum heat exchanger and its scale deposition preventing method Pending JP2005351600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175696A JP2005351600A (en) 2004-06-14 2004-06-14 Aluminum heat exchanger and its scale deposition preventing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175696A JP2005351600A (en) 2004-06-14 2004-06-14 Aluminum heat exchanger and its scale deposition preventing method

Publications (1)

Publication Number Publication Date
JP2005351600A true JP2005351600A (en) 2005-12-22

Family

ID=35586225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175696A Pending JP2005351600A (en) 2004-06-14 2004-06-14 Aluminum heat exchanger and its scale deposition preventing method

Country Status (1)

Country Link
JP (1) JP2005351600A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
WO2011030430A1 (en) * 2009-09-10 2011-03-17 三菱電機株式会社 Air conditioning device
EP1770347A3 (en) * 2005-09-29 2012-03-28 Denso Corporation Heat exchanger tube and heat exchanger
JP3179086U (en) * 2011-07-27 2012-10-18 クールイット システムズ インク Fluid heat exchange system
WO2013094410A1 (en) * 2011-12-20 2013-06-27 三菱電機株式会社 Hot-water supply device
WO2013125625A1 (en) * 2012-02-24 2013-08-29 住友軽金属工業株式会社 Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same
WO2013187156A1 (en) * 2012-06-13 2013-12-19 住友軽金属工業株式会社 Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2014018739A (en) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp Water treatment apparatus and hot water supply apparatus
WO2014181400A1 (en) * 2013-05-08 2014-11-13 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP5972397B2 (en) * 2012-11-30 2016-08-17 三菱電機株式会社 Air conditioner and design method thereof
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
JP2019209492A (en) * 2018-05-31 2019-12-12 三菱瓦斯化学株式会社 Method for treating temperature-controlled water in contact with thermoplastic resin
CN110986625A (en) * 2019-12-24 2020-04-10 重庆大学 Anti-dust-deposition in-line three-dimensional rib tube bundle with rib height changing along circumferential direction and shell-and-tube heat exchanger
CN114588865A (en) * 2022-03-28 2022-06-07 江西红土地化工有限公司 Thermostatic cooling device for materials in kettle for pesticide
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770347A3 (en) * 2005-09-29 2012-03-28 Denso Corporation Heat exchanger tube and heat exchanger
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
WO2011030430A1 (en) * 2009-09-10 2011-03-17 三菱電機株式会社 Air conditioning device
JP5188629B2 (en) * 2009-09-10 2013-04-24 三菱電機株式会社 Air conditioner
US9890974B2 (en) 2009-09-10 2018-02-13 Mitsubishi Electric Corporation Air-conditioning apparatus
JP3179086U (en) * 2011-07-27 2012-10-18 クールイット システムズ インク Fluid heat exchange system
US11714432B2 (en) 2011-08-11 2023-08-01 Coolit Systems, Inc. Flow-path controllers and related systems
US10365667B2 (en) 2011-08-11 2019-07-30 Coolit Systems, Inc. Flow-path controllers and related systems
WO2013094410A1 (en) * 2011-12-20 2013-06-27 三菱電機株式会社 Hot-water supply device
CN104145169A (en) * 2012-02-24 2014-11-12 株式会社Uacj Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same
JPWO2013125625A1 (en) * 2012-02-24 2015-07-30 株式会社Uacj Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
WO2013125625A1 (en) * 2012-02-24 2013-08-29 住友軽金属工業株式会社 Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same
CN104380026A (en) * 2012-06-13 2015-02-25 株式会社Uacj Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JPWO2013187156A1 (en) * 2012-06-13 2016-02-04 株式会社Uacj Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
WO2013187156A1 (en) * 2012-06-13 2013-12-19 住友軽金属工業株式会社 Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2014018739A (en) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp Water treatment apparatus and hot water supply apparatus
JP5972397B2 (en) * 2012-11-30 2016-08-17 三菱電機株式会社 Air conditioner and design method thereof
US9746193B2 (en) 2012-11-30 2017-08-29 Mitsubishi Electric Corporation Air-conditioning apparatus and method of designing same
US11661936B2 (en) 2013-03-15 2023-05-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
US10364809B2 (en) 2013-03-15 2019-07-30 Coolit Systems, Inc. Sensors, multiplexed communication techniques, and related systems
JPWO2014181400A1 (en) * 2013-05-08 2017-02-23 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2014181400A1 (en) * 2013-05-08 2014-11-13 三菱電機株式会社 Heat exchanger and refrigeration cycle device
US9791189B2 (en) 2013-05-08 2017-10-17 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
EP2995886A4 (en) * 2013-05-08 2017-02-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
US11452243B2 (en) 2017-10-12 2022-09-20 Coolit Systems, Inc. Cooling system, controllers and methods
JP2019209492A (en) * 2018-05-31 2019-12-12 三菱瓦斯化学株式会社 Method for treating temperature-controlled water in contact with thermoplastic resin
JP7106992B2 (en) 2018-05-31 2022-07-27 三菱瓦斯化学株式会社 Method for treating temperature-controlled water in contact with thermoplastic resin
US11662037B2 (en) 2019-01-18 2023-05-30 Coolit Systems, Inc. Fluid flow control valve for fluid flow systems, and methods
US11473860B2 (en) 2019-04-25 2022-10-18 Coolit Systems, Inc. Cooling module with leak detector and related systems
US11725890B2 (en) 2019-04-25 2023-08-15 Coolit Systems, Inc. Cooling module with leak detector and related systems
CN110986625B (en) * 2019-12-24 2021-06-01 重庆大学 Anti-dust-deposition in-line three-dimensional rib tube bundle with rib height changing along circumferential direction and shell-and-tube heat exchanger
CN110986625A (en) * 2019-12-24 2020-04-10 重庆大学 Anti-dust-deposition in-line three-dimensional rib tube bundle with rib height changing along circumferential direction and shell-and-tube heat exchanger
CN114588865A (en) * 2022-03-28 2022-06-07 江西红土地化工有限公司 Thermostatic cooling device for materials in kettle for pesticide
CN114588865B (en) * 2022-03-28 2023-09-15 江西红土地化工有限公司 Constant-temperature cooling device for materials in kettle for pesticides

Similar Documents

Publication Publication Date Title
JP2005351600A (en) Aluminum heat exchanger and its scale deposition preventing method
Kazi Fouling and fouling mitigation on heat exchanger surfaces
US20110024080A1 (en) Heat Exchanger
EP2962057B1 (en) Aluminum heat exchanger with corrosion resistant coating
EP2796806B1 (en) Hot-water supply device
JP4879770B2 (en) Heat exchanger maintenance equipment
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
US20040226580A1 (en) Method of flushing a coil pipe(s) of a heat exchanger
EP3234490B1 (en) Aluminum alloy finned heat exchanger
WO2017116251A1 (en) Heat exchange device
EP0632246B1 (en) Heat exchanger
JP2012184920A (en) Air conditioner
JP3370531B2 (en) Corrosion protection method for inner surface of aluminum alloy heat transfer tube
JP4736847B2 (en) Heat exchanger and manufacturing method thereof
JPH01145487A (en) Piping made of aluminum
JP5796939B2 (en) HEAT EXCHANGER, AIR CONDITIONER HAVING THE HEAT EXCHANGER, AND METHOD FOR PRODUCING THE HEAT EXCHANGER
JP2008014624A (en) Water heat exchanger for water heater, and manufacturing method therefor
CN114111430A (en) Method for forming protective surface treatment on heat exchanger in situ
CN210951963U (en) Special anticorrosive heat exchanger of swimming pool dehumidification heat pump set
JP2004292513A (en) Liquid coolant and cooling system using the sane
JP2005016896A (en) Heat transporting medium and heat transporting system using the same
KR102134916B1 (en) Method of reparing heat exchanger tube
AU2008357596A1 (en) Heat exchanger block, and a method for wetting a heat exchanger block
JP2016196968A (en) Parallel flow type heat exchanger and manufacturing method of the same
CN112254563A (en) Long-life aluminum alloy having high corrosion resistance and spiral grooved tube produced from the alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105