JP2005347657A - Electronic device and electronic circuit arrangement using this electronic device - Google Patents

Electronic device and electronic circuit arrangement using this electronic device Download PDF

Info

Publication number
JP2005347657A
JP2005347657A JP2004168005A JP2004168005A JP2005347657A JP 2005347657 A JP2005347657 A JP 2005347657A JP 2004168005 A JP2004168005 A JP 2004168005A JP 2004168005 A JP2004168005 A JP 2004168005A JP 2005347657 A JP2005347657 A JP 2005347657A
Authority
JP
Japan
Prior art keywords
relay
electrode
substrate
electronic device
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004168005A
Other languages
Japanese (ja)
Inventor
Sho Okumura
祥 奥村
Masakazu Hori
堀  正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004168005A priority Critical patent/JP2005347657A/en
Publication of JP2005347657A publication Critical patent/JP2005347657A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic device which reduces stress, caused by temperature change, to a terminal electrode, prevents a resonance, caused by external vibration, of a surface mounting device, and solves a problem such as a break of a relay substrate or the like, and also to provide an electronic circuit arrangement using this electronic device. <P>SOLUTION: A surface mounting device 1, in which a terminal electrode 4 is prepared in a bottom face, is mounted on a printed circuit board 20 having a mounting electrode 21 prepared at a location corresponding to the terminal electrode 4 via a relay substrate 10 enabling shear deformation in surface direction. A first relay electrode 11 connected in face to the terminal electrode 4 is formed on a front face of the relay substrate 10, and a second relay electrode 12 connected in face to a mounting electrode 21 is prepared at the same location with respect to the first relay electrode 11 on a rear face. When the printed circuit board is expanded in thermal expansion larger than the surface mounting device 1 by temperature rising, the relay substrate 10 is deformed in shear in the surface direction, and thereby, the stress applied to the terminal electrode 4 is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は表面実装型の電子デバイス、特に車載用デバイスのように熱変動や外部振動の大きな環境で使用される電子デバイスの構造に関するものである。 The present invention relates to a structure of a surface mount type electronic device, particularly an electronic device used in an environment where thermal fluctuation and external vibration are large, such as an in-vehicle device.

従来、表面実装型の電子部品が広く用いられている。このような電子部品は、電子部品を構成する基板の底面に端子電極が設けられ、端子電極はプリント基板の実装電極にはんだ付け等によって接続される。プリント基板へ実装した状態で熱変動が加わった場合、電子部品側の基板の線膨張係数とプリント基板の線膨張係数との差が大きいと、端子電極にストレスがかかるという問題がある。 Conventionally, surface mount electronic components have been widely used. In such an electronic component, a terminal electrode is provided on the bottom surface of a substrate constituting the electronic component, and the terminal electrode is connected to a mounting electrode of a printed circuit board by soldering or the like. When thermal fluctuation is applied in a state of being mounted on a printed circuit board, there is a problem that stress is applied to the terminal electrode if the difference between the linear expansion coefficient of the board on the electronic component side and the linear expansion coefficient of the printed circuit board is large.

この問題への対策として、特許文献1には、表面実装部品とプリント基板との間にフレキシブル基板を配置した構造の電子部品が提案されている。フレキシブル基板は電子部品より大形に形成され、フレキシブル基板の上面に形成された電極を表面実装部品の端子電極にはんだ付けし、フレキシブル基板の側端部に延長した電極の端部をプリント基板の実装電極にはんだ付けしている。
この構造の電子部品では、表面実装部品の端子電極の真下はプリント基板に対してはんだ付けされておらず、薄いフレキシブル基板が撓むことで応力を吸収するものである。この場合、フレキシブル基板の弾性によって表面実装部品が上下方向に動くので、外部振動に対して共振しやすくなり、フレキシブル基板が破断する可能性がある。また、フレキシブル基板が表面実装部品より大形であるため、実装面積が大きくなる欠点がある。
表面実装部品の上下振動を抑制するため、表面実装部品の底面にシリコンゴムなどの弾性シートを敷き込む例も開示されているが、これでは部品数が多くなるとともに、上下方向の寸法が大きくなる欠点がある。
特開平7−201650号公報
As a countermeasure against this problem, Patent Document 1 proposes an electronic component having a structure in which a flexible substrate is disposed between a surface-mounted component and a printed board. The flexible substrate is larger than the electronic component, and the electrodes formed on the upper surface of the flexible substrate are soldered to the terminal electrodes of the surface mount component, and the end of the electrode extended to the side end of the flexible substrate is connected to the printed circuit board. Soldered to the mounting electrode.
In the electronic component having this structure, the portion directly under the terminal electrode of the surface mount component is not soldered to the printed circuit board, and the thin flexible substrate is bent to absorb the stress. In this case, since the surface-mounted component moves in the vertical direction due to the elasticity of the flexible substrate, it is likely to resonate with external vibration, and the flexible substrate may be broken. Further, since the flexible substrate is larger than the surface-mounted component, there is a drawback that the mounting area is increased.
An example in which an elastic sheet such as silicon rubber is laid on the bottom surface of the surface mount component in order to suppress the vertical vibration of the surface mount component is also disclosed, but this increases the number of components and increases the vertical dimension. There are drawbacks.
JP-A-7-201650

特許文献2および3には、底面に端子電極が設けられた半導体パッケージとプリント基板との間に可撓性シートを配置し、この可撓性シートの上面に端子電極と接続される中継電極を設け、可撓性シートの下面にプリント基板の電極と接続される中継電極を設けたものが開示されている。可撓性シートの上面の中継電極と下面の中継電極とは面方向にオフセットしており、可撓性シートの撓みによって端子電極にかかるストレスを緩和している。
この構造の電子回路装置の場合、可撓性シートが半導体パッケージから外部へ突出しないので、実装面積が大きくなる欠点はない。しかし、上面の中継電極と下面の中継電極とが面方向にオフセットしているため、電子回路装置に上下方向の振動が作用した時、半導体パッケージが共振しやすく、半導体パッケージの支持安定性が低くなるとともに、可撓性シートのうち上下の中継電極の間の領域に曲げ応力が集中し、可撓性シートの破断や電極の破断などの問題が発生しやすい。
特開平8−236898号公報 特開2002−237553号公報
In Patent Documents 2 and 3, a flexible sheet is arranged between a semiconductor package having a terminal electrode on the bottom surface and a printed circuit board, and a relay electrode connected to the terminal electrode is provided on the upper surface of the flexible sheet. There is a disclosure in which a relay electrode connected to an electrode of a printed circuit board is provided on the lower surface of a flexible sheet. The relay electrode on the upper surface and the relay electrode on the lower surface of the flexible sheet are offset in the surface direction, and the stress applied to the terminal electrode is relieved by the bending of the flexible sheet.
In the case of the electronic circuit device having this structure, since the flexible sheet does not protrude from the semiconductor package, there is no disadvantage that the mounting area becomes large. However, since the relay electrode on the upper surface and the relay electrode on the lower surface are offset in the surface direction, the semiconductor package is likely to resonate when the vertical vibration is applied to the electronic circuit device, and the support stability of the semiconductor package is low. At the same time, bending stress concentrates in a region between the upper and lower relay electrodes in the flexible sheet, and problems such as breakage of the flexible sheet and breakage of the electrode are likely to occur.
JP-A-8-236898 JP 2002-237553 A

そこで、本発明の目的は、温度変化による端子電極へのストレスを軽減するとともに、外部振動による表面実装部品の共振を防止し、かつ中継基板の破断などの問題を解消できる電子デバイスおよびこの電子デバイスを用いた電子回路装置を提供することにある。 Therefore, an object of the present invention is to provide an electronic device that can reduce stress on the terminal electrode due to temperature change, prevent resonance of surface-mounted components due to external vibration, and solve problems such as breakage of a relay substrate, and the electronic device It is to provide an electronic circuit device using the above.

上記目的を達成するため、請求項1に係る発明は、底面に端子電極が設けられた表面実装部品と、上記表面実装部品の底面に配置され、面方向のせん断変位可能な中継基板とからなり、上記中継基板の上面に上記端子電極と対向し電気的に接続された第1中継電極が設けられ、上記中継基板の下面であって上記第1中継電極と相対する位置に第2中継電極が設けられ、上記第1中継電極および第2中継電極に対して中継基板の面方向にオフセットした位置に第1中継電極と第2中継電極とを相互に接続する接続部が設けられていることを特徴とする電子デバイスを提供する。 In order to achieve the above object, an invention according to claim 1 comprises a surface mount component having a terminal electrode provided on a bottom surface, and a relay substrate disposed on the bottom surface of the surface mount component and capable of shear displacement in a surface direction. A first relay electrode facing and electrically connected to the terminal electrode is provided on an upper surface of the relay substrate, and a second relay electrode is provided on a lower surface of the relay substrate and facing the first relay electrode. Provided that a connecting portion for connecting the first relay electrode and the second relay electrode to each other is provided at a position offset in the surface direction of the relay substrate with respect to the first relay electrode and the second relay electrode. An electronic device is provided.

本発明では、中継基板として面方向のせん断変位可能な基板を用いている。ここで、面方向のせん断変位(せん断ひずみ)とは、互いに平行な上面と下面とが面方向に相対ずれを起こすことをいう。中継基板の上面に形成された第1中継電極と下面に形成された第2中継電極とは上下相対する位置に形成されている。第1中継電極は表面実装部品の端子電極に対面接続され、第2中継電極はプリント基板などの電極に対面接続される。電子デバイスに上下方向の振動が加わった時、端子電極と第1,第2の中継電極と実装電極とが上下相対する位置にあるので、表面実装部品が上下に共振せず、安定して保持できる。また、電子回路装置に熱変動が加わると、表面実装部品を構成する基板と実装基板との線膨張係数差によって端子電極に大きなストレスがかかる可能性があるが、このストレスを従来のように中継基板の撓みによって吸収するのではなく、中継基板の面方向のせん断変位、つまり面方向のすべり変位によって吸収するので、端子電極へのストレスを緩和できるとともに、局所的な応力集中によって中継基板が破損する危険性も少ない。
中継基板の上面に形成された第1中継電極と下面に形成された第2中継電極とを電気的に接続するため、第1中継電極および第2中継電極に対して中継基板の面方向にオフセットした位置に接続部が設けられている。つまり、接続部は中継基板の面方向のせん断変位が生じる部位とは離れた部位に形成されているので、接続部にせん断変位が発生せず、しかも第1中継電極と第2中継電極との間のせん断変位を阻害することがなく、ストレス吸収効果が高い。
中継基板としては、面方向のせん断変位可能な基板が用いられるが、フレキシブル基板のような弾性を有する樹脂基板であれば、使用可能である。
In the present invention, a substrate capable of shear displacement in the plane direction is used as the relay substrate. Here, the shear displacement (shear strain) in the surface direction means that an upper surface and a lower surface parallel to each other cause relative displacement in the surface direction. The first relay electrode formed on the upper surface of the relay substrate and the second relay electrode formed on the lower surface are formed at positions vertically opposite to each other. The first relay electrode is face-to-face connected to the terminal electrode of the surface mount component, and the second relay electrode is face-to-face connected to an electrode such as a printed circuit board. When a vertical vibration is applied to the electronic device, the terminal electrode, the first and second relay electrodes, and the mounting electrode are in a position where they face each other, so the surface-mounted components do not resonate vertically and are held stably. it can. Also, if thermal fluctuations are applied to the electronic circuit device, there is a possibility that a large stress is applied to the terminal electrode due to the difference in coefficient of linear expansion between the substrate constituting the surface mount component and the mount substrate. This stress is relayed as in the past. It is not absorbed by the bending of the board, but is absorbed by the shear displacement in the surface direction of the relay board, that is, the sliding displacement in the surface direction. There is little risk to do.
In order to electrically connect the first relay electrode formed on the upper surface of the relay substrate and the second relay electrode formed on the lower surface, the first relay electrode and the second relay electrode are offset in the surface direction of the relay substrate. A connecting portion is provided at the position. In other words, since the connecting portion is formed at a portion away from the portion where the shear displacement in the surface direction of the relay substrate occurs, no shear displacement occurs at the connecting portion, and the connection between the first relay electrode and the second relay electrode is not caused. Without interfering with the shear displacement between them, the stress absorption effect is high.
As the relay substrate, a substrate capable of shear displacement in the plane direction is used, but any resin substrate having elasticity such as a flexible substrate can be used.

請求項2のように、接続部を中継基板に設けられたスルーホールとするのがよい。
上下の中継電極を相互に接続するための接続部として、中継基板の端部を介して接続することも可能であるが、端部まで電極を引き延ばす必要があるため、電極長さが不必要に長くなる欠点がある。これに対し、スルーホールを介して接続すれば、任意の位置で上下の中継電極同志を接続することができるので、望ましい。
As in claim 2, the connecting portion is preferably a through hole provided in the relay substrate.
As a connection part for connecting the upper and lower relay electrodes to each other, it is possible to connect via the end of the relay board, but it is necessary to extend the electrode to the end, so the electrode length is unnecessary. There is a drawback of becoming longer. On the other hand, if the connection is made through the through hole, the upper and lower relay electrodes can be connected at an arbitrary position, which is desirable.

請求項3のように、端子電極と第1中継電極とをはんだを介して電気的に接続する場合、接続部の上面をはんだレジストによって覆うのがよい。
接続部の電極厚みが薄くなるので、はんだがこの接続部に付着すると、はんだ食われ現象により接続部が断線する可能性がある。これに対し、接続部をはんだレジストで覆えば、はんだが付着することによるはんだ食われを防止でき、断線の問題を解消できる。
When the terminal electrode and the first relay electrode are electrically connected via solder as in the third aspect, the upper surface of the connecting portion is preferably covered with a solder resist.
Since the electrode thickness of the connection portion is reduced, if the solder adheres to the connection portion, the connection portion may be disconnected due to a solder erosion phenomenon. On the other hand, if the connection portion is covered with a solder resist, it is possible to prevent erosion of the solder due to the adhesion of solder and to solve the problem of disconnection.

請求項4のように、中継基板は表面実装部品の底面積とほぼ同等の大きさを有するものであってもよいし、請求項5のように、中継基板は表面実装部品の底面積より小さく形成され、中継基板は1個または複数個の端子電極ごとに個別に設けられているものでもよい。
前者の場合は、1個の表面実装部品に対して1枚の中継基板で足りるので、接続が簡単である。
後者の場合は、端子電極間にスペースがある場合、個々の中継基板を小型化できる利点がある。
As in claim 4, the relay board may have a size substantially equal to the bottom area of the surface mount component, and as in claim 5, the relay board is smaller than the bottom area of the surface mount component. The formed relay substrate may be individually provided for each of one or a plurality of terminal electrodes.
In the former case, since one relay board is sufficient for one surface mount component, connection is simple.
In the latter case, if there is a space between the terminal electrodes, there is an advantage that each relay board can be reduced in size.

以上のように、本発明によれば、中継基板の上下面の相対する位置に第1,第2の中継電極が形成されているので、表面実装部品の端子電極の真下で第1,第2の中継電極が固定される。そのため、中継基板が撓まず、表面実装部品は安定して固定され、かつ外部振動による共振の発生を防止できる。
また、電子デバイスに熱変動が加わった場合に、表面実装部品を構成する基板とプリント基板との線膨張係数差によって、端子電極に大きなストレスがかかる可能性があるが、このストレスを中継基板の面方向のせん断変形によって緩和するため、端子電極へのストレスを軽減できる。
さらに、上下の中継電極を相互に接続する接続部が中継電極から離れた位置に設けられているので、中継基板のせん断変形を阻害せず、端子電極へのストレス緩和効果が高い。
As described above, according to the present invention, since the first and second relay electrodes are formed at the opposing positions of the upper and lower surfaces of the relay substrate, the first and second electrodes are directly below the terminal electrodes of the surface mount component. The relay electrode is fixed. Therefore, the relay board does not bend, the surface-mounted component is stably fixed, and the occurrence of resonance due to external vibration can be prevented.
In addition, when thermal fluctuations are applied to an electronic device, there is a possibility that a large stress is applied to the terminal electrode due to the difference in coefficient of linear expansion between the board constituting the surface mount component and the printed board. Since stress is reduced by shear deformation in the surface direction, stress on the terminal electrode can be reduced.
Furthermore, since the connecting portion for connecting the upper and lower relay electrodes to each other is provided at a position away from the relay electrode, the shear deformation of the relay substrate is not hindered, and the stress relaxation effect on the terminal electrode is high.

以下に、本発明の実施の形態を、実施例を参照して説明する。 Embodiments of the present invention will be described below with reference to examples.

図1〜図3は本発明にかかる電子デバイスAの一例を示す。
電子デバイスAは、表面実装部品1と中継基板10とで構成されている。この実施例の表面実装部品1は、外形サイズが5×3mmの基板2の上に複数の素子3を搭載したものであり、基板2の底面のコーナ部に4個の端子電極4(図2参照)が形成されている。基板2は、例えばアルミナなどの線膨張係数の比較的小さな材料で構成されている。端子電極4は例えば厚膜電極で形成されており、そのサイズは例えば0.9×0.85mmの四角形である。
1 to 3 show an example of an electronic device A according to the present invention.
The electronic device A is composed of a surface mount component 1 and a relay substrate 10. The surface-mounted component 1 of this embodiment has a plurality of elements 3 mounted on a substrate 2 having an outer size of 5 × 3 mm, and four terminal electrodes 4 (see FIG. 2) at a corner portion of the bottom surface of the substrate 2. Reference) is formed. The substrate 2 is made of a material having a relatively small linear expansion coefficient, such as alumina. The terminal electrode 4 is formed of a thick film electrode, for example, and the size thereof is, for example, a quadrangle of 0.9 × 0.85 mm.

この実施例の中継基板10は、表面実装部品1の基板2と同一サイズで、厚みが75μmの面方向のせん断ひずみ可能な基板で構成されている。ここでは、アラミド基材フレキシブル基板を使用している。中継基板10の上面には、図3に示すように表面実装部品1の端子電極4と対応する位置に4個の第1中継電極11が形成され、中継基板10の下面には、第1中継電極11と同一形状の第2中継電極12が第1中継電極11と上下相対する位置に形成されている。なお、図3では中継基板10の上面のみ示したが、下面も同一形状である。中継電極11,12は例えばCu電極よりなり、公知のプリント配線技術によって形成されている。第1中継電極11は、図4,図5に示すように、はんだ30によって表面実装部品1の端子電極4と接続されている。第1中継電極11および第2中継電極12の一部は中継基板10の面方向にオフセットした位置に延長され、この延長部にスルーホールよりなる接続部13が設けられている。接続部13によって上下の中継電極11,12が相互に電気接続されている。接続部13の上下面は、はんだが付着しないように、はんだレジスト14によって覆われている。ここでは、隣合う2つの接続部13を1つのはんだレジスト14によって被覆したが、各接続部13を個別に被覆してもよいし、接続部13が相互に近接している場合には1つのはんだレジスト14ですべての接続部13を被覆してもよい。 The relay substrate 10 of this embodiment is formed of a substrate that is the same size as the substrate 2 of the surface mount component 1 and that can be shear-strained in the surface direction with a thickness of 75 μm. Here, an aramid substrate flexible substrate is used. As shown in FIG. 3, four first relay electrodes 11 are formed on the upper surface of the relay substrate 10 at positions corresponding to the terminal electrodes 4 of the surface mount component 1, and the first relay is formed on the lower surface of the relay substrate 10. A second relay electrode 12 having the same shape as the electrode 11 is formed at a position vertically opposite to the first relay electrode 11. 3 shows only the upper surface of the relay substrate 10, the lower surface has the same shape. The relay electrodes 11 and 12 are made of Cu electrodes, for example, and are formed by a known printed wiring technique. As shown in FIGS. 4 and 5, the first relay electrode 11 is connected to the terminal electrode 4 of the surface mount component 1 by solder 30. A part of the first relay electrode 11 and the second relay electrode 12 is extended to a position offset in the surface direction of the relay substrate 10, and a connecting portion 13 made of a through hole is provided in the extended portion. The upper and lower relay electrodes 11 and 12 are electrically connected to each other by the connecting portion 13. The upper and lower surfaces of the connecting portion 13 are covered with a solder resist 14 so that solder does not adhere. Here, the two adjacent connecting portions 13 are covered with one solder resist 14, but each connecting portion 13 may be individually covered, and when the connecting portions 13 are close to each other, one connecting portion 13 is covered. All the connecting portions 13 may be covered with the solder resist 14.

上記電子デバイスAを実装するプリント基板20には、図4,図5に示すように表面実装部品1の端子電極4と対応する位置に実装電極21が形成されている。プリント基板20は周知のようにエポキシ系やフェノール系などの樹脂基板の表面に実装電極21をプリント配線したものであり、ここでは実装電極21はCu電極で構成されている。実装電極21には、はんだ31によって第2中継電極12が接続され、電子デバイスAはプリント基板20に実装される。上記のように中継基板10の上面の第1中継電極11と下面の第2中継電極12は上下相対する位置に形成されており、第1中継電極11と表面実装部品1の端子電極4とが対面接続され、第2中継電極12とプリント基板20の実装電極21とが対面接続されているので、表面実装部品1の端子電極4の真下に第1,第2の中継電極11,12および実装電極21が配置され、これらがそれぞれはんだ30,31によって接合されている。 On the printed circuit board 20 on which the electronic device A is mounted, mounting electrodes 21 are formed at positions corresponding to the terminal electrodes 4 of the surface mount component 1 as shown in FIGS. As is well known, the printed circuit board 20 is obtained by wiring a mounting electrode 21 on the surface of a resin substrate such as an epoxy resin or a phenol resin. Here, the mounting electrode 21 is composed of a Cu electrode. The second relay electrode 12 is connected to the mounting electrode 21 by the solder 31, and the electronic device A is mounted on the printed board 20. As described above, the first relay electrode 11 on the upper surface of the relay substrate 10 and the second relay electrode 12 on the lower surface are formed at positions vertically opposite to each other, and the first relay electrode 11 and the terminal electrode 4 of the surface mount component 1 are connected to each other. Since the second relay electrode 12 and the mounting electrode 21 of the printed circuit board 20 are face-to-face connected, the first and second relay electrodes 11 and 12 and the mounting are directly under the terminal electrode 4 of the surface-mounted component 1. Electrodes 21 are arranged and these are joined by solders 30 and 31, respectively.

ここで、電子デバイスAをプリント基板20に実装した電子回路装置について説明する。
この電子回路装置を車載用機器に適用した場合、熱変動や振動が加わる。一般に、プリント基板20の線膨張係数は表面実装部品1の基板2の線膨張係数より大きく、温度上昇によってプリント基板20の方が大きく膨張し、表面実装部品1の端子電極4にストレスがかかる。
この様子を図6に示す。図6は原理を理解しやすくするため、中継基板10の変位を拡大して示してある。
プリント基板20が矢印で示すように面方向に膨張すると、実装電極21が表面実装部品1の端子電極4に対して外側へ広がろうとし、両電極21,4の間に相対ずれが生じる。しかし、このずれを中継基板10の面方向のせん断ひずみによって吸収するので、端子電極4にかかるストレスは緩和され、端子電極4の剥離やはんだの剥離などの問題が解消される。
また、プリント基板20に外部振動が加わると、プリント基板20に実装された電子デバイスAが共振し、表面実装部品1に損傷を与える可能性がある。しかし、本発明では表面実装部品1の端子電極4の直下に、第1,第2の中継電極11,12およびプリント基板20の実装電極21が配置され、これらがはんだ30,31によって相互に固定されているので、中継基板10が撓み変形を起こさず、表面実装部品1が安定して固定される。そのため、外部振動によって表面実装部品1が共振する現象を防止できる。
さらに、端子電極4と第1中継電極11とを接続するはんだ30、および第2中継電極12と実装電極21とを接続するハンダ31は、はんだレジスト14によって接続部13に付着することがないので、はんだ食われ現象による接続部13の断線を確実に防止できる。
Here, an electronic circuit device in which the electronic device A is mounted on the printed circuit board 20 will be described.
When this electronic circuit device is applied to a vehicle-mounted device, thermal fluctuation and vibration are applied. In general, the linear expansion coefficient of the printed circuit board 20 is larger than the linear expansion coefficient of the substrate 2 of the surface-mounted component 1, and the printed circuit board 20 expands more greatly due to the temperature rise, and stress is applied to the terminal electrodes 4 of the surface-mounted component 1.
This is shown in FIG. FIG. 6 shows the displacement of the relay board 10 in an enlarged manner for easy understanding of the principle.
When the printed circuit board 20 expands in the surface direction as indicated by an arrow, the mounting electrode 21 tends to spread outward with respect to the terminal electrode 4 of the surface mounting component 1, and a relative shift occurs between the electrodes 21 and 4. However, since this deviation is absorbed by the shear strain in the surface direction of the relay substrate 10, the stress applied to the terminal electrode 4 is relieved, and problems such as peeling of the terminal electrode 4 and peeling of the solder are solved.
Further, when external vibration is applied to the printed circuit board 20, the electronic device A mounted on the printed circuit board 20 may resonate and damage the surface mounted component 1. However, in the present invention, the first and second relay electrodes 11 and 12 and the mounting electrode 21 of the printed circuit board 20 are arranged immediately below the terminal electrode 4 of the surface mounting component 1, and these are fixed to each other by the solders 30 and 31. Therefore, the relay substrate 10 does not bend and deform, and the surface mount component 1 is stably fixed. Therefore, the phenomenon that the surface-mounted component 1 resonates due to external vibration can be prevented.
Furthermore, the solder 30 that connects the terminal electrode 4 and the first relay electrode 11 and the solder 31 that connects the second relay electrode 12 and the mounting electrode 21 do not adhere to the connection portion 13 due to the solder resist 14. The disconnection of the connecting portion 13 due to the solder erosion phenomenon can be reliably prevented.

表1は、上記実施例の電子デバイスAと、中継基板を有しない電子デバイスとを、厚み1.6mmのプリント基板(材料はガラスエポキシ)にはんだ付けし、−40℃〜85℃の熱衝撃試験を実施し、プリント基板から電子デバイスが剥離するまでの熱サイクル回数を測定した結果である。
表1から明らかなように、本発明にかかる電子デバイスAでは中継基板10によって2倍の寿命を有することがわかる。
Table 1 shows the thermal shock of −40 ° C. to 85 ° C. by soldering the electronic device A of the above example and the electronic device having no relay substrate to a printed board (material is glass epoxy) having a thickness of 1.6 mm. It is the result of having implemented the test and measuring the number of thermal cycles until the electronic device peels from the printed circuit board.
As is clear from Table 1, it can be seen that the electronic device A according to the present invention has twice the lifetime due to the relay substrate 10.

Figure 2005347657
Figure 2005347657

図7,図8は本発明における電子デバイスの第2実施例を示す。
この実施例は、中継基板10を各端子電極4ごとに個別に設けたものである。図7,図8において、第1実施例と同一部分には同一符号を付して重複説明を省略する。
この実施例では、中継基板10が複数個に分割され、各中継基板10の上下面に第1中継電極11と第2中継電極12とが1個ずつ設けられている。中継基板10が複数個に分割されているので、プリント基板20に実装した状態で熱変動が加わった時、各中継基板10の間で張力が発生することがなく、中継基板10の負荷が小さくてすむ。また、中継基板10が各端子毎に分割されているので、通常のチッププレーサ(部品搭載装置)で部品と同じ様に中継基板10を表面実装部品の底面に搭載できる。
7 and 8 show a second embodiment of the electronic device according to the present invention.
In this embodiment, the relay substrate 10 is provided for each terminal electrode 4 individually. 7 and 8, the same parts as those of the first embodiment are denoted by the same reference numerals, and the duplicate description is omitted.
In this embodiment, the relay substrate 10 is divided into a plurality of pieces, and one first relay electrode 11 and one second relay electrode 12 are provided on the upper and lower surfaces of each relay substrate 10. Since the relay board 10 is divided into a plurality of parts, when thermal fluctuations are applied while mounted on the printed circuit board 20, no tension is generated between the relay boards 10, and the load on the relay board 10 is reduced. Tesumu. Further, since the relay substrate 10 is divided for each terminal, the relay substrate 10 can be mounted on the bottom surface of the surface-mounted component in the same manner as the component with a normal chip placer (component mounting device).

本発明は上記実施例のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。
上記実施例では、中継基板10を表面実装部品1とほぼ同一サイズとした例と、各端子電極ごとに分割した例とを示したが、表面実装部品1より小さいサイズでかつ複数の端子電極(例えば2個の端子電極)ごとに形成してもよい。
また、本発明にかかる電子デバイスを製造する方法として、表面実装部品1に対して中継基板10を個別に接続する方法のほか、中継基板10をマザー基板状態で製作し、その上面にパターン形成された第1中継電極上に複数の表面実装部品1を実装した後、中継基板10を分割カットすることで、製造することができる。この場合、カット刃が表面実装部品1と干渉しないように、中継基板10のサイズを表面実装部品1よりやや大きくしてもよい。
上記実施例では、端子電極と第1中継電極、および第2中継電極と実装電極とをそれぞれはんだ付けによって接続したが、導電性接着剤などの別の接合材を用いることも可能であるし、バンプを用いて接続することも可能である。
The present invention is not limited to the above embodiments, and can be modified without departing from the spirit of the present invention.
In the above-described embodiment, an example in which the relay substrate 10 is approximately the same size as the surface-mounted component 1 and an example in which each relay electrode 10 is divided for each terminal electrode are shown. For example, it may be formed every two terminal electrodes).
Further, as a method of manufacturing the electronic device according to the present invention, in addition to a method of individually connecting the relay substrate 10 to the surface mount component 1, the relay substrate 10 is manufactured in a mother substrate state, and a pattern is formed on the upper surface thereof. In addition, after mounting a plurality of surface mount components 1 on the first relay electrode, the relay substrate 10 can be divided and cut. In this case, the size of the relay substrate 10 may be slightly larger than the surface-mounted component 1 so that the cutting blade does not interfere with the surface-mounted component 1.
In the above embodiment, the terminal electrode and the first relay electrode, and the second relay electrode and the mounting electrode are connected by soldering, but another bonding material such as a conductive adhesive can be used. It is also possible to connect using bumps.

本発明にかかる電子デバイスの第1実施例の概略斜視図である。1 is a schematic perspective view of a first embodiment of an electronic device according to the present invention. 図1に示す電子デバイスで用いられる表面実装部品の底面からみた斜視図である。It is the perspective view seen from the bottom face of the surface mounting components used with the electronic device shown in FIG. 図1に示す電子デバイスで用いられる中継基板の斜視図である。It is a perspective view of the relay board | substrate used with the electronic device shown in FIG. 図1に示す電子デバイスをプリント基板に実装した状態の正面図および一部拡大断面図である。FIG. 2 is a front view and a partially enlarged cross-sectional view of a state where the electronic device shown in FIG. 1 is mounted on a printed board. 図1に示す電子デバイスをプリント基板に実装した状態の側面図および一部拡大断面図である。FIG. 2 is a side view and a partially enlarged sectional view of the electronic device shown in FIG. 1 mounted on a printed board. 温度上昇時における電子回路装置の正面図である。It is a front view of the electronic circuit device at the time of temperature rise. 本発明にかかる電子デバイスの第2実施例の底面図である。It is a bottom view of 2nd Example of the electronic device concerning this invention. 図7に示す電子デバイスをプリント基板に実装した状態の正面図および一部拡大断面図である。FIG. 8 is a front view and a partially enlarged sectional view of the electronic device shown in FIG. 7 mounted on a printed board.

符号の説明Explanation of symbols

A 電子デバイス
1 表面実装部品
2 基板
3 素子
4 端子電極
10 中継基板
11 第1中継電極
12 第2中継電極
13 接続部(スルーホール)
14 はんだレジスト
20 実装基板(プリント基板)
21 実装電極
A Electronic device 1 Surface mount component 2 Substrate 3 Element 4 Terminal electrode 10 Relay substrate 11 First relay electrode 12 Second relay electrode 13 Connection part (through hole)
14 Solder resist 20 Mounting board (printed board)
21 Mounting electrodes

Claims (7)

底面に端子電極が設けられた表面実装部品と、
上記表面実装部品の底面に配置され、面方向のせん断変位可能な中継基板とからなり、
上記中継基板の上面に上記端子電極と対向し電気的に接続された第1中継電極が設けられ、上記中継基板の下面であって上記第1中継電極と相対する位置に第2中継電極が設けられ、上記第1中継電極および第2中継電極に対して中継基板の面方向にオフセットした位置に第1中継電極と第2中継電極とを相互に接続する接続部が設けられていることを特徴とする電子デバイス。
Surface-mounted components with terminal electrodes on the bottom;
It is arranged on the bottom surface of the surface mount component and consists of a relay board capable of shear displacement in the surface direction,
A first relay electrode facing and electrically connected to the terminal electrode is provided on the upper surface of the relay substrate, and a second relay electrode is provided on the lower surface of the relay substrate and facing the first relay electrode. And a connecting portion for connecting the first relay electrode and the second relay electrode to each other at a position offset in the surface direction of the relay substrate with respect to the first relay electrode and the second relay electrode. And electronic devices.
上記接続部は、上記中継基板に設けられたスルーホールであることを特徴とする請求項1に記載の電子デバイス。 The electronic device according to claim 1, wherein the connection portion is a through hole provided in the relay substrate. 上記端子電極と第1中継電極ははんだを介して電気的に接続され、
上記接続部の上面ははんだレジストによって覆われていることを特徴とする請求項1または2に記載の電子デバイス。
The terminal electrode and the first relay electrode are electrically connected via solder,
The electronic device according to claim 1, wherein an upper surface of the connection portion is covered with a solder resist.
上記中継基板は上記表面実装部品の底面積とほぼ同等の大きさを有することを特徴とする請求項1ないし3のいずれかに記載の電子デバイス。 4. The electronic device according to claim 1, wherein the relay substrate has a size substantially equal to a bottom area of the surface mount component. 上記端子電極は表面実装部品の底面の複数箇所に設けられ、
上記中継基板は表面実装部品の底面積より小さく形成され、
上記中継基板は1個または複数個の端子電極ごとに個別に設けられていることを特徴とする請求項1ないし3のいずれかに記載の電子デバイス。
The terminal electrodes are provided at a plurality of locations on the bottom surface of the surface mount component,
The relay board is formed smaller than the bottom area of the surface mount component,
4. The electronic device according to claim 1, wherein the relay substrate is individually provided for each of one or a plurality of terminal electrodes.
請求項1ないし5のいずれかに記載の電子デバイスと、上面に上記第2中継電極と対向する実装電極が設けられた実装基板とからなり、
上記中継基板の第2中継電極と上記実装基板の実装電極とが電気的に接続されていることを特徴とする電子回路装置。
The electronic device according to any one of claims 1 to 5, and a mounting substrate provided with a mounting electrode facing the second relay electrode on an upper surface,
An electronic circuit device, wherein the second relay electrode of the relay board and the mounting electrode of the mounting board are electrically connected.
上記実装電極と第2中継電極ははんだを介して電気的に接続され、
上記接続部の下面ははんだレジストによって覆われていることを特徴とする請求項6に記載の電子回路装置。
The mounting electrode and the second relay electrode are electrically connected via solder,
The electronic circuit device according to claim 6, wherein a lower surface of the connection portion is covered with a solder resist.
JP2004168005A 2004-06-07 2004-06-07 Electronic device and electronic circuit arrangement using this electronic device Pending JP2005347657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168005A JP2005347657A (en) 2004-06-07 2004-06-07 Electronic device and electronic circuit arrangement using this electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168005A JP2005347657A (en) 2004-06-07 2004-06-07 Electronic device and electronic circuit arrangement using this electronic device

Publications (1)

Publication Number Publication Date
JP2005347657A true JP2005347657A (en) 2005-12-15

Family

ID=35499714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168005A Pending JP2005347657A (en) 2004-06-07 2004-06-07 Electronic device and electronic circuit arrangement using this electronic device

Country Status (1)

Country Link
JP (1) JP2005347657A (en)

Similar Documents

Publication Publication Date Title
US8604347B2 (en) Board reinforcing structure, board assembly, and electronic device
EP2400823A1 (en) Circuit board, circuit board assembly, and semiconductor device
JP2012164846A (en) Semiconductor device, semiconductor device manufacturing method and display device
JP2011035345A (en) Semiconductor device module, electronic circuit unit, electronic device, and method of manufacturing semiconductor device module
US20180197835A1 (en) A surface mount device and a method of attaching such a device
JP2001119107A (en) Printed wiring board
JP6319477B1 (en) Module, module manufacturing method, package
JP2005347657A (en) Electronic device and electronic circuit arrangement using this electronic device
JPH08236898A (en) Stress relaxing connecting medium, stress relaxing mounting body and stress relaxing component
JP2001326428A (en) Printed circuit board
JP5017991B2 (en) Printed wiring boards, electronic devices
US20080000675A1 (en) System and method of providing structural support to printed wiring assembly components
JP4128722B2 (en) Circuit board and electronic equipment
WO2018061394A1 (en) Electronic component
JP2015118872A (en) Electronic substrate
KR101451887B1 (en) Integrated circuit device package and method for manufacturing the same
JP5423246B2 (en) Substrate module and manufacturing method thereof
WO2010068577A2 (en) Anchor pin lead frame
JP2006229030A (en) Lead frame and semiconductor device using same
US7095162B2 (en) Piezoelectric blade anchoring structure
US8901432B2 (en) Mitigation of block bending in a ring laser gyroscope caused by thermal expansion or compression of a circuit board
JP2011243879A (en) Circuit board
JP4658007B2 (en) Semiconductor device
JP2021190526A (en) Substrate, electronic component, and electronic device
JP2005340678A (en) Semiconductor device