JP2005333701A - Operation scheduling method, system and program of distributed energy community system - Google Patents

Operation scheduling method, system and program of distributed energy community system Download PDF

Info

Publication number
JP2005333701A
JP2005333701A JP2004147773A JP2004147773A JP2005333701A JP 2005333701 A JP2005333701 A JP 2005333701A JP 2004147773 A JP2004147773 A JP 2004147773A JP 2004147773 A JP2004147773 A JP 2004147773A JP 2005333701 A JP2005333701 A JP 2005333701A
Authority
JP
Japan
Prior art keywords
power
energy
operation plan
initial operation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004147773A
Other languages
Japanese (ja)
Inventor
Akira Nakazawa
朗 中澤
Akira Takeuchi
章 竹内
Yasushi Hiraoka
靖史 平岡
Mitsuru Kudo
満 工藤
Masahito Maruyama
雅人 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004147773A priority Critical patent/JP2005333701A/en
Publication of JP2005333701A publication Critical patent/JP2005333701A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y04S10/54

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce calculation load at the time of operation control of a distributed energy community system. <P>SOLUTION: An initial operation scheduling section 35a determines a fuel cell of constant output by receiving information from respective sections 31-34, and makes out an initial operation schedule such that the difference between the power demand of each consumer and the sum of the constant output of the fuel cell and the electric energy of a battery is provided from remaining fuel cells, batteries and a power system 2. An operation schedule altering section 35b makes out an operation schedule by correcting the initial operation schedule using a technique of solving optimization problem to minimize the running cost, i.e. the sum of the fuel cost for generating power from the fuel cell while satisfying the power demand with power supply from the fuel cell, battery and power system, and the system power cost which is the integrated amount of money obtained by selling/purchasing the power at the power price of the power system, and alters the operation schedule when thermoelectric demand changes subsequently. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各々がエネルギー発生装置とエネルギー蓄積装置を有し、かつ電力系統に接続された多数の需要家からなる分散型エネルギーコミュニティーシステムの制御方法および制御装置に関する。   The present invention relates to a control method and a control device for a distributed energy community system, each of which has an energy generation device and an energy storage device, and is composed of a large number of consumers connected to an electric power system.

複数の分散電源システムのエネルギーを有効に利用し低コストな運用制御を行う方法として、特許文献1に記載されている「分散型エネルギーコミュニティーシステムとその制御方法」がある。これは、制御センタが、分散電源システムの制御装置から通信線を介して燃料電池の発電量と蓄電池のエネルギー貯蔵量と負荷の電力消費量のデータを受信して、各分散電源システムに発電電力値および受送電電力値を指令して、電力需要の日負荷特性が異なる複数の分散電源システム間において電力線を介しての電力需給を補完制御するシステムである。
特開2002−44870号公報
As a method for performing low-cost operation control by effectively using the energy of a plurality of distributed power supply systems, there is a “distributed energy community system and its control method” described in Patent Document 1. This is because the control center receives data on the power generation amount of the fuel cell, the energy storage amount of the storage battery, and the power consumption amount of the load from the control device of the distributed power source system via the communication line, and the generated power is sent to each distributed power source system. This is a system for commanding a value and a received / transmitted power value and complementarily controlling power supply and demand through a power line between a plurality of distributed power systems having different daily load characteristics of power demand.
JP 2002-44870 A

しかしながら、上記システムは、エネルギー発生装置やエネルギー貯蔵設備の制御範囲を決定する制約条件が複雑化したり、制御対象の数が増加するに伴い、探索領域が増加するため、最適な運転計画の探索が困難になり、与えられた計算時間内に得られる運転計画の最適解の精度が悪くなるという問題があった。   However, in the above system, the search area increases as the constraints for determining the control range of the energy generator and the energy storage facility become more complex and the number of controlled objects increases. There is a problem that the accuracy of the optimum solution of the operation plan obtained within a given calculation time becomes worse.

また、上記システムでは、負荷である需要量の変動等の原因により、運転計画の変更が必要になった場合には、短時間での効率的探索が必要になる。   Moreover, in the said system, when the change of an operation plan is needed for reasons, such as a fluctuation | variation of the demand amount which is load, the efficient search for a short time is needed.

本発明の目的は、計算負荷が低減され、短時間で効率的に探索を行うことのできる分散型エネルギーコミュニティーシステムの運転計画作成方法および装置を提供することにある。   An object of the present invention is to provide an operation plan creation method and apparatus for a distributed energy community system that can reduce a calculation load and can efficiently perform a search in a short time.

上記目的を達成するために、本発明の分散型エネルギーコミュニティーシステムの運転計画作成方法は、
システム全体で1台または複数台のエネルギー発生装置および/またはエネルギー蓄積装置の出力を一定にし、前記需要家が必要とする電力需要量と、前記一定出力のエネルギー発生装置および/またはエネルギー蓄積装置の電力量の差分を残りのエネルギー発生装置および/またはエネルギー蓄積装置および電力系統からの電力で賄えるように各需要家の初期運転計画を作成する初期運転計画作成ステップと、
前記エネルギー発生装置、前記エネルギー蓄積装置、および前記電力系統からの電力供給量が電力需要量を満足しながら、前記エネルギー発生装置が電力を発生させる際にかかる費用である燃料コストと、該電力を電力系統の電力価格で売買した金額の積算値である系統電力コストとの和であるランニングコストを最小化するように、最適化問題を解く手法を用いて、前記初期運転計画を修正する運転計画修正ステップ
とを有する。
In order to achieve the above object, an operation plan creation method for a distributed energy community system according to the present invention includes:
The output of one or a plurality of energy generators and / or energy storage devices is made constant throughout the system, the power demand required by the consumer, and the energy generator and / or energy storage device of the constant output An initial operation plan creation step of creating an initial operation plan for each consumer so that a difference in the amount of electric power can be covered by power from the remaining energy generation device and / or energy storage device and power system;
While the amount of power supplied from the energy generation device, the energy storage device, and the power system satisfies the power demand, the fuel cost, which is the cost that the energy generation device takes to generate power, and the power An operation plan for correcting the initial operation plan by using a method for solving an optimization problem so as to minimize a running cost which is a sum of a grid power cost which is an integrated value of the amount of money bought and sold at the power price of the power grid. A correction step.

本発明は、分散型エネルギーコミュニティーシステムの最適運転計画を作成する際に、システム全体で1台または複数台のエネルギー発生装置および/またはエネルギー蓄積装置の出力を一定にし、需要量と該一定出力との差分を残りのエネルギー発生装置および電力系統からの電力でまかなえるように初期運転計画を作成し、最適化問題を解く手法を用いてランニングコストを最小化するように修正することを特徴とする。これにより、計算負荷を低減できる。
エネルギー発生装置の運転時間や起動回数を調整することで設備機器の更改時期を統一し、メンテナンス時における稼動費の削減が可能となる。
あるいは、負荷電力量が実績値と予測値が異なり、運転計画の変更が必要になった場合にも一定出力運転することで、需要家が熱を利用する時刻において必要な熱量を確実に発生し、なおかつ熱主電従運転した場合も高い発電効率で運転することが可能となる。
The present invention makes the output of one or a plurality of energy generators and / or energy storage devices constant throughout the entire system when creating an optimal operation plan for a distributed energy community system, An initial operation plan is created so that the difference between the two can be covered by the power from the remaining energy generators and the power system, and the running cost is corrected using a method for solving the optimization problem. Thereby, calculation load can be reduced.
By adjusting the operation time and the number of startups of the energy generator, it is possible to unify the renewal timing of equipment and reduce the operating cost during maintenance.
Or, when the load power amount is different from the actual value and the predicted value and it is necessary to change the operation plan, it is possible to generate the necessary amount of heat at the time when the customer uses heat by performing constant output operation. In addition, it is possible to operate with high power generation efficiency even in the case of the heat main power operation.

本発明によれば、所定数のエネルギー発生装置および/またはエネルギー蓄積装置の出力を一定にした運転計画を作成してから、組合せ最適化問題を解く手法を用いてエネルギー供給コストを低減する運転計画を探索することで、計算負荷を低減しながら短時間で効率的に探索を行うことが可能となる。   According to the present invention, an operation plan that reduces an energy supply cost by using a method for solving a combination optimization problem after creating an operation plan in which outputs of a predetermined number of energy generation devices and / or energy storage devices are made constant. The search can be efficiently performed in a short time while reducing the calculation load.

以下、本発明の実施形態について添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の一実施形態による分散型エネルギーコミュニティーシステム運転計画作成装置を含む分散型エネルギーコミュニティーシステムの構成を示している。同図に示すように、本分散型エネルギーコミュニティーシステムは需要家11、需要家12、・・・、需要家1nといった複数の需要家と、電力系統2と、分散型エネルギーコミュニティーシステム運転計画作成装置3とから構成されている。各需要家11〜1nはエネルギー発生装置として燃料電池11、エネルギー蓄積装置として蓄電池12、貯湯槽13、エネルギー負荷として電力負荷14、熱負荷15を備えており、各需要家11〜1nの燃料電池11と蓄電池12と電力負荷14は図に細線で示す電力線21で電力系統2に接続されており、熱負荷15と貯湯槽13は図に太線で示す熱配管22で接続されている。ここで、各需要家11〜1nに設置されるエネルギー発生装置とエネルギー蓄積装置の有無や種類、融通形態は任意であり、例えばエネルギー発生装置とエネルギー蓄積装置を複数有し、余った電力は融通する需要家や、電力負荷、熱負荷のみを所有する需要家、ガスタービンやニッケル水素電池を所有する需要家など、様々な需要家の形態が許容される。また、分散型エネルギーコミュニティーシステム運転計画作成装置3は各需要家11〜1nにおける燃料電池11と蓄電池12を制御するために、図に点線で示す通信線23により各需要家11〜1nの燃料電池11や蓄電池12に接続され、また需要家11〜1nは申告装置16から通信線23を介して熱負荷15の使用時間帯等を分散エネルギーコミュニティーシステム運転計画作成装置3に申告する。 FIG. 1 shows a configuration of a distributed energy community system including a distributed energy community system operation plan creation device according to an embodiment of the present invention. As shown in the figure, this decentralized energy community system is operated by multiple customers such as customer 1 1 , customer 1 2 ,..., Customer 1 n , power system 2, and distributed energy community system operation. It consists of a plan creation device 3. Each consumer 1 1 to 1 n the fuel cell 11 as the energy generating device, a storage battery 12, the hot water storage tank 13 as an energy storage device, power load 14 as an energy load, provided with a thermal load 15, the customers 1 1 to 1 n of the fuel cell 11 and the battery 12 and the power load 14 is connected to the power system 2 in the power line 21 shown by a thin line in the figure, the heat load 15 and the hot water storage tank 13 is connected with the heat pipe 22 shown by a bold line in FIG. Yes. Here, the presence / absence and type of energy generators and energy storage devices installed in each of the consumers 1 1 to 1 n and the form of accommodation are arbitrary. For example, there are a plurality of energy generators and energy storage devices, and excess power. A variety of consumer forms are acceptable, such as a customer who has flexibility, a customer who owns only an electric power load and a heat load, and a customer who owns a gas turbine or a nickel metal hydride battery. Also, decentralized energy community system operation plan creating apparatus 3 to control the fuel cell 11 and the battery 12 at each consumer 1 1 to 1 n, the customers 1 1 to 1 by a communication line 23 shown by a dotted line in FIG. n is connected to the fuel cell 11 and the storage battery 12, and the consumers 1 1 to 1 n send the usage time zone of the heat load 15 from the reporting device 16 to the distributed energy community system operation plan creation device 3 via the communication line 23. Declared.

図2に示すように、分散型エネルギーコミュニティーシステム運転計画作成装置3は予測部31と設備データ記憶部32と申告情報受信部33と価格情報受信部34と運転計画部35から構成されている。予測部31は電力需要予測部31aと熱需要予測部31bからなり、電力需要予測部31aで電力の需要予測を、熱需要予測部31bで熱の需要予測を行う。設備データ記憶部32は外部から燃料電池11、蓄電池12といった機器の設備データを取り込んで記憶する。申告情報受信部33は各需要家11〜1nにある申告装置16から送信された申告情報を受信する。価格情報受信部34は外部から電力とガスの価格情報を受信する。運転計画部35は初期運転計画部35aと運転計画変更部35bからなり、各需要家11〜1nの運転計画を作成する。初期運転計画部35aは上記各部31〜34からの情報を入力し、システム全体の燃料電池11のうちで一定出力の燃料電池11を決定し、各需要家が必要とする電力需要量と、燃料電池11の一定出力と蓄電池12の電力量を加えたものとの差分を残りの燃料電池11、蓄電池12、電力系統2から賄えるように初期運転計画を作成する。運転計画変更部35bは、燃料電池11、蓄積電池11、および電力系統2からの電力供給量が電力需要量を満足しながら、燃料電池11が電力を発生させる際にかかる費用である燃料コストと、該電力を電力系統2の電力価格で売買した金額の積算値である系統電力コストとの和であるランニングコストを最小化するように、最適化問題を解く手法を用いて、初期運転計画を修正して運転計画を作成し、その後熱電の需要量が変化すると運転計画を変更する。なお、電力を売った場合、電力コストはマイナスであり、電力を買った場合の、電力コストはプラスとなる。 As shown in FIG. 2, the distributed energy community system operation plan creation device 3 includes a prediction unit 31, an equipment data storage unit 32, a report information reception unit 33, a price information reception unit 34, and an operation plan unit 35. The prediction unit 31 includes a power demand prediction unit 31a and a heat demand prediction unit 31b. The power demand prediction unit 31a performs power demand prediction, and the heat demand prediction unit 31b performs heat demand prediction. The facility data storage unit 32 captures and stores facility data of devices such as the fuel cell 11 and the storage battery 12 from the outside. The reporting information receiving unit 33 receives reporting information transmitted from the reporting device 16 in each customer 1 1 to 1 n . The price information receiving unit 34 receives price information of power and gas from the outside. The operation plan unit 35 includes an initial operation plan unit 35a and an operation plan change unit 35b, and creates an operation plan for each of the consumers 1 1 to 1 n . The initial operation planning unit 35a inputs information from the above-described units 31 to 34, determines a fuel cell 11 having a constant output among the fuel cells 11 of the entire system, and determines the power demand amount and fuel required by each consumer. An initial operation plan is created so that the difference between the constant output of the battery 11 and the amount of power of the storage battery 12 added can be covered by the remaining fuel cell 11, storage battery 12, and power system 2. The operation plan changing unit 35b includes a fuel cost that is an expense required when the fuel cell 11 generates power while the amount of power supplied from the fuel cell 11, the storage battery 11, and the power system 2 satisfies the power demand. In order to minimize the running cost that is the sum of the grid power cost that is the integrated value of the amount of money sold and sold at the power price of the grid 2, the initial operation plan is The operation plan is created after correction, and the operation plan is changed when the demand for thermoelectric power changes. Note that when power is sold, the power cost is negative, and when power is bought, the power cost is positive.

図3は図2に示した分散型エネルギーコミュニティーシステム運転計画作成装置3の全体動作を説明するためのフローチャートである。図3の処理は各需要家11〜1nについて並行して行なわれる。同図に示すように、まず分散型エネルギーコミュニティー内における電力とガス(ガスは燃料電池11に使用される)の価格が価格情報受信部34で受信され(ステップ101)、需要家から申告された熱負荷15の使用時間帯情報が申告情報受信部33で受信される(ステップ102)。需要家は、図1の需要家に設置されている申告装置16から通信線23を介して分散型エネルギーコミュニティーシステム運転計画作成装置3へ需要家が申告する運転計画を送信する。この申告により、例えば需要家より騒音対策のため深夜は発電しないで欲しいという申告や、燃料電池11を非常用電源として用いたいので常時運転したいといった申告に対応が可能である。続いて予測部31にて熱電需要量予測手法によって電力と熱の需要量予測が行なわれる(ステップ103)。次に、初期運転計画部35aにて需要家の申告および予測された電力需要量によって運転計画が作成されるように一定出力運転をする燃料電池11を決定する(ステップ104)。次に、運転計画変更部35bにて需要電力量から一定出力運転をする燃料電池11の電力量を差し引いた電力量の中で、一定出力運転しない燃料電池の電力量や、一定出力運転した場合でも一定出力運転したい時間帯以外の時間帯の電力量と蓄電池12の電力量と系統電力量について、遺伝的アルゴリズムやタブーサーチといった最適化問題を解く手法を用いてランニングコストを最小化する(ステップ106)。遺伝子アルゴリズムでは、運転計画を遺伝子配列に例える。自然界ではいい個体(運転計画)が生き残り、悪いものは淘汰される(自然淘汰)。同じ世代には異なる個体がいくつか存在し、自然淘汰によっていい個体を選び出す。そのいい個体を次の世代に残し、次はそのいい個体を参考に新しい個体を生み出したり、突然変異によっていい個体が生まれるといった遺伝的なアルゴリズムで最適解を求める。具体的には、まず複数の運転計画を作成し、それぞれの運転計画のランニングコストを算出する。そこでランニングコストの安い運転計画をいい個体とし、ランニングコストの安い運転計画が次世代に生き残る確率を高く設定したルーレットをする。そのルーレットを次世代に残す個体数分だけ回し、自然淘汰によって現在の複数の運転計画から次世代に残す複数の運転計画を選び出す。次世代に残した複数の運転計画は交叉や突然変異により、新しい運転計画に変わり、再び自然淘汰に入る。これらの一連の作業を繰り返す。この時、一定出力運転する台数は可能な限り少なくするものとする。ここで収束判定を行い(ステップ107)、ある一定時間以上ランニングコストの最小値が更新されなかった場合、収束したものとして運転計画を決定し、更新され続けた場合も運転計画は決定するが(ステップ109)、収束しなかったものとして、次回の運転計画変更の際の、一定出力運転の燃料電池11の台数を増やすものとする(ステップ108)。この後、負荷需要量の実測値が予測値と異なった場合、運転計画の変更を随時行う(ステップ110,111)。この後、電力と熱の需要を予測する(ステップ112)。 FIG. 3 is a flowchart for explaining the overall operation of the distributed energy community system operation plan creation device 3 shown in FIG. Process of Figure 3 is performed in parallel for each consumer 1 1 to 1 n. As shown in the figure, the price of power and gas (gas is used for the fuel cell 11) in the distributed energy community is first received by the price information receiving unit 34 (step 101), and reported by the customer. The use time zone information of the thermal load 15 is received by the report information receiving unit 33 (step 102). The consumer transmits an operation plan that the consumer declares to the distributed energy community system operation plan creation device 3 via the communication line 23 from the reporting device 16 installed in the consumer of FIG. By this declaration, for example, it is possible to respond to a declaration from the customer that they do not want to generate power in the middle of the night for noise countermeasures or a declaration that the fuel cell 11 is to be used as an emergency power source and wants to operate constantly. Subsequently, the prediction unit 31 predicts the demand for power and heat by the thermoelectric demand prediction method (step 103). Next, the fuel cell 11 that performs constant output operation is determined so that the operation plan is created based on the declaration of the consumer and the predicted power demand in the initial operation planning unit 35a (step 104). Next, in the power amount obtained by subtracting the power amount of the fuel cell 11 that performs a constant output operation from the demand power amount in the operation plan change unit 35b, However, the running cost is minimized by using a method for solving an optimization problem such as a genetic algorithm or a tabu search for the electric energy in the time zone other than the time zone where the constant output operation is desired, the electric energy of the storage battery 12 and the system electric energy (steps). 106). In a genetic algorithm, an operation plan is compared to a gene sequence. In nature, good individuals (driving plans) survive and bad ones are deceived (natural selection). There are several different individuals in the same generation, and a good individual is selected by natural selection. The best individual is left in the next generation, and then the optimal solution is obtained by a genetic algorithm such as creating a new individual with reference to the good individual or creating a good individual by mutation. Specifically, first, a plurality of operation plans are created, and the running cost of each operation plan is calculated. Therefore, an operation plan with a low running cost is regarded as a good individual, and a roulette is set with a high probability that the operation plan with a low running cost will survive the next generation. The roulette is rotated by the number of individuals remaining in the next generation, and multiple operation plans to be left in the next generation are selected from the current operation plans by natural selection. The multiple operation plans left for the next generation will change to new operation plans due to crossovers and mutations, and will enter natural selection again. These series of operations are repeated. At this time, the number of units operating at a constant output should be as small as possible. Here, a convergence determination is made (step 107), and if the minimum value of the running cost is not updated for a certain period of time or more, the operation plan is determined as having converged, and the operation plan is determined even if it is continuously updated ( Step 109) Assuming that the fuel cell 11 has not converged, it is assumed that the number of fuel cells 11 in constant output operation at the time of the next operation plan change is increased (step 108). Thereafter, when the actual measurement value of the load demand is different from the predicted value, the operation plan is changed as needed (steps 110 and 111). Thereafter, the demand for electric power and heat is predicted (step 112).

続いて、以上のように分散型エネルギーコミュニティーシステム運転計画作成装置3によって決定された一定出力運転を行う燃料電池の決定方法を説明する。   Then, the determination method of the fuel cell which performs the fixed output operation determined by the distributed energy community system operation plan preparation apparatus 3 as mentioned above is demonstrated.

図4は運転時間、起動回数を調整する例のフローチャートである。図4に示すように熱電需要量の予測(ステップ103)を行った後に図2に示す設備データ記憶部32より各燃料電池11の運転時間や起動回数といった過去の運転履歴データベースを読み込む(ステップ113)。ここで、例えば運転時間の長い燃料電池11は一定期間起動しないような運転計画を作成したり、起動回数が多い燃料電池11を一定出力運転することで起動回数を減少させる運転計画を作成し(ステップ115)、初期運転計画を決定する(ステップ105)。運転計画が決定した(ステップ106〜109)後は、決定された運転計画に基づいて燃料電池11を運転する(ステップ116)。運転履歴は図1の通信線23を介して設備データ記憶部32に随時記録される(ステップ117,118)。以上のように運転履歴データベースを利用することで、図5のように各燃料電池11によって運転時間や起動回数が異なっていた場合に、上記運転計画を作成することで図6のように運転時間や起動回数を平準化することが可能となり、メンテナンス時期や設備更改時期を統一し、メンテナンス時における稼動費の削減を可能としたりすることができる。   FIG. 4 is a flowchart of an example of adjusting the operation time and the number of activations. As shown in FIG. 4, after the thermoelectric demand is predicted (step 103), a past operation history database such as the operation time and the number of activations of each fuel cell 11 is read from the equipment data storage unit 32 shown in FIG. 2 (step 113). ). Here, for example, an operation plan is prepared such that the fuel cell 11 having a long operation time does not start for a certain period of time, or an operation plan for reducing the number of activations by operating the fuel cell 11 having a large number of activations at a constant output ( Step 115), an initial operation plan is determined (Step 105). After the operation plan is determined (steps 106 to 109), the fuel cell 11 is operated based on the determined operation plan (step 116). The operation history is recorded in the equipment data storage unit 32 at any time via the communication line 23 of FIG. 1 (steps 117 and 118). By using the operation history database as described above, when the operation time and the number of activations are different for each fuel cell 11 as shown in FIG. 5, the operation time is created as shown in FIG. It is possible to equalize the number of startups and the number of startups, unify the maintenance time and equipment renewal time, and reduce the operating costs during maintenance.

図7は需要家が熱を利用する時刻tの熱量を事前に発生させるように燃料電池11の運転出力、時間を決定する例のフローチャートである。図7に示すように熱電需要量の予測によって、各需要家ごとに熱利用の開始時刻tと開始時刻tまでに必要となる熱量を熱需要予測部31bで予測する。ここで予測される熱量は需要家の申告によるものや熱需要予測結果によるものである。この予測された熱量のうち、一定出力運転で賄う熱量は時刻tにおける熱利用の確率が高い傾向を示す需要家の熱量を優先的に選択するようにして、一定出力運転する燃料電池11を決定する(ステップ120,121)。ここで燃料電池11の一定出力運転時間と発電出力は図8に示すように時刻tまでに必要な熱量を発生させて蓄積するように決定する(ステップ122)。ここで、発電出力は、発電効率が最大になるような出力にし、その発電出力時における単位時間当りの発生熱量を算出する(ステップ123,124)。また、一定出力運転時間は式(1)により算出するものとする(ステップ124)。なお、式(1)における時刻tに必要な熱量には時刻tまでに発生する放熱損失も含めるものとする。   FIG. 7 is a flowchart of an example in which the operation output and time of the fuel cell 11 are determined so as to generate in advance the amount of heat at time t when the customer uses heat. As shown in FIG. 7, the heat demand prediction unit 31 b predicts the amount of heat required by the start time t and the start time t of heat use for each customer by predicting the thermoelectric demand. The amount of heat predicted here is based on the declaration of the customer or the result of the heat demand prediction. Among the predicted heat amounts, the heat amount to be covered by the constant output operation is determined by preferentially selecting the heat amount of the consumer that tends to have a high probability of heat use at time t, and the fuel cell 11 that performs the constant output operation is determined. (Steps 120 and 121). Here, the constant output operation time and the power generation output of the fuel cell 11 are determined so as to generate and accumulate necessary heat by time t as shown in FIG. 8 (step 122). Here, the power generation output is an output that maximizes the power generation efficiency, and the amount of heat generated per unit time at the time of the power generation output is calculated (steps 123 and 124). Further, the constant output operation time is calculated by the equation (1) (step 124). It should be noted that the amount of heat required at time t in equation (1) includes heat dissipation loss that occurs until time t.

一定出力運転時間=時刻tに必要な熱量/最大発電効率における単位時間あたりの発生熱量 (1)
以上のように算出し、予測された熱需要量を一定出力運転により発生させることで、運転計画が変更されても一定出力運転による熱量を確実に発生させることができ、需要家が時刻tに風呂に入りたいといったような申告にも対応できる。
Constant output operation time = amount of heat required at time t / amount of heat generated per unit time at maximum power generation efficiency (1)
By calculating as described above and generating the predicted heat demand by constant output operation, it is possible to reliably generate the heat amount by constant output operation even if the operation plan is changed. It can respond to declarations such as wanting to take a bath.

図9は上述のように、ある一定台数の燃料電池11を一定出力運転させた場合における分散型エネルギーコミュニティーシステム運転計画作成装置3の運転計画を示している。ここで需要家11は12時に熱需要があることが予測され、需要家12は24時に熱需要の申告があったため、各熱量を必要とする時間までに発生させるために各需要家の燃料電池11をそれぞれ一定出力運転し、需要家13は非常用として燃料電池11を使用するという需要家による申告により常時一定運転させ、需要家14,15は最適化問題を解く手法によって探索された運転計画であり、さらに需要家15は深夜は燃料電池を運転させたくないという申告を行っている。また、図9の最下段には系統電力量を示し、折れ線グラフは需要電力量を示す。図9のような需要電力量が存在した場合、従来の方法による探索範囲から一定台数の燃料電池を一定出力にすることにより探索範囲を減少させることができ、効率的な探索が可能になる。 FIG. 9 shows an operation plan of the distributed energy community system operation plan creation device 3 when a certain number of fuel cells 11 are operated at a constant output as described above. Here, it is predicted that the customer 1 1 has a heat demand at 12:00, and the customer 1 2 has a heat demand declaration at 24:00. Therefore, in order to generate each amount of heat by the time required for each customer, the fuel cell 11 constant power operation, respectively, customer 1 3 by a predetermined operation at all times by declaration by the consumer of using the fuel cell 11 as an emergency, the customer 1 4, 1 5 the method for solving optimization problems The operation plan that was searched for, and the customer 15 has made a declaration that he does not want to operate the fuel cell at midnight. In addition, the lowest level of FIG. 9 shows the grid power amount, and the line graph shows the demand power amount. When the amount of power demand as shown in FIG. 9 exists, the search range can be reduced by setting a certain number of fuel cells to a constant output from the search range by the conventional method, and an efficient search becomes possible.

以上での実施形態では、燃料電池11のみ出力を一定としたが、蓄電池12あるいは燃料電池11と蓄電池12の両方の出力を一定にするようにしてもよい。   In the above embodiment, the output of only the fuel cell 11 is constant, but the output of the storage battery 12 or both the fuel cell 11 and the storage battery 12 may be constant.

なお、分散型エネルギーコミュニティーシステム運転計画作成装置の機能は専用のハードウェアにより実現されるもの以外に、その機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行するものであってもよい。コンピュータ読み取り可能な記録媒体とは、フロッピーディスク、光磁気ディスク、CD−ROM等の記録媒体、コンピュータシステムに内蔵されるハードディスク装置等の記憶装置を指す。さらに、コンピュータ読み取り可能な記録媒体は、インターネットを介してプログラムを送信する場合のように、短時間の間、動的にプログラムを保持するもの(伝送媒体もしくは伝送波)、その場合のサーバとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含む。   In addition to the function of the distributed energy community system operation plan creation device realized by dedicated hardware, a program for realizing the function is recorded on a computer-readable recording medium, and this recording medium The program recorded on the computer may be read into a computer system and executed. The computer-readable recording medium refers to a recording medium such as a floppy disk, a magneto-optical disk, a CD-ROM, or a storage device such as a hard disk device built in the computer system. Furthermore, a computer-readable recording medium is a server that dynamically holds a program (transmission medium or transmission wave) for a short period of time, as in the case of transmitting a program via the Internet, and a server in that case. Some of them hold programs for a certain period of time, such as volatile memory inside computer systems.

本発明の分散型エネルギーコミュニティーシステムの構成図である。It is a block diagram of the distributed energy community system of this invention. 図1中の分散型エネルギーコミュニティーシステム運転計画作成装置の構成図である。It is a block diagram of the distributed energy community system operation plan preparation apparatus in FIG. 図2の分散型エネルギーコミュニティーシステム運転計画作成装置の全体動作を示すフローチャートである。It is a flowchart which shows the whole operation | movement of the distributed energy community system operation plan preparation apparatus of FIG. 運転時間、起動回数を調整する例のフローチャートである。It is a flowchart of the example which adjusts driving time and the frequency | count of starting. 各燃料電池によって運転時間や起動回数が異なっていた例を示す。An example in which the operation time and the number of activations differ depending on each fuel cell is shown. 図5の運転時間や起動回数を統一した例を示す。The example which unified the driving | running time and the frequency | count of starting of FIG. 5 is shown. 図7は時刻tの熱需要量を事前に発生させるように燃料電池の運転出力、時間を決定する例のフローチャートである。FIG. 7 is a flowchart of an example of determining the operation output and time of the fuel cell so that the heat demand amount at time t is generated in advance. 時刻tまでに需要熱量を発生させるように燃料電池を一定出力運転させる運転計画を示す図である。It is a figure which shows the driving | operation plan which makes a fuel cell operate | move at a fixed output so that the amount of demand heat may be generated by time t. ある一定台数の燃料電池を一定出力運転させた場合における分散型エネルギーコミュニティーシステム運転計画作成装置の運転計画を示す図である。It is a figure which shows the operation plan of the decentralized energy community system operation plan preparation apparatus at the time of carrying out the fixed output operation of a certain fixed number of fuel cells.

符号の説明Explanation of symbols

1〜1n 需要家
2 電力系統
3 運転計画作成装置
11 燃料電池
12 蓄電池
13 貯湯槽
14 電力負荷
15 熱負荷
16 申告装置
21 電力線
22 熱配管
23 通信線
31 予測部
31a 電力需要予測部
31b 熱需要予測部
32 設備データ記憶部
33 申告情報受信部
34 価格情報受信部
35 運転計画部
35a 初期運転計画部
35b 運転計画変更部
101〜124 ステップ
1 1 to 1 n Consumer 2 Power system 3 Operation plan creation device 11 Fuel cell 12 Storage battery 13 Hot water storage tank 14 Electric power load 15 Thermal load 16 Declaration device 21 Power line 22 Thermal piping 23 Communication line 31 Prediction unit 31a Power demand prediction unit 31b Heat Demand prediction unit 32 Equipment data storage unit 33 Report information receiving unit 34 Price information receiving unit 35 Operation planning unit 35a Initial operation planning unit 35b Operation plan changing unit 101-124 steps

Claims (7)

エネルギー発生装置とエネルギー蓄積装置とエネルギー負荷を有し、電力系統に接続された多数の需要家からなる分散型エネルギーコミュニティーシステムの運転計画作成方法において、
システム全体で1台または複数台のエネルギー発生装置および/またはエネルギー蓄積装置の出力を一定にし、前記需要家が必要とする電力需要量と、前記一定出力のエネルギー発生装置および/またはエネルギー蓄積装置の電力量の差分を残りのエネルギー発生装置および/またはエネルギー蓄積装置および電力系統からの電力で賄えるように各需要家の初期運転計画を作成する初期運転計画作成ステップと、
前記エネルギー発生装置、前記エネルギー蓄積装置、および前記電力系統からの電力供給量が電力需要量を満足しながら、前記エネルギー発生装置が電力を発生させる際にかかる費用である燃料コストと、該電力を電力系統の電力価格で売買した金額の積算値である系統電力コストとの和であるランニングコストを最小化するように、最適化問題を解く手法を用いて、前記初期運転計画を修正する運転計画修正ステップと
を有することを特徴とする分散型エネルギーコミュニティーシステムの運転計画作成方法。
In a method for creating an operation plan of a distributed energy community system comprising an energy generator, an energy storage device, and an energy load, and comprising a large number of consumers connected to an electric power system,
The output of one or a plurality of energy generators and / or energy storage devices is made constant throughout the system, the power demand required by the consumer, and the energy generator and / or energy storage device of the constant output An initial operation plan creation step of creating an initial operation plan for each consumer so that a difference in the amount of electric power can be covered by power from the remaining energy generation device and / or energy storage device and power system;
While the amount of power supplied from the energy generation device, the energy storage device, and the power system satisfies the power demand, the fuel cost, which is the cost that the energy generation device takes to generate power, and the power An operation plan for correcting the initial operation plan by using a method for solving an optimization problem so as to minimize a running cost which is a sum of a grid power cost which is an integrated value of the amount of money bought and sold at the power price of the power grid. A method for preparing an operation plan for a distributed energy community system, comprising: a correction step.
前記初期運転計画作成ステップにおいて、一定出力で運転するエネルギー発生装置をエネルギー変換効率が高いものから選択する、請求項1に記載の方法。   The method according to claim 1, wherein, in the initial operation plan creation step, an energy generator that operates at a constant output is selected from those having high energy conversion efficiency. 前記初期運転計画作成ステップにおいて、前記エネルギー発生装置の運転時間、起動回数を運転履歴データベースに記録し、該運転履歴データベースの記録に基づいて前記初期運転計画を作成する、請求項1に記載の方法。   2. The method according to claim 1, wherein in the initial operation plan creation step, the operation time and the number of activations of the energy generation device are recorded in an operation history database, and the initial operation plan is created based on the record of the operation history database. . 前記初期運転計画作成ステップにおいて、前記需要家の予測された熱需要量を供給できるだけの熱量を事前に発生させて貯蔵するように、エネルギー発生装置を一定出力で運転する初期運転計画を作成する、請求項1に記載の方法。   In the initial operation plan creation step, an initial operation plan for operating the energy generator at a constant output is created so as to generate and store in advance a heat amount sufficient to supply the customer's predicted heat demand. The method of claim 1. 前記初期運転計画作成ステップにおいて、前記需要家から通信手段を介して一定出力運転の申告があった前記エネルギー発生装置やエネルギー蓄積装置と、一定出力する運転時間帯に基づいて、初期運転計画を作成する、請求項1に記載の方法。   In the initial operation plan creation step, an initial operation plan is created based on the energy generation device and energy storage device that have been reported to the constant output operation from the consumer via communication means, and the operation time zone in which the constant output is performed. The method of claim 1. エネルギー発生装置とエネルギー蓄積装置とエネルギー負荷を有し、電力系統に接続された多数の需要家からなる分散型エネルギーコミュニティーシステムの運転計画作成装置であって、
前記各需要家の電力および熱の電力予測を行なう予測手段と、
電力およびガスの価格情報を受信する価格情報受信手段と、
システム全体で1台または複数台のエネルギー発生装置および/またはエネルギー蓄積装置の出力を一定にし、前記需要家が必要とする、前記予測手段で予測された電力需要量と、前記一定出力のエネルギー発生装置および/またはエネルギー蓄積装置の電力量の差分を残りのエネルギー発生装置および/またはエネルギー蓄積装置および電力系統からの電力で賄えるように各需要家の初期運転計画を作成する初期運転計画作成手段と、
前記エネルギー発生装置、前記エネルギー蓄積装置、および前記電力系統からの電力供給量が電力需要量を満足しながら、前記価格情報に基づく、前記エネルギー発生装置が電力を発生させる際にかかる費用である燃料コストと、該電力を電力系統の電力価格で売買した金額の積算値である系統電力コストとの和であるランニングコストを最小化するように、最適化問題を解く手法を用いて、前記初期運転計画を修正する運転計画修正手段と
を有する分散型エネルギーコミュニティーシステム運転計画作成装置。
An operation plan creation device for a distributed energy community system comprising an energy generator, an energy storage device, an energy load, and a large number of consumers connected to a power system,
Predicting means for performing power prediction of the electric power and heat of each consumer,
Price information receiving means for receiving power and gas price information;
The output of one or a plurality of energy generators and / or energy storage devices in the entire system is made constant, and the electricity demand amount predicted by the prediction means required by the consumer and the energy generation of the constant output Initial operation plan creation means for creating an initial operation plan for each consumer so that a difference in the amount of power of the device and / or the energy storage device can be covered by power from the remaining energy generation device and / or energy storage device and the power system; ,
Fuel that is the cost required when the energy generating device generates power based on the price information while the amount of power supplied from the energy generating device, the energy storage device, and the power grid satisfies the power demand amount Using the method for solving the optimization problem, the initial operation is performed so as to minimize the running cost that is the sum of the cost and the grid power cost that is an integrated value of the amount of power sold and sold at the power price of the power grid. A distributed energy community system operation plan creation device comprising: an operation plan correction means for correcting a plan.
請求項1から5のいずれかに記載の分散型エネルギーコミュニティーシステムの運転計画作成方法をコンピュータで実行するためのプログラム。   A program for executing the operation plan creation method for a distributed energy community system according to any one of claims 1 to 5 by a computer.
JP2004147773A 2004-05-18 2004-05-18 Operation scheduling method, system and program of distributed energy community system Pending JP2005333701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147773A JP2005333701A (en) 2004-05-18 2004-05-18 Operation scheduling method, system and program of distributed energy community system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147773A JP2005333701A (en) 2004-05-18 2004-05-18 Operation scheduling method, system and program of distributed energy community system

Publications (1)

Publication Number Publication Date
JP2005333701A true JP2005333701A (en) 2005-12-02

Family

ID=35487963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147773A Pending JP2005333701A (en) 2004-05-18 2004-05-18 Operation scheduling method, system and program of distributed energy community system

Country Status (1)

Country Link
JP (1) JP2005333701A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042436A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Fuel cell system and its operation method
JP2008250465A (en) * 2007-03-29 2008-10-16 Osaka Gas Co Ltd Distributed energy community system
JP2009211185A (en) * 2008-02-29 2009-09-17 Toshiba Corp Operation plan creation method and operation plan creation device of energy storage device
JP2010136557A (en) * 2008-12-05 2010-06-17 Toshiba Corp Cogeneration energy system
WO2014119153A1 (en) * 2013-01-31 2014-08-07 株式会社 東芝 Energy management system, energy management method, program and server
CN104268652A (en) * 2014-09-28 2015-01-07 南方电网科学研究院有限责任公司 Micro-grid operation optimizing method in consideration of real-time electricity price and controllable load
JP2015126564A (en) * 2013-12-25 2015-07-06 大阪瓦斯株式会社 Power transfer system
CN104935075A (en) * 2015-04-01 2015-09-23 南方电网科学研究院有限责任公司 Distributed power supply access user bidirectional metering, monitoring and energy efficiency management system and distributed power supply access user bidirectional metering, monitoring and energy efficiency management method
JP2017022939A (en) * 2015-07-14 2017-01-26 富士電機株式会社 Energy demand and supply planning apparatus and program
JP2018036679A (en) * 2016-08-29 2018-03-08 川崎重工業株式会社 Plan creation device and plan creation method related to employment of energy demand facility

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042436A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Fuel cell system and its operation method
JP2008250465A (en) * 2007-03-29 2008-10-16 Osaka Gas Co Ltd Distributed energy community system
JP2009211185A (en) * 2008-02-29 2009-09-17 Toshiba Corp Operation plan creation method and operation plan creation device of energy storage device
JP2010136557A (en) * 2008-12-05 2010-06-17 Toshiba Corp Cogeneration energy system
WO2014119153A1 (en) * 2013-01-31 2014-08-07 株式会社 東芝 Energy management system, energy management method, program and server
JP2015126564A (en) * 2013-12-25 2015-07-06 大阪瓦斯株式会社 Power transfer system
CN104268652A (en) * 2014-09-28 2015-01-07 南方电网科学研究院有限责任公司 Micro-grid operation optimizing method in consideration of real-time electricity price and controllable load
CN104935075A (en) * 2015-04-01 2015-09-23 南方电网科学研究院有限责任公司 Distributed power supply access user bidirectional metering, monitoring and energy efficiency management system and distributed power supply access user bidirectional metering, monitoring and energy efficiency management method
JP2017022939A (en) * 2015-07-14 2017-01-26 富士電機株式会社 Energy demand and supply planning apparatus and program
JP2018036679A (en) * 2016-08-29 2018-03-08 川崎重工業株式会社 Plan creation device and plan creation method related to employment of energy demand facility

Similar Documents

Publication Publication Date Title
KR102563891B1 (en) Operating System and Method for Optimal Operation of a Renewable Energy based Islanded Micro-grid
JP3980541B2 (en) Distributed energy community control system, central controller, distributed controller, and control method thereof
JP4245583B2 (en) Control device, control method, program, and recording medium of distributed energy system
Azmy et al. Online optimal management of PEMFuel cells using neural networks
Mohamed et al. System modelling and online optimal management of microgrid using multiobjective optimization
Dababneh et al. Integrated electricity and natural gas demand response for manufacturers in the smart grid
JP5215822B2 (en) Energy system control device and control method
WO2009107373A1 (en) Operation plan creatiion method and device for energy storage device
Qiu et al. Tri-level mixed-integer optimization for two-stage microgrid dispatch with multi-uncertainties
Sharma et al. A critical and comparative review of energy management strategies for microgrids
EP2953230A1 (en) Energy management system, energy management method, program and server
EP3631928B1 (en) Power distribution control with asset assimilation and optimization
WO2015037307A1 (en) Power storage control device, management system, power storage control method, power storage control program, and memory medium
KR101996882B1 (en) Control Method for Energy Trading in Smart-grid
JP2005333701A (en) Operation scheduling method, system and program of distributed energy community system
JP2005130550A (en) Method and system for generating distributed energy system operation plan
JP2005304118A (en) Controller and control method of distributed energy system
JP2007143364A (en) Power grid system
Hijjo et al. Multi-objective optimization for scheduling isolated microgrids
Farahani et al. Robust model predictive control for an uncertain smart thermal grid
JP3880471B2 (en) Power generation planning method
CN111614126B (en) Method for controlling micro-grid, power management system and energy management system
EP3032683B1 (en) System and method of energy resource delivery
JP2006174654A (en) Control method for distributed type energy supply and demand, and setting system
JP2018042420A (en) Energy system management device, energy system management method, and energy system