JP2005331411A - Isoelectric point electrophoretic chip and apparatus - Google Patents

Isoelectric point electrophoretic chip and apparatus Download PDF

Info

Publication number
JP2005331411A
JP2005331411A JP2004150905A JP2004150905A JP2005331411A JP 2005331411 A JP2005331411 A JP 2005331411A JP 2004150905 A JP2004150905 A JP 2004150905A JP 2004150905 A JP2004150905 A JP 2004150905A JP 2005331411 A JP2005331411 A JP 2005331411A
Authority
JP
Japan
Prior art keywords
isoelectric focusing
flow path
light
reservoirs
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004150905A
Other languages
Japanese (ja)
Other versions
JP4492212B2 (en
Inventor
Masakazu Akechi
将一 明地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004150905A priority Critical patent/JP4492212B2/en
Publication of JP2005331411A publication Critical patent/JP2005331411A/en
Application granted granted Critical
Publication of JP4492212B2 publication Critical patent/JP4492212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an isoelectric point electrophoretic chip not causing the diffusion of an electrode liquid in performing isoelectric point electrophoresis. <P>SOLUTION: A flow channel 16 for allowing a sample to flow is formed on a glass substrate 11, and reservoirs 14 and 15 for injecting the electrode liquid for producing a pH gradient and holes 12 and 13 for introducing or discharging the sample are formed to a substrate 10 at a position separate from the position of the reservoirs 14 and 15. Ion permeable semipermeable membranes 18 such as polymer semipermeable membranes or the like are fixed to the bottoms of the reservoirs 14 and 15 by an adhesive and the electrode liquid is prevented from penetrating in the flow channel. Electrodes are inserted in the reservoirs 14 and 15 to apply voltage and the flow channel is irradiated with light such as UV rays or the like from a light source and detected by a unidimensional detector such as a photodiode array or the like arranged on the side opposite to the light source to detect the convergence of protein to be measured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ペプチド、タンパク質等の両性電解質をその等電点(isoelectric point: PI)で分離し分析する等電点電気泳動装置と、特にマイクロチップを用いたプロテオーム解析に適した等電点電気泳動チップに関するものである。   The present invention relates to an isoelectric focusing apparatus that separates and analyzes amphoteric electrolytes such as peptides and proteins at their isoelectric point (PI), and isoelectric focusing that is particularly suitable for proteomic analysis using a microchip. This relates to an electrophoresis chip.

タンパク質の研究には、分子の大きさと電荷の違いによる分離方法としてSDS−PAGE(SDS-polyacrylamide gel electrophoresis)等が用いられ、等電点を利用した分離方法として等電点電気泳動が用いられている。   For protein research, SDS-PAGE (SDS-polyacrylamide gel electrophoresis) is used as a separation method based on the difference in molecular size and charge, and isoelectric focusing is used as a separation method using an isoelectric point. Yes.

近年、分析化学の分野ではμTAS(Micro Total Analysis Systems)の研究が盛んになりつつあり、マイクロチップを用いて分析の高速・省サンプル・省溶媒化を図ることが期待されている。
特に、プロテオーム解析では高価で貴重なサンプルを用いることから、ハイスループットであることが要求されており、マイクロチップを用いた等電点電気泳動によるタンパク質の分析は特に有用である。
In recent years, in the field of analytical chemistry, research on μTAS (Micro Total Analysis Systems) has become active, and it is expected to use a microchip to achieve high-speed analysis, sample reduction, and solvent saving.
In particular, since proteome analysis uses expensive and precious samples, high throughput is required, and protein analysis by isoelectric focusing using a microchip is particularly useful.

タンパク質の分析方法の一つである等電点電気泳動は、pH勾配が形成される両性電解物質溶液を用いて電圧を印加することで、タンパク質の等電点においてタンパク質を収束させ、同定・定量を行なう技術である(非特許文献1参照。)。   Isoelectric focusing is one of the protein analysis methods. By applying a voltage using an amphoteric electrolyte solution that forms a pH gradient, the protein is converged at the isoelectric point of the protein for identification and quantification. (See Non-Patent Document 1).

従来用いられている等電点電気泳動では、水素イオンと水酸化物イオンを通すための電極液を両性電解物質溶液が満たされた流路の両端に加える必要があるが、流路中の試料との間の拡散や電極液注入時における水頭差により、電極液が流路に進入してくることが問題であったため、電極液に高い粘性を示す試薬を添加することによって電極液が流路に侵入することを防止していた。
電気学会研究会資料CHS−03−53
In conventional isoelectric focusing, it is necessary to add an electrode solution for passing hydrogen ions and hydroxide ions to both ends of the channel filled with the amphoteric electrolyte solution. It was a problem that the electrode liquid entered the flow path due to the difference between the water head and the water head at the time of injecting the electrode liquid. Therefore, the electrode liquid was flowed by adding a highly viscous reagent to the electrode liquid. To prevent intrusion.
IEEJ Technical Committee Materials CHS-03-53

等電点電気泳動を行なうとき、試料のpHが極端に高い場合や低い場合は電極液が加水分解により分解され、又、電極液の粘性が高いために電気泳動装置を洗浄するなどの操作が難しいという欠点があった。
本発明は操作性のすぐれた等電点電気泳動装置と、マイクロチップを用いた電気泳動チップを提供することを目的とするものである。
When performing isoelectric focusing, if the pH of the sample is extremely high or low, the electrode solution is decomposed by hydrolysis, and operations such as washing the electrophoresis device due to the high viscosity of the electrode solution. There was a drawback that it was difficult.
An object of the present invention is to provide an isoelectric focusing device having excellent operability and an electrophoresis chip using a microchip.

本発明では、板状部材の内部に流路を有し、その流路の両端に液出入口をもつ等電点電気泳動チップにおいて、前記流路に沿った2つの位置に前記液出入口とは別のpH勾配を形成するための電極液導入穴が形成され、前記穴と流路はイオンが透過する素材を介して接続されている。
ここで「チップ」とは必ずしも小さいことを意味するものではなく、板状部材の内部に流路が形成されたものを意味している。
In the present invention, in an isoelectric focusing chip having a flow channel inside a plate-like member and having liquid inlets and outlets at both ends of the channel, the liquid inlet / outlet is separated from the liquid inlet / outlet at two positions along the channel. An electrode solution introduction hole for forming a pH gradient is formed, and the hole and the flow path are connected via a material through which ions pass.
Here, the “chip” does not necessarily mean that it is small, but means that a flow path is formed inside a plate-like member.

前記素材の好ましいものは半透膜である。半透膜としては、例えば、再生セルロース、セルロースアセテート、ポリアクリルニトリル共重合体、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、芳香族ポリスルホン、芳香族ポリアミド及びカーボネート・エチレンオキシド共重合体からなる群から選ばれた高分子化合物を用いることができる。
前記素材は接着剤により板状部材に固着することができる。
The preferred material is a semipermeable membrane. As the semipermeable membrane, for example, from the group consisting of regenerated cellulose, cellulose acetate, polyacrylonitrile copolymer, polymethyl methacrylate, ethylene vinyl alcohol copolymer, aromatic polysulfone, aromatic polyamide, and carbonate-ethylene oxide copolymer. A selected polymer compound can be used.
The material can be fixed to the plate member with an adhesive.

本発明の等電点電気泳動装置は、本発明の等電点電気泳動チップと、その等電点電気泳動チップの電極液導入穴間の流路に電圧を印加する電源装置と、前記流路に光を照射する光源と、前記光源の光による前記流路からの光を検出する検出器とを備えている。   The isoelectric focusing device of the present invention includes an isoelectric focusing chip of the present invention, a power supply device for applying a voltage to a flow path between electrode liquid introduction holes of the isoelectric focusing chip, and the flow path. A light source for irradiating light, and a detector for detecting light from the flow path by the light of the light source.

本発明の等電点電気泳動チップでは、電極液の拡散や電極液注入時における水頭差を防ぐために、pH勾配を形成するための電極液と電気泳動を行なわせる試料を別々に配置し、電極液の導入口と板状部材内部の流路が接する界面にイオン透過性の膜を配置したことによって、電極液の拡散や流路への侵入がなくなるので、分析操作を簡便に行なうことができる。
また、従来、電極液が流路に侵入することを防止するために用いていた粘性の高い電極液を用いる必要がないので、電気泳動装置や試料の洗浄等などでも分析の高速化が可能となる。
In the isoelectric focusing chip of the present invention, in order to prevent the diffusion of the electrode liquid and the water head difference at the time of injecting the electrode liquid, the electrode liquid for forming a pH gradient and the sample to be electrophoresed are separately disposed, By disposing an ion-permeable membrane at the interface where the liquid inlet and the flow path inside the plate-like member are in contact, the electrode liquid does not diffuse or enter the flow path, so that the analysis operation can be performed easily. .
In addition, since it is not necessary to use a highly viscous electrode solution that has been used to prevent the electrode solution from entering the flow path, it is possible to increase the speed of analysis even in electrophoresis devices, sample washing, etc. Become.

このように本発明を用いると、等電点電気泳動分析を簡便で、高速に、かつ高精度に行なうことができる。   As described above, by using the present invention, isoelectric focusing analysis can be performed simply, at high speed and with high accuracy.

図1に本発明の等電点電気泳動チップの一実施例を説明する。(A)は平面図、(B)はそのX―X線位置での断面図である。基板10,11はガラス基板であり、例えば石英ガラス基板である。両ガラス基板10,11はフッ酸などによって接合され、チップが形成されている。ガラス基板11の接合面側の表面には、数百μm以下の幅、深さを持つ液体試料分析用流路として用いる微小な流路16が形成されている。
ガラス基板10には、流路16の両端に対応する位置に液体試料の導入又は排出用の貫通穴12,13が形成されている。
FIG. 1 illustrates an embodiment of an isoelectric focusing chip of the present invention. (A) is a plan view, and (B) is a cross-sectional view at the XX line position. The substrates 10 and 11 are glass substrates, for example, quartz glass substrates. Both glass substrates 10 and 11 are joined by hydrofluoric acid or the like to form a chip. On the surface of the glass substrate 11 on the bonding surface side, a minute flow channel 16 having a width and depth of several hundred μm or less and used as a liquid sample analysis flow channel is formed.
In the glass substrate 10, through holes 12 and 13 for introducing or discharging a liquid sample are formed at positions corresponding to both ends of the flow path 16.

ガラス基板10にはさらに穴12,13間で流路16に沿った2つの位置に電極液導入穴となるリザーバ14,15が形成され、リザーバ14,15の底には、例えばセルロースアセテートなどのイオン透過性高分子半透膜18が接着剤で固着され、その膜を通して流路16と接続されている。リザーバ14,15にはpH勾配を生じさせる電極液が溜められている。   Further, reservoirs 14 and 15 serving as electrode solution introduction holes are formed at two positions along the flow path 16 between the holes 12 and 13 in the glass substrate 10, and the bottoms of the reservoirs 14 and 15 are made of, for example, cellulose acetate or the like. An ion-permeable polymer semipermeable membrane 18 is fixed with an adhesive and is connected to the flow path 16 through the membrane. The reservoirs 14 and 15 store an electrode solution that causes a pH gradient.

本発明の等電点電気泳動チップは、図1の構造に限定されず、流路16と穴12,13及びリザーバ14,15が同じ基板に形成されている構造や、3枚の基板を接合したもの、1枚のガラス基板の内部に流路が形成されている構造など、試料導入口とリザーバが別々に配置されているものであればよい。また、流路の形状も実施例のものに限定されない。   The isoelectric focusing chip of the present invention is not limited to the structure shown in FIG. 1, but has a structure in which the flow path 16, the holes 12, 13 and the reservoirs 14, 15 are formed on the same substrate, or a combination of three substrates. As long as the sample introduction port and the reservoir are separately arranged, such as a structure in which a flow path is formed inside one glass substrate. Further, the shape of the flow path is not limited to that of the embodiment.

イオン透過性膜としては、再生セルロース、セルロースアセテート、ポリアクリロニトリル共重合体、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、芳香族ポリスルホン、芳香族ポリアミド、カーボネート・エチレンオキシド共重合体などの高分子化合物を用いることができ、膜厚の減少と透析液側の塩膜抵抗の減少によって透析効率を向上させることができる。   Examples of ion permeable membranes include polymer compounds such as regenerated cellulose, cellulose acetate, polyacrylonitrile copolymer, polymethyl methacrylate, ethylene vinyl alcohol copolymer, aromatic polysulfone, aromatic polyamide, and carbonate / ethylene oxide copolymer. The dialysis efficiency can be improved by reducing the film thickness and decreasing the salt film resistance on the dialysate side.

イオン透過性膜の製造方法には、ポリマーを溶媒で溶解した紡糸液を、環状中空紡口から直接又は空中走行を経由して凝固浴に導きゲル化させ、ポリマーと溶媒を相分離させて中空糸とする湿式紡糸法、空中走行時に冷却ゲル化させ、次いで凝固浴にて脱溶媒相分離させる乾湿式分離法、及び、ポリマーに可塑剤等を加え熱溶融した紡糸液を環状中空紡糸口から空気中に押し出し、冷却相分離させた後水溶液中で可塑剤を除去する溶融紡糸法の3種類がある。また、この時使用される中空糸形成剤には、不活性ガスや凝固性または非凝固性の液体が用いられる。このようにして得られた中空糸の膜構造は、主に成膜時のポリマーと溶媒の相分離過程で形成されるポリマー粒子の大きさと凝集で決まるが、これらはポリマーや溶媒の種類、成膜時の方法と条件によって決定される。   In the production method of an ion permeable membrane, a spinning solution in which a polymer is dissolved in a solvent is guided to a coagulation bath from an annular hollow nozzle directly or via air, and gelled, and the polymer and the solvent are phase-separated to form a hollow. Wet spinning method for yarn, gelling by cooling during running in the air, then dry-wet separation method in which solvent-free phase separation is performed in a coagulation bath, and spinning solution obtained by adding a plasticizer or the like to a polymer and thermally melting it from an annular hollow spinning port There are three types of melt spinning methods in which the plasticizer is removed in an aqueous solution after extrusion into air and cooling phase separation. In addition, as the hollow fiber forming agent used at this time, an inert gas or a solidifying or non-solidifying liquid is used. The membrane structure of the hollow fiber thus obtained is mainly determined by the size and aggregation of polymer particles formed in the phase separation process of the polymer and the solvent during film formation. It is determined by the method and conditions during film formation.

一実施例のチップの製造方法を説明する。(A)まず、ガラス基板11を洗浄した後、SiやCr等を成膜し、フォトレジストをコーティングする。(B)次に、フォトマスクを用いてUV(紫外)光をフォトレジストに露光する。(C)その後、フォトレジストを現像してパターニングする。(D)パターニングされたフォトレジストをマスクとして、SiやCr等をエッチングしてパターニングし、SiやCr等のパターンをマスクとしてガラス基板を例えば46%フッ酸水溶液にてエッチングして、流路溝を形成する。(E)フォトレジストを除去し、SiやCr等を除去する。(F)ガラス基板10に試料導入用の穴12及び排出用の穴13、並びにリザーバ用の穴14,15をサンドブラスト法などにより形成する。(G)両ガラス基板10,11を流路溝が内部になるように合わせて、フッ酸などによって接合する。
製造方法は前記エッチング法に限られず、機械的加工、レーザー加工、成型などによっても行なうことができる。
A method for manufacturing a chip according to one embodiment will be described. (A) First, after the glass substrate 11 is washed, a film of Si, Cr or the like is formed, and a photoresist is coated. (B) Next, the photoresist is exposed to UV (ultraviolet) light using a photomask. (C) Thereafter, the photoresist is developed and patterned. (D) Si and Cr are etched and patterned using the patterned photoresist as a mask, and the glass substrate is etched with, for example, a 46% hydrofluoric acid aqueous solution using the pattern of Si and Cr as a mask. Form. (E) The photoresist is removed, and Si, Cr, etc. are removed. (F) The sample introduction hole 12, the discharge hole 13, and the reservoir holes 14 and 15 are formed in the glass substrate 10 by a sandblast method or the like. (G) The glass substrates 10 and 11 are aligned so that the flow channel is inside, and are joined by hydrofluoric acid or the like.
The manufacturing method is not limited to the etching method, and can be performed by mechanical processing, laser processing, molding, or the like.

図2に、一実施例のチップを用いた等電点電気泳動装置の一実施例を説明する。等電点電気泳動チップ中の流路16に、両性電解質溶液と測定対象タンパク質を混合したものを試料導入口12から充填する。リザーバ14に酸性溶液を満たし、リザーバ15にアルカリ性溶液を満たす。リザーバ14,15に電極を挿入して、電源24によりリザーバ14,15間の流路16に電圧を印加する。20は流路に印加される電圧を測定する電圧計、22は流路を流れる電流を測定する電流計である。   FIG. 2 illustrates an embodiment of an isoelectric focusing device using the chip of the embodiment. The channel 16 in the isoelectric focusing chip is filled from the sample inlet 12 with a mixture of the amphoteric electrolyte solution and the protein to be measured. The reservoir 14 is filled with an acidic solution, and the reservoir 15 is filled with an alkaline solution. Electrodes are inserted into the reservoirs 14 and 15, and a voltage is applied to the flow path 16 between the reservoirs 14 and 15 by the power source 24. 20 is a voltmeter that measures the voltage applied to the flow path, and 22 is an ammeter that measures the current flowing through the flow path.

光源26を用いて、例えばUV光30を等電点電気泳動チップ1の流路16に沿って照射し、光源26の反対側に流路16に沿って配置されたフォトダイオードアレイなどの一次元検出器32を用いて流路16を透過したUV光30を検出する。光30はUV光に限定されず、可視光線などでもよい。電圧印加後、測定対象タンパク質が収束したことを検出器32により検出する。   Using the light source 26, for example, UV light 30 is irradiated along the flow path 16 of the isoelectric focusing chip 1, and one-dimensional such as a photodiode array disposed along the flow path 16 on the opposite side of the light source 26. Using the detector 32, the UV light 30 transmitted through the flow path 16 is detected. The light 30 is not limited to UV light, and may be visible light. After the voltage application, the detector 32 detects that the protein to be measured has converged.

等電点電気泳動装置としては、流路16中の試料タンパク質中から発生する蛍光を検出するようにしてもよい。また、複数又は連続波長を含む光源を用い、検出器32を2次元検出器とするとともに、分光器を配置することにより、試料タンパク質による吸収スペクトル又は蛍光スペクトルを検出するようにしてもよい。   As the isoelectric focusing device, fluorescence generated from the sample protein in the flow path 16 may be detected. Further, a light source including a plurality of or continuous wavelengths may be used, the detector 32 may be a two-dimensional detector, and a spectroscope may be disposed to detect an absorption spectrum or a fluorescence spectrum due to the sample protein.

本発明は、ペプチド、タンパク質等の両性電解質をその等電点で分離し分析する等電点電気泳動分析に利用することができる。   The present invention can be used for isoelectric focusing analysis in which amphoteric electrolytes such as peptides and proteins are separated and analyzed at their isoelectric points.

等電点電気泳動チップの一実施例を示す図であり、(A)は平面図、(B)はそのX−X線位置での断面図である。It is a figure which shows one Example of an isoelectric focusing chip | tip, (A) is a top view, (B) is sectional drawing in the XX position. 等電点電気泳動装置の一実施例を示す概略斜視図である。It is a schematic perspective view which shows one Example of an isoelectric focusing apparatus.

符号の説明Explanation of symbols

10,11 ガラス基板
12 試料導入口
13 試料排出口
14,15 電極液用リザーバ
16 流路
18 半透膜
24 電源
26 光源
30 UV光
32 検出器
DESCRIPTION OF SYMBOLS 10,11 Glass substrate 12 Sample inlet 13 Sample outlet 14,15 Electrode solution reservoir 16 Channel 18 Semipermeable membrane 24 Power source 26 Light source 30 UV light 32 Detector

Claims (5)

板状部材の内部に流路を有し、その流路の両端に液出入口をもつ等電点電気泳動チップにおいて、
前記流路に沿った2つの位置に前記液出入口とは別のpH勾配を形成するための電極液導入穴が形成され、
前記穴と流路はイオンが透過する素材を介して接続されている等電点電気泳動チップ。
In an isoelectric focusing chip having a flow path inside the plate-shaped member and having liquid inlets and outlets at both ends of the flow path,
Electrode solution introduction holes for forming a pH gradient different from the solution inlet / outlet are formed at two positions along the flow path,
An isoelectric focusing chip in which the hole and the channel are connected via a material through which ions pass.
前記素材は半透膜である請求項1に記載の等電点電気泳動チップ。   The isoelectric focusing chip according to claim 1, wherein the material is a semipermeable membrane. 前記半透膜は、再生セルロース、セルロースアセテート、ポリアクリルニトリル共重合体、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、芳香族ポリスルホン、芳香族ポリアミド及びカーボネート・エチレンオキシド共重合体からなる群から選ばれた高分子化合物である請求項2に記載の等電点電気泳動チップ。   The semipermeable membrane is selected from the group consisting of regenerated cellulose, cellulose acetate, polyacrylonitrile copolymer, polymethyl methacrylate, ethylene vinyl alcohol copolymer, aromatic polysulfone, aromatic polyamide, and carbonate-ethylene oxide copolymer. The isoelectric focusing chip according to claim 2, which is a high molecular compound. 前記素材は板状部材に接着剤により固着されている請求項1から3のいずれかに記載の等電点電気泳動チップ。   The isoelectric focusing chip according to any one of claims 1 to 3, wherein the material is fixed to a plate-like member with an adhesive. 請求項1から4に記載の等電点電気泳動チップと、前記電極液導入穴間の流路に電圧を印加する電源装置と、前記流路に光を照射する光源と、前記光源からの光による前記流路からの光を検出する検出器とを備えた等電点電気泳動装置。
5. The isoelectric focusing chip according to claim 1, a power supply device that applies a voltage to a flow path between the electrode liquid introduction holes, a light source that irradiates light to the flow path, and light from the light source And an isoelectric focusing device comprising a detector for detecting light from the flow path.
JP2004150905A 2004-05-20 2004-05-20 Isoelectric focusing chip and apparatus Expired - Lifetime JP4492212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150905A JP4492212B2 (en) 2004-05-20 2004-05-20 Isoelectric focusing chip and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150905A JP4492212B2 (en) 2004-05-20 2004-05-20 Isoelectric focusing chip and apparatus

Publications (2)

Publication Number Publication Date
JP2005331411A true JP2005331411A (en) 2005-12-02
JP4492212B2 JP4492212B2 (en) 2010-06-30

Family

ID=35486161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150905A Expired - Lifetime JP4492212B2 (en) 2004-05-20 2004-05-20 Isoelectric focusing chip and apparatus

Country Status (1)

Country Link
JP (1) JP4492212B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061542A1 (en) * 2006-11-21 2008-05-29 Medimate Holding B.V. Ion sensor for fluid and method for its manufacture
US20100116661A1 (en) * 2007-04-25 2010-05-13 Shimadzu Corporation Electrophoretic chip and a method of electrophoresis
US8140007B2 (en) 2009-04-01 2012-03-20 Ubidyne, Inc. Radio system and method for relaying radio signals with a power calibration of transmit radio signals
US8396416B2 (en) 2009-04-01 2013-03-12 Ubidyne, Inc. Radio system and a method for relaying radio signals
US9397396B2 (en) 2009-04-01 2016-07-19 Kathrein-Werke Kg Radio system and a method for relaying packetized radio signals
US9410924B2 (en) 2007-05-18 2016-08-09 Ce-Mate B.V. Test chip with plug for measuring the concentration of an analyte in a liquid, housing for test chip and socket for plug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086279A1 (en) * 2000-05-05 2001-11-15 Ecole Polytechnique Federale De Lausanne Electrophoretic separation of compounds
WO2003071263A1 (en) * 2002-02-19 2003-08-28 Genome Institute Of Singapore, National University Of Singapore Device for isoelectric focussing
WO2004056697A1 (en) * 2002-12-19 2004-07-08 Capture Device Method and device for capturing charged molecules traveling in a flow stream

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086279A1 (en) * 2000-05-05 2001-11-15 Ecole Polytechnique Federale De Lausanne Electrophoretic separation of compounds
WO2003071263A1 (en) * 2002-02-19 2003-08-28 Genome Institute Of Singapore, National University Of Singapore Device for isoelectric focussing
WO2004056697A1 (en) * 2002-12-19 2004-07-08 Capture Device Method and device for capturing charged molecules traveling in a flow stream

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6009041603, Hiroshi Yukawa(外3名), "CONTINUOUS SEPARATION OF PROTEIN FROM COLLOIDAL SOLUTION CONTAINING SEVERAL KINDS OF PROTEINS WITH I", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 19980620, Vol. 23, No. 3, p. 262−266 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061542A1 (en) * 2006-11-21 2008-05-29 Medimate Holding B.V. Ion sensor for fluid and method for its manufacture
JP2010510502A (en) * 2006-11-21 2010-04-02 メディメイト ホールディング ビー.ブイ. Fluid ion sensor and manufacturing method thereof
EA017597B1 (en) * 2006-11-21 2013-01-30 Медимейт Холдинг Б.В. Ion sensor for fluid and method for its manufacture
US8465637B2 (en) 2006-11-21 2013-06-18 Medimate Holding B.V. Ion sensor for fluid and method for its manufacture
US9689839B2 (en) 2006-11-21 2017-06-27 Ce-Mate B.V. Method and apparatus for sensing ion concentrations in a fluid sample
US20100116661A1 (en) * 2007-04-25 2010-05-13 Shimadzu Corporation Electrophoretic chip and a method of electrophoresis
US8834697B2 (en) * 2007-04-25 2014-09-16 Shimadzu Corporation Electrophoresis apparatus and a method for electrophoresis
US9410924B2 (en) 2007-05-18 2016-08-09 Ce-Mate B.V. Test chip with plug for measuring the concentration of an analyte in a liquid, housing for test chip and socket for plug
US8140007B2 (en) 2009-04-01 2012-03-20 Ubidyne, Inc. Radio system and method for relaying radio signals with a power calibration of transmit radio signals
US8396416B2 (en) 2009-04-01 2013-03-12 Ubidyne, Inc. Radio system and a method for relaying radio signals
US9397396B2 (en) 2009-04-01 2016-07-19 Kathrein-Werke Kg Radio system and a method for relaying packetized radio signals

Also Published As

Publication number Publication date
JP4492212B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JPWO2005022169A1 (en) Tip
CN113546698B (en) Micro-nano fluidic chip, manufacturing method thereof and micro-nano fluidic system
Li Fundamentals of microfluidics and lab on a chip for biological analysis and discovery
JP4432778B2 (en) Microchip and mass spectrometry system
CN110628601A (en) Flexible substrate nanopore structure and nanopore array manufacturing method
JP4492212B2 (en) Isoelectric focusing chip and apparatus
WO2017039080A1 (en) Sample concentration apparatus and method for extracting concentrated sample by using same
JP2004045358A (en) Separating apparatus and method for manufacturing the same
JP2004151041A (en) Biochip and biochip manufacturing method
Nakanishi et al. Fabrication of electrophoresis devices on quartz and glass substrates using a bonding with HF solution
US20130000738A1 (en) Method and system for transferring and/or concentrating a sample
Lee et al. Microfluidic free-flow electrophoresis: A promising tool for protein purification and analysis in proteomics
JP2008309642A (en) Microchip and analytical method using the same
Wu et al. Flexible and efficient eletrokinetic stacking of DNA and proteins at an HF etched porous junction on a fused silica capillary
KR20040032884A (en) Separation Apparatus and Process for Fabricating Separation Apparatus
CN110628598A (en) Modular assembled nanopore device
KR102064388B1 (en) Single point detection type microfluidic isoelectric focusing assay and chips using the same
JP4387624B2 (en) Sample preparation device
JP4366523B2 (en) Electrophoresis chip and sample analysis method using the same
CN211142041U (en) Gene transfer speed control device based on movement protein
KR100762532B1 (en) Sample analysis method using microchip
Li et al. Microfluidic lab-on-a-chip
CN110628597A (en) Biomolecule sequencing method by Raman spectroscopy
CN110699246A (en) Flexible substrate nanopore structure and flexible substrate nanopore array
Kitagawa et al. Sample Preconcentration Protocols in Microfluidic Electrophoresis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R151 Written notification of patent or utility model registration

Ref document number: 4492212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4