JP2005312150A - Laminated core of rotor for rotary electric machine - Google Patents

Laminated core of rotor for rotary electric machine Download PDF

Info

Publication number
JP2005312150A
JP2005312150A JP2004124239A JP2004124239A JP2005312150A JP 2005312150 A JP2005312150 A JP 2005312150A JP 2004124239 A JP2004124239 A JP 2004124239A JP 2004124239 A JP2004124239 A JP 2004124239A JP 2005312150 A JP2005312150 A JP 2005312150A
Authority
JP
Japan
Prior art keywords
laminated
core
rotor
iron core
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004124239A
Other languages
Japanese (ja)
Inventor
Ikuro Kishi
郁朗 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004124239A priority Critical patent/JP2005312150A/en
Publication of JP2005312150A publication Critical patent/JP2005312150A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated core of a rotor for a rotary electric machine which can reduce an operating force generated due to the eccentricity of a rotor core plate. <P>SOLUTION: The laminated core 1 includes half laminated core parts 19A, 19B, a rotational shaft 71, and bearings 72A, 72B. The half laminated core parts 19A, 19B obtain total two core board laminate blocks 14, 15 in which a rotor core board 8 is shifted 180 degrees from each other by laminating the rotor core boards 8 in the direction of board thickness, and the length of rotor core board 18 corresponds to that obtained by dividing the half of predetermined core length L into further two equally. The core board laminate blocks 14, 15 are combined to be symmetrical at the laminate/arranged position with respect to the plane Y-Y which is the contact surface, in which the end surfaces are mutually contacted in the center of the core length L. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、複数の磁性薄板材製の回転子鉄心板をこの回転子鉄心板の板厚方向に積層した回転電気機械用回転子の積層鉄心に関するものである。   The present invention relates to a laminated core of a rotor for a rotating electric machine in which a plurality of rotor core plates made of a magnetic thin plate material are laminated in the thickness direction of the rotor core plate.

複数の磁性薄板材製の回転子鉄心板をこの回転子鉄心板の板厚方向に積層した従来技術の回転電気機械用回転子の積層鉄心では、回転子鉄心板の内外径の偏心や板厚の不均一などに起因する積層鉄心の不釣合の問題に対処するために、複数の回転子鉄心板を所定の鉄心長の半数部分で2分割して互いに180度ずらして組み合わせる構成などが採用されている(例えば、特許文献1参照。)。
実公昭51−1441号公報 (第2頁)
In a laminated core of a rotor for a rotating electrical machine of the prior art in which a plurality of rotor core plates made of magnetic thin plate material are laminated in the thickness direction of the rotor core plate, the eccentricity and thickness of the inner and outer diameters of the rotor core plate are obtained. In order to deal with the problem of unbalanced laminated iron cores caused by non-uniformity of the cores, a configuration in which a plurality of rotor iron core plates are divided into two at half of a predetermined iron core length and combined with each other shifted by 180 degrees is adopted. (For example, refer to Patent Document 1).
Japanese Utility Model Publication No. 51-1441 (Page 2)

前述した従来技術による回転電気機械用回転子の積層鉄心では、磁性薄板材の板厚の不均一に起因する積層鉄心の不釣合の問題についてはかなり対処することができているが、磁性薄板材から回転子鉄心板を得る工程で発生する,回転子鉄心板の内径の中心位置と外径の中心位置との偏心に起因する不釣合モーメントによる作用に関しては、十分には対処することができていない。回転電気機械用回転子の積層鉄心の不釣合モーメントは積層鉄心の重量と偏心量との積に相当するものであり、回転電気機械の回転時に回転子に対して遠心力fを生じさせ、結果として回転子やこの回転子を用いる回転電気機械に振動が発生するなどの問題を生じさせる。図8,図9を用いて、前記偏心が原因で従来例の回転電気機械用回転子の積層鉄心に生じる不釣合モーメントが引き起こす作用について説明する。
ここで図8は従来の一例の回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図であり、図9は従来の異なる例の回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。図8,図9において、9A,9Bはそれぞれ従来例の積層鉄心、71は積層鉄心9A,9Bの回転軸(図8,図9に実線X−Xで示す。)、72A,72Bは積層鉄心9A,9Bの回転子鉄心板の積層方向の外側で回転軸71を支持する軸受で、この事例の場合の積層鉄心9A,9Bを支持する支持点である。なお、図8,図9に例示した積層鉄心は、いわゆるインナーロータ形の回転子用の積層鉄心である。
In the above-described laminated iron core of a rotor for a rotating electrical machine according to the prior art, the problem of unbalanced laminated iron core caused by uneven thickness of the magnetic thin plate material can be dealt with considerably. The effect of the unbalanced moment caused by the eccentricity between the center position of the inner diameter of the rotor core and the center position of the outer diameter, which is generated in the process of obtaining the rotor core plate, cannot be sufficiently dealt with. The unbalanced moment of the laminated core of the rotor for a rotating electrical machine is equivalent to the product of the weight of the laminated core and the amount of eccentricity. As a result, a centrifugal force f is generated on the rotor when the rotating electrical machine rotates. Problems such as vibration are generated in the rotor and the rotating electrical machine using the rotor. The action caused by the unbalanced moment generated in the laminated iron core of the rotor for a rotary electric machine of the conventional example due to the eccentricity will be described with reference to FIGS.
Here, FIG. 8 is an explanatory view for explaining the schematic configuration of a laminated core of a rotor for a rotary electric machine of a conventional example and the action caused by an unbalanced moment, and FIG. 9 shows a rotary electric machine of a different conventional example. It is explanatory drawing explaining the effect | action which the schematic structure of the laminated iron core of a rotor for a rotor and the unbalance moment which generate | occur | produces in this cause. 8 and 9, 9A and 9B are conventional laminated cores, 71 is a rotating shaft of the laminated cores 9A and 9B (indicated by solid lines XX in FIGS. 8 and 9), and 72A and 72B are laminated cores. 9A and 9B are bearings that support the rotating shaft 71 on the outer side in the stacking direction of the rotor core plates, and are support points for supporting the stacked cores 9A and 9B in this case. The laminated iron cores illustrated in FIGS. 8 and 9 are so-called inner rotor type laminated iron cores.

積層鉄心9A,9Bの回転子鉄心板は電磁鋼板などの磁性薄板材をプレス型により打ち抜いて作製されるのが一般的である。このプレス抜き作業時に、回転子鉄心板の外径を抜くプレス型のステーションと回転子鉄心板の内径を抜くプレス型のステーションとが異なっていると、回転子鉄心板の外径の中心位置と内径の中心位置の間には、それぞれのプレス型の位置決め精度と,磁性薄板材をプレス型の設置位置にまで搬送する際の位置決め精度の和に相当する偏心が発生する。この偏心の量は偏心量eと呼ばれている。さて、この偏心量eを持つ回転子鉄心板を積層して作製された積層鉄心9A,9Bに生じる不釣合モーメントにより軸受72A,72Bにそれぞれ作用する力Fa,Fbについて、図8,図9を用いて説明する。
まず、図8に示した従来例は、複数の回転子鉄心板を所定の鉄心長Lの半数部分で2分割(図8では2L/4として示す。)して得られたハーフ積層鉄心部91,92を互いに180度ずらして組み合わせることで作製された、「特許文献1」による内容を持つ回転電気機械用回転子の積層鉄心9Aである。なお、図8においてaは積層鉄心9Aのハーフ積層鉄心部91側の端面と軸受72Aの中心部との間隔であり、bは積層鉄心9Aのハーフ積層鉄心部92側の端面と軸受72Bの中心部との間隔である。積層鉄心9Aで回転子鉄心板が持つ偏心量eに起因して軸受72A,72Bに作用する力Fa,Fbを、図8を参照して軸受72A,72Bを支点とするモーメントの釣合を基にして求める。
The rotor core plates of the laminated cores 9A and 9B are generally manufactured by punching a magnetic thin plate material such as an electromagnetic steel plate with a press die. If the press mold station that pulls out the outer diameter of the rotor core plate and the press mold station that pulls out the inner diameter of the rotor core plate are different during this punching operation, the center position of the outer diameter of the rotor core plate An eccentricity corresponding to the sum of the positioning accuracy of each press die and the positioning accuracy when the magnetic thin plate material is transported to the press die installation position occurs between the center positions of the inner diameters. This amount of eccentricity is called the amount of eccentricity e. FIGS. 8 and 9 are used for the forces Fa and Fb acting on the bearings 72A and 72B by the unbalanced moment generated in the laminated cores 9A and 9B produced by laminating the rotor core plates having the eccentricity e. I will explain.
First, in the conventional example shown in FIG. 8, a half laminated core portion 91 obtained by dividing a plurality of rotor core plates into two at half of a predetermined core length L (shown as 2L / 4 in FIG. 8). , 92 are combined by shifting 180 degrees from each other, and the rotor core for rotating electrical machines having the contents according to “Patent Document 1” 9A. In FIG. 8, a is the distance between the end surface of the laminated core 9A on the half laminated core 91 side and the center of the bearing 72A, and b is the end surface of the laminated core 9A on the half laminated core 92 side and the center of the bearing 72B. This is the distance from the part. The forces Fa and Fb acting on the bearings 72A and 72B due to the eccentricity e of the rotor core plate in the laminated core 9A are based on the balance of moments with the bearings 72A and 72B as fulcrums with reference to FIG. Ask for it.

ただし、偏心量eに起因して発生する遠心力fがmeω2{ここで、mは対象物(この場合はハーフ積層鉄心部91,92である。)の質量、ωは対象物の回転数に従う角速度である。}として求まり、ハーフ積層鉄心部91,92に遠心力fが作用する位置はハーフ積層鉄心部91,92の鉄心長L方向の中央位置であるとし、遠心力fが作用する方向は図8のハーフ積層鉄心部91,92内に矢印で示したとおりとする。まず、軸受72Bを支点とするモーメントの釣合の関係から、式(1−1)が求まる。 However, the centrifugal force f generated due to the eccentricity e is meω 2 (where m is the mass of the object (in this case, the half laminated core portions 91 and 92), and ω is the rotation speed of the object. Is the angular velocity according to }, The position where the centrifugal force f acts on the half laminated core portions 91 and 92 is the center position of the half laminated core portions 91 and 92 in the core length L direction, and the direction in which the centrifugal force f acts is shown in FIG. Assume that the half laminated core portions 91 and 92 are indicated by arrows. First, equation (1-1) is obtained from the relationship of balance of moments with the bearing 72B as a fulcrum.

(数1)
Fa(a+L+b)−f(b+3L/4)+f(b+L/4)=0
……………………………(1−1) 式(1−1)のfを含む項をまとめたうえで、右辺に移項して式(1−2)が求まり、式(1−2)を力Faについて整理すると式(1−3)が求まる。
(Equation 1)
Fa (a + L + b) -f (b + 3L / 4) + f (b + L / 4) = 0
…………………………… (1-1) The terms including f in the equation (1-1) are collected and transferred to the right side to obtain the equation (1-2). Formula (1-3) is obtained by arranging -2) with respect to force Fa.

(数2)
Fa(a+L+b)=f(L/2) …………………………(1−2)∴ Fa=fL/{2(a+L+b)} …………………………(1−3)
次に、軸受72Aを支点とするモーメントの釣合の関係から、式(1−4)が求まる。
(Equation 2)
Fa (a + L + b) = f (L / 2) (1-2) ∴ Fa = fL / {2 (a + L + b)} (1- 3)
Next, Expression (1-4) is obtained from the relationship of balance of moments with the bearing 72A as a fulcrum.

(数3)
Fb(a+L+b)−f(a+L/4)+f(a+3L/4)=0
……………………………(1−4) 式(1−4)のfを含む項をまとめたうえで、右辺に移項して式(1−5)が求まり、式(1−5)をFbについて整理すると式(1−6)が求まる。
(Equation 3)
Fb (a + L + b) -f (a + L / 4) + f (a + 3L / 4) = 0
…………………………… (1-4) After summing up the terms including f in Equation (1-4), the terms are moved to the right side to obtain Equation (1-5). If (-5) is rearranged for Fb, equation (1-6) is obtained.

(数4)
Fb(a+L+b)=−f(L/2) …………………………(1−5)
∴ Fb=−fL/{2(a+L+b)} …………………………(1−6)
式(1−3)と式(1−6)とから、偏心量eを持つ回転子鉄心板を用いた積層鉄心9Aでは、「特許文献1」による構成内容を持っているにもかかわらず、偏心量eに起因する不釣合モーメントが原因で、軸受72A,72Bに式(1−3),式(1−6)に従う値を持つ力Fa,Fbがそれぞれ作用することが分かる。
また、図9に示した従来例は、α枚の回転子鉄心板8を1枚毎に互いに180度ずらして組み合わせることで作製された、「特許文献1」による構成方法を徹底させたような構成内容を持つ回転電気機械用回転子の積層鉄心9Bである。なお、図9においてaは積層鉄心9Bの軸受72A側の端面と軸受72Aの中心部との間隔であり、bは積層鉄心9Bの軸受72B側の端面と軸受72Bの中心部との間隔である。積層鉄心9Bで回転子鉄心板8の偏心量eに起因して軸受72A,72Bに作用する力Fa,Fbを、図9を参照して軸受72A,72Bを支点とするモーメントの釣合を基にして求める。
(Equation 4)
Fb (a + L + b) = − f (L / 2) (1-5)
F Fb = −fL / {2 (a + L + b)} ………………………… (1-6)
From the formula (1-3) and the formula (1-6), in the laminated core 9A using the rotor core plate having the eccentricity amount e, although it has the configuration content according to “Patent Document 1”, It can be seen that forces Fa and Fb having values according to the equations (1-3) and (1-6) act on the bearings 72A and 72B, respectively, due to the unbalanced moment caused by the eccentricity e.
Further, in the conventional example shown in FIG. 9, the construction method according to “Patent Document 1” produced by combining α rotor core plates 8 with each other being shifted 180 degrees from each other is thoroughly implemented. It is the laminated iron core 9B of the rotor for rotary electric machines which has the structure content. In FIG. 9, a is the distance between the end face of the laminated core 9B on the bearing 72A side and the center part of the bearing 72A, and b is the distance between the end face of the laminated core 9B on the bearing 72B side and the center part of the bearing 72B. . The forces Fa and Fb acting on the bearings 72A and 72B due to the eccentricity e of the rotor core plate 8 in the laminated core 9B are based on the balance of moments with the bearings 72A and 72B as fulcrums with reference to FIG. Ask for it.

ただし、偏心量eに起因して発生する遠心力fに関しては、対象物が個々の回転子鉄心板8であることを除いては積層鉄心9Aの場合と同一であり、遠心力fが作用する位置は個々の回転子鉄心板8の板厚の中央位置であるとし、遠心力fが作用する方向は図9の個々の回転子鉄心板8内に矢印で示したとおりとする。まず、軸受72Bを支点とするモーメントの釣合の関係から、式(2−1)が求まる。なお、式(2−1)などではL/(2α)をΔLと略記している。   However, the centrifugal force f generated due to the eccentricity e is the same as that of the laminated core 9A except that the object is the individual rotor core plate 8, and the centrifugal force f acts. The position is the center position of the thickness of each rotor core plate 8, and the direction in which the centrifugal force f acts is as indicated by the arrows in each rotor core plate 8 in FIG. First, Expression (2-1) is obtained from the relationship of balance of moment with the bearing 72B as a fulcrum. In the formula (2-1) and the like, L / (2α) is abbreviated as ΔL.

(数5)
Fa(a+L+b)−f(b+L−ΔL)+f(b+L−3ΔL)
−f(b+L−5ΔL)+f(b+L−7ΔL)
・・・−f{b+L−(2α−3)ΔL}
+f{b+L−(2α−1)ΔL}=0
……………………………(2−1) 式(2−1)のfを含む項をまとめたうえで、右辺に移項して式(2−2)が求まり、式(2−2)を力Faについて整理すると式(2−3)が求まる。
(Equation 5)
Fa (a + L + b) −f (b + L−ΔL) + f (b + L−3ΔL)
−f (b + L−5ΔL) + f (b + L−7ΔL)
...- f {b + L- (2α-3) ΔL}
+ F {b + L- (2α-1) ΔL} = 0
…………………………… (2-1) After summing up the terms including f in Equation (2-1), the terms are transferred to the right side to obtain Equation (2-2). Formula (2-3) is obtained by arranging -2) with respect to force Fa.

(数6)
Fa(a+L+b)=f(2ΔL×α)=fL ……………(2−2)∴ Fa=fL/(a+L+b) …………………………(2−3)
次に、軸受72Aを支点とするモーメントの釣合の関係を基に式(2−1)〜式(2−3)の場合と同様な手順により、軸受72Bに作用する力Fbが式(2−4)のように求まる。
(Equation 6)
Fa (a + L + b) = f (2ΔL × α) = fL (2−2) ∴ Fa = fL / (a + L + b) (2−3)
Next, the force Fb acting on the bearing 72B is expressed by the equation (2) according to the same procedure as in the equations (2-1) to (2-3) based on the moment balance relationship with the bearing 72A as a fulcrum. -4).

(数7)
Fb=−fL/(a+L+b) …………………………(2−4)
式(2−3),式(2−4)から、偏心量eを持つ回転子鉄心板8を用いた積層鉄心9Bでは、軸受72A,72Bに作用する力Fa,Fbは、積層鉄心9Aと対比して倍増されてしまうことが分かる。そうして、従来例の積層鉄心9A,9Bでは、偏心量eを持つ回転子鉄心板8を用いた場合に軸受72A,軸受72Bなどの支持点に作用する力Fa,Fbが発生し、積層鉄心9A,9Bおよび、これ等を用いる回転電気機械に振動が発生するなどの問題を引き起こしている。したがってこの発明の目的は、回転子鉄心板の偏心に起因して発生する作用力の低減が可能な回転電気機械用回転子の積層鉄心を提供することにある。
(Equation 7)
Fb = −fL / (a + L + b) (2-4)
From the formulas (2-3) and (2-4), in the laminated core 9B using the rotor core plate 8 having the eccentricity e, the forces Fa and Fb acting on the bearings 72A and 72B are the same as those of the laminated core 9A. It turns out that it is doubled in contrast. Thus, in the conventional laminated cores 9A and 9B, when the rotor core plate 8 having the eccentricity e is used, forces Fa and Fb acting on the support points such as the bearings 72A and 72B are generated. This causes problems such as the generation of vibrations in the iron cores 9A and 9B and the rotating electric machine using these. Accordingly, an object of the present invention is to provide a laminated core of a rotor for a rotating electrical machine capable of reducing the acting force generated due to the eccentricity of the rotor core plate.

この発明では前述の目的は、
1)複数の磁性薄板材製の回転子鉄心板をこの回転子鉄心板の板厚方向に積層した回転電気機械用回転子の積層鉄心において、
前記複数の回転子鉄心板を半数毎に分割数2N(Nは1以上の自然数)でほぼ等しく分割して板厚方向に積層されたそれぞれの鉄心板積層ブロックを180度ずつ交互にずらすことで形成された2個のハーフ積層鉄心部が、回転子鉄心板の積層方向の端面で互いに当接または対峙されて組み合わされる部位に位置して前記端面に平行する平面に関して,互いに面対称となる関係で組み合わされること、または、
2)前記1項に記載の手段において、前記分割数2Nと等しいかまたは分割数2Nよりも少ない4n(nは1以上の自然数)の個数の鉄心板積層ブロックに限っては、互いに隣接ししかも互いに180度ずらされた2個の鉄心板積層ブロックでなる単位積層鉄心対がその回転子鉄心板の積層方向の互いの端面が当接または対峙される部位に位置して前記端面に平行する平面に関して,互いに面対称となる関係で交互に組み合わされること、さらにまたは、
3)前記1項に記載の手段において、前記分割数2Nが2であることにより達成される。
In the present invention, the aforementioned object is
1) In a laminated core of a rotor for a rotating electrical machine in which a plurality of rotor core plates made of magnetic thin plate material are laminated in the thickness direction of the rotor core plate,
The plurality of rotor core plates are divided approximately equally by a division number of 2N (N is a natural number of 1 or more) every half and the respective core plate lamination blocks laminated in the thickness direction are alternately shifted by 180 degrees. The two half-laminated cores that are formed are positioned symmetrically with respect to the plane parallel to the end faces that are located on the end face in the stacking direction of the rotor core plates that are in contact with each other or confronted with each other. Combined in, or
2) In the means described in item 1 above, the number of iron core laminated blocks of 4n (n is a natural number of 1 or more) equal to or less than the number of divisions 2N is adjacent to each other. A plane in which the unit laminated core pairs composed of two iron core laminated blocks shifted by 180 degrees from each other are positioned at a position where the end faces of the rotor iron core in the laminating direction abut or face each other and are parallel to the end faces With respect to each other in a mutually symmetrical relationship, and / or
3) In the means described in the item 1, the division number 2N is two.

この発明による回転電機機械用回転子の積層鉄心では、前記課題を解決するための手段の項で述べた構成とすることで、次記の効果を得られる。
(1)前記課題を解決するための手段の項の第(1)項による構成とすることで、この発明による積層鉄心は偏心量eを持つ回転子鉄心板8を用いながら、偏心量eに起因する不釣合モーメントがハーフ積層鉄心部のそれぞれの内部で偶力として構成され、このような両ハーフ積層鉄心部が当接または対峙されるその端面に平行する平面に関して互いに面対称となる関係で組み合わせられることで、それぞれのハーフ積層鉄心部がそれぞれに持つ前記偶力を互いに相殺することができる。これにより、この積層鉄心を装着した回転軸を支持する軸受に作用する偏心量eに起因する力を、理論的に零にすることが可能になる。また、
(2)前記課題を解決するための手段の項の第(2)項による構成とすることで、前記(1)項による効果をそのまま保持しながら、両ハーフ積層鉄心部のそれぞれの4nの個数の鉄心板積層ブロックが関わる部位に関しても、総合して発生される不釣合モーメントを理論的に零にすることが可能になる。さらにまた、
(3)前記課題を解決するための手段の項の第(3)項による構成とすることで、前記(1)項による効果をそのまま保持しながら、この積層鉄心を構成する鉄心板積層ブロックの全個数を4個のみにできることで、前記(1)項による効果が得られる積層鉄心の製造原価を低減することが可能になる。
In the laminated core of the rotor for a rotating electrical machine machine according to the present invention, the following effects can be obtained by adopting the configuration described in the section for solving the above-mentioned problems.
(1) By adopting the configuration according to item (1) of the means for solving the above-mentioned problems, the laminated core according to the present invention uses the rotor core plate 8 having the eccentric amount e, while maintaining the eccentric amount e. The resulting unbalanced moment is configured as a couple within each of the half-laminated cores, and the two half-laminated iron cores are combined in a plane-symmetrical relationship with respect to a plane parallel to the end surface where they abut or face each other. By doing so, it is possible to cancel the couples of the respective half laminated iron core portions. As a result, the force resulting from the eccentricity e acting on the bearing that supports the rotating shaft on which the laminated iron core is mounted can theoretically be reduced to zero. Also,
(2) By adopting the configuration according to the item (2) of the means for solving the problems, the number of 4n of each of the half-laminated cores is maintained while maintaining the effect of the item (1) as it is. The unbalanced moment generated as a whole can be theoretically reduced to zero even for the part related to the iron core laminated block. Furthermore,
(3) By adopting the configuration according to the item (3) of the means for solving the problems, the effect of the item (1) is maintained as it is, and the iron core plate laminated block constituting the laminated iron core is maintained. Since the total number can be reduced to four, it is possible to reduce the manufacturing cost of the laminated core that can achieve the effect of the item (1).

以下この発明を実施するための最良の形態を図面を参照して詳細に説明する。なお、以下の説明においては、図8,図9に示した従来例の回転電気機械用回転子の積層鉄心と同一部分には同じ符号を付し、その説明を省略する。
『実施の形態1』図1はこの発明の実施の形態の一例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。図1において、1Aはハーフ積層鉄心部11A,11B、回転軸71、軸受72A,72Bを備えるこの発明による回転電気機械用回転子の積層鉄心である。それぞれのハーフ積層鉄心部11A,11Bは、この事例の場合には、所定の鉄心長Lの半数に相当する回転子鉄心板8をさらにほぼ4等分し,この枚数の回転子鉄心板8を板厚方向に積層することで得られる合計4個の鉄心板積層ブロック14,15を、回転子鉄心板8が互いに180度ずらされる関係で積層・配設されている。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings. In the following description, the same parts as those in the laminated iron core of the conventional rotating electrical machine rotor shown in FIGS. 8 and 9 are denoted by the same reference numerals, and the description thereof is omitted.
Embodiment 1 FIG. 1 is an explanatory view for explaining the schematic structure of a laminated core of a rotor for a rotating electrical machine according to an example of an embodiment of the present invention and the action caused by an unbalanced moment. In FIG. 1, reference numeral 1A denotes a laminated core of a rotor for a rotating electric machine according to the present invention comprising half laminated core portions 11A and 11B, a rotating shaft 71, and bearings 72A and 72B. In this case, each of the half laminated core portions 11A and 11B further divides the rotor core plate 8 corresponding to half of the predetermined core length L into approximately four equal parts, and this number of the rotor core plates 8 is divided. A total of four iron core plate lamination blocks 14 and 15 obtained by laminating in the plate thickness direction are laminated and arranged in such a relationship that the rotor iron core plates 8 are shifted from each other by 180 degrees.

したがって、それぞれ2個の鉄心板積層ブロック14,15は、回転子鉄心板8の積層長がこの事例の場合にはそれぞれほぼL/8であり、偏心量eの位置が回転軸71に関して互いに反対位置になると共に、鉄心長Lの方向に交互に積層・配設される。また、それぞれのハーフ積層鉄心部11A,11Bは鉄心長Lのほぼ中央の部位(図1ではL/2として示す。)で、回転子鉄心板8の積層方向の端面が互いに当接されて組み合わされるが、その際、当接面に合致する平面Y−Y(図1に一点鎖線で示す。)に関して鉄心板積層ブロック14,15の積層・配設位置が互いに面対称となる関係で組み合わされている。
前述の構成を持つこの発明による回転電気機械用回転子の積層鉄心1Aにつき、回転子鉄心板8が持つ偏心量eに起因して軸受72A,72Bに作用する力Fa,Fbを、図1を参照して従来例の場合と同様に軸受72A,72Bを支点とするモーメントの釣合を基にして求める。まず、軸受72Bを支点とするモーメントの釣合の関係から、式(3−1)が求まる。
Therefore, each of the two core plate lamination blocks 14 and 15 has a lamination length of the rotor core plate 8 of approximately L / 8 in this case, and the position of the eccentricity e is opposite to the rotation shaft 71. At the same time, they are alternately stacked and arranged in the direction of the iron core length L. Further, each of the half laminated core portions 11A and 11B is a substantially central portion of the iron core length L (shown as L / 2 in FIG. 1), and the end surfaces in the lamination direction of the rotor core plate 8 are brought into contact with each other and combined. In this case, the laminated and disposed positions of the iron core plate laminated blocks 14 and 15 are combined in a plane symmetry with respect to a plane YY (indicated by a one-dot chain line in FIG. 1) that matches the contact surface. ing.
FIG. 1 shows the forces Fa and Fb acting on the bearings 72A and 72B due to the eccentricity e of the rotor core plate 8 for the laminated core 1A of the rotor for a rotary electric machine according to the present invention having the above-described configuration. As in the case of the conventional example, it is obtained based on the balance of moments with bearings 72A and 72B as fulcrums. First, Expression (3-1) is obtained from the relationship of balance of moments with the bearing 72B as a fulcrum.

(数8)
Fa(a+L+b)−f(b+15L/16)+f(b+13L/16)
−f(b+11L/16)+f(b+9L/16)
+f(b+7L/16)−f(b+5L/16)
+f(b+3L/16)−f(b+L/16)=0
……………………………(3−1)式(3−1)のfを含む項をまとめたうえで、右辺に移項して式(3−2)が求まり、式(3−2)を力Faについて整理すると式(3−3)が求まる。
(Equation 8)
Fa (a + L + b) -f (b + 15L / 16) + f (b + 13L / 16)
-F (b + 11L / 16) + f (b + 9L / 16)
+ F (b + 7L / 16) -f (b + 5L / 16)
+ F (b + 3L / 16) -f (b + L / 16) = 0
…………………………… (3-1) After summing up the terms including f in the equation (3-1), the term is moved to the right side to obtain the equation (3-2). Formula (3-3) is obtained by arranging -2) with respect to the force Fa.

(数9)
Fa(a+L+b)=f(2L−2L)=0 …………………(3−2)∴ Fa=0 …………………………(3−3)
次に、軸受72Aを支点とするモーメントの釣合の関係を基に式(3−1)〜式(3−3)の場合と同様な手順により、軸受72Bに作用する力Fbが式(3−4)のように求まる。
(Equation 9)
Fa (a + L + b) = f (2L-2L) = 0 …………………… (3-2) ∴ Fa = 0 ………………………… (3-3)
Next, the force Fb acting on the bearing 72B is expressed by the following equation (3) according to the same procedure as in the equations (3-1) to (3-3) based on the moment balance relationship with the bearing 72A as a fulcrum. -4).

(数10)
Fb=0 …………………………(3−4)
式(3−3)および式(3−4)から、偏心量eを持つ回転子鉄心板8を用いながら、この発明による積層鉄心1Aでは従来例の積層鉄心9A,9Bとは異なって、軸受72A,72Bには偏心量eに起因する力Fa,Fbが理論的には作用しないことが分かる。これは、鉄心板積層ブロック14,15のそれぞれに当然のことながら偏心量eに起因する不釣合モーメントが存在しているが、積層鉄心1Aではハーフ積層鉄心部11A,11Bのそれぞれを前述したように構成することで、不釣合モーメントをハーフ積層鉄心部11A,11Bのそれぞれの内部で偶力として構成し、このハーフ積層鉄心部11A,11Bを前述したように平面Y−Yに関して互いに面対称となる関係で組み合わせることで、ハーフ積層鉄心部11A,11Bがそれぞれに持つ前記偶力を互いに相殺するようにしていることで得ることができている。 なお、積層鉄心1Aでは磁性薄板材の板厚の不均一に起因する積層鉄心の不釣合の問題に関しても、偏心量eに平行する方向に存在する板厚の不均一については、この影響をキャンセルすることができる。
『実施の形態2』図2はこの発明の実施の形態の異なる例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。なお、後記の『実施の形態3』以降の項を含む以下の説明においては、図1に示したこの発明による回転電気機械用回転子の積層鉄心1Aと同一部分には同じ符号を付し、その説明を省略する。図2において、1Bはハーフ積層鉄心部11C,11D、回転軸71、軸受72A,72Bを備えるこの発明による回転電気機械用回転子の積層鉄心である。
(Equation 10)
Fb = 0 ………………………… (3-4)
From the equations (3-3) and (3-4), the laminated core 1A according to the present invention is different from the conventional laminated cores 9A and 9B in using the rotor core plate 8 having the eccentricity e. It can be seen that the forces Fa and Fb resulting from the eccentricity e do not theoretically act on 72A and 72B. As a matter of course, there is an unbalanced moment due to the eccentric amount e in each of the iron core plate laminated blocks 14 and 15, but in the laminated iron core 1A, as described above, each of the half laminated iron core portions 11A and 11B. By configuring, the unbalanced moment is configured as a couple within each of the half laminated core portions 11A and 11B, and the half laminated core portions 11A and 11B are in plane symmetry with respect to the plane YY as described above. In combination, the half-laminated iron core portions 11A and 11B can be obtained by canceling out the couples of each other. In the laminated core 1A, the influence of the non-uniform thickness of the laminated core caused by the non-uniform thickness of the magnetic thin plate material is canceled for the non-uniform thickness of the sheet existing in the direction parallel to the eccentricity e. be able to.
[Embodiment 2] FIG. 2 is an explanatory view for explaining the schematic structure of a laminated core of a rotor for a rotating electrical machine according to a different example of the embodiment of the present invention and the action caused by an unbalanced moment generated therein. In addition, in the following description including the term after "Embodiment 3" of a postscript, the same code | symbol is attached | subjected to the same part as the laminated iron core 1A of the rotor for rotary electric machines by this invention shown in FIG. The description is omitted. In FIG. 2, 1B is the laminated core of the rotor for rotary electric machines by this invention provided with half laminated core part 11C, 11D, the rotating shaft 71, and bearing 72A, 72B.

それぞれのハーフ積層鉄心部11C,11Dは、この事例の場合には、所定の鉄心長Lの半数に相当する回転子鉄心板8をさらにほぼ4等分し、この枚数の回転子鉄心板8を板厚方向に積層することで得られる合計4個の鉄心板積層ブロック14,15が、互いに隣接するそれぞれ1組の鉄心板積層ブロック14,15で単位積層鉄心対12A,12Bを形成するようにしている。それぞれの鉄心板積層ブロック14,15の回転子鉄心板8の積層長は、この事例の場合にはそれぞれほぼL/8である。
ハーフ積層鉄心部11Cに属する単位積層鉄心対12A,12Bの場合に、単位積層鉄心対12Aでは軸受72A側に鉄心板積層ブロック14が積層・配設されるが、単位積層鉄心対12Bでは軸受72B側に鉄心板積層ブロック14が積層・配設される。そうしてこの事例の場合には、単位積層鉄心対12Aの鉄心板積層ブロック15と単位積層鉄心対12Bの鉄心板積層ブロック15とは、それぞれのハーフ積層鉄心部11C,11Dの鉄心長L/2の中央の部位(図2ではL/4として示す。)で、回転子鉄心板8の積層方向の端面が互いに当接されて組み合わされる。
In the case of this example, each of the half laminated core portions 11C and 11D further divides the rotor core plate 8 corresponding to half of the predetermined core length L into approximately four equal parts, A total of four core plate laminate blocks 14 and 15 obtained by laminating in the plate thickness direction form unit laminate core pairs 12A and 12B with a pair of core plate laminate blocks 14 and 15 adjacent to each other. ing. In this case, the lamination length of the rotor core plate 8 of each of the iron core plate lamination blocks 14 and 15 is approximately L / 8.
In the case of the unit laminated core pairs 12A and 12B belonging to the half laminated iron core portion 11C, the iron core plate laminated block 14 is laminated and disposed on the bearing 72A side in the unit laminated iron core pair 12A, but in the unit laminated iron core pair 12B, the bearing 72B. An iron core laminated block 14 is laminated and disposed on the side. Thus, in this example, the iron core plate laminated block 15 of the unit laminated iron core pair 12A and the iron core plate laminated block 15 of the unit laminated iron core pair 12B are the core length L / of the half laminated iron core portions 11C and 11D. 2, the end faces in the stacking direction of the rotor core plates 8 are brought into contact with each other (combined with L / 4 in FIG. 2).

その際、当接面に合致する平面Ys−Ys(図2に一点鎖線で示す。)に関して鉄心板積層ブロック14,15の積層・配設位置が互いに面対称となる関係で組み合わされている。そうして、この発明による積層鉄心1Bでは、それぞれのハーフ積層鉄心部11C,11D内で鉄心板積層ブロック14,15を前述したように組み合わせながら、この発明による積層鉄心1Aと同様に、平面Y−Yに関して鉄心板積層ブロック14,15の積層・配設位置が互いに面対称となる関係で組み合わされている。
前述の構成を持つこの発明による回転電気機械用回転子の積層鉄心1Bにつき、回転子鉄心板8が持つ偏心量eに起因して軸受72A,72Bに作用する力Fa,Fbを、図2を参照して「実施の形態1」の場合と同様に軸受72A,72Bを支点とするモーメントの釣合を基にして求める。まず、軸受72Bを支点とするモーメントの釣合の関係から、式(4−1)が求まる。
At that time, the laminated and disposed positions of the iron core plate laminated blocks 14 and 15 are combined with each other so as to be symmetrical with respect to a plane Ys-Ys (indicated by a one-dot chain line in FIG. 2) matching the contact surface. Then, in the laminated core 1B according to the present invention, the plane core Y is combined with the iron core plate laminated blocks 14 and 15 in the respective half laminated core portions 11C and 11D as described above, as in the laminated core 1A according to the present invention. With respect to −Y, the core plate laminated blocks 14 and 15 are combined in such a manner that the lamination / arrangement positions are symmetrical with each other.
FIG. 2 shows the forces Fa and Fb acting on the bearings 72A and 72B due to the eccentricity e of the rotor core plate 8 for the laminated core 1B of the rotor for a rotating electrical machine according to the present invention having the above-described configuration. As in the case of “Embodiment 1”, reference is made based on the moment balance with bearings 72A and 72B as fulcrums. First, Expression (4-1) is obtained from the relationship of balance of moments with the bearing 72B as a fulcrum.

(数11)
Fa(a+L+b)−f(b+15L/16)+f(b+13L/16)
+f(b+11L/16)−f(b+9L/16)
−f(b+7L/16)+f(b+5L/16)
+f(b+3L/16)−f(b+L/16)=0
……………………………(4−1)式(4−1)のfを含む項をまとめたうえで、右辺に移項して式(4−2)が求まり、式(4−2)を力Faについて整理すると式(4−3)が求まる。
(Equation 11)
Fa (a + L + b) -f (b + 15L / 16) + f (b + 13L / 16)
+ F (b + 11L / 16) -f (b + 9L / 16)
-F (b + 7L / 16) + f (b + 5L / 16)
+ F (b + 3L / 16) -f (b + L / 16) = 0
…………………………… (4-1) After summing up the terms including f in the equation (4-1), the terms are transferred to the right side to obtain the equation (4-2). Formula (4-3) is obtained by arranging -2) with respect to the force Fa.

(数12)
Fa(a+L+b)=f(2L−2L)=0 …………………(4−2)∴ Fa=0 …………………………(4−3)
次に、軸受72Aを支点とするモーメントの釣合の関係を基に式(4−1)〜式(4−3)の場合と同様な手順により、軸受72Bに作用する力Fbが式(4−4)のように求まる。
(Equation 12)
Fa (a + L + b) = f (2L-2L) = 0 …………………… (4-2) ∴ Fa = 0 ………………………… (4-3)
Next, the force Fb acting on the bearing 72B is expressed by the following equation (4) according to the same procedure as the equations (4-1) to (4-3) based on the moment balance relationship with the bearing 72A as a fulcrum. -4).

(数13)
Fb=0 …………………………(4−4)
式(4−3)および式(4−4)から、この発明による積層鉄心1Bではこの発明による積層鉄心1Aと同様に、偏心量eを持つ回転子鉄心板8を用いながら、軸受72A,72Bには偏心量eに起因する力Fa,Fbが理論的には作用しないことが分かる。これは、ハーフ積層鉄心部11C,11Dの鉄心板積層ブロック14,15を平面Y−Yに関して互いに面対称となる関係で組み合わせるというこの発明の特長的な構成による「実施の形態1」で述べた作用・効果によるものが基礎になっているが、積層鉄心1Bではこのことに加えて、ハーフ積層鉄心部11C,11Dのそれぞれを前述したように構成していることが、回転子鉄心板8の偏心量eに起因する不釣合モーメントに関する安全性を高めるのに貢献している。
(Equation 13)
Fb = 0 ………………………… (4-4)
From the formulas (4-3) and (4-4), the laminated core 1B according to the present invention uses the rotor core plate 8 having the eccentricity e in the same manner as the laminated core 1A according to the present invention, while bearings 72A and 72B. It can be seen that the forces Fa and Fb resulting from the eccentricity e do not act theoretically. This is described in “Embodiment 1” according to the characteristic configuration of the present invention in which the core plate laminated blocks 14 and 15 of the half laminated iron core portions 11C and 11D are combined in a plane symmetry with respect to the plane YY. In the laminated iron core 1B, in addition to this, the half laminated iron core portions 11C and 11D are configured as described above in addition to this. This contributes to improving the safety related to the unbalanced moment caused by the eccentricity e.

すなわち、積層鉄心1Bでは回転子鉄心板8の偏心量eに起因する不釣合モーメントを単位積層鉄心対12A,単位積層鉄心対12Bの内部で偶力として構成し、この単位積層鉄心対12A,12Bを前述したように平面Ys−Ysに関して互いに面対称となる関係で組み合わせることで、単位積層鉄心対12A,12Bがそれぞれに持つ前記偶力を互いに相殺するようにしている。これにより、ハーフ積層鉄心部11C,11Dのそれぞれで総合して発生する不釣合モーメントを共に零にしているので、この点からも、積層鉄心1Bでは、軸受72A,72Bには偏心量eに起因する力Fa,Fbが理論的に作用しないことになる。
さらに、ハーフ積層鉄心部11C,11Dのそれぞれで総合して発生する不釣合モーメントを共に零にしていることは、それぞれのハーフ積層鉄心部11C,11Dが装着されている部分の回転軸71には、偏心量eに起因する不釣合モーメントが加わらないことになるので、回転軸71の機械強度に関わる安全性を高めることなどにも有効である。なお、積層鉄心1Bが磁性薄板材の板厚の不均一に起因する積層鉄心の不釣合の問題に対して有効であることは、前述積層鉄心1Aの場合と同様である。
『実施の形態3』図3はこの発明の実施の形態の異なる例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。なお、以下の説明においては、図2に示したこの発明による回転電気機械用回転子の積層鉄心1Bと同一部分には同じ符号を付し、その説明を省略する。また、以後の説明に用いる図中には、図1,図2で付した符号については、代表的な符号のみを記すことがある。
That is, in the laminated core 1B, the unbalanced moment resulting from the eccentricity e of the rotor core plate 8 is configured as a couple within the unit laminated core pair 12A and the unit laminated core pair 12B, and the unit laminated core pairs 12A and 12B are formed. As described above, the couples of the unit laminated core pairs 12A and 12B cancel each other out by combining each other in a plane-symmetrical relationship with respect to the plane Ys-Ys. As a result, the unbalanced moment generated in each of the half laminated core portions 11C and 11D is set to zero. From this point as well, in the laminated core 1B, the bearings 72A and 72B are caused by the eccentricity e. The forces Fa and Fb do not act theoretically.
Furthermore, the fact that the unbalanced moment generated in each of the half laminated core portions 11C and 11D is made zero is that the rotation shaft 71 of the portion where the respective half laminated core portions 11C and 11D are mounted has Since an unbalanced moment due to the eccentric amount e is not applied, it is effective for enhancing the safety related to the mechanical strength of the rotating shaft 71. Note that the laminated iron core 1B is effective against the problem of unbalanced laminated iron cores due to the uneven thickness of the magnetic thin plate material as in the case of the laminated iron core 1A.
[Embodiment 3] FIG. 3 is an explanatory view for explaining the schematic structure of a laminated core of a rotor for a rotating electric machine according to a different example of the embodiment of the present invention and the action caused by an unbalanced moment. In the following description, the same parts as those in the laminated core 1B of the rotor for a rotary electric machine according to the present invention shown in FIG. Further, in the drawings used for the following description, only representative symbols may be written for the symbols given in FIGS.

図3において、1Cはハーフ積層鉄心部11E,11F、回転軸71、軸受72A,72Bを備えるこの発明による回転電気機械用回転子の積層鉄心である。それぞれのハーフ積層鉄心部11E,11Fは、この事例の場合には、所定の鉄心長Lの半数に相当する回転子鉄心板8をさらにほぼ6等分し、この枚数の回転子鉄心板8を板厚方向に積層することで得られる合計6個の鉄心板積層ブロック(前記鉄心板積層ブロック14,15と同一の構成内容を持つ。)の内の4個を用いて前述ハーフ積層鉄心部11C,11Fと同一の構成内容を持つ部分積層鉄心部13を形成している。また、ハーフ積層鉄心部11E,11Fがそれぞれに持つ合計6個の鉄心板積層ブロックの内の残りの2個の鉄心板積層ブロックで前述単位積層鉄心対12Bを構成している。したがって、ハーフ積層鉄心部11E,11Fのそれぞれは、部分積層鉄心部13と単位積層鉄心対12Bとを順次組み合わせて配設すると共に、単位積層鉄心対12Bの反部分積層鉄心部13側の回転子鉄心板8の積層方向の端面が互いに当接されて組み合わされるが、その際、当接面に合致する平面Y−Y(図3に一点鎖線で示す。)に関して鉄心板積層ブロックの積層・配設位置が互いに面対称となる関係で組み合わされている。   In FIG. 3, reference numeral 1C denotes a laminated core of a rotor for a rotating electrical machine according to the present invention, which includes half laminated core portions 11E and 11F, a rotating shaft 71, and bearings 72A and 72B. In this case, each of the half laminated core portions 11E and 11F further divides the rotor core plate 8 corresponding to a half of the predetermined core length L into approximately six equal parts, and this number of the rotor core plates 8 is divided into six. The above-mentioned half laminated core part 11C is used by using four of a total of six iron core board laminated blocks (having the same contents as the iron core laminated blocks 14 and 15) obtained by laminating in the plate thickness direction. , 11F, the partially laminated iron core portion 13 having the same configuration content is formed. Further, the above-mentioned unit laminated core pair 12B is constituted by the remaining two iron core plate laminated blocks among the total of six iron core plate laminated blocks respectively possessed by the half laminated iron core portions 11E and 11F. Therefore, each of the half laminated core portions 11E and 11F is arranged by sequentially combining the partially laminated core portion 13 and the unit laminated core pair 12B, and the rotor on the side opposite to the partially laminated core portion 13B of the unit laminated core pair 12B. The end faces in the stacking direction of the iron core plates 8 are brought into contact with each other and are combined. At this time, the stacking / arrangement of the iron core plate stacking blocks with respect to the plane YY (shown by a one-dot chain line in FIG. 3) matching the contact surfaces. The installation positions are combined so as to be plane-symmetric with each other.

前述の構成を持つこの発明による回転電気機械用回転子の積層鉄心1Cにつき、回転子鉄心板8が持つ偏心量eに起因して軸受72A,72Bに作用する力Fa,Fbを、図3を参照して「実施の形態1」の場合と同様に軸受72A,72Bを支点とするモーメントの釣合を基にして求める。まず、軸受72Bを支点とするモーメントの釣合の関係から、式(5−1)が求まる。   FIG. 3 shows the forces Fa and Fb acting on the bearings 72A and 72B due to the eccentricity e of the rotor core plate 8 for the laminated core 1C of the rotor for a rotary electric machine according to the present invention having the above-described configuration. As in the case of “Embodiment 1”, reference is made based on the moment balance with bearings 72A and 72B as fulcrums. First, Expression (5-1) is obtained from the relationship of balance of moments with the bearing 72B as a fulcrum.

(数14)
Fa(a+L+b)−f(b+23L/24)+f(b+21L/24)
+f(b+19L/24)−f(b+17L/24)
+f(b+15L/24)−f(b+13L/24)
−f(b+11L/24)+f(b+9L/24)
−f(b+7L/24)+f(b+5L/24)
+f(b+3L/24)−f(b+L/24)=0
……………………………(5−1)式(5−1)のfを含む項をまとめたうえで、右辺に移項して式(5−2)が求まり、式(5−2)を力Faについて整理すると式(5−3)が求まる。
(Equation 14)
Fa (a + L + b) -f (b + 23L / 24) + f (b + 21L / 24)
+ F (b + 19L / 24) -f (b + 17L / 24)
+ F (b + 15L / 24) -f (b + 13L / 24)
-F (b + 11L / 24) + f (b + 9L / 24)
-F (b + 7L / 24) + f (b + 5L / 24)
+ F (b + 3L / 24) -f (b + L / 24) = 0
…………………………… (5-1) After summing up the terms including f in Equation (5-1), the terms are moved to the right side to obtain Equation (5-2). When formulating -2) with respect to force Fa, formula (5-3) is obtained.

(数15)
Fa(a+L+b)=f(3L−3L)=0 …………………(5−2)∴ Fa=0 …………………………(5−3)
次に、軸受72Aを支点とするモーメントの釣合の関係を基に式(5−1)〜式(5−3)の場合と同様な手順により、軸受72Bに作用する力Fbが式(5−4)のように求まる。
(Equation 15)
Fa (a + L + b) = f (3L-3L) = 0 …………………… (5-2) ∴ Fa = 0 ………………………… (5-3)
Next, the force Fb acting on the bearing 72B is expressed by the equation (5) according to the same procedure as in the equations (5-1) to (5-3) based on the moment balance relationship with the bearing 72A as a fulcrum. -4).

(数16)
Fb=0 …………………………(5−4)
次に、図4を用いてこの発明の実施の形態の異なる例による回転電気機械用回転子の積層鉄心を説明する。ここで図4は、この発明の実施の形態の異なる例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。図4において、1Dは図3に示したこの発明による回転電気機械用回転子の積層鉄心1Cに対して、部分積層鉄心部13とは独立して配設される単位積層鉄心対12Bに替えて前述単位積層鉄心対12Aを用いるようにした回転電気機械用回転子の積層鉄心である。
(Equation 16)
Fb = 0 ………………………… (5-4)
Next, a laminated core of a rotor for a rotating electric machine according to a different example of the embodiment of the present invention will be described with reference to FIG. Here, FIG. 4 is an explanatory diagram for explaining the schematic configuration of the laminated core of the rotor for a rotating electric machine according to a different example of the embodiment of the present invention and the action caused by the unbalanced moment generated therein. In FIG. 4, 1D is replaced with a unit laminated core pair 12 </ b> B disposed independently of the partial laminated core portion 13 with respect to the laminated iron core 1 </ b> C of the rotor for a rotating electrical machine according to the present invention shown in FIG. 3. This is a laminated core of a rotor for a rotating electrical machine in which the unit laminated core pair 12A is used.

前述の構成を持つこの発明による回転電気機械用回転子の積層鉄心1Dにつき、回転子鉄心板8が持つ偏心量eに起因して軸受72A,72Bに作用する力Fa,Fbを、図4を参照して「実施の形態1」の場合と同様に軸受72A,72Bを支点とするモーメントの釣合を基にして求める。まず、軸受72Bを支点とするモーメントの釣合の関係から、式(6−1)が求まる。   FIG. 4 shows the forces Fa and Fb acting on the bearings 72A and 72B due to the eccentricity e of the rotor core plate 8 for the laminated core 1D of the rotor for a rotating electrical machine according to the present invention having the above-described configuration. As in the case of “Embodiment 1”, reference is made based on the moment balance with bearings 72A and 72B as fulcrums. First, Expression (6-1) is obtained from the relationship of balance of moments with the bearing 72B as a fulcrum.

(数17)
Fa(a+L+b)−f(b+23L/24)+f(b+21L/24)
+f(b+19L/24)−f(b+17L/24)
−f(b+15L/24)+f(b+13L/24)
+f(b+11L/24)−f(b+9L/24)
−f(b+7L/24)+f(b+5L/24)
+f(b+3L/24)−f(b+L/24)=0
……………………………(6−1)式(6−1)のfを含む項をまとめたうえで、右辺に移項して式(6−2)が求まり、式(6−2)を力Faについて整理すると式(6−3)が求まる。
(Equation 17)
Fa (a + L + b) -f (b + 23L / 24) + f (b + 21L / 24)
+ F (b + 19L / 24) -f (b + 17L / 24)
-F (b + 15L / 24) + f (b + 13L / 24)
+ F (b + 11L / 24) -f (b + 9L / 24)
-F (b + 7L / 24) + f (b + 5L / 24)
+ F (b + 3L / 24) -f (b + L / 24) = 0
…………………………… (6-1) After summing up the terms including f in Equation (6-1), the terms are moved to the right side to obtain Equation (6-2). Formula (6-3) is obtained by arranging -2) with respect to force Fa.

(数18)
Fa(a+L+b)=f(3L−3L)=0 …………………(6−2)∴ Fa=0 …………………………(6−3)
次に、軸受72Aを支点とするモーメントの釣合の関係を基に式(6−1)〜式(6−3)の場合と同様な手順により、軸受72Bに作用する力Fbが式(6−4)のように求まる。
(Equation 18)
Fa (a + L + b) = f (3L-3L) = 0 …………………… (6-2) ∴ Fa = 0 …………………… (6-3)
Next, the force Fb acting on the bearing 72B is expressed by the following equation (6) according to the same procedure as in the equations (6-1) to (6-3) based on the moment balance relationship with the bearing 72A as a fulcrum. -4).

(数19)
Fb=0 …………………………(6−4)
回転電気機械用回転子の積層鉄心1C,1Dは前述積層鉄心1Bと積層鉄心1Aの一部の鉄心板積層ブロックの対とを複合させたような構成内容を備えている。式(5−3),(5−4),(6−3)および(6−4)による演算結果は、このような構成であっても、回転子鉄心板8の積層方向のほぼ中央の部位の平面Y−Y(図3,4に一点鎖線で示す。)に関して回転子鉄心板8の積層・配設位置が互いに面対称となる関係とされた積層鉄心であるなら、偏心量eを持つ回転子鉄心板8を使用したとしても、軸受72A,72Bには偏心量eに起因する力Fa,Fbが理論的には作用しないことを示している。
(Equation 19)
Fb = 0 ………………………… (6-4)
The laminated iron cores 1C and 1D of the rotor for a rotating electric machine have a configuration in which the laminated iron core 1B and a pair of laminated iron core plates of the laminated iron core 1A are combined. The calculation results obtained by the equations (5-3), (5-4), (6-3), and (6-4) are almost in the center in the stacking direction of the rotor core plate 8 even in such a configuration. If it is a laminated core in which the laminated and disposed positions of the rotor core plate 8 are symmetrical with respect to the plane YY (shown by a one-dot chain line in FIGS. 3 and 4), the amount of eccentricity e is This shows that the forces Fa and Fb resulting from the eccentricity e do not theoretically act on the bearings 72A and 72B even if the rotor core plate 8 having the same is used.

また、前記演算結果は、平面Y−Yに関して回転子鉄心板8の積層・配設位置が互いに面対称となる関係とされているならば、積層鉄心1Bと組み合わされる鉄心板積層ブロックの対は、前述単位積層鉄心対12Aによる構成内容を持つものであっても、前述単位積層鉄心対12Bによる構成内容を持つものであっても、全く同等の作用・効果を発揮することを示している。なお、積層鉄心1C,1Dが磁性薄板材の板厚の不均一に起因する積層鉄心の不釣合の問題に対して有効であることは、前述積層鉄心1Aの場合と同様である。
『実施の形態4』図5はこの発明の実施の形態のさらに異なる例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。図6は図5に示す積層鉄心の回転子鉄心板の積層方法の一例を説明する説明図であり、図7は図6におけるP矢視図である。図5において、1はハーフ積層鉄心部19A,19B、回転軸71、軸受72A,72Bを備えるこの発明による回転電気機械用回転子の積層鉄心である。それぞれのハーフ積層鉄心部19A,19Bは、この事例の場合には、所定の鉄心長Lの半数に相当する回転子鉄心板8をさらにほぼ2等分し,この枚数の回転子鉄心板8を板厚方向に積層することで得られる合計2個の鉄心板積層ブロック14,15では、回転子鉄心板8が互いに180度ずらされる関係で積層・配設されている。
Further, if the calculation result shows that the lamination and arrangement positions of the rotor core plates 8 are plane-symmetric with respect to the plane Y-Y, the pair of core plate lamination blocks combined with the lamination core 1B is It has been shown that the same operation and effect can be achieved regardless of whether the unit laminated core pair 12A has the configuration contents or the unit laminated core pair 12B. It is to be noted that the laminated cores 1C and 1D are effective against the problem of unbalanced laminated iron cores due to the uneven thickness of the magnetic thin plate material, as in the case of the laminated iron core 1A.
[Embodiment 4] FIG. 5 is an explanatory view for explaining the schematic structure of a laminated core of a rotor for a rotating electric machine according to still another example of the embodiment of the present invention and the action caused by an unbalanced moment generated therein. 6 is an explanatory view for explaining an example of a method of laminating the rotor core plate of the laminated core shown in FIG. 5, and FIG. 7 is a view taken in the direction of arrow P in FIG. In FIG. 5, reference numeral 1 denotes a laminated core of a rotor for a rotating electrical machine according to the present invention, which includes half laminated core portions 19A and 19B, a rotating shaft 71, and bearings 72A and 72B. In this case, each of the half laminated core parts 19A and 19B further divides the rotor core plate 8 corresponding to half of the predetermined core length L into approximately two equal parts. In a total of two iron core plate lamination blocks 14 and 15 obtained by laminating in the plate thickness direction, the rotor core plates 8 are laminated and arranged so as to be shifted from each other by 180 degrees.

したがって、それぞれのハーフ積層鉄心部19A,19Bの鉄心板積層ブロック14,15では、回転子鉄心板8の積層長はこの事例の場合にはそれぞれほぼL/4であり、偏心量eの位置が回転軸71に関して互いに反対位置になると共に、鉄心長Lの方向に交互に積層・配設される。また、それぞれのハーフ積層鉄心部19A,19Bは鉄心長Lのほぼ中央の部位(図5ではL/2として示す。)で、回転子鉄心板8の積層方向の端面が互いに当接されて組み合わされるが、その際、当接面に合致する平面Y−Y(図5に一点鎖線で示す。)に関して鉄心板積層ブロック14,15の積層・配設位置が互いに面対称となる関係で組み合わされている。
前述の構成を持つこの発明による回転電気機械用回転子の積層鉄心1につき、回転子鉄心板8が持つ偏心量eに起因して軸受72A,72Bに作用する力Fa,Fbを、図5を参照して「実施の形態1」の場合と同様に軸受72A,72Bを支点とするモーメントの釣合を基にして求める。まず、軸受72Bを支点とするモーメントの釣合の関係から、式(7−1)が求まる。
Therefore, in the iron core plate laminated blocks 14 and 15 of the half laminated iron core portions 19A and 19B, the laminated length of the rotor iron core plate 8 is approximately L / 4 in this case, and the position of the eccentricity e is The rotary shafts 71 are positioned opposite to each other and are alternately stacked and disposed in the direction of the iron core length L. Further, each of the half laminated core portions 19A and 19B is a substantially central portion of the core length L (shown as L / 2 in FIG. 5), and the end faces in the lamination direction of the rotor core plate 8 are brought into contact with each other and combined. In this case, the laminated and disposed positions of the iron core laminated blocks 14 and 15 are combined with each other so as to be symmetrical with respect to a plane YY (indicated by a one-dot chain line in FIG. 5) that matches the contact surface. ing.
FIG. 5 shows the forces Fa and Fb acting on the bearings 72A and 72B due to the eccentricity e of the rotor core plate 8 for the laminated core 1 of the rotor for a rotating electrical machine according to the present invention having the above-described configuration. As in the case of “Embodiment 1”, reference is made based on the moment balance with bearings 72A and 72B as fulcrums. First, Expression (7-1) is obtained from the relationship of balance of moments with the bearing 72B as a fulcrum.

(数20)
Fa(a+L+b)−f(b+7L/8)+f(b+5L/8)
+f(b+3L/8)−f(b+L/8)=0
……………………………(7−1)式(7−1)のfを含む項をまとめたうえで、右辺に移項して式(7−2)が求まり、式(7−2)を力Faについて整理すると式(7−3)が求まる。
(Equation 20)
Fa (a + L + b) -f (b + 7L / 8) + f (b + 5L / 8)
+ F (b + 3L / 8) -f (b + L / 8) = 0
…………………………… (7-1) After summarizing the term including f in the equation (7-1), the term is moved to the right side to obtain the equation (7-2). Formula (7-3) is obtained by arranging -2) with respect to force Fa.

(数21)
Fa(a+L+b)=f(L−L)=0 …………………(7−2)∴ Fa=0 …………………………(7−3)
次に、軸受72Aを支点とするモーメントの釣合の関係を基に式(7−1)〜式(7−3)の場合と同様な手順により、軸受72Bに作用する力Fbが式(7−4)のように求まる。
(Equation 21)
Fa (a + L + b) = f (L−L) = 0 …………………… (7-2) ∴ Fa = 0 ………………………… (7-3)
Next, the force Fb acting on the bearing 72B is expressed by the equation (7) according to the same procedure as in the equations (7-1) to (7-3) based on the moment balance relationship with the bearing 72A as a fulcrum. -4).

(数22)
Fb=0 …………………………(7−4)
回転電気機械用回転子の積層鉄心1は、偏心量eを持つ回転子鉄心板8が用いられることで、鉄心板積層ブロック14,15のそれぞれに当然のことながら偏心量eに起因する不釣合モーメントが存在しているが、ハーフ積層鉄心部19A,19Bのそれぞれを前述したように構成することで、不釣合モーメントをハーフ積層鉄心部19A,19Bのそれぞれの内部で偶力として構成し、このハーフ積層鉄心部19A,19Bを前述したように平面Y−Yに関して互いに面対称となる関係で組み合わせることで、ハーフ積層鉄心部19A,19Bがそれぞれに持つ前記偶力を互いに相殺されるようにしている。
(Equation 22)
Fb = 0 ………………………… (7-4)
The rotor core 1 of the rotor for a rotating electrical machine uses the rotor core plate 8 having the eccentric amount e, so that the unbalanced moment caused by the eccentric amount e is naturally applied to each of the core plate stacked blocks 14 and 15. However, by configuring each of the half laminated core portions 19A and 19B as described above, the unbalanced moment is configured as a couple within each of the half laminated core portions 19A and 19B. As described above, by combining the iron core portions 19A and 19B in a relation of plane symmetry with respect to the plane Y-Y, the couple of the half laminated iron core portions 19A and 19B can be canceled out.

これにより、積層鉄心1では、式(7−3)および式(7−4)に示したように、軸受72A,72Bには偏心量eに起因する力Fa,Fbが理論的には作用しない。したがって、積層鉄心1および積層鉄心1を用いた回転電気機械は、前述積層鉄心1A,1B,1Cおよび1Dの場合と同様に、回転子鉄心板8が持つ偏心量eに起因しての振動発生の問題を抑制することができる。しかも積層鉄心1は、この発明による積層鉄心1A,1B,1Cおよび1Dと対比して、この発明による前記作用・効果を得るのに当たり、鉄心板積層ブロック14,15の合計個数が最も少ない4個で済むことで、製造原価を最も安価にすることができる。なお、積層鉄心1が磁性薄板材の板厚の不均一に起因する積層鉄心の不釣合の問題に対しても有効であることは、前述積層鉄心1Aの場合と同様である。
次に、図6,図7も合わせ用いて、この発明による積層鉄心1の回転子鉄心板8の積層方法の一例を説明する。この回転子鉄心板8の積層には、例えば、組立シャフト4などを用いて行われる。この事例の場合には、組立シャフト4は回転子鉄心板8の内径と嵌り合う外径を持つ円柱状体であり、その外径部には相対してガイド体5と嵌り合う溝形状を持つ溝41,41が形成されている。ガイド体5は断面形状が溝41と嵌り合える等脚台形状であり、組立シャフト4と同等の長さを有している。
As a result, in the laminated core 1, as shown in the equations (7-3) and (7-4), the forces Fa and Fb resulting from the eccentricity e do not theoretically act on the bearings 72A and 72B. . Therefore, the rotary electric machine using the laminated core 1 and the laminated core 1 generates vibration due to the eccentricity e of the rotor core plate 8 as in the case of the laminated cores 1A, 1B, 1C and 1D. The problem can be suppressed. Moreover, the laminated iron core 1 has the smallest total number of the iron core plate laminated blocks 14 and 15 in order to obtain the operation and effect of the invention compared with the laminated iron cores 1A, 1B, 1C and 1D according to the present invention. The cost of manufacturing can be reduced to the lowest. It is to be noted that the laminated iron core 1 is also effective for the problem of unbalanced laminated iron cores due to the uneven thickness of the magnetic thin plate material as in the case of the laminated iron core 1A.
Next, an example of a method of laminating the rotor core plate 8 of the laminated core 1 according to the present invention will be described with reference to FIGS. The lamination of the rotor core plate 8 is performed using, for example, the assembly shaft 4 or the like. In this case, the assembly shaft 4 is a cylindrical body having an outer diameter that fits with the inner diameter of the rotor core plate 8, and has a groove shape that fits with the guide body 5 relative to the outer diameter portion. Grooves 41 and 41 are formed. The guide body 5 has an isosceles trapezoidal shape in which the cross-sectional shape can be fitted with the groove 41, and has the same length as the assembly shaft 4.

回転子鉄心板8は前述のとおりインナーロータ形回転子用の鉄心板であるので、回転子鉄心板8の積層作業時の位置合わせに用いるリマーク(不図示)がその内径部に形成されている。このリマークの形状は、例えば、ガイド体5に外接する半円形や、ガイド体5としゅう動自在に嵌り合える等脚台形状などにすることができる。積層鉄心1に対する回転子鉄心板8の積層作業は、例えば、まず、L/4の積層長を持つハーフ積層鉄心部19Aの鉄心板積層ブロック14の部分から開始される(図6の〔1段目〕を参照。)。次に、ハーフ積層鉄心部19Aの鉄心板積層ブロック15の部分およびハーフ積層鉄心部19Bの鉄心板積層ブロック15の部分の回転子鉄心板8の積層が一体に行われる。
この部分の積層長は合わせてL/2である。そうして、この部分の積層時には回転子鉄心板8を180度ずらす必要があることから、ガイド体5を溝41からいったん引き抜き、他方の溝41に装着し直す。この状態で、L/2の積層長を持つ部分に対する回転子鉄心板8の積層が行われる(図6の〔2段目〕を参照。)。最後に、L/4の積層長を持つハーフ積層鉄心部19Bの鉄心板積層ブロック14の部分に対する積層作業が行われる(図6の〔3段目〕を参照。)。この場合にも、回転子鉄心板8を180度ずらす必要があることから、ガイド体5の別の溝41への差し替えが再び行われたうえで、回転子鉄心板8の積層が行われる。
Since the rotor core plate 8 is the core plate for the inner rotor type rotor as described above, a remark (not shown) used for alignment at the time of laminating the rotor core plate 8 is formed on the inner diameter portion thereof. . The shape of the remark may be, for example, a semicircular shape circumscribing the guide body 5 or an isosceles trapezoidal shape that can be slidably fitted to the guide body 5. For example, the stacking operation of the rotor core plate 8 with respect to the stacked core 1 is first started from the portion of the core plate stack block 14 of the half stack core portion 19A having a stack length of L / 4 (see FIG. See Eye]. Next, the lamination of the rotor core plate 8 in the portion of the core laminated plate block 15 of the half laminated core portion 19A and the portion of the core laminated plate block 15 of the half laminated core portion 19B is performed integrally.
The total lamination length of this portion is L / 2. Then, since it is necessary to shift the rotor core plate 8 by 180 degrees at the time of laminating this portion, the guide body 5 is once pulled out from the groove 41 and mounted again in the other groove 41. In this state, the rotor core plate 8 is stacked on a portion having a stacking length of L / 2 (see [second stage] in FIG. 6). Finally, a stacking operation is performed on the portion of the iron core plate stack block 14 of the half stack core portion 19B having a stack length of L / 4 (see [third stage] in FIG. 6). Also in this case, since it is necessary to shift the rotor core plate 8 by 180 degrees, the rotor core plate 8 is stacked after the guide body 5 is replaced with another groove 41 again.

図6の〔3段目〕の作業が終了することで、この事例の場合の積層鉄心1の回転子鉄心板8の積層作業は完了である。そうして、この積層作業に使用される組立シャフト4およびガイド体5が持つ構造は、ガイド体5が組立シャフト4に一体加工された外径側に狭い等脚台形状の溝41に挿入されることから、ガイド体5が組立シャフト4の径方向に外れることがないので、回転子鉄心板8のリマークがガイド体5に確実にガイドされる。これにより、回転子鉄心板8の積層作業が容易であり、しかも、回転子鉄心板8を180度ずらして積層する作業も容易になる。
発明者らは前記したこの発明による回転電気機械用回転子の積層鉄心1の総合された不釣合モーメントの低減度を評価するために、鋼材を内径と外径とを偏心させて機械加工して所定の偏心量eを持たせた模擬積層鉄心ブロックを回転軸に焼嵌めて、図5に示した積層鉄心1による構成内容を持つ本発明品の模擬鉄心を製作してバランスマシンを用いて評価実験を実施した。模擬鉄心の主要部の寸法や回転軸等を含む総質量は、外径が133mm、鉄心長Lが93mm、総質量が13.4kgである。所定の偏心量eについては、回転軸に対する偏心量eとして、0.2mmのものと,0.35mmのものの2種類を準備した。
When the operation of [third stage] in FIG. 6 is completed, the stacking operation of the rotor core plate 8 of the stacked core 1 in this case is completed. Thus, the structure of the assembly shaft 4 and the guide body 5 used in this laminating operation is inserted into a groove 41 having an isosceles trapezoid shape narrow on the outer diameter side, which is integrally processed with the assembly shaft 4. Therefore, since the guide body 5 does not come off in the radial direction of the assembly shaft 4, the remark of the rotor core plate 8 is reliably guided to the guide body 5. Thereby, the lamination | stacking operation | work of the rotor iron core board 8 is easy, and also the operation | work which laminates | stacks the rotor iron core board 8 180 degree | times becomes easy.
In order to evaluate the degree of reduction of the total unbalance moment of the laminated core 1 of the rotor for a rotary electric machine according to the present invention described above, the inventors have machined the steel material with the inner diameter and the outer diameter being decentered and are predetermined. The simulated laminated core block having the eccentricity e of the above is shrink-fitted on the rotating shaft, and the simulated core of the product of the present invention having the configuration contents of the laminated core 1 shown in FIG. 5 is manufactured and evaluated using a balance machine. Carried out. The total mass including the dimensions of the main part of the simulated iron core, the rotating shaft, and the like is 133 mm in outer diameter, 93 mm in iron core length L, and 13.4 kg in total mass. Regarding the predetermined eccentricity e, two types of 0.2 mm and 0.35 mm were prepared as the eccentricity e with respect to the rotating shaft.

また、評価に用いたバランスマシンは、メーカー:株式会社 長浜製作所、型式:20B型、試験質量:30kgのものである。その評価実験結果を表1に示す。模擬鉄心に対する前記バランスマシンによる実測データは、表1には実測不釣合モーメントとして記載されている。なお、表1中の計算不釣合モーメントは、鉄心長Lの全長にわたって偏心量eが等しい、いわば不釣合モーメントの低減対策を行わない非対策模擬鉄心の計算により求めた不釣合モーメントである。この表1を視察することにより、本発明品模擬鉄心は非対策模擬鉄心に対して、不釣合モーメントを「1/30」程度〜「1/25」程度に大幅に低減できていることが分かる。   Moreover, the balance machine used for evaluation is a maker: Nagahama Manufacturing Co., Ltd. type: 20B type, test mass: 30 kg. The evaluation experiment results are shown in Table 1. The actual measurement data by the balance machine for the simulated iron core is shown in Table 1 as the actual measurement unbalance moment. The calculated unbalanced moment in Table 1 is the unbalanced moment obtained by calculating the non-countermeasured simulated iron core in which the eccentricity e is equal over the entire length of the iron core length L, that is, the countermeasure for reducing the unbalanced moment is not taken. By observing Table 1, it can be seen that the imitation iron core of the present invention can greatly reduce the unbalanced moment from about “1/30” to “1/25” compared to the non-countermeasured iron core.

(表1)
表1 不釣合モーメント評価実験結果
┌─────────┬──────────┬───────────┐
│ 実験対象物 │計算不釣合モーメント│実測不釣合モーメント │
〔偏心量e(mm)〕│ (g・mm) │ (g・mm) │
├─────────┼──────────┼───────────┤
│ 0.2 │ 2019.6 │ 69.4 │
├─────────┼──────────┼───────────┤
│ 0.35 │ 3534.8 │ 144.8 │
└─────────┴──────────┴───────────┘
前述の説明では、この発明による積層鉄心が適用される回転電気機械用回転子はインナーロータ形であるとしてきたが、これに限定されるものではなく、例えば、アウターロータ形であってもよい。また、前述の説明では、この発明による積層鉄心の2個のハーフ積層鉄心部(ハーフ積層鉄心部11A〜11H,19A,19B)は、回転子鉄心板の積層方向の端面で互いに当接されるとしてきたが、これに限定されるものではなく、例えば、エアダクトなどを介して互いに対峙される場合であってもよい。さらにまた、前述の説明では、図9に示したα枚の回転子鉄心板8を1枚毎に互いに180度ずらして組み合わせることで作製される積層鉄心9Bは、式(2−1)〜(2−4)で示したところにより、軸受72A,72Bに作用する力Fa,Fbが発生し、積層鉄心9Bおよびこれ等を用いる回転電気機械に振動が発生するなどの問題を引き起こすと説明したが、α枚の回転子鉄心板8の使用枚数を4N(Nは1以上の自然数)枚に設定すれば、この発明の「課題を解決するための手段」の項の第(1)項に従う構成とすることができるので、この場合には軸受72A,72Bに作用する力Fa,Fbを、理論的に零にすることが可能になる。
(Table 1)
Table 1 Results of unbalanced moment evaluation experiment ┌─────────┬──────────┬───────────┐
│ Test object │ Calculated unbalanced moment │ Measured unbalanced moment │
[Eccentricity e (mm)] │ (g ・ mm) │ (g ・ mm) │
├─────────┼──────────┼───────────┤
│ 0.2 │ 20199.6 │ 69.4 │
├─────────┼──────────┼───────────┤
│ 0.35 │ 3534.8 │ 144.8 │
└─────────┴──────────┴───────────┘
In the above description, the rotor for a rotating electrical machine to which the laminated core according to the present invention is applied is an inner rotor type, but is not limited to this, and may be an outer rotor type, for example. In the above description, the two half laminated core portions (half laminated core portions 11A to 11H, 19A, 19B) of the laminated core according to the present invention are brought into contact with each other at the end faces in the lamination direction of the rotor core plates. However, the present invention is not limited to this, and for example, it may be a case where they face each other via an air duct or the like. Furthermore, in the above description, the laminated core 9B produced by combining the α rotor core plates 8 shown in FIG. 9 while being shifted from each other by 180 degrees is expressed by the equations (2-1) to ( As described in 2-4), it has been explained that the forces Fa and Fb acting on the bearings 72A and 72B are generated, causing problems such as the generation of vibrations in the laminated core 9B and the rotary electric machine using these. If the number of α rotor core plates 8 used is set to 4N (N is a natural number of 1 or more), the configuration according to item (1) of the “Means for Solving the Problems” of this invention In this case, the forces Fa and Fb acting on the bearings 72A and 72B can theoretically be zero.

この発明の実施の形態の一例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。It is explanatory drawing explaining the effect | action which the schematic structure of the lamination | stacking iron core of the rotor for rotary electric machines by an example of embodiment of this invention and the unbalance moment which generate | occur | produces in this causes. この発明の実施の形態の異なる例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。It is explanatory drawing explaining the effect | action which the schematic structure of the laminated iron core of the rotor for rotary electric machines by a different example of embodiment of this invention and the unbalance moment which generate | occur | produces in this causes. この発明の実施の形態の異なる例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。It is explanatory drawing explaining the effect | action which the schematic structure of the laminated iron core of the rotor for rotary electric machines by a different example of embodiment of this invention and the unbalance moment which generate | occur | produces in this causes. この発明の実施の形態の異なる例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。It is explanatory drawing explaining the effect | action which the schematic structure of the laminated iron core of the rotor for rotary electric machines by a different example of embodiment of this invention and the unbalance moment which generate | occur | produces in this causes. この発明の実施の形態のさらに異なる例による回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。It is explanatory drawing explaining the effect | action which the schematic structure of the laminated iron core of the rotor for rotary electric machines by the further different example of embodiment of this invention and the unbalance moment which generate | occur | produces in this causes. 図5に示す積層鉄心の回転子鉄心板の積層方法の一例を説明する説明図である。It is explanatory drawing explaining an example of the lamination | stacking method of the rotor core board of the laminated iron core shown in FIG. 図6におけるP矢視図である。FIG. 7 is a view on arrow P in FIG. 6. 従来の一例の回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。It is explanatory drawing explaining the effect | action which the schematic structure of the laminated iron core of the rotor for rotary electric machines of an example of a conventional example, and the unbalance moment which generate | occur | produces in this cause. 従来の異なる例の回転電気機械用回転子の積層鉄心の概略構成およびこれに発生する不釣合モーメントが引き起こす作用を説明する説明図である。It is explanatory drawing explaining the effect | action which the schematic structure of the laminated iron core of the rotor for rotary electric machines of a different example of the past, and the unbalance moment which generate | occur | produces in this produce.

符号の説明Explanation of symbols

1 積層鉄心
14 鉄心板積層ブロック
15 鉄心板積層ブロック
19A ハーフ積層鉄心部
19B ハーフ積層鉄心部
71 回転軸
72A 軸受
72B 軸受
8 回転子鉄心板
DESCRIPTION OF SYMBOLS 1 Laminated core 14 Iron core board laminated block 15 Iron core board laminated block 19A Half laminated iron core part 19B Half laminated iron core part 71 Rotating shaft 72A Bearing 72B Bearing 8 Rotor iron core board

Claims (3)

複数の磁性薄板材製の回転子鉄心板をこの回転子鉄心板の板厚方向に積層した回転電気機械用回転子の積層鉄心において、
前記複数の回転子鉄心板を半数毎に分割数2N(Nは1以上の自然数)でほぼ等しく分割して板厚方向に積層されたそれぞれの鉄心板積層ブロックを180度ずつ交互にずらすことで形成された2個のハーフ積層鉄心部が、回転子鉄心板の積層方向の端面で互いに当接または対峙されて組み合わされる部位に位置して前記端面に平行する平面に関して,互いに面対称となる関係で組み合わされることを特徴とする回転電気機械用回転子の積層鉄心。
In a laminated core of a rotor for a rotating electric machine in which a plurality of rotor core plates made of magnetic thin plate material are laminated in the thickness direction of the rotor core plate,
The plurality of rotor core plates are divided approximately equally by a division number of 2N (N is a natural number of 1 or more) every half and the respective core plate lamination blocks laminated in the thickness direction are alternately shifted by 180 degrees. The two half-laminated cores that are formed are positioned symmetrically with respect to the plane parallel to the end faces that are located on the end face in the stacking direction of the rotor core plates that are in contact with each other or confronted with each other. A laminated iron core of a rotor for a rotating electrical machine, characterized by being combined in
請求項1に記載の回転電気機械用回転子の積層鉄心において、
前記分割数2Nと等しいかまたは分割数2Nよりも少ない4n(nは1以上の自然数)の個数の鉄心板積層ブロックに限っては、互いに隣接ししかも互いに180度ずらされた2個の鉄心板積層ブロックでなる単位積層鉄心対がその回転子鉄心板の積層方向の端面が互いに当接または対峙される部位に位置して前記端面に平行する平面に関して,互いに面対称となる関係で交互に組み合わされることを特徴とする回転電気機械用回転子の積層鉄心。
In the laminated core of the rotor for rotating electric machines according to claim 1,
2 iron core plates adjacent to each other and shifted from each other by 180 degrees are limited to the number of 4n (n is a natural number of 1 or more) iron core plate laminated blocks equal to or less than the division number 2N. Unit laminated core pairs consisting of laminated blocks are alternately combined in a plane-symmetrical relationship with respect to a plane parallel to the end face located at a position where the end faces in the stacking direction of the rotor core plates abut or face each other. A laminated iron core for a rotor for a rotating electrical machine.
請求項1に記載の回転電気機械用回転子の積層鉄心において、
前記分割数2Nが2であることを特徴とする回転電気機械用回転子の積層鉄心。
In the laminated core of the rotor for rotating electric machines according to claim 1,
The laminated core of a rotor for a rotating electrical machine, wherein the number of divisions 2N is 2.
JP2004124239A 2004-04-20 2004-04-20 Laminated core of rotor for rotary electric machine Pending JP2005312150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124239A JP2005312150A (en) 2004-04-20 2004-04-20 Laminated core of rotor for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124239A JP2005312150A (en) 2004-04-20 2004-04-20 Laminated core of rotor for rotary electric machine

Publications (1)

Publication Number Publication Date
JP2005312150A true JP2005312150A (en) 2005-11-04

Family

ID=35440290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124239A Pending JP2005312150A (en) 2004-04-20 2004-04-20 Laminated core of rotor for rotary electric machine

Country Status (1)

Country Link
JP (1) JP2005312150A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936102B2 (en) 2005-11-29 2011-05-03 Wilic S.Ar.L Magnet holder for permanent magnet rotors of rotating machines
US7946591B2 (en) 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
US8120198B2 (en) 2008-07-23 2012-02-21 Wilic S.Ar.L. Wind power turbine
JP2012135107A (en) * 2010-12-21 2012-07-12 Toshiba Industrial Products Manufacturing Corp Rotor core and method of manufacturing rotor core
US8274170B2 (en) 2009-04-09 2012-09-25 Willic S.A.R.L. Wind power turbine including a cable bundle guide device
US8310122B2 (en) 2005-11-29 2012-11-13 Wilic S.A.R.L. Core plate stack assembly for permanent magnet rotor or rotating machines
US8319362B2 (en) 2008-11-12 2012-11-27 Wilic S.Ar.L. Wind power turbine with a cooling system
US8358189B2 (en) 2009-08-07 2013-01-22 Willic S.Ar.L. Method and apparatus for activating an electric machine, and electric machine
US8410623B2 (en) 2009-06-10 2013-04-02 Wilic S. AR. L. Wind power electricity generating system and relative control method
US8492919B2 (en) 2008-06-19 2013-07-23 Wilic S.Ar.L. Wind power generator equipped with a cooling system
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8669685B2 (en) 2008-11-13 2014-03-11 Wilic S.Ar.L. Wind power turbine for producing electric energy
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946591B2 (en) 2005-09-21 2011-05-24 Wilic S.Ar.L. Combined labyrinth seal and screw-type gasket bearing sealing arrangement
US8310122B2 (en) 2005-11-29 2012-11-13 Wilic S.A.R.L. Core plate stack assembly for permanent magnet rotor or rotating machines
US7936102B2 (en) 2005-11-29 2011-05-03 Wilic S.Ar.L Magnet holder for permanent magnet rotors of rotating machines
US8492919B2 (en) 2008-06-19 2013-07-23 Wilic S.Ar.L. Wind power generator equipped with a cooling system
US9312741B2 (en) 2008-06-19 2016-04-12 Windfin B.V. Wind power generator equipped with a cooling system
US8120198B2 (en) 2008-07-23 2012-02-21 Wilic S.Ar.L. Wind power turbine
US8319362B2 (en) 2008-11-12 2012-11-27 Wilic S.Ar.L. Wind power turbine with a cooling system
US8669685B2 (en) 2008-11-13 2014-03-11 Wilic S.Ar.L. Wind power turbine for producing electric energy
US8274170B2 (en) 2009-04-09 2012-09-25 Willic S.A.R.L. Wind power turbine including a cable bundle guide device
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8410623B2 (en) 2009-06-10 2013-04-02 Wilic S. AR. L. Wind power electricity generating system and relative control method
US8358189B2 (en) 2009-08-07 2013-01-22 Willic S.Ar.L. Method and apparatus for activating an electric machine, and electric machine
US8810347B2 (en) 2009-08-07 2014-08-19 Wilic S.Ar.L Method and apparatus for activating an electric machine, and electric machine
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
JP2012135107A (en) * 2010-12-21 2012-07-12 Toshiba Industrial Products Manufacturing Corp Rotor core and method of manufacturing rotor core
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine

Similar Documents

Publication Publication Date Title
JP2005312150A (en) Laminated core of rotor for rotary electric machine
KR102577535B1 (en) Laminated core and rotating electric machines
KR20210083337A (en) Adhesive laminated cores for stators and rotating electric machines
CN101908783B (en) Rotating electric machine and manufacturing method thereof
US7466055B2 (en) Permanent-magnet synchronous motor
CN101752980A (en) Permanent-magnet rotary electric machine
JPWO2020129925A1 (en) Adhesive laminated core for stator and rotary electric machine
CN110880848A (en) Method for balancing a rotor of an electric machine
US20180166947A1 (en) Electric machine and method for dynamically balancing the rotor of said electric machine
JP3963606B2 (en) Measuring method of unbalance correction amount of elastic rotor and measuring method of influence coefficient used for the measurement
JPH10327553A (en) Method for reducing vibration and noise of rotary electric machine, device for coupling stator of rotary electric machine for executing the method, rotary electric machine equipped with the device
WO2018100936A1 (en) Electric motor rotor, electric motor equipped with same, and manufacturing method for said rotor
CN204967516U (en) Electric motor rotor balancing piece
CN207321030U (en) A kind of self-balancing motor shaft combining structure
Werner et al. Rotor dynamic analysis of asynchronous machines including the finite-element-method for engineering low vibration motors
JP5354930B2 (en) Rotating electric machine
JP4028183B2 (en) Rotating electric machine stator and rotating electric machine using the same
CN207963751U (en) A kind of cubing of on-plane surface crankshaft forging
JPH09163644A (en) Rotor of electric motor
JP7032675B1 (en) Cores, rotating electromechanical machines, and resting machines
CN209119915U (en) High-speed electric main shaft internal permanent magnet synchronous motor
JPS62244256A (en) Method and apparatus for correcting balance of laminated rotor for rotary electric machine
CN103375530A (en) Drive system and production equipment provided therewith
JP2620586B2 (en) Vibration value reading ruler
Stone Stress analysis in electrical rotating machinery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704