JP2005308651A - Scanning probe microscope and its using method - Google Patents

Scanning probe microscope and its using method Download PDF

Info

Publication number
JP2005308651A
JP2005308651A JP2004128770A JP2004128770A JP2005308651A JP 2005308651 A JP2005308651 A JP 2005308651A JP 2004128770 A JP2004128770 A JP 2004128770A JP 2004128770 A JP2004128770 A JP 2004128770A JP 2005308651 A JP2005308651 A JP 2005308651A
Authority
JP
Japan
Prior art keywords
probe
sample
superconducting
lbco
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004128770A
Other languages
Japanese (ja)
Inventor
Ken Oda
研 小田
Satoshi Tanda
聡 丹田
Masayuki Ido
政幸 伊土
Naoki Momono
直樹 桃野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004128770A priority Critical patent/JP2005308651A/en
Priority to KR1020067020386A priority patent/KR20070012803A/en
Priority to US11/568,223 priority patent/US7553335B2/en
Priority to EP05736881A priority patent/EP1744143A1/en
Priority to PCT/JP2005/008259 priority patent/WO2005103646A1/en
Publication of JP2005308651A publication Critical patent/JP2005308651A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning probe microscope suitably adapted to the study of the observation of the lattice of lines of magnetic induction or an electron state in a magnetic flux inlusive of the study of a nanoscale non-uniform superconductive state and the observation of the uneven image on the surface of a sample, and its using method. <P>SOLUTION: As the probe 12 of the scanning probe microscope, a pressure inducing superconductive substance is used. As the pressure inducing superconductive substance, for example, La<SB>2-x</SB>Ba<SB>x</SB>CuO<SB>4</SB>(x is in the vicinity of 1/8) is used. When the probe 12 is brought into contact with the surface of a sample, the leading end part of the probe 12 becomes a superconductive state by the pressure applied to the leading end part of the probe and the current-voltage characteristics between the probe 12 and the sample 13 are changed by Andreev reflection. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、走査プローブ顕微鏡およびその使用方法に関し、特に、超伝導物質を始めとする各種物質の表面探査などに適用して好適なものである。   The present invention relates to a scanning probe microscope and a method for using the same, and is particularly suitable for application to surface exploration of various materials including superconducting materials.

走査プローブ顕微鏡(SPM)はナノサイエンスやナノテクノロジーの重要なツールであり、各種の物質の表面探査や材料・デバイス開発など多岐にわたり応用されている。
一方、近年、高温超伝導体や重い電子系で起こるナノ・スケール不均一超伝導状態(自己組織化現象)の研究が行われている。
The scanning probe microscope (SPM) is an important tool in nanoscience and nanotechnology, and has been applied in various fields such as surface exploration of various substances and material / device development.
On the other hand, in recent years, research on nanoscale inhomogeneous superconducting state (self-organization phenomenon) occurring in high-temperature superconductors and heavy electronic systems has been conducted.

なお、銅酸化物高温超伝導体La2-x Bax CuO4 のx=1/8近傍では、スピン・電荷ストライプ秩序が低温で安定化して系は絶縁体的となり、超伝導が抑制されることが知られている(例えば、非特許文献1)。また、この系に小さな圧力を印加すると、スピン・電荷ストライプ秩序が抑制され、超伝導が回復することが知られている(例えば、非特許文献2、3)。
J. M. Tranquada et al., Nature Vol.357(1995)561 N. Yamada and M. Ido, Physica C Vol.203(1992)240 M. Ido et al., J. Low Temp. Phys. Vol.105(1996)311
In addition, in the vicinity of x = 1/8 of the copper oxide high-temperature superconductor La 2-x Ba x CuO 4 , the spin / charge stripe order is stabilized at a low temperature, and the system becomes insulating, and superconductivity is suppressed. It is known (for example, Non-Patent Document 1). Further, it is known that when a small pressure is applied to this system, the spin / charge stripe order is suppressed and the superconductivity is restored (for example, Non-Patent Documents 2 and 3).
JM Tranquada et al., Nature Vol.357 (1995) 561 N. Yamada and M. Ido, Physica C Vol.203 (1992) 240 M. Ido et al., J. Low Temp. Phys. Vol.105 (1996) 311

しかしながら、従来の走査プローブ顕微鏡は、上記のナノ・スケール不均一超伝導状態の研究には、有力なツールとはなり得なかった。このため、新たなツールが求められているが、これまで有効なツールは提案されていないのが実情である。   However, the conventional scanning probe microscope could not be a powerful tool for the study of the nanoscale inhomogeneous superconducting state. For this reason, new tools are being sought, but no effective tools have been proposed so far.

そこで、この発明が解決しようとする課題は、ナノ・スケール不均一超伝導状態の研究を始めとして、磁束線格子の観測や磁束内電子状態の研究、さらには試料表面の凹凸像の観測に適用して好適な走査プローブ顕微鏡およびその使用方法を提供することにある。   Therefore, the problem to be solved by the present invention is applied to the observation of the magnetic flux line lattice, the electronic state in the magnetic flux, and the observation of the concavo-convex image on the sample surface, including the study of the nanoscale inhomogeneous superconducting state. Thus, it is an object of the present invention to provide a suitable scanning probe microscope and a method for using the same.

本発明者らは、従来技術が有する上記の課題を解決すべく鋭意検討を行った結果、上記の課題を解決するためには、走査プローブ顕微鏡の探針に、圧力に敏感な超伝導特性を持ち、小さな圧力の印加によって超伝導状態の制御が可能な圧力誘起超伝導物質を用いることが有効であることを見出し、この発明を案出するに至ったものである。   As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors have developed a superconducting characteristic sensitive to pressure on the probe of the scanning probe microscope in order to solve the above problems. Thus, the present inventors have found that it is effective to use a pressure-induced superconducting material capable of controlling the superconducting state by applying a small pressure, and have come up with the present invention.

すなわち、上記課題を解決するために、第1の発明は、
圧力誘起超伝導物質からなる探針を用いたことを特徴とする走査プローブ顕微鏡である。
ここで、圧力誘起超伝導物質としては各種のものを用いることができ、無機物質に限られず、有機物質であってもよく、用途などに応じて適宜選ぶことができる。最も代表的な例を挙げると、銅酸化物高温超伝導体の一種であるLa2-x Bax CuO4 (略称LBCO)であり、特にBa濃度xが1/8近傍(典型的には、x=1/8±0.03)のものである。このx=1/8近傍のLBCOでは、スピン・電荷ストライプ秩序が低温で安定化して系は絶縁体的となり、超伝導が抑制される。一方、この系に小さな圧力を印加すると、スピン・電荷ストライプ秩序が抑制され、超伝導が回復する。圧力誘起超伝導物質としては、La2-x Bax CuO4 の関連物質であるLa2-x-y y Bax CuO4 (略称LRBCO、RはNdなどの希土類元素)もあり、特にx=1/8近傍、0≦y<〜0.5(典型的には、0≦y<0.5)のものである。圧力誘起超伝導物質としては、そのほかに、低次元電子系物質NbSe3 、重い電子系物質CeTIn5 (T=Rh,Ir,Co)、強磁性金属物質Feなども挙げられる。
圧力誘起超伝導物質からなる探針は、典型的には針状結晶(ナノチューブのような管状晶も含む)からなる。
That is, in order to solve the above problem, the first invention
A scanning probe microscope using a probe made of a pressure-induced superconducting material.
Here, various kinds of pressure-induced superconducting materials can be used, not limited to inorganic materials, but may be organic materials, and can be appropriately selected according to the use. The most representative example is La 2-x Ba x CuO 4 (abbreviation LBCO), which is a kind of copper oxide high-temperature superconductor, and in particular, the Ba concentration x is around 1/8 (typically, x = 1/8 ± 0.03). In the LBCO in the vicinity of x = 1/8, the spin / charge stripe order is stabilized at a low temperature, the system becomes insulating, and superconductivity is suppressed. On the other hand, when a small pressure is applied to this system, the spin / charge stripe order is suppressed and the superconductivity is restored. As the pressure-induced superconducting material, there is La 2-xy R y Ba x CuO 4 (abbreviated as LRBCO, R is a rare earth element such as Nd) which is a related substance of La 2-x Ba x CuO 4 , and in particular x = 1 In the vicinity of / 8, 0 ≦ y <˜0.5 (typically 0 ≦ y <0.5). Other examples of the pressure-induced superconducting material include a low-dimensional electron material NbSe 3 , a heavy electron material CeTIn 5 (T = Rh, Ir, Co), and a ferromagnetic metal material Fe.
A probe made of a pressure-induced superconducting material is typically made of needle-like crystals (including tubular crystals such as nanotubes).

圧力誘起超伝導物質からなる探針を試料表面に接触させると、それに伴って探針の先端部に加わる圧力によりこの先端部が超伝導状態となり、探針と試料との間の電流(I)−電圧(V)特性が変化する。このI−V特性の変化は、超伝導体−常伝導体界面で起こるアンドレーエフ(Andreev)反射のためである。ここで、アンドレーエフ反射とは、常伝導体内から入射した電子(ホール)が超伝導体内にクーパー対として侵入するために同位相のホール(電子)が返ってくる現象のことをいう。このI−V特性の変化を利用して様々な測定あるいは観測を行うことができる。   When a probe made of a pressure-induced superconducting material is brought into contact with the sample surface, the tip is brought into a superconducting state due to the pressure applied to the tip of the probe, and the current (I) between the probe and the sample. -Voltage (V) characteristics change. This change in IV characteristics is due to Andreev reflection occurring at the superconductor-normal conductor interface. Here, Andreev reflection refers to a phenomenon in which in-phase holes (electrons) return because electrons (holes) incident from the normal conductor enter the superconductor as a Cooper pair. Various measurements or observations can be performed using the change in the IV characteristic.

そこで、第2の発明は、
圧力誘起超伝導物質からなる探針を用いた走査プローブ顕微鏡の使用方法であって、
上記探針と試料との間に一定電流を流しながら上記探針を上記試料の表面に沿って走査するようにしたことを特徴とするものである。
Therefore, the second invention is
A method of using a scanning probe microscope using a probe made of a pressure-induced superconducting material,
The probe is scanned along the surface of the sample while supplying a constant current between the probe and the sample.

ここで、圧力誘起超伝導物質からなる探針と試料との間に一定電流を流しながら探針を試料表面に沿って走査すると、表面の凹凸により探針先端部が常伝導状態と超伝導状態との間を変化し、それに伴って探針と試料との間の電圧が変化し、探針と試料との間の電流−電圧特性が変化する。これを画像化することにより、試料表面の凹凸を観察することができる。また、特に試料が超伝導試料である場合、この超伝導試料内に磁束線が侵入した状態のように、超伝導状態の領域と非超伝導状態の領域とが混在して試料表面に存在する場合、圧力誘起超伝導物質からなる探針が超伝導状態の領域の上にあるときと非超伝導状態の領域の上にあるときとで、探針と試料との間の電流−電圧特性が変化する。したがって、磁束格子の観測や超伝導・非超伝導不均一状態の観測が可能である。さらに、試料中のキャリアの移動度の測定を行うことも可能である。   Here, when the probe is scanned along the sample surface while passing a constant current between the probe made of a pressure-induced superconducting material and the sample, the tip of the probe is in a normal state and a superconducting state due to surface irregularities. , The voltage between the probe and the sample changes accordingly, and the current-voltage characteristic between the probe and the sample changes. By imaging this, irregularities on the sample surface can be observed. In particular, when the sample is a superconducting sample, a superconducting state region and a non-superconducting state region coexist on the surface of the superconducting sample, such as a state in which a magnetic flux line enters the superconducting sample. The current-voltage characteristics between the probe and the sample when the probe made of pressure-induced superconducting material is on the superconducting region and on the non-superconducting region. Change. Therefore, it is possible to observe the magnetic flux lattice and the superconducting / non-superconducting non-uniform state. Furthermore, it is possible to measure the mobility of carriers in the sample.

第3の発明は、
圧力誘起超伝導物質からなる探針を用いた走査プローブ顕微鏡の使用方法であって、
上記探針と試料との間の電圧を一定に保つように上記探針の高さを変化させながら上記探針を上記試料の表面に沿って走査するようにしたことを特徴とするものである。
ここで、探針の高さの変化を画像化することにより、試料表面の凹凸を観察することができる。
第2および第3の発明においては、その性質に反しない限り、第1の発明に関連したことが成立する。
The third invention is
A method of using a scanning probe microscope using a probe made of a pressure-induced superconducting material,
The probe is scanned along the surface of the sample while changing the height of the probe so as to keep the voltage between the probe and the sample constant. .
Here, the unevenness of the sample surface can be observed by imaging the change in the height of the probe.
In the second and third inventions, the matters related to the first invention are established as long as they are not contrary to the nature.

上述のように構成されたこの発明においては、圧力誘起超伝導物質からなる探針を、例えば探針と試料との間に一定電流を流しながら試料の表面に沿って走査することにより、例えば超伝導試料にナノ・スケール不均一超伝導状態や磁束線格子などが存在する場合、アンドレーエフ反射を利用して、その状態を簡便に観測することができる。また、試料表面の凹凸像も同様にして簡便に観測することができる。さらに、両者を併用することにより、試料表面の凹凸を除去して磁束線格子の精密な像を得ることができる。   In the present invention configured as described above, a probe made of a pressure-induced superconducting material is scanned, for example, along the surface of the sample while passing a constant current between the probe and the sample. When a nano-scale inhomogeneous superconducting state or a magnetic flux line lattice exists in the conductive sample, the state can be easily observed using Andreev reflection. In addition, the concavo-convex image on the sample surface can be easily observed in the same manner. Furthermore, by using both together, it is possible to remove irregularities on the sample surface and obtain a precise image of the magnetic flux line grating.

この発明によれば、ナノ・スケール不均一超伝導状態の研究、磁束線格子の観測や磁束内電子状態の研究、さらには試料表面の凹凸像の観測に極めて有効な走査プローブ顕微鏡を提供することができる。   According to the present invention, there is provided a scanning probe microscope that is extremely effective for research on a nanoscale inhomogeneous superconducting state, observation of a magnetic flux line lattice, study of an electronic state in a magnetic flux, and observation of an uneven image on a sample surface. Can do.

以下、この発明の一実施形態について図面を参照しながら説明する。
図1はこの発明の一実施形態によるアンドレーエフ反射走査プローブ顕微鏡を示す。
図1に示すように、このアンドレーエフ反射走査プローブ顕微鏡においては、一般的な走査プローブ顕微鏡と同様な圧電制御装置11の下部に、x=1/8のLa2-x Bax CuO4 (LBCO)針状結晶からなるLBCO探針12が取り付けられており、圧電制御装置11によりこのLBCO探針12を試料13上でx、y、z方向に三次元的に走査することができるようになっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an Andreev reflection scanning probe microscope according to an embodiment of the present invention.
As shown in FIG. 1, in the Andreev reflection scanning probe microscope, x 1/8 La 2−x Ba x CuO 4 (LBCO) is placed below a piezoelectric control device 11 similar to a general scanning probe microscope. ) An LBCO probe 12 made of needle crystals is attached, and the LBCO probe 12 can be three-dimensionally scanned in the x, y, and z directions on the sample 13 by the piezoelectric controller 11. ing.

次に、このアンドレーエフ反射走査プローブ顕微鏡の使用方法を説明する。
図2にLa2-x Bax CuO4 の相図を示す。図2に示すように、x=1/8の近傍では、スピン・電荷ストライプ秩序が低温で安定化して系は絶縁体的となり、超伝導が抑制される。一方、図3に示すように、この系に小さな圧力を印加すると、スピン・電荷ストライプ秩序が抑制され、超伝導が回復する。この場合、超伝導臨界温度をTc 、印加圧力をPとすると、Tc の圧力係数dTc /dPは−3K/kbarと従来型超伝導体に比べて2桁から3桁大きい。このため、例えば先端の直径が数ナノメートルのLBCO探針12に〜0.1μg重の力が加わるだけで、先端部を超伝導化することができる。
Next, a method of using the Andreev reflection scanning probe microscope will be described.
FIG. 2 shows a phase diagram of La 2-x Ba x CuO 4 . As shown in FIG. 2, in the vicinity of x = 1/8, the spin / charge stripe order is stabilized at a low temperature, the system becomes insulating, and superconductivity is suppressed. On the other hand, as shown in FIG. 3, when a small pressure is applied to this system, the spin / charge stripe order is suppressed and the superconductivity is restored. In this case, if the superconducting critical temperature is T c and the applied pressure is P, the pressure coefficient dT c / dP of T c is −3 K / kbar, which is 2 to 3 orders of magnitude higher than that of the conventional superconductor. For this reason, for example, the tip portion can be made superconductive only by applying a force of ˜0.1 μg weight to the LBCO probe 12 having a tip diameter of several nanometers.

そこで、このような圧力に敏感な超伝導特性を持つLBCO探針12を試料13の表面に接触させ、このLBCO探針12の先端部に、上記の超伝導状態が回復する圧力以上の圧力が加わるようにすると、このLBCO探針12の先端部は、接触前には絶縁体的であったものが超伝導状態となり、アンドレーエフ反射によりLBCO探針12と試料13との間のI−V特性が変化する。ただし、LBCO探針12は、圧力印加時の超伝導臨界温度よりも低く、かつ圧力印加がない状態の超伝導臨界温度よりも高い温度に冷却しておくものとする。   Therefore, the LBCO probe 12 having superconducting characteristics sensitive to such pressure is brought into contact with the surface of the sample 13, and the tip of the LBCO probe 12 has a pressure higher than the pressure at which the superconducting state is restored. When applied, the tip portion of the LBCO probe 12 is in a superconducting state that was insulative before contact, and the IV between the LBCO probe 12 and the sample 13 is caused by Andreev reflection. The characteristics change. However, the LBCO probe 12 is cooled to a temperature lower than the superconducting critical temperature when pressure is applied and higher than the superconducting critical temperature when no pressure is applied.

上記のI−V特性の変化を利用して例えば次のような測定を行うことができる。
第1の例では、I−V特性の変化を利用して試料13の表面の凹凸を画像化する。すなわち、図4に示すように、LBCO探針12と試料13との間に定電流源14により一定電流を流しながらLBCO探針12を試料13の表面に沿って走査する。すると、凸部ではLBCO探針12の先端部に圧力が加わって超伝導状態となり、凹部ではLBCO探針12の先端部に圧力が加わらなくなって常伝導状態となるため、試料13の表面の凹凸に応じてLBCO探針12の先端部が常伝導状態と超伝導状態との間を変化し、それに伴ってLBCO探針12と試料13との間の電圧が変化し、それらの間のI−V特性が変化する。例えば、図5に示すように、I−V曲線がA→B→Cのように変化する。そこで、これを画像化することにより、試料13の表面の凹凸を観察することができる。この第1の例では、試料13は特に問わず、各種のものであってよい。
For example, the following measurement can be performed using the change in the IV characteristic.
In the first example, the unevenness of the surface of the sample 13 is imaged using a change in IV characteristics. That is, as shown in FIG. 4, the LBCO probe 12 is scanned along the surface of the sample 13 while a constant current is supplied between the LBCO probe 12 and the sample 13 by the constant current source 14. Then, in the convex part, pressure is applied to the tip of the LBCO probe 12 to be in a superconducting state, and in the concave part, pressure is not applied to the tip of the LBCO probe 12 to be in a normal conducting state. Accordingly, the tip of the LBCO probe 12 changes between the normal conduction state and the superconducting state, and the voltage between the LBCO probe 12 and the sample 13 changes accordingly, and the I− V characteristics change. For example, as shown in FIG. 5, the IV curve changes as A → B → C. Thus, by imaging this, the unevenness of the surface of the sample 13 can be observed. In the first example, the sample 13 is not particularly limited and may be various types.

第2の例では、LBCO探針12と試料13との間の電圧を一定に保つようにLBCO探針12の高さを変化させながらLBCO探針12を試料13の表面に沿って走査する。この場合、LBCO探針12の高さの変化を画像化することにより、試料13の表面の凹凸を観察することができる。この第2の例でも、試料13は特に問わず、各種のものであってよい。   In the second example, the LBCO probe 12 is scanned along the surface of the sample 13 while changing the height of the LBCO probe 12 so as to keep the voltage between the LBCO probe 12 and the sample 13 constant. In this case, the unevenness of the surface of the sample 13 can be observed by imaging the change in the height of the LBCO probe 12. Also in the second example, the sample 13 is not particularly limited and may be various types.

第3の方法では、試料13が超伝導試料とする。このような超伝導試料内に磁束線が侵入した状態のように、超伝導状態の領域と非超伝導状態の領域とが試料13の表面に存在する場合には、LBCO探針12が超伝導状態の領域の上にあるか、非超伝導状態の領域の上にあるときとでLBCO探針12と試料13との間のI−V特性が変化する。したがって、このI−V特性の変化により、試料13の磁束格子の観測や超伝導・非超伝導不均一状態の観測を行うことができる。   In the third method, the sample 13 is a superconducting sample. When a superconducting region and a non-superconducting region are present on the surface of the sample 13 as in the state in which magnetic flux lines penetrate into the superconducting sample, the LBCO probe 12 is superconducting. The IV characteristic between the LBCO probe 12 and the sample 13 varies depending on whether the region is on the state region or the non-superconducting region. Therefore, the change in the IV characteristic makes it possible to observe the magnetic flux lattice of the sample 13 and the superconducting / non-superconducting inhomogeneous state.

次に、LBCO探針12の作製方法について説明する。
一つの方法は、バルクのLBCO結晶を加工してLBCO探針12を作製する方法である。
もう一つの作製方法は、次のとおりである。
まず、図6Aに示すように、円錐体21を作製する。この円錐体21は、後述の電子ビームの照射によりLBCO針状結晶を成長させる際に加熱されて軟化しない程度の融点、例えば800℃以上の融点を有するものであれば、基本的にはどのような材料からなるものでもよいが、具体的には、例えばSi、Si3 4 、SiO2 、ダイヤモンド、アルミナ(サファイヤ)、TaS2 、GaAs、Ni、Taなどを用いることができる。
Next, a method for manufacturing the LBCO probe 12 will be described.
One method is a method of fabricating the LBCO probe 12 by processing a bulk LBCO crystal.
Another manufacturing method is as follows.
First, as shown in FIG. 6A, a cone 21 is produced. If the cone 21 has a melting point that is not heated and softened when an LBCO needle crystal is grown by irradiation with an electron beam, which will be described later, and has a melting point of, for example, 800 ° C. or higher, basically, how is this cone 21? Specifically, for example, Si, Si 3 N 4 , SiO 2 , diamond, alumina (sapphire), TaS 2 , GaAs, Ni, Ta, or the like can be used.

次に、図6Bに示すように、真空中において、この円錐体21の表面に、成長させようとするLBCO結晶の原料膜22を形成する。この原料膜22としては、例えばLa膜またはLa2 3 膜、Ba膜またはBaO膜、Cu膜またはCu2 O膜などの膜を用いるほか、LBCO膜そのものであってもよい。この原料膜22は、例えば真空蒸着法、スパッタリング法、化学気相成長(CVD)法、有機金属化学気相成長(MOCVD)法、分子線エピタキシー(MBE)法などの成膜法のいずれか、またはこれらを適宜組み合わせて形成することができる。 Next, as shown in FIG. 6B, an LBCO crystal material film 22 to be grown is formed on the surface of the cone 21 in a vacuum. As the raw material film 22, for example, a film such as a La film or a La 2 O 3 film, a Ba film or a BaO film, a Cu film or a Cu 2 O film, or the LBCO film itself may be used. The raw material film 22 is formed by any one of film formation methods such as vacuum deposition, sputtering, chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), and molecular beam epitaxy (MBE). Alternatively, they can be formed by appropriately combining them.

次に、図6Cに示すように、こうして原料膜22を形成した円錐体21の先端部からその側面に沿って所定距離L、例えば1〜3μm程度離れた点Pを目掛けて電子ビーム23を室温で照射する。この電子ビーム23のスポットサイズは、例えば50nm〜1μm程度、加速電圧は25〜200kV、照射電流量は1×10-7μA、照射時間は30分〜1時間とする。また、電子ビーム23の照射は例えば3〜4×10-6Torrの圧力の真空中で行う。このとき、図6Dに示すように、この電子ビーム23の照射部位ではなく、円錐体21の先端部近傍にLBCO針状結晶24が成長する。電子ビーム23の照射時には一般に、電子ビーム23の照射部位とLBCO針状結晶24の成長部位との間に、先端部を低温側として10〜100℃/μmの温度勾配が存在する。この場合、電子ビーム23の照射部位の温度はLBCO針状結晶24の成長温度よりも高いが、LBCO針状結晶24の成長部位はより温度が低くなって成長に最も適した温度になっている。このLBCO針状結晶24の成長は、固相エピタキシャル成長によるものと考えられる。このLBCO針状結晶24の太さ(径)は例えば5nm〜1μm程度、長さは例えば10nm〜2μm、あるいは10〜500nmであり、アスペクト比(長さ/太さ)は一般的には100以下である。 Next, as shown in FIG. 6C, the electron beam 23 is applied to a point P that is a predetermined distance L, for example, about 1 to 3 μm away from the tip of the cone 21 thus formed with the raw material film 22 along the side surface thereof. Irradiate at room temperature. The spot size of the electron beam 23 is, for example, about 50 nm to 1 μm, the acceleration voltage is 25 to 200 kV, the irradiation current amount is 1 × 10 −7 μA, and the irradiation time is 30 minutes to 1 hour. The irradiation with the electron beam 23 is performed in a vacuum at a pressure of 3 to 4 × 10 −6 Torr, for example. At this time, as shown in FIG. 6D, the LBCO needle-like crystal 24 grows in the vicinity of the tip portion of the cone 21 instead of the irradiation portion of the electron beam 23. In general, when the electron beam 23 is irradiated, a temperature gradient of 10 to 100 ° C./μm exists between the irradiation portion of the electron beam 23 and the growth portion of the LBCO needle crystal 24 with the tip portion as a low temperature side. In this case, the temperature of the irradiation site of the electron beam 23 is higher than the growth temperature of the LBCO needle crystal 24, but the temperature of the growth site of the LBCO needle crystal 24 is lower and becomes the most suitable temperature for growth. . The growth of the LBCO needle crystal 24 is considered to be due to solid phase epitaxial growth. The thickness (diameter) of the LBCO needle crystal 24 is, for example, about 5 nm to 1 μm, the length is, for example, 10 nm to 2 μm, or 10 to 500 nm, and the aspect ratio (length / thickness) is generally 100 or less. It is.

以上のように、この一実施形態によれば、試料表面の凹凸像の観測、高温超伝導体や重い電子系で起こるナノ・スケール不均一超伝導状態(自己組織化現象)の研究、磁束線格子の観測や磁束内電子状態の研究に極めて有用な走査プローブ顕微鏡を実現することができる。   As described above, according to this embodiment, observation of a concavo-convex image on a sample surface, research on a nanoscale inhomogeneous superconducting state (self-organization phenomenon) occurring in a high-temperature superconductor or a heavy electron system, magnetic flux lines It is possible to realize a scanning probe microscope that is extremely useful for observation of lattices and study of electronic states in magnetic flux.

以上、この発明の一実施形態について具体的に説明したが、この発明は上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態において挙げた数値、構成、材料、原料、プロセスなどはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構成、材料、原料、プロセスなどを用いてもよい。
Although one embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible.
For example, the numerical values, configurations, materials, raw materials, processes, and the like given in the above-described embodiments are merely examples, and different numerical values, configurations, materials, raw materials, processes, and the like may be used as necessary.

また、電子ビーム23の代わりに、レーザービームやイオンビームなどの他のエネルギービームを用いてもよい。また、電子ビーム23の照射前に原料膜22をあらかじめ形成しておくのではなく、成長原料を供給しながら電子ビーム23を照射することにより成長を行うようにしてもよい。さらに、一部の原料膜を形成した状態で他の成長原料を供給しながら電子ビーム23を照射することにより成長を行うようにしてもよい。   Further, instead of the electron beam 23, another energy beam such as a laser beam or an ion beam may be used. Alternatively, the source film 22 may not be formed in advance before the irradiation with the electron beam 23, but the growth may be performed by irradiating the electron beam 23 while supplying the growth source. Further, the growth may be performed by irradiating the electron beam 23 while supplying other growth raw materials in a state where a part of the raw material film is formed.

この発明の一実施形態によるアンドレーエフ反射走査プローブ顕微鏡を示す略線図である。It is a basic diagram which shows the Andreev reflection scanning probe microscope by one Embodiment of this invention. La2-x Bax CuO4 の相図である。It is a phase diagram of La 2-x Ba x CuO 4 . La2-x Bax CuO4 のBa濃度xと超伝導臨界温度Tc との関係を印加圧力をパラメータとして示す略線図である。Is a schematic diagram showing the relationship between the La 2-x Ba x CuO 4 of Ba concentration x superconducting critical temperature T c of the applied pressure as a parameter. この発明の一実施形態によるアンドレーエフ反射走査プローブ顕微鏡の使用方法を説明するための略線図である。It is a basic diagram for demonstrating the usage method of the Andreev reflection scanning probe microscope by one Embodiment of this invention. この発明の一実施形態によるアンドレーエフ反射走査プローブ顕微鏡において探針−試料間のI−V特性の印加圧力による変化を示す略線図である。It is a basic diagram which shows the change by the applied pressure of the IV characteristic between a probe and a sample in the Andreev reflection scanning probe microscope by one Embodiment of this invention. この発明の一実施形態によるアンドレーエフ反射走査プローブ顕微鏡において用いられるLBCO探針の作製方法を説明するための略線図である。It is a basic diagram for demonstrating the manufacturing method of the LBCO probe used in the Andreev reflection scanning probe microscope by one Embodiment of this invention.

符号の説明Explanation of symbols

11…圧電制御装置、12…LBCO探針、13…試料、14…定電流源、21…円錐体、22…原料膜、23…電子ビーム、24…LBCO針状結晶
DESCRIPTION OF SYMBOLS 11 ... Piezoelectric control device, 12 ... LBCO probe, 13 ... Sample, 14 ... Constant current source, 21 ... Conical body, 22 ... Raw material film, 23 ... Electron beam, 24 ... LBCO needle crystal

Claims (5)

圧力誘起超伝導物質からなる探針を用いたことを特徴とする走査プローブ顕微鏡。   A scanning probe microscope characterized by using a probe made of a pressure-induced superconducting material. アンドレーエフ反射を利用することを特徴とする請求項1記載の走査プローブ顕微鏡。   2. The scanning probe microscope according to claim 1, wherein Andreev reflection is used. 上記圧力誘起超伝導物質がLa2-x Bax CuO4 (ただし、xは1/8近傍)であることを特徴とする請求項1記載の走査プローブ顕微鏡。 2. The scanning probe microscope according to claim 1, wherein the pressure-induced superconducting material is La 2-x Ba x CuO 4 (where x is in the vicinity of 1/8). 圧力誘起超伝導物質からなる探針を用いた走査プローブ顕微鏡の使用方法であって、
上記探針と試料との間に一定電流を流しながら上記探針を上記試料の表面に沿って走査するようにしたことを特徴とする走査プローブ顕微鏡の使用方法。
A method of using a scanning probe microscope using a probe made of a pressure-induced superconducting material,
A method of using a scanning probe microscope, wherein the probe is scanned along the surface of the sample while a constant current is passed between the probe and the sample.
圧力誘起超伝導物質からなる探針を用いた走査プローブ顕微鏡の使用方法であって、
上記探針と試料との間の電圧を一定に保つように上記探針の高さを変化させながら上記探針を上記試料の表面に沿って走査するようにしたことを特徴とする走査プローブ顕微鏡の使用方法。
A method of using a scanning probe microscope using a probe made of a pressure-induced superconducting material,
A scanning probe microscope characterized in that the probe is scanned along the surface of the sample while changing the height of the probe so as to keep the voltage between the probe and the sample constant. How to use.
JP2004128770A 2004-04-23 2004-04-23 Scanning probe microscope and its using method Pending JP2005308651A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004128770A JP2005308651A (en) 2004-04-23 2004-04-23 Scanning probe microscope and its using method
KR1020067020386A KR20070012803A (en) 2004-04-23 2005-04-22 Scanning probe microscope probe and production method therefor and scanning probe microscope and application method therefor and needle-like element and production method therefor and electron element and production method therefor and charge density wave quantum phase microscope and charge density wave quantum interferometer
US11/568,223 US7553335B2 (en) 2004-04-23 2005-04-22 Scanning probe microscope probe and manufacturing method therefor, scanning probe microscope and using method therefor, needle-like body and manufacturing method therefor, electronic device and manufacturing method therefor, charge density wave quantum phase microscope, and charge density wave quantum interferometer
EP05736881A EP1744143A1 (en) 2004-04-23 2005-04-22 Scanning probe microscope probe and production method therefor and scanning probe microscope and application method therefor and needle-like element and production method therefor and electron element and production method therefor and charge density wave quantum phase microscope and charge density wave quantum interferomet
PCT/JP2005/008259 WO2005103646A1 (en) 2004-04-23 2005-04-22 Scanning probe microscope probe and production method therefor and scanning probe microscope and application method therefor and needle-like element and production method therefor and electron element and production method tehrefor and charge density wave quantum phase microscope and charge density wave quantum interferomet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128770A JP2005308651A (en) 2004-04-23 2004-04-23 Scanning probe microscope and its using method

Publications (1)

Publication Number Publication Date
JP2005308651A true JP2005308651A (en) 2005-11-04

Family

ID=35437584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128770A Pending JP2005308651A (en) 2004-04-23 2004-04-23 Scanning probe microscope and its using method

Country Status (1)

Country Link
JP (1) JP2005308651A (en)

Similar Documents

Publication Publication Date Title
Choi et al. Single‐crystalline diluted magnetic semiconductor GaN: Mn nanowires
US8173335B2 (en) Beam ablation lithography
Lee et al. Focused ion beam-assisted manipulation of single and double β-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-ω method
Irmer et al. Josephson junctions defined by a nanoplough
US7553335B2 (en) Scanning probe microscope probe and manufacturing method therefor, scanning probe microscope and using method therefor, needle-like body and manufacturing method therefor, electronic device and manufacturing method therefor, charge density wave quantum phase microscope, and charge density wave quantum interferometer
JP5588355B2 (en) Manufacture of atomic scale equipment
Yao et al. The bonding nature of individual C 60 molecules to Si (100) surfaces
JP2005308651A (en) Scanning probe microscope and its using method
McCabe et al. Low-density patterned InAs quantum dot arrays
Zhang et al. Determination of the local structure and electronic states of high-Tc superconductors by scanning tunneling microscopy
Sigloch et al. Large output voltage to magnetic flux change in nanosquids based on direct-write focused ion beam induced deposition technique
Van Haesendonck et al. Nanowire bonding with the scanning tunneling microscope
Trabaldo et al. Tuning the doping of YBa2Cu3O 7− δ nanowires through electromigration
Choi et al. Diluted magnetic semiconductor nanowires
Méndez et al. Formation of new terraces via diffusion induced by the field gradient in scanning tunneling microscopy
Baranov Combined study of local and global properties of ultimate two-dimensional superconductors
Kravchenko et al. Antimony Cluster Manipulation on the Si (001) Surface by Means of STM
Wang et al. Dissipation in an ultrathin superconducting single-crystal Pb nanobridge
Kravchenko et al. ANTIMONY CLUSTER MANIPULATION ON THE Si (OOl) SURFACE BY MEANS OF STM
Collomb Development of graphene-based sensors for scanning Hall microscopy and imaging of vortex matter in unconventional superconductors
Liu et al. The high-Tc superconductor Bi2Sr2CaCu2Ox as a superconducting superlattice
Huang Spatial variation of the electrochemical potential due to nanoscopic scatterers in epitaxial graphene investigated by scanning tunnelling potentiometry
Susla et al. Scanning probe microscopy/spectroscopy and its applications for nanotechnology
Lok et al. MBE-grown Fe nanowires on a ZnS (1 0 0) surface
Susła et al. Scanning tunneling microscopy/spectroscopy of ferromagnetic Ni clusters on graphite and BSCCO high-Tc superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804