JP2005306696A - Magnetic ferrite, and common mode noise filter and chip transformer using the same - Google Patents

Magnetic ferrite, and common mode noise filter and chip transformer using the same Download PDF

Info

Publication number
JP2005306696A
JP2005306696A JP2004129290A JP2004129290A JP2005306696A JP 2005306696 A JP2005306696 A JP 2005306696A JP 2004129290 A JP2004129290 A JP 2004129290A JP 2004129290 A JP2004129290 A JP 2004129290A JP 2005306696 A JP2005306696 A JP 2005306696A
Authority
JP
Japan
Prior art keywords
magnetic
layer
coil
magnetic layer
common mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004129290A
Other languages
Japanese (ja)
Inventor
Atsushi Inuzuka
敦 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004129290A priority Critical patent/JP2005306696A/en
Publication of JP2005306696A publication Critical patent/JP2005306696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that a nonmagnetic material or low magnetic permeability material of a great magnetic loss is used, resulting in reduction of a coupling coefficient in a laminated common mode noise filter. <P>SOLUTION: The magnetic ferrite has a composition obtained by adding 8 to 14wt% copper oxide to 100 parts by weight to a composition enclosed by 39.5:53.0:7.5mol%. 39.5: 48.0:12.5mol%, 20.0:67.5.:12.5mol%, and 20.0:55.0:25.5mol% in terms of Fe<SB>2</SB>O<SB>3</SB>, CoO, and ZnO in the composition ratios of Fe, Co and Zn as essential components. As a result, the magnetic ferrite having the low temperature sinterability of low loss in a high-frequency band and the common mode noise filter and chip transformer using the same can be realized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は各種電子機器に用いられる磁性フェライトおよびそれを用いたコモンモードノイズフィルタ並びにチップトランスに関するものである。   The present invention relates to a magnetic ferrite used in various electronic devices, a common mode noise filter using the same, and a chip transformer.

近年、電子機器の小型化、高周波化に伴い、高周波帯域で用いる小型の電子部品の需要が高まっており、この要望に応えるために積層構造の電子部品が実用化されてきている。特にインダクタンス部品やノイズ対策部品においても小型で高周波帯域で用いるコイルを内蔵した積層構造の積層電子部品が多く用いられており、このようなコイルを内蔵した積層構造の積層電子部品の一例として、コモンモードノイズフィルタやチップトランスのような2つ以上のコイルを内蔵する積層電子部品がある。この従来の積層型のコモンモードノイズフィルタの構成は内蔵する二つ以上のコイル間の磁束を鎖交させるために磁性体である第一の絶縁体層と、非磁性体もしくは低透磁率の絶縁性を有した第2の磁性体層を組み合わせた構成のものがある(例えば、特許文献1参照)。   In recent years, with the miniaturization and high frequency of electronic devices, the demand for small electronic components used in the high frequency band has increased, and in order to meet this demand, laminated electronic components have been put into practical use. In particular, multilayer electronic components with a multilayer structure that incorporates a coil that is used in a high frequency band are also widely used in inductance components and noise countermeasure components. As an example of a multilayer electronic component with a multilayer structure that incorporates such a coil, a common There are laminated electronic components such as a mode noise filter and a chip transformer that incorporate two or more coils. This conventional laminated common mode noise filter is composed of a first insulator layer, which is a magnetic material, and a non-magnetic material or a low-permeability insulating material in order to link magnetic flux between two or more built-in coils. There is a configuration in which a second magnetic material layer having a property is combined (see, for example, Patent Document 1).

このような積層構造のコイル部品に用いられるGHzの高周波帯域で用いる磁性材料としては前記ZnCuフェライトあるいはNi−Zn−Cu−Coフェライトでは損失特性の観点から不十分であり、これらに代わる磁性フェライトとして六方晶フェライトが考えられている。しかしながら、この六方晶フェライトの焼成温度は銀の融点よりも高温であり、このままでは銀電極と同時焼成は困難であり、積層構造のコイル部品を実現することは困難である。   The ZnCu ferrite or Ni—Zn—Cu—Co ferrite is insufficient from the viewpoint of loss characteristics as a magnetic material used in the high frequency band of GHz used for the coil component of such a laminated structure. Hexagonal ferrite is considered. However, the firing temperature of this hexagonal ferrite is higher than the melting point of silver, and as it is, simultaneous firing with the silver electrode is difficult, and it is difficult to realize a coil component having a laminated structure.

これに対して、この六方晶フェライトの低温焼結を実現するための添加物として酸化銅と酸化ビスマスを添加した磁性材料が開示されている(例えば、特許文献2参照)。
特開2003−31416号公報 特開2002−260911号公報
On the other hand, a magnetic material in which copper oxide and bismuth oxide are added as additives for realizing low-temperature sintering of this hexagonal ferrite is disclosed (for example, see Patent Document 2).
JP 2003-31416 A JP 2002-260911 A

しかしながら、前記従来の構成ではガラスセラミックやZnCuフェライトのような非磁性材料を用いるためにコイルから発生する磁束の一部が二つのコイル間で鎖交しないことから積層電子部品の結合係数が低くなる、あるいは第2の絶縁体層にNi−Zn−Cu−Coフェライトを用いたときにはこの磁性材料の磁気損失に起因して積層電子部品のディファレンシャルインピーダンスが増大して結合係数が低下してしまうという課題を有していた。   However, since the conventional configuration uses a non-magnetic material such as glass ceramic or ZnCu ferrite, a part of the magnetic flux generated from the coil is not linked between the two coils, so that the coupling coefficient of the laminated electronic component is lowered. Alternatively, when Ni—Zn—Cu—Co ferrite is used for the second insulator layer, the differential impedance of the laminated electronic component increases due to the magnetic loss of the magnetic material, resulting in a decrease in the coupling coefficient. Had.

また、低温焼結のために添加物を加えた六方晶系フェライトを用いて銀電極などと同時焼成した場合、六方晶フェライトの結晶内部に銀電極が拡散し、導体抵抗の増大、マイグレーションの誘発といった課題を有していた。特にこの問題は電極のパターンがファインになるに従って重要な問題となってくる。   In addition, when hexagonal ferrite with additives added for low-temperature sintering and co-firing with a silver electrode, the silver electrode diffuses inside the hexagonal ferrite crystal, increasing conductor resistance and inducing migration. There was a problem. In particular, this problem becomes an important problem as the electrode pattern becomes finer.

本発明は、前記従来の課題を解決するもので、銀電極と同時焼結できる高周波帯域で磁気損失の小さな磁性フェライトを提供することを目的とする。   An object of the present invention is to solve the above-described conventional problems, and to provide a magnetic ferrite having a small magnetic loss in a high frequency band that can be simultaneously sintered with a silver electrode.

前記従来の課題を解決するために、本発明は主成分としてFeとCoとZnの組成比がFe23,CoO,ZnO換算で39.5:53.0:7.5モル%、39.5:48.0:12.5モル%、20.0:67.5:12.5モル%、20.0:55.0:25.0モル%で囲まれた組成に酸化銅を8〜14wt%添加した組成からなる磁性フェライトとするものである。 In order to solve the above-described conventional problems, the present invention has a composition ratio of Fe, Co, and Zn as main components of 39.5: 53.0: 7.5 mol% in terms of Fe 2 O 3 , CoO, ZnO, 39 5: 48.0: 12.5 mol%, 20.0: 67.5: 12.5 mol%, 20.0: 55.0: 25.0 mol% A magnetic ferrite having a composition to which ˜14 wt% is added is used.

本発明の磁性フェライトおよびそれを用いたコモンモードノイズフィルタ並びにチップトランスは、銀電極と同時焼結できる高周波帯域で低損失の磁性フェライトを実現するとともに、これを積層電子部品に用いることにより二つのコイル間で結合係数の大きい高周波用のコモンモードノイズフィルタ並びにチップトランスを実現することができる。   The magnetic ferrite of the present invention and the common mode noise filter and chip transformer using the magnetic ferrite realize a low-loss magnetic ferrite in a high frequency band that can be simultaneously sintered with a silver electrode, and use this for a laminated electronic component. A high-frequency common mode noise filter and a chip transformer having a large coupling coefficient between the coils can be realized.

(実施の形態1)
以下、本発明の実施の形態1における磁性フェライトについて、図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the magnetic ferrite according to Embodiment 1 of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1における磁性フェライトの周波数特性を示した特性図であり、図2は本発明の実施の形態1における磁性フェライトの酸化銅の添加量と焼成収縮率の関係を示した図である。また図3は本発明の磁性フェライトの組成域を示す組成図である。   FIG. 1 is a characteristic diagram showing the frequency characteristics of the magnetic ferrite according to the first embodiment of the present invention. FIG. 2 shows the relationship between the amount of copper oxide added to the magnetic ferrite and the firing shrinkage ratio according to the first embodiment of the present invention. FIG. FIG. 3 is a composition diagram showing the composition range of the magnetic ferrite of the present invention.

以上のような特性を有する磁性フェライトについて、以下にその製造方法を説明しながら材料組成について詳細に説明する。   The material composition of the magnetic ferrite having the above characteristics will be described in detail below while explaining the manufacturing method thereof.

まず、本発明の磁性フェライトの出発原料である市販の酸化鉄と炭酸コバルト及び酸化亜鉛をFe23,CoO,ZnO換算で、Fe23=30.0モル%、CoO=57.5モル%、ZnO=12.5モル%の組成比となるように配合し、これに純水を適量加えてボールミルを用いて混合した後、乾燥して混合粉を得る。この混合粉を800℃で仮焼した後、遊星ボールミルを用いて粉砕して磁性粉末(以後仮焼粉と記す)を得る。得られた仮焼粉の主要結晶相はX線回折の結果からスピネル型結晶構造であり、その平均粒径は0.8μmであった。 First, commercially available iron oxide, cobalt carbonate and zinc oxide, which are starting materials for the magnetic ferrite of the present invention, are converted to Fe 2 O 3 , CoO, ZnO, Fe 2 O 3 = 30.0 mol%, CoO = 57.5. It mix | blends so that it may become a composition ratio of mol% and ZnO = 12.5 mol%, and after adding an appropriate amount of pure water to this and mixing using a ball mill, it dries and obtains mixed powder. This mixed powder is calcined at 800 ° C. and then pulverized using a planetary ball mill to obtain a magnetic powder (hereinafter referred to as calcined powder). The main crystal phase of the obtained calcined powder was a spinel crystal structure from the result of X-ray diffraction, and the average particle size was 0.8 μm.

次に、この仮焼粉100重量部に対して酸化銅の粉末を8重量部混合し、PVA(ポリビニルアルコール)水溶液を適量添加して混練することにより平均粒径300μmφ程度の造粒粉を作製する。その後この造粒粉をリング形状に成形し、900℃で焼成し、トロイダル状のスピネル結晶構造を有する磁性フェライトを得る(発明品1)。   Next, 8 parts by weight of copper oxide powder is mixed with 100 parts by weight of the calcined powder, and an appropriate amount of PVA (polyvinyl alcohol) aqueous solution is added and kneaded to produce a granulated powder having an average particle diameter of about 300 μmφ. To do. Thereafter, the granulated powder is formed into a ring shape and fired at 900 ° C. to obtain a magnetic ferrite having a toroidal spinel crystal structure (Invention 1).

また、比較のために出発原料である市販の酸化鉄と酸化ニッケルと酸化亜鉛と酸化銅及び炭酸コバルトをFe23,NiO,ZnO,CuO,CoO換算で、Fe23=46.0モル%、NiO=38.5モル%、CuO=13.5モル%、ZnO=1モル%、CoO=1モル%の組成比となるように配合し、同様なプロセスを経てトロイダル状のスピネル結晶構造を有する磁性フェライトを作製した(従来品1)。 For comparison, commercially available iron oxide, nickel oxide, zinc oxide, copper oxide, and cobalt carbonate, which are starting materials, are converted to Fe 2 O 3 , NiO, ZnO, CuO, CoO, and Fe 2 O 3 = 46.0. Toroidal spinel crystals are blended so as to have a composition ratio of mol%, NiO = 38.5 mol%, CuO = 13.5 mol%, ZnO = 1 mol%, CoO = 1 mol%, and through the same process. A magnetic ferrite having a structure was produced (conventional product 1).

さらに、市販の酸化鉄と炭酸バリウムと炭酸コバルトと酸化銅と酸化ビスマスを46.0モル%、NiO=38.5モル%、CuO=13.5モル%、ZnO=1モル%、CoO=1モル%の組成比となるように配合し、同様なプロセスを経てトロイダル状の六方晶結晶構造を有する磁性フェライトを作製した(従来品2)。   Further, commercially available iron oxide, barium carbonate, cobalt carbonate, copper oxide, and bismuth oxide are 46.0 mol%, NiO = 38.5 mol%, CuO = 13.5 mol%, ZnO = 1 mol%, CoO = 1. A magnetic ferrite having a toroidal hexagonal crystal structure was prepared through a similar process by blending so as to have a composition ratio of mol% (conventional product 2).

発明品1、従来品1,2ともに900℃焼成で寸法が15%以上収縮しており、十分に焼結していることが分かった。   Inventive product 1 and conventional products 1 and 2 were both sintered at 900 ° C. and shrinkage was 15% or more, indicating that they were fully sintered.

このようにして得られたそれぞれのトロイダル状の磁性フェライトの複素透磁率の周波数特性を図1に示す。なお、複素透磁率はネットワークアナライザーHP8753C(アジレント・テクノロジー(株)製)を用いて同軸管法より求めた。   The frequency characteristics of the complex permeability of each toroidal magnetic ferrite thus obtained are shown in FIG. The complex magnetic permeability was determined by the coaxial tube method using a network analyzer HP8753C (manufactured by Agilent Technologies).

図1に示すように、従来品1と従来品2は600MHz以上でμ”が増大するのに対し、本発明品はμ’が1GHzまで約2.5であり、かつμ”は約0.2以下である。すなわち、本発明品は従来品1、従来品2と比較して1GHzまで低損失な磁性フェライトであり、これが銀電極と同時焼結ができる900℃前後の焼成温度で得られることが分かる。   As shown in FIG. 1, in the conventional product 1 and the conventional product 2, μ ″ increases at 600 MHz or more, while in the product of the present invention, μ ′ is approximately 2.5 up to 1 GHz, and μ ″ is approximately 0.00. 2 or less. That is, it can be seen that the product of the present invention is a magnetic ferrite having a loss as low as 1 GHz as compared with the conventional product 1 and the conventional product 2 and can be obtained at a firing temperature of about 900 ° C. at which simultaneous sintering with the silver electrode is possible.

次に、本発明の実施の形態1における発明品1に示した磁性フェライトの酸化銅の添加量と焼成収縮率の関係を図2に示す。   Next, FIG. 2 shows the relationship between the amount of copper oxide added to the magnetic ferrite shown in Invention 1 in Embodiment 1 of the present invention and the firing shrinkage rate.

図2に示すように、6重量部以上の酸化銅の添加量で焼成収縮率が15%以上になり、十分に焼結が進んでいることがわかる。また、16重量部以上の酸化銅の添加量では、1GHzでのμ”が増大してしまっていることから酸化銅の添加量は6から14重量部の範囲内であることが望ましい。   As shown in FIG. 2, it can be seen that the firing shrinkage ratio is 15% or more with the addition amount of copper oxide of 6 parts by weight or more, and the sintering is sufficiently advanced. Further, when the amount of copper oxide added is 16 parts by weight or more, μ ″ at 1 GHz is increased, and therefore the amount of copper oxide added is preferably in the range of 6 to 14 parts by weight.

次に、本発明の実施の形態1における磁性フェライトの仮焼粉の組成を酸化鉄粉と炭酸コバルト粉及び酸化亜鉛粉をFe23,CoO,ZnO換算で(表1)に示した組成比とし、これらの仮焼粉に対して8重量部の酸化銅を添加して、前記と同様なプロセスを経て、トロイダル状の磁性フェライトを作成した(実施例1〜実施例7)。 Next, the composition of the calcined powder of magnetic ferrite in Embodiment 1 of the present invention is shown in Table 1 in terms of Fe 2 O 3 , CoO, and ZnO in terms of iron oxide powder, cobalt carbonate powder, and zinc oxide powder. By comparison, 8 parts by weight of copper oxide was added to these calcined powders, and a toroidal magnetic ferrite was prepared through the same process as described above (Examples 1 to 7).

得られたそれぞれのトロイダル状の磁性フェライトの1GHzでの複素透磁率μ’とμ”を(表1)に本発明の組成比外である比較例1〜比較例8と比較して示す。   The complex permeability μ ′ and μ ″ at 1 GHz of the obtained toroidal magnetic ferrites are shown in Table 1 in comparison with Comparative Examples 1 to 8 which are outside the composition ratio of the present invention.

Figure 2005306696
Figure 2005306696

(表1)の結果より、Fe成分が少なくなると、比較例7,8のようにμ’が小さくなってしまうため、必要以上にFe成分を少なくするのは望ましくない。   From the results of (Table 1), if the Fe component decreases, μ ′ decreases as in Comparative Examples 7 and 8, so it is not desirable to decrease the Fe component more than necessary.

また、Zn成分が少なくなると、比較例3,6のようにμ’が小さくなってしまうため、必要以上にZn成分を少なくするのは望ましくない。Zn成分が多くなると、比較例2,4,5のようにμ”が大きくなり低損失が要求される用途には不適切となる。   Further, when the Zn component decreases, μ ′ decreases as in Comparative Examples 3 and 6, so it is not desirable to decrease the Zn component more than necessary. When the Zn content increases, μ ″ becomes large as in Comparative Examples 2, 4, and 5, which is inappropriate for applications requiring low loss.

また、実施例5,7のようにFe成分が少ない場合は、Zn成分が、比較的多くなってもμ”は増大しなかった。   Further, when the Fe component was small as in Examples 5 and 7, μ ″ did not increase even when the Zn component was relatively large.

また、比較例1のように、Fe成分が多い組成では、μ’の温度変化が大きくなってしまい、優れた温度特性を要求する用途には不適切となる。   Further, as in Comparative Example 1, a composition having a large amount of Fe component has a large change in the temperature of μ ′, and is inappropriate for applications requiring excellent temperature characteristics.

以上の結果から、図3の斜線で示す組成範囲において1GHzでのμ’が1.5以上であり、μ”が0.1以下であるGHz帯域で有効な特性を有する磁性フェライトを実現でき、この組成範囲を超えても実用的に有用な効果は現れないことが分かる。   From the above results, it is possible to realize a magnetic ferrite having effective characteristics in the GHz band in which μ ′ at 1 GHz is 1.5 or more and μ ″ is 0.1 or less in the composition range shown by hatching in FIG. It can be seen that practically useful effects do not appear even if the composition range is exceeded.

また、得られた本発明の磁性フェライトはX線回折による解析結果から、若干のCoO等の異相が認められるものの、スピネル型結晶構造が主要相であった。この結晶構造の同定にはX線回折装置RINT−2000(理学電機(株)製)を用いた。   The obtained magnetic ferrite of the present invention was found to have a spinel crystal structure as the main phase, although some foreign phases such as CoO were observed from the analysis results by X-ray diffraction. For identification of this crystal structure, an X-ray diffractometer RINT-2000 (manufactured by Rigaku Corporation) was used.

以上説明してきたように、得られた磁性粉はX線回折による解析結果から、若干のZnFe23,ZnCo24等の異相が認められるものの、スピネル型結晶構造が主要相であり、その平均粒子径は0.5〜1.0μmであった。この平均粒子径が上記範囲外である場合には、緻密な磁性フェライトを得ることが困難になる。この平均粒子径はレーザー回折式粒度分布測定装置SALD2100(島津製作所製)で測定したX50の値で示した。 As described above, the obtained magnetic powder has a spinel crystal structure as the main phase, although some heterogeneous phases such as ZnFe 2 O 3 and ZnCo 2 O 4 are recognized from the analysis result by X-ray diffraction. The average particle size was 0.5 to 1.0 μm. When this average particle diameter is outside the above range, it is difficult to obtain dense magnetic ferrite. This average particle diameter was shown by the value of X 50 measured with a laser diffraction particle size distribution analyzer SALD2100 (manufactured by Shimadzu Corporation).

また、出発原料として用いる炭酸コバルトは仮焼する過程で酸化物に変化することからCoO,Co34のような価数の異なる酸化コバルトを出発原料として用いても同様の効果が得られる。 Further, since cobalt carbonate used as a starting material changes to an oxide during the calcination process, the same effect can be obtained even when cobalt oxide having a different valence such as CoO or Co 3 O 4 is used as a starting material.

また、仮焼温度は800〜1000℃前後でZnFe24,ZnCo24等が仮焼粉に含有していない温度以上を選択することが望ましい。仮焼の途中過程で出発原料である酸化鉄と炭酸コバルト及び酸化亜鉛から生じるZnCo24,ZnFe24等が多量に仮焼粉に含有している場合、特に成形体のサイズが大きいほど焼成の過程で亀裂が生じる可能性があるためである。 Further, it is desirable to select a calcining temperature of about 800 to 1000 ° C. and a temperature at which ZnFe 2 O 4 , ZnCo 2 O 4 and the like are not contained in the calcined powder. When the calcined powder contains a large amount of ZnCo 2 O 4 , ZnFe 2 O 4, etc. generated from iron oxide, cobalt carbonate and zinc oxide, which are starting materials in the course of calcining, the size of the compact is particularly large This is because cracks may occur during the firing process.

また、焼成温度は850〜930℃で磁性フェライトが緻密になる温度を選択することが望ましい。銀電極との同時焼成を行うため、930℃以上の焼成温度は好ましくない。さらに、焼結の進行は磁性フェライトの組成や仮焼粉の粒径に依存するため、用いる仮焼粉により若干の調整を行う必要が生じる。   Further, it is desirable to select a temperature at which the magnetic ferrite becomes dense at a firing temperature of 850 to 930 ° C. Since simultaneous firing with the silver electrode is performed, a firing temperature of 930 ° C. or higher is not preferable. Furthermore, since the progress of sintering depends on the composition of the magnetic ferrite and the particle size of the calcined powder, it is necessary to make some adjustments depending on the calcined powder used.

また、酸化銅の添加は出発原料である酸化鉄、酸化亜鉛、炭酸コバルトに加えて仮焼しても良く、酸化銅を添加せずに酸化鉄、酸化亜鉛、炭酸コバルトから得られる仮焼粉に対して酸化銅を添加した場合と同様な焼成温度で同様な磁気特性が得られる。   The addition of copper oxide may be calcined in addition to the starting materials of iron oxide, zinc oxide and cobalt carbonate, and calcined powder obtained from iron oxide, zinc oxide and cobalt carbonate without adding copper oxide On the other hand, similar magnetic characteristics can be obtained at the same firing temperature as when copper oxide is added.

以上のように、本実施の形態1では主要相がスピネル型結晶構造を有し、FeとCoとZnの組成比がFe23,CoO,ZnO換算で39.5:53:7.5モル%と、39.5:48:12.5モル%と、20:67.5:12.5モル%と、20:55:25モル%で囲まれた範囲の組成100重量部に対して酸化銅を6〜14重量部添加されている組成を有する磁性フェライトであり、酸化銅の添加により900℃焼成が可能な1GHzまで磁気損失の小さい磁性フェライトを実現することができる。またこの磁性フェライトは900℃の焼成により最適の磁気特性を示すことから銀あるいは銅などの高導電率を有する電極材料との同時焼結が可能なことから内部にコイル導体を内蔵した積層電子部品も用いる磁性フェライトとして有用である。 As described above, in the first embodiment, the main phase has a spinel crystal structure, and the composition ratio of Fe, Co, and Zn is 39.5: 53: 7.5 in terms of Fe 2 O 3 , CoO, and ZnO. To 100 parts by weight of the composition in the range surrounded by mol%, 39.5: 48: 12.5 mol%, 20: 67.5: 12.5 mol%, and 20:55:25 mol% It is a magnetic ferrite having a composition to which 6 to 14 parts by weight of copper oxide is added, and it is possible to realize a magnetic ferrite with a small magnetic loss up to 1 GHz that can be fired at 900 ° C. by adding copper oxide. In addition, since this magnetic ferrite exhibits optimum magnetic characteristics when fired at 900 ° C., it can be sintered simultaneously with an electrode material having a high conductivity such as silver or copper. Are also useful as magnetic ferrites.

(実施の形態2)
以下、本発明の実施の形態2におけるコモンモードノイズフィルタについて、図面を参照しながら説明する。
(Embodiment 2)
Hereinafter, a common mode noise filter according to Embodiment 2 of the present invention will be described with reference to the drawings.

図4(a)は本発明の実施の形態2におけるコモンモードノイズフィルタの構造を説明するための分解斜視図であり、図4(b)はその等価回路を示す回路図である。図4(c)はその外観斜視図である。   FIG. 4A is an exploded perspective view for explaining the structure of the common mode noise filter according to the second embodiment of the present invention, and FIG. 4B is a circuit diagram showing an equivalent circuit thereof. FIG. 4C is an external perspective view.

図4(a)、図4(b)、図4(c)において、3はNi−Zn−Cuフェライトなどによる絶縁性を有した磁性体層である。この磁性体層3の上に二つのコイルパターン2−1、2−2よりなるコイル層7が積層されている。このコイル層7に用いるコイルパターン2−1、2−2は銀などの高導電率を有する電極材料が好ましい。さらにこのコイル層7の上に絶縁性を有する磁性体層1が積層されている。この磁性体層1には本発明の磁性フェライトを用いる構成としている。   4 (a), 4 (b), and 4 (c), reference numeral 3 denotes a magnetic layer having insulating properties such as Ni-Zn-Cu ferrite. On the magnetic layer 3, a coil layer 7 composed of two coil patterns 2-1 and 2-2 is laminated. The coil patterns 2-1 and 2-2 used for the coil layer 7 are preferably electrode materials having high conductivity such as silver. Furthermore, an insulating magnetic layer 1 is laminated on the coil layer 7. The magnetic layer 1 is configured to use the magnetic ferrite of the present invention.

また、この磁性体層1の上には二つのコイルパターン2−1、2−2からなるコイル層8が積層されており、この二つのコイルパターン2−1、2−2は磁性体層1に設けたビア5によって接続されている。このコイルパターン2−1、2−2は磁性体層1に設けたビア5を介して接続された2本のコイルが並行に配置された2条渦巻きの螺旋状のコイルとして形成している。これらのコイルを含む接続回路は図4(b)に示すような等価回路を構成するように配置されている。さらにこのコイルパターン2−1、2−2の両端には引出電極部2−1a、2−1b、2−2a、2−2bが接続されている。   Further, a coil layer 8 composed of two coil patterns 2-1 and 2-2 is laminated on the magnetic layer 1, and the two coil patterns 2-1 and 2-2 are formed on the magnetic layer 1. Are connected by vias 5 provided in The coil patterns 2-1 and 2-2 are formed as a spiral coil of two spirals in which two coils connected via a via 5 provided in the magnetic layer 1 are arranged in parallel. The connection circuit including these coils is arranged so as to constitute an equivalent circuit as shown in FIG. Further, extraction electrode portions 2-1a, 2-1b, 2-2a, 2-2b are connected to both ends of the coil patterns 2-1, 2-2.

次に、このコイル層8の上には絶縁性を有する磁性体層3が積層されている。   Next, the magnetic layer 3 having insulating properties is laminated on the coil layer 8.

このような積層構造のコモンモードノイズフィルタはセラミックグリーンシート成型法と印刷技術により積層成型体とすることができ、コイルパターン2−1、2−2が溶融しない温度(900℃前後)で焼成した後、引出電極2−1a、2−1b、2−2a、2−2bのいずれか一つとそれぞれ電気的に接続している外部電極6を形成することにより、図4(c)に示すようなチップ状のコモンモードノイズフィルタ4が実現できる。   The common mode noise filter having such a laminated structure can be formed into a laminated molded body by a ceramic green sheet molding method and a printing technique, and fired at a temperature (around 900 ° C.) at which the coil patterns 2-1 and 2-2 do not melt. Thereafter, by forming the external electrode 6 electrically connected to any one of the extraction electrodes 2-1a, 2-1b, 2-2a, and 2-2b, as shown in FIG. A chip-like common mode noise filter 4 can be realized.

以上説明してきたように、コイルパターン2−1とコイルパターン2−2が並行して配置された2条渦巻の螺旋状の構成のコモンモードノイズフィルタにおいて、コイル層7とコイル層8の間に高周波数帯域においても低損失な磁気特性を有する磁性体層1となる本発明の磁性フェライトを介在させることによって、コイルパターン2−1とコイルパターン2−2の磁束が効率よく鎖交することによりコイル層7とコイル層8の磁気結合が強くなり、コモンモードノイズフィルタとしての結合係数が向上する。   As described above, in the common mode noise filter having a spiral configuration of two spirals in which the coil pattern 2-1 and the coil pattern 2-2 are arranged in parallel, between the coil layer 7 and the coil layer 8 By interposing the magnetic ferrite of the present invention, which is the magnetic layer 1 having low loss magnetic characteristics even in the high frequency band, the magnetic fluxes of the coil pattern 2-1 and the coil pattern 2-2 are efficiently linked. The magnetic coupling between the coil layer 7 and the coil layer 8 is strengthened, and the coupling coefficient as a common mode noise filter is improved.

また、並行して配置されたコイルパターン2−1とコイルパターン2−2の間での磁気結合をより高めるために磁性体層1は磁性体層3よりも透磁率を低くすることが好ましい。   The magnetic layer 1 preferably has a lower magnetic permeability than the magnetic layer 3 in order to further increase the magnetic coupling between the coil pattern 2-1 and the coil pattern 2-2 arranged in parallel.

また、コイルパターン2−1、コイルパターン2−2の片面のみに磁性体層1が接していることが好ましい。コイルパターン2−1、コイルパターン2−2の両面に磁性体層1が接している場合には、並行して配置されたコイルパターン2−1、2−2間で磁束が鎖交しなくなることから磁気結合が劣化するので好ましくないからである。   Further, it is preferable that the magnetic layer 1 is in contact with only one side of the coil pattern 2-1 and the coil pattern 2-2. When the magnetic layer 1 is in contact with both surfaces of the coil pattern 2-1 and the coil pattern 2-2, the magnetic flux does not link between the coil patterns 2-1 and 2-2 arranged in parallel. This is because the magnetic coupling is deteriorated.

次に、このコモンモードノイズフィルタの積層構造について製造方法を説明しながら詳細に説明する。   Next, the laminated structure of the common mode noise filter will be described in detail while explaining the manufacturing method.

まず始めに、本発明の磁性フェライトの出発原料である酸化鉄と酸化コバルトと酸化亜鉛を用いてFe23:CoO:ZnO=38:50:12モル%の組成比になるように配合し、これに純水を適量加えてボールミルを用いて混合した後、120℃で乾燥させて混合粉を得る。 First, using iron oxide, cobalt oxide, and zinc oxide, which are starting materials for the magnetic ferrite of the present invention, a composition ratio of Fe 2 O 3 : CoO: ZnO = 38: 50: 12 mol% is obtained. Then, an appropriate amount of pure water is added to this and mixed using a ball mill, followed by drying at 120 ° C. to obtain a mixed powder.

この混合粉を800℃で仮焼した後、遊星ボールミルを用いて最大粒径が8μm以下になるまで粉砕してフェライト仮焼粉を得る。このフェライト仮焼粉にCuOの粉末を10wt%加え、さらにブチラール樹脂と酢酸ブチルを適量加えてボールミルを用いて十分に分散させてセラミックスラリーを得る。このセラミックスラリーをドクターブレード法により約50μmの磁性体層1に用いるフェライトグリーンシートを得た。   After calcining this mixed powder at 800 ° C., it is pulverized using a planetary ball mill until the maximum particle size becomes 8 μm or less to obtain a ferrite calcined powder. A 10% by weight CuO powder is added to the calcined ferrite powder, and an appropriate amount of butyral resin and butyl acetate are added and sufficiently dispersed using a ball mill to obtain a ceramic slurry. A ferrite green sheet using this ceramic slurry for the magnetic layer 1 of about 50 μm was obtained by the doctor blade method.

一方、磁性体層3となるフェライトの出発原料である酸化鉄と酸化ニッケルと酸化亜鉛と酸化銅をFe23:NiO:ZnO:CuO=48:21:21:10モル%の組成比になるように配合し、前記フェライトグリーンシートと同様なプロセスを経て磁性体層3に用いるフェライトグリーンシートを得た。その後、それぞれのフェライトグリーンシートを多数個取りとするために5cm□に切断した。 On the other hand, iron oxide, nickel oxide, zinc oxide and copper oxide, which are starting materials for ferrite to be the magnetic layer 3, have a composition ratio of Fe 2 O 3 : NiO: ZnO: CuO = 48: 21: 21: 10 mol%. The ferrite green sheet used for the magnetic layer 3 was obtained through the same process as the ferrite green sheet. Thereafter, each of the ferrite green sheets was cut into 5 cm □ to obtain a large number.

次に、5cm□に切断された磁性体層3に用いるフェライトグリーンシートを複数枚積層して厚み400μmとし、さらにこの上にAgを主成分とする線幅30μm、線間幅25μmの並列する2本の電極パターンから構成されるコイルパターン2−1、2−2として印刷形成した。   Next, a plurality of ferrite green sheets used for the magnetic layer 3 cut to 5 cm □ are laminated to a thickness of 400 μm, and further, a line width of 30 μm mainly composed of Ag and a line width of 25 μm are arranged in parallel. Printed as coil patterns 2-1 and 2-2 composed of two electrode patterns.

その後、このコイルパターン2−1、コイルパターン2−2の上に層間のコイルパターン2−1、コイルパターン2−2を接続するビア5を形成した磁性体層1に用いるフェライトグリーンシートを積層した後、さらにこの上にAgを主成分とする線幅30μm、線間幅25μmの並列する2本の電極パターンから構成される上層のコイルパターン2−1、コイルパターン2−2として印刷形成し、フェライトグリーンシートのビア5を介して接続された2本の螺旋状のコイルを形成した。   Thereafter, a ferrite green sheet used for the magnetic layer 1 in which the vias 5 connecting the coil patterns 2-1 and 2-2 between the layers were formed on the coil patterns 2-1 and 2-2 was laminated. After that, it is further printed and formed as an upper coil pattern 2-1 and a coil pattern 2-2 composed of two electrode patterns arranged in parallel with a line width of 30 μm mainly composed of Ag and a line width of 25 μm. Two spiral coils connected through the via 5 of the ferrite green sheet were formed.

この2本の螺旋状のコイルはコイルパターン2−1とコイルパターン2−2が磁性体層3の上面にほぼ並行な渦巻き状に設けられるとともに、さらに磁性体層1を挟むようにして磁性体層1の上部に設けられたコイルパターン2−1とコイルパターン2−2は磁性体層1に設けられたビア5を介して接続されてほぼ並行な渦巻き状に設けられた構成となっている。   In the two spiral coils, the coil pattern 2-1 and the coil pattern 2-2 are provided in a spiral shape substantially parallel to the upper surface of the magnetic layer 3, and the magnetic layer 1 is further sandwiched between the magnetic layers 1. The coil pattern 2-1 and the coil pattern 2-2 provided on the upper part of the magnetic layer 1 are connected via vias 5 provided in the magnetic layer 1 and are provided in a substantially parallel spiral shape.

次に、この上に磁性体層3に用いるフェライトグリーンシートを複数枚積層して厚み約1mmの積層成形品を得た。   Next, a plurality of ferrite green sheets used for the magnetic layer 3 were laminated thereon to obtain a laminated molded product having a thickness of about 1 mm.

その後、この積層成形品を128個のコモンモードノイズフィルタの個片に切断した後930℃−2時間で焼成し、その後端面部に表出した引出電極部2−1a、2−1b、2−2a、2−2bにAgあるいはCuの外部電極6を厚膜プロセスあるいはめっきプロセスにより形成することにより図4(c)に示すような1.2×1.0×0.8mmの128個のコモンモードノイズフィルタを得ることができた(発明品2)。   Thereafter, this multilayer molded product was cut into 128 pieces of common mode noise filters, fired at 930 ° C. for 2 hours, and extracted electrode portions 2-1a, 2-1b, 2- By forming external electrodes 6 of Ag or Cu on 2a and 2-2b by a thick film process or a plating process, 128 commons of 1.2 × 1.0 × 0.8 mm as shown in FIG. A mode noise filter could be obtained (Invention 2).

また、比較のためにNi−Zn−Cu−Coフェライトを磁性体層に用いて同様なプロセスを経て得たコモンモードノイズフィルタ(従来品3)を作製した。これらのコモンモードノイズフィルタの電気特性を評価した。   For comparison, a common mode noise filter (conventional product 3) obtained through a similar process using Ni—Zn—Cu—Co ferrite as a magnetic layer was fabricated. The electrical characteristics of these common mode noise filters were evaluated.

その結果、従来品3、発明品2ともにコモンモードインピーダンスが90Ωであったが、従来品3の結合係数が0.90であるのに対して、発明品2では結合係数が0.93と良好であった。   As a result, the common mode impedance of both the conventional product 3 and the invention product 2 was 90Ω, but the coupling coefficient of the conventional product 3 is 0.90, whereas the coupling coefficient of the invention product 2 is 0.93, which is good. Met.

なお、磁性体層1に用いるフェライトグリーンシートは薄いほど結合係数の大きなコモンモードノイズフィルタが得られるが、特に焼結後の厚さを50μm以下にすることが望ましく、このような構成とすることにより結合係数が0.93以上の優れたコモンモードノイズフィルタを得ることができた。   In addition, the thinner the ferrite green sheet used for the magnetic layer 1, the larger the common mode noise filter having a coupling coefficient can be obtained. In particular, the thickness after sintering is desirably 50 μm or less, and such a configuration is adopted. Thus, an excellent common mode noise filter having a coupling coefficient of 0.93 or more was obtained.

また、コモンモードノイズフィルタのコイルパターン2−1、コイルパターン2−2は所望するインダクタンス特性やクロストーク特性によってさまざまな形態を取ることができるが、磁性体層1が2つのコイルで形成するコイルパターン2−1、コイルパターン2−2に接触している限り、いずれの場合も同様な効果を得ることができ、特に2つのコイルパターン2−1、コイルパターン2−2間が狭くなるほど効果は大きくなる。   The coil pattern 2-1 and the coil pattern 2-2 of the common mode noise filter can take various forms depending on desired inductance characteristics and crosstalk characteristics, but the coil formed by the magnetic layer 1 with two coils. As long as the pattern 2-1 and the coil pattern 2-2 are in contact with each other, the same effect can be obtained in any case. In particular, the effect becomes smaller as the distance between the two coil patterns 2-1 and 2-2 becomes narrower. growing.

これらを検討した結果、電極パターンの間隔は30μm以下にすることにより二つのコイル間で鎖交する磁束を増大させる効果があることが分かった。   As a result of examining these, it has been found that by setting the distance between the electrode patterns to 30 μm or less, there is an effect of increasing the magnetic flux interlinking between the two coils.

以上のように、本実施の形態2では内蔵する2つのコイルを形成するコイルパターン2−1、コイルパターン2−2の間の少なくとも一部に1GHzまで低損失な磁性フェライトである磁性体層1が介在することにより、磁気損失を増大させることなくコイル間で鎖交する磁束を増大させることにより、結合係数の大きなコモンモードノイズフィルタを実現し、コモンモードノイズフィルタとしてコモンモードノイズを効率良く除去することが可能となる。   As described above, in the second embodiment, the magnetic layer 1 that is a magnetic ferrite having a low loss up to 1 GHz is provided at least in part between the coil pattern 2-1 and the coil pattern 2-2 that form two built-in coils. By intervening, the magnetic flux linked between the coils is increased without increasing the magnetic loss, thereby realizing a common mode noise filter with a large coupling coefficient and efficiently removing common mode noise as a common mode noise filter. It becomes possible to do.

また、このような構成を有するコモンモードノイズフィルタとすることにより、小型でGHz帯域で優れた特性を有する積層電子部品を実現できる。   In addition, by using the common mode noise filter having such a configuration, a multilayer electronic component having a small size and excellent characteristics in the GHz band can be realized.

さらに、このコモンモードノイズフィルタを内蔵した複合部品とすることにより、高密度の積層セラミック電子部品、積層モジュール部品あるいは他のコンデンサ素子あるいは抵抗素子などとの複合部品化された積層電子部品として有用である。   Furthermore, by making a composite component with this common mode noise filter built-in, it is useful as a multilayer electronic component that is made into a composite component with a high-density multilayer ceramic electronic component, a multilayer module component, or other capacitor element or resistor element. is there.

(実施の形態3)
以下、本発明の実施の形態3におけるチップトランスについて、図面を参照しながら説明する。
(Embodiment 3)
Hereinafter, a chip transformer according to Embodiment 3 of the present invention will be described with reference to the drawings.

図5(a)は本発明の実施の形態3におけるチップトランスの構造を説明するための分解斜視図であり、図5(b)はその等価回路を示す回路図であり、図5(c)はその外観斜視図である。   FIG. 5A is an exploded perspective view for explaining the structure of the chip transformer according to the third embodiment of the present invention, FIG. 5B is a circuit diagram showing an equivalent circuit thereof, and FIG. Is an external perspective view thereof.

また、図6は本実施の形態3における他の例であるチップトランスの断面構造図である。   FIG. 6 is a sectional structural view of a chip transformer which is another example in the third embodiment.

次に、図5(a)〜図5(c)を用いて本発明の実施の形態3における積層型のチップトランスの例を示す。   Next, an example of a stacked chip transformer according to the third embodiment of the present invention will be described with reference to FIGS. 5 (a) to 5 (c).

図5(a)に示す本発明による積層型のチップトランスは、絶縁性を有する磁性体層30で挟まれた一次コイル21(引出電極部21a、引出電極部21bを含む)と2次コイル22(引出電極部22a、引出電極部22b)を形成したコイル層7とコイル層8の間に絶縁性を有する磁性体層10が介在するとともにビア5を介してコイル層7とコイル層8がそれぞれ一次コイル21、二次コイル22として接続された電極構造を有しており、特に銀を主成分とする2本の並列する電極パターンから構成される螺旋状の一次コイル21、二次コイル22を形成することを特徴としている。その結果として、それぞれの一次コイル21、二次コイル22の近傍に周回する磁束を断ち切り、2つのコイル間21,22の磁気的な結合を強化することができる。   The laminated chip transformer according to the present invention shown in FIG. 5A includes a primary coil 21 (including an extraction electrode portion 21a and an extraction electrode portion 21b) and a secondary coil 22 sandwiched between magnetic layers 30 having an insulating property. A magnetic layer 10 having an insulating property is interposed between the coil layer 7 and the coil layer 8 on which the (extraction electrode portion 22 a and extraction electrode portion 22 b) are formed, and the coil layer 7 and the coil layer 8 are respectively connected via the via 5. It has an electrode structure connected as a primary coil 21 and a secondary coil 22, and in particular, a spiral primary coil 21 and a secondary coil 22 composed of two parallel electrode patterns mainly composed of silver. It is characterized by forming. As a result, the magnetic flux circulating around the primary coil 21 and the secondary coil 22 can be cut off, and the magnetic coupling between the two coils 21 and 22 can be strengthened.

このことは実施の形態2とおなじ作用を発揮するものであり、特に異なっている点は、図5(b)の等価回路に示したように入出力端子の組み合わせが異なっているだけである。   This exhibits the same effect as that of the second embodiment, and the only difference is that the combination of input / output terminals is different as shown in the equivalent circuit of FIG.

以上説明してきたような構成を有するチップトランスの外観を図5(c)に示す。11はチップトランスであり、12は4個の外部電極であり、図5(a)に示す引出電極部21a,21b,22a,22bのいずれか一つとそれぞれ電気的に接続している。   FIG. 5C shows the appearance of the chip transformer having the configuration as described above. Reference numeral 11 denotes a chip transformer, and 12 denotes four external electrodes, which are electrically connected to any one of the extraction electrode portions 21a, 21b, 22a, and 22b shown in FIG.

以上の構成を有するチップトランスの特性を評価した結果、従来の磁性フェライトであるNi−Zn−Cu−Coフェライトを用いたチップトランス(従来品4)の結合係数が0.9であるのに対して、磁性体層10に本発明のCo−Zn−Cuフェライトを用いたチップトランス(発明品3)の結合係数は0.93と良好であった。   As a result of evaluating the characteristics of the chip transformer having the above configuration, the coupling coefficient of the chip transformer (conventional product 4) using Ni—Zn—Cu—Co ferrite, which is a conventional magnetic ferrite, is 0.9. The coupling coefficient of the chip transformer (Invention 3) using the Co—Zn—Cu ferrite of the present invention for the magnetic layer 10 was 0.93, which was good.

以上のように、本実施の形態3では、内蔵する2つのコイルを形成する一次コイル21、二次コイル22の間の少なくとも一部に1GHzまで低損失な磁性フェライトが介在し、この磁性フェライトが磁気損失を増大させることなく二つのコイル間で鎖交する磁束を増大させることにより、結合係数の大きな積層型のチップトランスを実現し、トランスとして高効率なエネルギーの授受が可能となる。   As described above, in the third embodiment, magnetic ferrite having a low loss up to 1 GHz is interposed in at least a part between the primary coil 21 and the secondary coil 22 that form two built-in coils. By increasing the magnetic flux interlinking between the two coils without increasing the magnetic loss, a stacked chip transformer with a large coupling coefficient can be realized, and high-efficiency energy can be exchanged as a transformer.

また、全てのコイルの電極パターンの形成方法はスクリーン印刷でもよく、さらにファインパターンを形成するためにはめっき転写、凹版転写工法が有効であり、これらの技術と組み合わせることにより直流抵抗の小さな小型のチップトランスを実現することができる。   In addition, the electrode pattern formation method for all coils may be screen printing, and in order to form a fine pattern, plating transfer and intaglio transfer methods are effective. A chip transformer can be realized.

次に、本実施の形態3における他の例のチップトランスについて説明する。   Next, another example of the chip transformer in the third embodiment will be described.

図6において、少なくとも一面の断面構造において、絶縁性を有する磁性体層3が絶縁性を有する磁性体層1を被覆した構造であることが異なっている。この構成は透磁率の高い磁性体層3がコイルの電極パターンの外周部を周回するように被覆することにより磁束密度が高まることによって、さらに磁気特性を向上したチップトランスを実現することができる。   In FIG. 6, the cross-sectional structure of at least one surface is different in that the magnetic layer 3 having an insulating property covers the magnetic layer 1 having an insulating property. This configuration can realize a chip transformer with further improved magnetic characteristics by increasing the magnetic flux density by covering the outer periphery of the electrode pattern of the coil with the magnetic layer 3 having a high magnetic permeability.

なお、このような構成はコモンモードノイズフィルタの構成においても同様の効果を確認している。   Such a configuration has confirmed the same effect in the configuration of the common mode noise filter.

以上のように、本発明にかかる磁性フェライトおよびコモンモードノイズフィルタ並びにチップトランスは、低抵抗な銀電極と同時焼成ができる高周波帯域で、低損失な磁性フェライトを実現することにより、これをコモンモードノイズフィルタ並びにチップトランスの磁性材料として用いることによって大きな結合係数を有する各種コモンモードノイズフィルタ並びにチップトランスが実現可能となり、各種電子機器に用いられるコモンモードノイズフィルタ並びにチップトランス等の用途に有用である。   As described above, the magnetic ferrite, the common mode noise filter, and the chip transformer according to the present invention realize a low-loss magnetic ferrite in a high-frequency band that can be fired simultaneously with a low-resistance silver electrode. By using it as a magnetic material for noise filters and chip transformers, various common mode noise filters and chip transformers having a large coupling coefficient can be realized and useful for applications such as common mode noise filters and chip transformers used in various electronic devices. .

本発明の実施の形態1における磁性フェライトの周波数特性を示す特性図The characteristic view which shows the frequency characteristic of the magnetic ferrite in Embodiment 1 of this invention 同磁性フェライトの酸化銅の添加量と900℃焼成による焼成収縮率の関係を示す特性図Characteristic diagram showing the relationship between the amount of copper oxide added to the magnetic ferrite and the firing shrinkage ratio after firing at 900 ° C 同磁性フェライトの組成域を示す組成図Composition diagram showing composition range of magnetic ferrite (a)本発明の実施の形態2におけるコモンモードノイズフィルタの分解斜視図、(b)同等価回路図、(c)同外観斜視図(A) An exploded perspective view of a common mode noise filter according to Embodiment 2 of the present invention, (b) an equivalent circuit diagram, and (c) an external perspective view. (a)本発明の実施の形態3におけるチップトランスの分解斜視図、(b)同等価回路図、(c)同外観斜視図(A) Exploded perspective view of chip transformer in Embodiment 3 of the present invention, (b) Equivalent circuit diagram, (c) External perspective view 同他の例のチップトランスの構造断面図Cross-sectional view of the structure of another example chip transformer

符号の説明Explanation of symbols

1 磁性体層(第2)
2−1 コイルパターン
2−2 コイルパターン
2−1a,2−1b 引出電極部
2−2a,2−2b 引出電極部
3 磁性体層(第1)
4 コモンモードノイズフィルタ
5 ビア
5a ビア電極
6 外部電極
7 コイル層(第1)
8 コイル層(第2)
10 磁性体層(第2)
11 チップトランス
12 外部電極
21 一次コイル
21a,21b 引出電極部
22 二次コイル
22a,22b 引出電極部
30 磁性体層(第1)
1 Magnetic layer (second)
2-1 Coil pattern 2-2 Coil pattern 2-1a, 2-1b Extraction electrode part 2-2a, 2-2b Extraction electrode part 3 Magnetic body layer (1st)
4 common mode noise filter 5 via 5a via electrode 6 external electrode 7 coil layer (first)
8 Coil layer (second)
10 Magnetic layer (second)
DESCRIPTION OF SYMBOLS 11 Chip transformer 12 External electrode 21 Primary coil 21a, 21b Extraction electrode part 22 Secondary coil 22a, 22b Extraction electrode part 30 Magnetic body layer (1st)

Claims (11)

主成分としてFeとCoとZnの組成比がFe23,CoO,ZnO換算で39.5:53.0:7.5モル%、39.5:48.0:12.5モル%、20.0:67.5:12.5モル%、20.0:55.0:25.0モル%で囲まれた範囲の組成100重量部に対して酸化銅を6〜14重量部添加した組成からなる磁性フェライト。 The composition ratio of Fe, Co, and Zn as main components is 39.5: 53.0: 7.5 mol%, 39.5: 48.0: 12.5 mol% in terms of Fe 2 O 3 , CoO, ZnO, 6 to 14 parts by weight of copper oxide was added to 100 parts by weight of the composition surrounded by 20.0: 67.5: 12.5 mol% and 20.0: 55.0: 25.0 mol%. Magnetic ferrite consisting of composition. 絶縁性を有した第1の磁性体層の上にほぼ並行に配置された2本の電極パターンから構成される渦巻き状の第1のコイル層を設け、この第1のコイル層の上に第2の磁性体層を設け、この第2の磁性体層の上にほぼ並行に配置された2本の電極パターンから構成される渦巻き状の第2のコイル層を設け、前記第1のコイル層と第2のコイル層を第2の磁性体層に設けたビアを介して接続することにより2本の螺旋状のコイルを設け、この第2のコイル層の上に第3の磁性体層を設けたコモンモードノイズフィルタであって、前記第2の磁性体層を請求項1に記載の磁性フェライトで構成したコモンモードノイズフィルタ。 A spiral first coil layer composed of two electrode patterns arranged substantially in parallel is provided on the insulating first magnetic layer, and the first coil layer is formed on the first coil layer. Provided with two magnetic layers, a spiral second coil layer composed of two electrode patterns arranged substantially in parallel on the second magnetic layer, and the first coil layer And the second coil layer are connected to each other through a via provided in the second magnetic layer, so that two spiral coils are provided, and a third magnetic layer is formed on the second coil layer. 2. A common mode noise filter provided, wherein the second magnetic layer is made of the magnetic ferrite according to claim 1. 第2の磁性体層の透磁率を第1、第3の磁性体層の透磁率よりも小さくした請求項2に記載のコモンモードノイズフィルタ。 The common mode noise filter according to claim 2, wherein the magnetic permeability of the second magnetic layer is smaller than the magnetic permeability of the first and third magnetic layers. 第2の磁性体層の厚みを50μm以下の厚みとした請求項2に記載のコモンモードノイズフィルタ。 The common mode noise filter according to claim 2, wherein the thickness of the second magnetic layer is 50 μm or less. 電極パターンの間隔を30μm以下とした請求項2に記載のコモンモードノイズフィルタ。 The common mode noise filter according to claim 2, wherein an interval between the electrode patterns is 30 μm or less. 少なくとも1つの断面において、第2の磁性体層が第1または第3の磁性体層にて被覆された構成とした請求項2に記載のコモンモードノイズフィルタ。 The common mode noise filter according to claim 2, wherein the second magnetic layer is covered with the first or third magnetic layer in at least one cross section. 絶縁性を有した第1の磁性体層の上にほぼ並行に配置された2本の電極パターンから構成される渦巻き状の第1のコイル層を設け、この第1のコイル層の上に第2の磁性体層を設け、この第2の磁性体層の上にほぼ並行に配置された2本の電極パターンから構成される渦巻き状の第2のコイル層を設け、前記第1のコイル層と第2のコイル層を第2の磁性体層に設けたビアを介して接続することにより2本の螺旋状のコイルを設け、この第2のコイル層の上に第3の磁性体層を設けたチップトランスであって、前記第2の磁性体層を請求項1に記載の磁性フェライトで構成したチップトランス。 A spiral first coil layer composed of two electrode patterns arranged substantially in parallel is provided on the insulating first magnetic layer, and the first coil layer is formed on the first coil layer. Provided with two magnetic layers, a spiral second coil layer composed of two electrode patterns arranged substantially in parallel on the second magnetic layer, and the first coil layer And the second coil layer are connected to each other through a via provided in the second magnetic layer, so that two spiral coils are provided, and a third magnetic layer is formed on the second coil layer. A chip transformer provided, wherein the second magnetic layer is formed of the magnetic ferrite according to claim 1. 第2の磁性体層の透磁率を第1の磁性体層の透磁率よりも小さくした請求項7に記載のチップトランス。 The chip transformer according to claim 7, wherein the magnetic permeability of the second magnetic layer is smaller than the magnetic permeability of the first magnetic layer. 第2の磁性体層の厚みを50μm以下の厚みとした請求項7に記載のチップトランス。 The chip transformer according to claim 7, wherein the thickness of the second magnetic layer is 50 μm or less. 電極パターンの間隔を30μm以下とした請求項7に記載のチップトランス。 The chip transformer according to claim 7, wherein an interval between the electrode patterns is 30 μm or less. 少なくとも1つの断面において、第2の磁性体層が第1または第3の磁性体層にて被覆された構成とした請求項7に記載のチップトランス。 The chip transformer according to claim 7, wherein the second magnetic layer is covered with the first or third magnetic layer in at least one cross section.
JP2004129290A 2004-04-26 2004-04-26 Magnetic ferrite, and common mode noise filter and chip transformer using the same Pending JP2005306696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129290A JP2005306696A (en) 2004-04-26 2004-04-26 Magnetic ferrite, and common mode noise filter and chip transformer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129290A JP2005306696A (en) 2004-04-26 2004-04-26 Magnetic ferrite, and common mode noise filter and chip transformer using the same

Publications (1)

Publication Number Publication Date
JP2005306696A true JP2005306696A (en) 2005-11-04

Family

ID=35435869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129290A Pending JP2005306696A (en) 2004-04-26 2004-04-26 Magnetic ferrite, and common mode noise filter and chip transformer using the same

Country Status (1)

Country Link
JP (1) JP2005306696A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074580A1 (en) * 2005-12-29 2007-07-05 Murata Manufacturing Co., Ltd. Laminated coil part
US7656262B2 (en) 2007-02-15 2010-02-02 Sony Corporation Balun transformer, mounting structure of balun transformer, and electronic apparatus having built-in mounting structure
WO2012032974A1 (en) * 2010-09-06 2012-03-15 株式会社村田製作所 Rfid module and rfid device
JP2012070193A (en) * 2010-09-22 2012-04-05 Nippon Dempa Kogyo Co Ltd Oscillator
JP2013140929A (en) * 2011-12-30 2013-07-18 Samsung Electro-Mechanics Co Ltd Common mode filter and method of manufacturing the same
US8528829B2 (en) 2010-03-12 2013-09-10 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US8544759B2 (en) 2009-01-09 2013-10-01 Murata Manufacturing., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8662403B2 (en) 2007-07-04 2014-03-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
JP2014049756A (en) * 2012-08-29 2014-03-17 Samsung Electro-Mechanics Co Ltd Thin film type common mode filter
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8704716B2 (en) 2009-11-20 2014-04-22 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
JP2014107548A (en) * 2012-11-23 2014-06-09 Samsung Electro-Mechanics Co Ltd Multilayer inductor and method for manufacturing the same
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8973841B2 (en) 2008-05-21 2015-03-10 Murata Manufacturing Co., Ltd. Wireless IC device
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
JP2015076601A (en) * 2013-10-11 2015-04-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Laminated inductor and manufacturing method thereof
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
KR101548777B1 (en) 2011-12-19 2015-09-01 삼성전기주식회사 Filter for Removing Noise
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US9830552B2 (en) 2007-07-18 2017-11-28 Murata Manufacturing Co., Ltd. Radio IC device
US9966179B2 (en) 2015-04-16 2018-05-08 Samsung Electro-Mechanics Co., Ltd. Common mode filter for improving magnetic permeability and high frequency characteristics
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
JP2019083261A (en) * 2017-10-30 2019-05-30 太陽誘電株式会社 Magnetic coupling type coil component
JP2021141499A (en) * 2020-03-06 2021-09-16 株式会社豊田中央研究所 Common mode noise filter

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820025B1 (en) 2005-12-29 2008-04-08 가부시키가이샤 무라타 세이사쿠쇼 Laminated coil component
JPWO2007074580A1 (en) * 2005-12-29 2009-06-04 株式会社村田製作所 Multilayer coil parts
JP4530044B2 (en) * 2005-12-29 2010-08-25 株式会社村田製作所 Multilayer coil parts
WO2007074580A1 (en) * 2005-12-29 2007-07-05 Murata Manufacturing Co., Ltd. Laminated coil part
US9165239B2 (en) 2006-04-26 2015-10-20 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
US7656262B2 (en) 2007-02-15 2010-02-02 Sony Corporation Balun transformer, mounting structure of balun transformer, and electronic apparatus having built-in mounting structure
US8662403B2 (en) 2007-07-04 2014-03-04 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
US9830552B2 (en) 2007-07-18 2017-11-28 Murata Manufacturing Co., Ltd. Radio IC device
US8797148B2 (en) 2008-03-03 2014-08-05 Murata Manufacturing Co., Ltd. Radio frequency IC device and radio communication system
US9022295B2 (en) 2008-05-21 2015-05-05 Murata Manufacturing Co., Ltd. Wireless IC device
US8973841B2 (en) 2008-05-21 2015-03-10 Murata Manufacturing Co., Ltd. Wireless IC device
US9281873B2 (en) 2008-05-26 2016-03-08 Murata Manufacturing Co., Ltd. Wireless IC device system and method of determining authenticity of wireless IC device
US8917211B2 (en) 2008-11-17 2014-12-23 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8544759B2 (en) 2009-01-09 2013-10-01 Murata Manufacturing., Ltd. Wireless IC device, wireless IC module and method of manufacturing wireless IC module
US9104950B2 (en) 2009-01-30 2015-08-11 Murata Manufacturing Co., Ltd. Antenna and wireless IC device
US8876010B2 (en) 2009-04-14 2014-11-04 Murata Manufacturing Co., Ltd Wireless IC device component and wireless IC device
US8690070B2 (en) 2009-04-14 2014-04-08 Murata Manufacturing Co., Ltd. Wireless IC device component and wireless IC device
US8976075B2 (en) 2009-04-21 2015-03-10 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9564678B2 (en) 2009-04-21 2017-02-07 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US9203157B2 (en) 2009-04-21 2015-12-01 Murata Manufacturing Co., Ltd. Antenna device and method of setting resonant frequency of antenna device
US8853549B2 (en) 2009-09-30 2014-10-07 Murata Manufacturing Co., Ltd. Circuit substrate and method of manufacturing same
US9117157B2 (en) 2009-10-02 2015-08-25 Murata Manufacturing Co., Ltd. Wireless IC device and electromagnetic coupling module
US9024725B2 (en) 2009-11-04 2015-05-05 Murata Manufacturing Co., Ltd. Communication terminal and information processing system
US8704716B2 (en) 2009-11-20 2014-04-22 Murata Manufacturing Co., Ltd. Antenna device and mobile communication terminal
US10013650B2 (en) 2010-03-03 2018-07-03 Murata Manufacturing Co., Ltd. Wireless communication module and wireless communication device
US8528829B2 (en) 2010-03-12 2013-09-10 Murata Manufacturing Co., Ltd. Wireless communication device and metal article
US9727765B2 (en) 2010-03-24 2017-08-08 Murata Manufacturing Co., Ltd. RFID system including a reader/writer and RFID tag
US9024837B2 (en) 2010-03-31 2015-05-05 Murata Manufacturing Co., Ltd. Antenna and wireless communication device
US9558384B2 (en) 2010-07-28 2017-01-31 Murata Manufacturing Co., Ltd. Antenna apparatus and communication terminal instrument
US8981906B2 (en) 2010-08-10 2015-03-17 Murata Manufacturing Co., Ltd. Printed wiring board and wireless communication system
GB2496713A (en) * 2010-09-06 2013-05-22 Murata Manufacturing Co RFID module and RFID device
WO2012032974A1 (en) * 2010-09-06 2012-03-15 株式会社村田製作所 Rfid module and rfid device
CN102823146A (en) * 2010-09-06 2012-12-12 株式会社村田制作所 RFID module and RFID device
JP5062372B2 (en) * 2010-09-06 2012-10-31 株式会社村田製作所 RFID module and RFID device
JP2012070193A (en) * 2010-09-22 2012-04-05 Nippon Dempa Kogyo Co Ltd Oscillator
US8944335B2 (en) 2010-09-30 2015-02-03 Murata Manufacturing Co., Ltd. Wireless IC device
US9166291B2 (en) 2010-10-12 2015-10-20 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US9236651B2 (en) 2010-10-21 2016-01-12 Murata Manufacturing Co., Ltd. Communication terminal device
US9761923B2 (en) 2011-01-05 2017-09-12 Murata Manufacturing Co., Ltd. Wireless communication device
US8991713B2 (en) 2011-01-14 2015-03-31 Murata Manufacturing Co., Ltd. RFID chip package and RFID tag
US8960561B2 (en) 2011-02-28 2015-02-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8613395B2 (en) 2011-02-28 2013-12-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8757502B2 (en) 2011-02-28 2014-06-24 Murata Manufacturing Co., Ltd. Wireless communication device
US8797225B2 (en) 2011-03-08 2014-08-05 Murata Manufacturing Co., Ltd. Antenna device and communication terminal apparatus
US8937576B2 (en) 2011-04-05 2015-01-20 Murata Manufacturing Co., Ltd. Wireless communication device
US8740093B2 (en) 2011-04-13 2014-06-03 Murata Manufacturing Co., Ltd. Radio IC device and radio communication terminal
US9378452B2 (en) 2011-05-16 2016-06-28 Murata Manufacturing Co., Ltd. Radio IC device
US8878739B2 (en) 2011-07-14 2014-11-04 Murata Manufacturing Co., Ltd. Wireless communication device
US8770489B2 (en) 2011-07-15 2014-07-08 Murata Manufacturing Co., Ltd. Radio communication device
US8814056B2 (en) 2011-07-19 2014-08-26 Murata Manufacturing Co., Ltd. Antenna device, RFID tag, and communication terminal apparatus
US9543642B2 (en) 2011-09-09 2017-01-10 Murata Manufacturing Co., Ltd. Antenna device and wireless device
US8905296B2 (en) 2011-12-01 2014-12-09 Murata Manufacturing Co., Ltd. Wireless integrated circuit device and method of manufacturing the same
KR101548777B1 (en) 2011-12-19 2015-09-01 삼성전기주식회사 Filter for Removing Noise
US9424988B2 (en) 2011-12-30 2016-08-23 Samsung Electro-Mechanics Co., Ltd. Common mode filter and method of manufacturing the same
JP2013140929A (en) * 2011-12-30 2013-07-18 Samsung Electro-Mechanics Co Ltd Common mode filter and method of manufacturing the same
US9082540B2 (en) 2011-12-30 2015-07-14 Samsung Electro-Mechanics Co., Ltd. Common mode filter and method of manufacturing the same
US8720789B2 (en) 2012-01-30 2014-05-13 Murata Manufacturing Co., Ltd. Wireless IC device
US9692128B2 (en) 2012-02-24 2017-06-27 Murata Manufacturing Co., Ltd. Antenna device and wireless communication device
US10235544B2 (en) 2012-04-13 2019-03-19 Murata Manufacturing Co., Ltd. Inspection method and inspection device for RFID tag
JP2014049756A (en) * 2012-08-29 2014-03-17 Samsung Electro-Mechanics Co Ltd Thin film type common mode filter
JP2014107548A (en) * 2012-11-23 2014-06-09 Samsung Electro-Mechanics Co Ltd Multilayer inductor and method for manufacturing the same
JP2015076601A (en) * 2013-10-11 2015-04-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Laminated inductor and manufacturing method thereof
US9966179B2 (en) 2015-04-16 2018-05-08 Samsung Electro-Mechanics Co., Ltd. Common mode filter for improving magnetic permeability and high frequency characteristics
JP2019083261A (en) * 2017-10-30 2019-05-30 太陽誘電株式会社 Magnetic coupling type coil component
US11373800B2 (en) 2017-10-30 2022-06-28 Taiyo Yuden Co., Ltd. Magnetic coupling coil component
JP7168307B2 (en) 2017-10-30 2022-11-09 太陽誘電株式会社 Magnetically coupled coil parts
JP2021141499A (en) * 2020-03-06 2021-09-16 株式会社豊田中央研究所 Common mode noise filter

Similar Documents

Publication Publication Date Title
JP2005306696A (en) Magnetic ferrite, and common mode noise filter and chip transformer using the same
JP5626834B2 (en) Manufacturing method of open magnetic circuit type multilayer coil parts
JP6743836B2 (en) Common mode choke coil
JP2010018482A (en) Ferrite, and manufacturing method thereof
KR101218998B1 (en) Magnetic material composition for ceramic electronic element, manufacturing method of the same, and an electronic element using the same
JP2008300548A (en) Multilayered inductor component
WO2001084566A1 (en) Magnetic ferrite powder, magnetic ferrite sinter, layered ferrite part, and process for producing layered ferrite part
JP2010235324A (en) Ferrite composition, ferrite sintered body, composite lamination type electronic component, and method for manufacturing ferrite sintered body
JP2020194810A (en) Laminated coil component
KR101218984B1 (en) Magnetic material composition for ceramic electronic element, manufacturing method of the same, and an electronic element using the same
JP2020194807A (en) Laminated coil component
JP2002015913A (en) Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP2020061522A (en) Multilayer coil component
JP4736311B2 (en) Magnetic ferrite and magnetic element using the same
JP2005317748A (en) Composite electronic apparatus and method for manufacturing same
JP2005032918A (en) Magnetic element
JP7143817B2 (en) Laminated coil parts
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
JP2021125598A (en) Laminated coil component
JP2020194808A (en) Laminated coil component
JPH0891919A (en) Magnetic oxide material composition, its production and inductor, laminated chip inductor and composite laminated part
JP2001010820A (en) Ferrite composition, ferrite sintered compact laminate- type electronic part and production thereof
JP2022064955A (en) Laminated coil component and bias-tee circuit
JP2004339031A (en) Non-magnetic ferrite and multilayer electronic component using the same
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same