JP2005300356A - Method and apparatus for measuring diameter distribution of crystal grain - Google Patents

Method and apparatus for measuring diameter distribution of crystal grain Download PDF

Info

Publication number
JP2005300356A
JP2005300356A JP2004117106A JP2004117106A JP2005300356A JP 2005300356 A JP2005300356 A JP 2005300356A JP 2004117106 A JP2004117106 A JP 2004117106A JP 2004117106 A JP2004117106 A JP 2004117106A JP 2005300356 A JP2005300356 A JP 2005300356A
Authority
JP
Japan
Prior art keywords
crystal grain
grain size
attenuation rate
size distribution
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004117106A
Other languages
Japanese (ja)
Other versions
JP4471714B2 (en
Inventor
Yasuaki Nagata
泰昭 永田
Naoya Hamada
直也 浜田
Hirohisa Yamada
裕久 山田
Chan Sun Lee
チャン スン リー
Sun Teku Hon
スン テク ホン
Chun Su Rin
チュン ス リン
Ze Kyon I
ゼ キョン イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Posco Holdings Inc
Original Assignee
Nippon Steel Corp
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Posco Co Ltd filed Critical Nippon Steel Corp
Priority to JP2004117106A priority Critical patent/JP4471714B2/en
Publication of JP2005300356A publication Critical patent/JP2005300356A/en
Application granted granted Critical
Publication of JP4471714B2 publication Critical patent/JP4471714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus, capable of high precision measurement of the diameter distribution of crystal grains, even if the measurable frequency band of ultrasonic waves is restricted. <P>SOLUTION: Ultrasonic waves are generated in an object to be measured made of a polycrystalline material, and attenuation factor of the ultrasonic waves is measured, to acquire observed attenuation factor. The attenuation factor of ultrasonic waves is theoretically computed, on the basis of an assumed diameter distribution of crystal grains to acquire the theoretical attenuation factor. The observed attenuation factor is compared with the theoretical attenuation factor, and the diameter distribution of crystal grains of the object to be measured is determined based on the comparison results. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多結晶材料の結晶粒径分布の測定方法および装置に関する。   The present invention relates to a method and apparatus for measuring the grain size distribution of a polycrystalline material.

鋼材組織を微細化することにより、高強度、鋼靱性の特性が得られる。そこで、鋼材の製造プロセスにおいて、オンラインで結晶粒径を測定することができれば、鋼材製造上で大きなメリットがある。例えば、結晶粒径をオンラインで測定し、現状の結晶粒径を監視することにより、材質のばらつきを高精度に低減することに役立つ。   By refining the steel structure, characteristics of high strength and steel toughness can be obtained. Therefore, if the crystal grain size can be measured online in the steel production process, there is a great merit in steel production. For example, by measuring the crystal grain size online and monitoring the current crystal grain size, it is useful for reducing variation in material with high accuracy.

鋼材の平均結晶粒径測定については、例えば、非特許文献1に開示されているように従来公知である。また、非特許文献2には、超音波減衰率の情報から結晶粒径分布を推定する方法が開示されている。   The measurement of the average crystal grain size of steel is conventionally known as disclosed in Non-Patent Document 1, for example. Non-Patent Document 2 discloses a method for estimating the crystal grain size distribution from information on the ultrasonic attenuation rate.

”Direct measurements of grain size in low-cvarbon steels using the laser ultrasonic technique”, Transaction of Metallurgical and Materials, A, Vol. 33A, March 2002, p687-691“Direct measurements of grain size in low-cvarbon steels using the laser ultrasonic technique”, Transaction of Metallurgical and Materials, A, Vol. 33A, March 2002, p687-691 Denise Nicoletti and Aran Anderson, “Determination of grain-size distribution from ultrasonic attenuation: Transformation and inversion”, Journal of Acoustic Society of America 101(2), February 1997, p686-691Denise Nicoletti and Aran Anderson, “Determination of grain-size distribution from ultrasonic attenuation: Transformation and inversion”, Journal of Acoustic Society of America 101 (2), February 1997, p686-691

然しながら、非特許文献1に開示されている方法では、超音波が伝播する経路内での平均結晶粒径が測定できるだけであり、例えば、鋼材の厚さ方向に結晶粒径分布が存在する場合、その分布情報を得ることはできない。   However, the method disclosed in Non-Patent Document 1 can only measure the average crystal grain size in the path through which the ultrasonic wave propagates. For example, when there is a crystal grain size distribution in the thickness direction of the steel material, The distribution information cannot be obtained.

また、非特許文献2に開示されている方法では、無限に広い周波数領域での超音波減衰率の情報が必要となり、現実的に測定可能な周波数帯域が制限される場合には、計算により得られる結晶粒径分布は、その精度が問題となる。   In addition, the method disclosed in Non-Patent Document 2 requires information on the ultrasonic attenuation rate in an infinitely wide frequency range, and if the frequency band that can be measured practically is limited, it can be obtained by calculation. The accuracy of the crystal grain size distribution is a problem.

本発明は、こうした従来技術の問題を解決することを技術課題としており、測定可能な超音波の周波数帯域が制限されていても、精度良く結晶粒径分布を測定可能な方法および装置を提供することを目的としている。   The present invention has a technical problem to solve such problems of the prior art, and provides a method and apparatus capable of accurately measuring the crystal grain size distribution even when the frequency band of ultrasonic waves that can be measured is limited. The purpose is that.

請求項1に記載の本発明は、多結晶材料の結晶粒径分布測定方法において、多結晶材料から成る測定対象物内に超音波を発生する段階と、前記超音波の減衰率を測定して実測減衰率を得る段階と、仮定した結晶粒径分布に基づいて理論的に超音波減衰率を演算して理論減衰率を得る段階と、前記実測減衰率を理論減衰率と比較する段階と、比較結果に基づいて前記測定対象物の結晶粒径分布を決定する結晶粒径分布測定方法を要旨とする。   According to a first aspect of the present invention, there is provided a method for measuring a crystal grain size distribution of a polycrystalline material, the step of generating an ultrasonic wave in a measurement object made of the polycrystalline material, and measuring the attenuation rate of the ultrasonic wave. Obtaining a measured attenuation rate; calculating a theoretical ultrasonic attenuation rate based on an assumed crystal grain size distribution to obtain a theoretical attenuation rate; and comparing the measured attenuation rate with a theoretical attenuation rate; The gist of the present invention is a crystal grain size distribution measuring method for determining a crystal grain size distribution of the measurement object based on a comparison result.

また、本発明の他の特徴によれば、多結晶材料の結晶粒径分布測定装置において、多結晶材料から成る測定対象物内に超音波を発生する手段と、前記超音波の減衰率を測定して実測減衰率を得る手段と、仮定した結晶粒径分布に基づいて理論的に超音波減衰率を演算して理論減衰率を得る手段と、前記実測減衰率を理論減衰率と比較する手段とを具備し、比較結果に基づいて前記測定対象物の結晶粒径分布を決定するようにした結晶粒径分布測定装置が提供される。   According to another aspect of the present invention, in the crystal grain size distribution measuring apparatus for a polycrystalline material, means for generating an ultrasonic wave in a measurement object made of the polycrystalline material, and measuring the attenuation rate of the ultrasonic wave Means for obtaining the actual attenuation rate, means for theoretically calculating the ultrasonic attenuation rate based on the assumed crystal grain size distribution to obtain the theoretical attenuation rate, and means for comparing the actual attenuation rate with the theoretical attenuation rate And a crystal grain size distribution measuring apparatus for determining the crystal grain size distribution of the measurement object based on the comparison result.

本発明によれば、実測減衰率と理論減衰率とを比較し、比較結果に基づいて前記測定対象物の結晶粒径分布を決定するようにしたので、測定可能な超音波の周波数帯域が制限されていても、精度良く結晶粒径分布を測定可能となる。   According to the present invention, the measured attenuation rate is compared with the theoretical attenuation rate, and the crystal grain size distribution of the measurement object is determined based on the comparison result. Therefore, the frequency band of ultrasonic waves that can be measured is limited. Even if this is done, the crystal grain size distribution can be measured with high accuracy.

先ず図10を参照して、本発明による結晶粒径分布測定方法を説明する。
本発明では、先ず、測定対象物内にレーザ光線を用いて超音波を発生させて、その超音波の特定周波数での減衰率を測定することにより、測定対象物の平均結晶粒径を測定する(ステップS10)。次いで、測定された平均結晶粒径に基づいて、結晶粒径分布が特定の分布、以下に説明する実施形態では対数正規分布に従うと仮定して、分布幅を変化させて、各分布幅における超音波の周波数の変化に対する減衰率の変化を示す曲線データを作成する(ステップS12)。次いで、特定周波数領域、例えば0−20MHzの領域で、周波数の変化に対する減衰率の変化を実測値とステップS12で求めた演算データとを比較する(ステップS14)。次いで、ステップS14における比較の結果、曲線の一致度が最良の場合を判定し、結晶粒径分布を決定する(ステップS16)。
First, with reference to FIG. 10, the crystal grain size distribution measuring method according to the present invention will be described.
In the present invention, first, an ultrasonic wave is generated in a measurement object using a laser beam, and the average crystal grain size of the measurement object is measured by measuring the attenuation rate at a specific frequency of the ultrasonic wave. (Step S10). Then, based on the measured average crystal grain size, assuming that the crystal grain size distribution follows a specific distribution, in the embodiment described below, a lognormal distribution, the distribution width is changed to Curve data indicating a change in attenuation rate with respect to a change in sound wave frequency is created (step S12). Next, in a specific frequency region, for example, a region of 0-20 MHz, the change in attenuation rate with respect to the change in frequency is compared with the actually measured value and the calculation data obtained in step S12 (step S14). Next, as a result of the comparison in step S14, it is determined whether the degree of coincidence of the curves is the best, and the crystal grain size distribution is determined (step S16).

以下、添付図面を参照して、本発明の好ましい実施形態による結晶粒径分布測定装置を説明する。
先ず、図1を参照すると、本実施形態による結晶粒径分布測定装置は、超音波発生用レーザ源10と、超音波検出用レーザ源20と、ヘッド部30と、干渉計50と、光検出器60と、コンピュータ(演算手段)70とを備える。また、この結晶粒径分布測定装置には、光学部品として、光ファイバ91a、91b、91c、および、集光レンズ92等が設けられている。
Hereinafter, a crystal grain size distribution measuring apparatus according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
First, referring to FIG. 1, the crystal grain size distribution measuring apparatus according to the present embodiment includes an ultrasonic generation laser source 10, an ultrasonic detection laser source 20, a head unit 30, an interferometer 50, and light detection. And a computer (calculation means) 70. The crystal grain size distribution measuring apparatus is provided with optical fibers 91a, 91b, 91c, a condensing lens 92, and the like as optical components.

超音波発生用レーザ源10は、測定対象物2内に超音波を励起させるためのレーザを照射する。超音波発生用レーザとしては、例えばYAGレーザやCO2レーザなどの高エネルギーパルスレーザを使用する。超音波発生用レーザ源10から照射されたレーザビームは、光ファイバ91aを介してヘッド部30に導かれる。 The ultrasonic wave generation laser source 10 irradiates the measurement object 2 with a laser for exciting ultrasonic waves. As the ultrasonic wave generating laser, for example, a high energy pulse laser such as a YAG laser or a CO 2 laser is used. The laser beam emitted from the ultrasonic wave generation laser source 10 is guided to the head unit 30 via the optical fiber 91a.

超音波検出用レーザ源20は、超音波発生用レーザ源10からのレーザビームの照射によって測定対象物2内に発生し、測定対象物2内を伝播してきた超音波を検出するためのレーザである。超音波検出用レーザとしては、単一周波数の連続レーザビームが用いられる。超音波検出用レーザ源20から照射されたレーザビームは、光ファイバ91bを介してヘッド部30に導かれる。   The ultrasonic detection laser source 20 is a laser for detecting ultrasonic waves generated in the measurement object 2 by irradiation of the laser beam from the ultrasonic generation laser source 10 and propagating through the measurement object 2. is there. A single frequency continuous laser beam is used as the ultrasonic detection laser. The laser beam emitted from the ultrasonic detection laser source 20 is guided to the head unit 30 through the optical fiber 91b.

ヘッド部30は、図2に示すように、光ファイバ91a、91bが接続され、光ファイバ91a、91bを介して導かれた超音波発生用レーザビームL1および超音波検出用レーザL2を測定対象物2の表面2aへ向けて射出する射出ポート31aを有したオプティカルカプラ31と、オプティカルカプラ31から射出されるレーザビームL1、L2を測定対象物2の表面2aに集光する集光レンズ32と、測定対象物2の表面2aからの反射レーザビームL3を光ファイバ91cへ向けて反射するハーフミラー33と、ハーフミラー33からの反射レーザビームL3を光ファイバ91cへ向けて平行光線とする成形レンズ34とを具備する。 As shown in FIG. 2, the head unit 30 is connected with optical fibers 91a and 91b, and measures an ultrasonic wave generation laser beam L 1 and an ultrasonic detection laser L 2 guided through the optical fibers 91a and 91b. An optical coupler 31 having an emission port 31 a that emits toward the surface 2 a of the object 2, and a laser beam L 1 and L 2 emitted from the optical coupler 31 are collected on the surface 2 a of the measurement object 2. a lens 32, a reflected laser beam L 3 from the surface 2a of the object 2 and the half mirror 33 for reflecting the optical fiber 91c, parallel toward a reflected laser beam L 3 from the half mirror 33 to the optical fiber 91c And a molded lens 34 as a light beam.

干渉計50は、例えばファブリ・ペロー干渉計を具備することができる。ファブリ・ペロー干渉計50は、超音波振動に起因して生じる反射レーザビームL3の周波数変化を検出するものであり、互いに対向する二つの反射鏡を有する。この二つの反射鏡は共振器を構成し、反射レーザビームL3を二つの反射鏡の間で多重反射させることによりバンドパスフィルタとして機能する。二つの反射鏡間の距離を調節することにより、この共振器を透過する光の周波数を調節することができる。 The interferometer 50 can comprise, for example, a Fabry-Perot interferometer. The Fabry-Perot interferometer 50 detects a change in frequency of the reflected laser beam L 3 caused by ultrasonic vibration, and has two reflecting mirrors facing each other. The two reflecting mirrors constitute a resonator, and function as a band-pass filter by multiple reflection of the reflected laser beam L 3 between the two reflecting mirrors. By adjusting the distance between the two reflecting mirrors, the frequency of light transmitted through the resonator can be adjusted.

干渉計50から出力された透過光強度は光検出器60に送出される。光検出器60は、透過光強度を電気信号に変換するフォトダイオードを具備しており、測定対象物2内に生じた超音波振動は、最終的に電気的な信号として捉えられる。光検出器60からの信号は、適当なA/Dコンバータ(図示せず)を介してコンピュータ70に取り込まれ波形データとして記録される。   The transmitted light intensity output from the interferometer 50 is sent to the photodetector 60. The photodetector 60 includes a photodiode that converts the intensity of transmitted light into an electrical signal, and the ultrasonic vibration generated in the measurement object 2 is finally captured as an electrical signal. A signal from the photodetector 60 is taken into the computer 70 via an appropriate A / D converter (not shown) and recorded as waveform data.

以下、本実施形態の作用を説明する。
先ず、超音波検出用レーザ源20から連続レーザビームが、超音波検出用レーザビームL2として照射され、光ファイバ91bを介してヘッド部30へ伝えられる。ヘッド部30では、超音波測定用レーザビームL2は、フォトカプラ31の射出ポート31aから集光レンズ32へ向けて射出され、集光レンズ32により測定対象物2の表面2aに焦点を結ぶように集光される。測定対象物2の表面2aへ向けて連続的に照射される超音波測定用レーザビームL2は、表面2aにおいて乱反射するが、その一部が反射レーザビームL3としてハーフミラー33により反射され、成形レンズ34により平行ビームとなって、光ファイバ91cへ導かれる。
Hereinafter, the operation of the present embodiment will be described.
First, a continuous laser beam is irradiated as an ultrasonic detection laser beam L 2 from the ultrasonic detection laser source 20 and transmitted to the head unit 30 through the optical fiber 91b. In the head unit 30, the ultrasonic measurement laser beam L 2 is emitted from the emission port 31 a of the photocoupler 31 toward the condenser lens 32, and is focused on the surface 2 a of the measurement object 2 by the condenser lens 32. It is condensed to. The ultrasonic measurement laser beam L 2 continuously irradiated toward the surface 2 a of the measurement object 2 is irregularly reflected on the surface 2 a, but a part thereof is reflected by the half mirror 33 as a reflected laser beam L 3 , It becomes a parallel beam by the shaping lens 34 and is guided to the optical fiber 91c.

超音波発生用レーザビームL2が測定対象物2の表面2aへ向けて連続的に照射される間、超音波発生用レーザ源10から、高エネルギーレーザビームが超音波発生用レーザビームL1としてパルス状に照射され、光ファイバ91aを介してヘッド部30へ伝えられる。ヘッド部30では、超音波発生用レーザビームL1は、フォトカプラ31において超音波測定用レーザビームL2と混合され、フォトカプラ31の射出ポート31aから集光レンズ32へ向けて射出され、集光レンズ32により測定対象物2の表面2aに焦点を結ぶように集光される。測定対象物2の表面2aに超音波発生用レーザビームL1が照射されると、照射を受けた測定対象物2の表面2aの部分(以下、測定点と記載する)が局所的に加熱され熱膨張する。これにより、測定対象物2の表面2aに弾性波または超音波が発生し、これが測定対象物2内へ伝達される。この弾性波または超音波は、測定点から測定対象物2の内部へ種々の方向に伝達されるが、本実施形態では、特に、測定対象物2の厚さ方向(図2において上下方向)つまりレーザビームL1、L2の入射方向に平行な方向に伝播する縦波を測定するようになっている。 While the ultrasonic generation laser beam L 2 is continuously irradiated toward the surface 2 a of the measurement object 2, a high energy laser beam is generated as an ultrasonic generation laser beam L 1 from the ultrasonic generation laser source 10. Irradiated in a pulse shape and transmitted to the head unit 30 via the optical fiber 91a. In the head unit 30, the ultrasonic generation laser beam L 1 is mixed with the ultrasonic measurement laser beam L 2 in the photocoupler 31, emitted from the emission port 31 a of the photocoupler 31 toward the condenser lens 32, and collected. Light is condensed by the optical lens 32 so as to focus on the surface 2a of the measurement object 2. When the surface 2a of the object 2 ultrasonic generation laser beam L 1 is irradiated, part of the surface 2a of the object 2 that receive a radiation (hereinafter referred to as measuring point) is heated locally Thermal expansion. Thereby, an elastic wave or an ultrasonic wave is generated on the surface 2 a of the measurement object 2, and this is transmitted into the measurement object 2. This elastic wave or ultrasonic wave is transmitted from the measurement point to the inside of the measurement object 2 in various directions. In this embodiment, in particular, the thickness direction of the measurement object 2 (vertical direction in FIG. 2), that is, A longitudinal wave propagating in a direction parallel to the incident direction of the laser beams L 1 and L 2 is measured.

前記弾性波または超音波は、測定対象物2の表面2aから底面2bへ到達すると、底面2bにおいて反射して、測定対象物2内を表面2aへ向けて伝播する。前記弾性波または超音波は減衰しながらこれを繰り返す。前記弾性波または超音波が、測定対象物2の表面2aに到達すると表面2aは局所的に変位し、この変位は、超音波測定用レーザビームL2の反射レーザビームL3のドップラー効果として干渉計50により検出され、光検出器60により電気信号に変換されて、コンピュータ70へ送出される。コンピュータ70により波形データとして記録される。 When the elastic wave or ultrasonic wave reaches the bottom surface 2b from the surface 2a of the measurement object 2, it reflects on the bottom surface 2b and propagates in the measurement object 2 toward the surface 2a. The elastic wave or ultrasonic wave is repeated while being attenuated. The acoustic wave or ultrasound, the surface 2a reaches the surface 2a of the measured object 2 is locally displaced, this displacement, the interference as a Doppler effect of the reflected laser beam L 3 of the ultrasonic measurement laser beam L 2 It is detected by the meter 50, converted into an electrical signal by the photodetector 60, and sent to the computer 70. Recorded as waveform data by the computer 70.

こうして得られた波形データの一例を図3に示す。図3は、時間(t)に対する波形の振幅(A)の変化を示しており、測定対象物2の表面2aで発生した弾性波または超音波が、測定対象物2の表面2aと底面2bとの間で多重反射して、測定対象物2の表面2aに周期的に観察されることを示している。
コンピュータ70は、取り込んだ波形データを高速フーリエ変換する。
An example of the waveform data thus obtained is shown in FIG. FIG. 3 shows a change in the amplitude (A) of the waveform with respect to time (t). Elastic waves or ultrasonic waves generated on the surface 2a of the measurement object 2 are generated on the surface 2a and the bottom surface 2b of the measurement object 2. It is shown that it is periodically observed on the surface 2a of the measurement object 2 due to multiple reflection between the two.
The computer 70 performs fast Fourier transform on the acquired waveform data.

この測定対象物2内を伝わる弾性波または超音波は測定対象物2内で減衰し、以下の式に従い漸減する。なお、この式でdは測定対象物の厚み、αは超音波減衰率、fは周波数、iは図3のように計測される多重反射信号のうち何番目の反射信号かを示す番号の事である。
A(f)i=A(f)i-1×exp(−2dα)
このように、コンピュータ70は、前記波形データを高速フーリエ変換して、周波数毎の超音波減衰率の実測値αexpを演算する(図4)。
The elastic wave or ultrasonic wave transmitted in the measurement object 2 is attenuated in the measurement object 2 and gradually decreases according to the following equation. In this equation, d is the thickness of the object to be measured, α is the ultrasonic attenuation factor, f is the frequency, and i is a number indicating the number of the reflected signals among the multiple reflected signals measured as shown in FIG. It is.
A (f) i = A (f) i-1 × exp (-2dα)
As described above, the computer 70 performs fast Fourier transform on the waveform data, and calculates the actually measured value α exp of the ultrasonic attenuation rate for each frequency (FIG. 4).

一方、既述したように、超音波減衰率αと平均結晶粒径との間には一定の相関関係があることが実験的に分っている。例えば、図5を参照すると、オーステナイト鋼から成る測定対象物内を伝播する超音波の周波数が4.7MHzの場合の平均結晶粒径と減衰率との関係を示す実験結果が示されている。従って、種々の材料または鋼材に関する超音波減衰率αと平均結晶粒径との関係を複数の特定周波数毎に実験的に求め、それをテーブルや実験式の形式でコンピュータ70へ格納し、特定周波数において実測された超音波減衰率αexpに基づいて、前記テーブルを参照したり実験式に代入することにより測定対象物2の平均結晶粒径μが得られる。 On the other hand, as described above, it has been experimentally found that there is a certain correlation between the ultrasonic attenuation rate α and the average crystal grain size. For example, referring to FIG. 5, there is shown an experimental result showing the relationship between the average crystal grain size and the attenuation rate when the frequency of the ultrasonic wave propagating through the measurement object made of austenitic steel is 4.7 MHz. Therefore, the relationship between the ultrasonic attenuation rate α and the average crystal grain size for various materials or steel materials is experimentally obtained for each of a plurality of specific frequencies, and is stored in the computer 70 in the form of a table or an empirical formula. Based on the actually measured ultrasonic attenuation rate α exp , the average crystal grain size μ of the measurement object 2 is obtained by referring to the table or substituting it into the empirical formula.

次に、実測された平均結晶粒径μから減衰率と周波数との関係を示す曲線データの作成方法を説明する。
上述した非特許文献2には、多結晶材料中を伝播する超音波の減衰率について記載されている。非特許文献2によれば、多結晶材料中の結晶粒径分布と多結晶材料を伝播する超音波の減衰率は以下の式(1)により示される。

Figure 2005300356
ここで、
f(x):求めるべきある関数
α:超音波減衰率
D:結晶粒径
λ:超音波パルスの波長
である。 Next, a method of creating curve data indicating the relationship between the attenuation rate and the frequency from the actually measured average crystal grain size μ will be described.
Non-Patent Document 2 described above describes the attenuation rate of ultrasonic waves propagating through a polycrystalline material. According to Non-Patent Document 2, the crystal grain size distribution in the polycrystalline material and the attenuation rate of the ultrasonic wave propagating through the polycrystalline material are expressed by the following equation (1).
Figure 2005300356
here,
f (x): a function to be obtained α: ultrasonic attenuation factor D: crystal grain size λ: wavelength of ultrasonic pulse

式(1)が全ての波長について真であるとすると、減衰率は全結晶粒の影響を積分するために以下の式(2)に書き換えることが可能である。

Figure 2005300356
ここで、
N(D):粒径Dの結晶の数
である。 Assuming that equation (1) is true for all wavelengths, the attenuation factor can be rewritten into the following equation (2) to integrate the effects of all crystal grains.
Figure 2005300356
here,
N (D): Number of crystals having a particle size D.

ここで、N(D)=x(lnD)、f(λ/D)=y(ln(λ/D))と置き換ることにより、式(2)は以下の式(3)に変換することができる。

Figure 2005300356
Here, by replacing N (D) = x (lnD) and f (λ / D) = y (ln (λ / D)), Equation (2) is transformed into Equation (3) below. be able to.
Figure 2005300356

ここで、t=ln(λ)、τ=ln(D)と変数変換することにより、式(3)は以下の式(4)に変換することができる。

Figure 2005300356
Here, equation (3) can be transformed into the following equation (4) by performing variable transformation with t = ln (λ) and τ = ln (D).
Figure 2005300356

更にz(t)=α(et)と変数変換することにより、最終的に以下の式(5)を得る。

Figure 2005300356
Furthermore, the following equation (5) is finally obtained by performing variable conversion to z (t) = α (e t ).
Figure 2005300356

式(5)より粒径分布x(t)は、以下の式(6)により表される。

Figure 2005300356
ここで、FFTおよびFFT-1は高速フーリエ変換および高速逆フーリエ変換である。 From the equation (5), the particle size distribution x (t) is expressed by the following equation (6).
Figure 2005300356
Here, FFT and FFT −1 are fast Fourier transform and fast inverse Fourier transform.

更に、非特許文献2には、以下の式(7)による対数正規分布に従う粒径分布モデルが示されている。

Figure 2005300356
ここで、
μ:平均結晶粒径
σ:分布幅を決定するパラメータ
である。 Furthermore, Non-Patent Document 2 shows a particle size distribution model according to a lognormal distribution according to the following equation (7).
Figure 2005300356
here,
μ: Average crystal grain size σ: A parameter that determines the distribution width.

上述のように実測された平均結晶粒径μを固定して、式(7)における分布幅に関するパラメータであるσを幾つかの値に変化させて、パラメータσの各値について結晶粒径分布N(D)を式(7)から演算する。演算結果の一例を図7に示す。一例として、図6には、σの値が1.1、1.3、1.5、1.7、1.9、2.1の6つの場合の結晶粒径分布N(D)が示されている。   The average grain size μ actually measured as described above is fixed, and the parameter σ relating to the distribution width in the equation (7) is changed to several values. (D) is calculated from equation (7). An example of the calculation result is shown in FIG. As an example, FIG. 6 shows the crystal grain size distribution N (D) in the case of six values of σ of 1.1, 1.3, 1.5, 1.7, 1.9, and 2.1. Has been.

パラメータσの各値について結晶粒径分布N(D)を求めたら、これに基づいて、パラメータσの各値について周波数の変化に対する超音波減衰率の変化を式(6)から演算し理論減衰率とする。演算結果の一例を図7〜図9の実線にて示す。なお、図7〜図9は、平均結晶粒径が27μmで、分布幅に関するパラメータσが2.3(図7)、1.1(図8)、3.0(図9)の場合を示している。本発明では、前記実測減衰率と理論減衰率とを特定の周波数領域、例えば、0−20MHzの間の周波数帯域で比較し、その比較結果に基づいて最良の一致度を示した理論減衰率を与える結晶粒径分布を前記測定対象物の結晶粒径分布として選択するようになっている。図7〜図9では、理論的な減衰率の周波数依存性曲線に、実測された減衰率αexpと周波数との関係曲線(図4)を重ね合わせて示されているが、この例では、図7の場合が最良の一致度を示していると考えられるので、σ=2.3とした場合のN(D)を結晶粒径分布として採用する。 After obtaining the crystal grain size distribution N (D) for each value of the parameter σ, based on this, the change of the ultrasonic attenuation rate with respect to the change of the frequency is calculated from the equation (6) for each value of the parameter σ, and the theoretical attenuation rate. And An example of the calculation result is shown by a solid line in FIGS. 7 to 9 show cases where the average crystal grain size is 27 μm and the parameter σ relating to the distribution width is 2.3 (FIG. 7), 1.1 (FIG. 8), and 3.0 (FIG. 9). ing. In the present invention, the measured attenuation rate and the theoretical attenuation rate are compared in a specific frequency region, for example, a frequency band between 0-20 MHz, and the theoretical attenuation rate indicating the best match based on the comparison result is obtained. The crystal grain size distribution to be given is selected as the crystal grain size distribution of the measurement object. In FIGS. 7 to 9, the relationship between the actually measured attenuation rate α exp and the frequency (FIG. 4) is superimposed on the frequency dependence curve of the theoretical attenuation rate. In this example, Since it is considered that the case of FIG. 7 shows the best degree of coincidence, N (D) when σ = 2.3 is adopted as the crystal grain size distribution.

本発明による結晶粒径分布測定装置の概略図である。It is the schematic of the crystal grain size distribution measuring apparatus by this invention. 図1の結晶粒径分布測定装置のヘッド部の概略構成図である。It is a schematic block diagram of the head part of the crystal grain size distribution measuring apparatus of FIG. 波形データの一例を示す図である。It is a figure which shows an example of waveform data. 実測減衰率を示すグラフである。It is a graph which shows measured attenuation factor. 減衰率と平均結晶粒径との関係を例示するグラフである。It is a graph which illustrates the relationship between an attenuation factor and an average crystal grain size. 結晶粒径分布の一例を示すグラフである。It is a graph which shows an example of crystal grain size distribution. 理論的に得られた減衰率と実測減衰率との比較例を示すグラフである。It is a graph which shows the comparative example of the attenuation factor theoretically obtained and the measured attenuation factor. 理論的に得られた減衰率と実測減衰率との比較例を示すグラフである。It is a graph which shows the comparative example of the attenuation factor theoretically obtained and the measured attenuation factor. 理論的に得られた減衰率と実測減衰率との比較例を示すグラフである。It is a graph which shows the comparative example of the attenuation factor theoretically obtained and the measured attenuation factor. 本発明の方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the method of this invention.

符号の説明Explanation of symbols

10…超音波発生用レーザ源
20…超音波検出用レーザ源
30…ヘッド部
31…オプティカルカプラ
32…集光レンズ
33…ハーフミラー
34…成形レンズ
50…干渉計
60…光検出器
70…コンピュータ(演算手段)
91a…光ファイバ
91b…光ファイバ
91c…光ファイバ
92…集光レンズ
DESCRIPTION OF SYMBOLS 10 ... Laser source 20 for ultrasonic generation ... Laser source 30 for ultrasonic detection ... Head part 31 ... Optical coupler 32 ... Condensing lens 33 ... Half mirror 34 ... Molding lens 50 ... Interferometer 60 ... Photo detector 70 ... Computer ( Calculation means)
91a ... Optical fiber 91b ... Optical fiber 91c ... Optical fiber 92 ... Condensing lens

Claims (6)

多結晶材料の結晶粒径分布測定方法において、
多結晶材料から成る測定対象物内に超音波を発生する段階と、
前記超音波の減衰率を測定して実測減衰率を得る段階と、
仮定した結晶粒径分布に基づいて理論的に超音波減衰率を演算して理論減衰率を得る段階と、
前記実測減衰率を理論減衰率と比較する段階と、
比較結果に基づいて前記測定対象物の結晶粒径分布を決定する結晶粒径分布測定方法。
In the method for measuring the crystal grain size distribution of a polycrystalline material,
Generating ultrasonic waves in a measurement object made of a polycrystalline material;
Measuring an attenuation rate of the ultrasonic wave to obtain an actual attenuation rate;
Calculating the ultrasonic attenuation rate theoretically based on the assumed crystal grain size distribution to obtain the theoretical attenuation rate;
Comparing the measured attenuation rate with a theoretical attenuation rate;
A crystal grain size distribution measuring method for determining a crystal grain size distribution of the measurement object based on a comparison result.
前記仮定した結晶粒径分布は正規分布または対数正規分布であり、
前記理論減衰率を得る段階は、前記実測減衰率に基づいて測定対象物の平均結晶粒径を求める段階と、
前記正規分布の広がり幅に関して複数の異なる値を仮定して、前記平均結晶粒径および前記広がり幅の値の各々に関して結晶粒径分布を求める段階と、
前記求めた結晶粒径分布の各々に関して減衰率を演算して複数の理論減衰率を得る段階を含み、
前記比較する段階は、前記実測減衰率を、前記複数の理論減衰率の各々と比較する段階を含み、
前記方法は、前記比較の結果、最良の一致度を示した理論減衰率を与える結晶粒径分布を前記測定対象物の結晶粒径分布として選択する段階を含む請求項1に記載の方法。
The assumed crystal grain size distribution is a normal distribution or a log normal distribution,
The step of obtaining the theoretical attenuation rate includes obtaining an average crystal grain size of the measurement object based on the measured attenuation rate,
Assuming a plurality of different values for the spread width of the normal distribution and determining a crystal grain size distribution for each of the average crystal grain size and the spread width value;
Calculating a damping rate for each of the determined crystal grain size distributions to obtain a plurality of theoretical damping rates;
The step of comparing includes comparing the measured attenuation rate with each of the plurality of theoretical attenuation rates;
2. The method according to claim 1, wherein the method includes a step of selecting a crystal grain size distribution that gives a theoretical damping rate that shows a best match as a result of the comparison as a crystal grain size distribution of the measurement object.
前記仮定した結晶粒径分布は、分布に1個のピーク値を有する任意の分布関数である請求項2に記載の方法。   The method according to claim 2, wherein the assumed crystal grain size distribution is an arbitrary distribution function having one peak value in the distribution. 多結晶材料の結晶粒径分布測定装置において、
多結晶材料から成る測定対象物内に超音波を発生する手段と、
前記超音波の減衰率を測定して実測減衰率を得る手段と、
仮定した結晶粒径分布に基づいて理論的に超音波減衰率を演算して理論減衰率を得る手段と、
前記実測減衰率を理論減衰率と比較する手段とを具備し、
比較結果に基づいて前記測定対象物の結晶粒径分布を決定するようにした結晶粒径分布測定装置。
In the crystal grain size distribution measuring device for polycrystalline materials,
Means for generating ultrasonic waves in a measurement object made of a polycrystalline material;
Means for measuring the attenuation rate of the ultrasonic wave to obtain an actual attenuation rate;
Means for theoretically calculating the ultrasonic attenuation rate based on the assumed crystal grain size distribution to obtain the theoretical attenuation rate;
Means for comparing the measured attenuation rate with a theoretical attenuation rate,
A crystal grain size distribution measuring apparatus for determining a crystal grain size distribution of the measurement object based on a comparison result.
前記超音波を発生する手段は、前記測定対象物へ向けて超音波測定用レーザビームをパルス状に照射する超音波測定用レーザビーム源を具備し、
前記超音波の減衰率を測定して実測減衰率を得る手段は、前記測定対象物へ向けて測定用レーザビームを連続的に照射する測定用レーザビーム源と、前記測定用レーザビームの反射レーザビームを受光して反射レーザビームの光強度の変化を電気信号に変換する手段と、前記電気信号を波形データとして取り込んで、該波形データを高速フーリエ変換することにより、各周波数毎に減衰率を演算する手段とを具備する請求項4に記載の装置。
The means for generating the ultrasonic wave comprises a laser beam source for ultrasonic measurement that irradiates the measurement target with a laser beam for ultrasonic measurement in a pulsed manner.
The means for measuring the attenuation rate of the ultrasonic wave to obtain the actual attenuation rate includes a measurement laser beam source for continuously irradiating the measurement object with the measurement laser beam, and a reflection laser of the measurement laser beam. A means for receiving the beam and converting the change in the light intensity of the reflected laser beam into an electrical signal, and taking the electrical signal as waveform data and performing a fast Fourier transform on the waveform data, thereby obtaining an attenuation factor for each frequency. 5. The apparatus according to claim 4, further comprising means for calculating.
前記理論減衰率を得る手段は、前記実測減衰率に基づいて測定対象物の平均結晶粒径を求め、結晶粒径分布に関して分布関数を仮定し、該分布関数の広がり幅に関して複数の異なる値を仮定して、前記平均結晶粒径および前記広がり幅の値の各々に関して結晶粒径分布を求め、前記求めた結晶粒径分布の各々に関して減衰率を演算して複数の理論減衰率を得るようになっており、
前記比較する手段は、前記実測減衰率を、前記複数の理論減衰率の各々と比較し、
前記装置は、前記比較の結果、最良の一致度を示した理論減衰率を与える結晶粒径分布を前記測定対象物の結晶粒径分布として選択する手段を更に具備する請求項5に記載の装置。
The means for obtaining the theoretical attenuation rate obtains the average crystal grain size of the measurement object based on the measured attenuation rate, assumes a distribution function for the crystal grain size distribution, and sets a plurality of different values for the spread width of the distribution function. Assuming that a crystal grain size distribution is obtained for each of the average crystal grain size and the spread width value, and a plurality of theoretical damping rates are obtained by calculating a damping rate for each of the obtained crystal grain size distributions. And
The means for comparing compares the measured attenuation rate with each of the plurality of theoretical attenuation rates,
6. The apparatus according to claim 5, further comprising means for selecting, as a result of the comparison, a crystal grain size distribution that gives a theoretical damping rate that shows the best degree of coincidence as a crystal grain size distribution of the measurement object. .
JP2004117106A 2004-04-12 2004-04-12 Crystal grain size distribution measuring method and apparatus Expired - Lifetime JP4471714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117106A JP4471714B2 (en) 2004-04-12 2004-04-12 Crystal grain size distribution measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117106A JP4471714B2 (en) 2004-04-12 2004-04-12 Crystal grain size distribution measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2005300356A true JP2005300356A (en) 2005-10-27
JP4471714B2 JP4471714B2 (en) 2010-06-02

Family

ID=35332053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117106A Expired - Lifetime JP4471714B2 (en) 2004-04-12 2004-04-12 Crystal grain size distribution measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4471714B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008028B1 (en) 2004-03-11 2011-01-13 니뽄스틸코포레이션 Method and apparatus for measuring crystal grain size distribution
JP2011058937A (en) * 2009-09-09 2011-03-24 Toyota Central R&D Labs Inc System and method for measuring structure internal state
CN108896660A (en) * 2018-07-09 2018-11-27 中南大学 A kind of hexagonal crystal material near surface tiny flaw detection method based on shear wave back scattering
JP2020502531A (en) * 2016-12-22 2020-01-23 ポスコPosco Steel grain size measuring device
JP2022525698A (en) * 2019-06-04 2022-05-18 エスエスアーベー テクノロジー アーベー Methods and Devices for Estimating Material Properties of Objects Using Laser Ultrasound (LUS) Measuring Instruments

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008028B1 (en) 2004-03-11 2011-01-13 니뽄스틸코포레이션 Method and apparatus for measuring crystal grain size distribution
JP2011058937A (en) * 2009-09-09 2011-03-24 Toyota Central R&D Labs Inc System and method for measuring structure internal state
JP2020502531A (en) * 2016-12-22 2020-01-23 ポスコPosco Steel grain size measuring device
CN108896660A (en) * 2018-07-09 2018-11-27 中南大学 A kind of hexagonal crystal material near surface tiny flaw detection method based on shear wave back scattering
JP2022525698A (en) * 2019-06-04 2022-05-18 エスエスアーベー テクノロジー アーベー Methods and Devices for Estimating Material Properties of Objects Using Laser Ultrasound (LUS) Measuring Instruments
US20220205954A1 (en) * 2019-06-04 2022-06-30 Ssab Technology Ab A method and arrangement for estimating a material property of an object by means of a laser ultrasonic (lus) measurement equipment
US11549915B2 (en) 2019-06-04 2023-01-10 Ssab Technology Ab Method and arrangement for estimating a material property of an object by means of a laser ultrasonic (LUS) measurement equipment
JP7335983B2 (en) 2019-06-04 2023-08-30 エスエスアーベー テクノロジー アーベー Method and apparatus for estimating material properties of objects using laser ultrasound (LUS) measurement equipment

Also Published As

Publication number Publication date
JP4471714B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US6057927A (en) Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties
JP4783263B2 (en) Ultrasonic multi-echo measurement device
JPH0643945B2 (en) Non-contact online paper pattern strength measuring device
JP5570451B2 (en) Laser welding apparatus and laser welding method
KR101242888B1 (en) Measuring Method and Measruting Apparatus of Poisson&#39;s Ratio
JP5058109B2 (en) Method and apparatus for measuring longitudinal and transverse sound velocities in materials by laser ultrasonic method
CN101395467B (en) Structure/material measuring device for metallic material
KR101053415B1 (en) Laser Ultrasonic Measuring Device and Measuring Method
JP4086938B2 (en) Ultrasonic measuring device
JP4471714B2 (en) Crystal grain size distribution measuring method and apparatus
KR100993989B1 (en) Laser ultrasonic measuring device and laser ultrasonic measuring method
KR100496826B1 (en) Apparatus and method of noncontact measurement of crystal grain size
JP5072789B2 (en) Method and apparatus for measuring longitudinal and transverse sound velocities in materials by laser ultrasonic method
KR101180151B1 (en) Measuring method of poisson&#39;s ratio and measuring apparatus thereof
JP4439363B2 (en) Online crystal grain size measuring apparatus and measuring method using laser ultrasonic wave
JP4031711B2 (en) Residual stress distribution measuring apparatus and residual stress distribution measuring method
KR101008028B1 (en) Method and apparatus for measuring crystal grain size distribution
JP2003185639A (en) Laser ultrasonograph
KR100994037B1 (en) Laser ultrasonic measuring device and laser ultrasonic measuring method
JP3799453B2 (en) Internal temperature distribution measuring device and internal temperature distribution measuring method
KR100733539B1 (en) Apparatus and method of laser-ultrasonic measurement for hot object
JP3874749B2 (en) Target sound detection method and apparatus
JP5058196B2 (en) Apparatus and method for measuring phase transformation rate of material
JP4104487B2 (en) Grain aspect ratio measuring apparatus and grain aspect ratio measuring method
WO2002103347A2 (en) Grain-size measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4471714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250