JP2005291937A - Inertia sensor element - Google Patents

Inertia sensor element Download PDF

Info

Publication number
JP2005291937A
JP2005291937A JP2004107836A JP2004107836A JP2005291937A JP 2005291937 A JP2005291937 A JP 2005291937A JP 2004107836 A JP2004107836 A JP 2004107836A JP 2004107836 A JP2004107836 A JP 2004107836A JP 2005291937 A JP2005291937 A JP 2005291937A
Authority
JP
Japan
Prior art keywords
tuning fork
axis direction
sensor element
dimension
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004107836A
Other languages
Japanese (ja)
Inventor
Ryota Kawai
良太 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2004107836A priority Critical patent/JP2005291937A/en
Publication of JP2005291937A publication Critical patent/JP2005291937A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein a conventional inertia sensor element cannot sufficiently damp the vibration of a tuning fork leg part at the tuning fork base part, in exciting the inflection vibration of the tuning fork leg part, and transmits it to a support part, and wherein the characteristics such as the temperature characteristic and the leakage of vibration extremely vary before and after assembling the inertia sensor element, and to improve the transmission of the vibration from the tuning fork leg part to the support part. <P>SOLUTION: In the inertia sensor element having a groove in the tuning fork base part, the inertia sensor element, composed of a piezoelectric material having at least a plurality of leg parts, the tuning fork base part, and the support part, is provided with a through hole or the groove having the dimension ≥0.3 times the distance between the outsides of the plurality of leg parts with respect to the X-axis direction and having the dimension ≤0.3 times the dimension of the tuning fork base part in the Y-axis direction, with respect to the Y-axis direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、航空機、船舶、自動車などの姿勢制御や位置検出などに用いる慣性センサに関するものである。   The present invention relates to an inertial sensor used for attitude control and position detection of an aircraft, a ship, an automobile, and the like.

慣性センサには様々な種類があるが、組み込むために薄く小型にし、かつ軽量にするという要求を満たすものとして、振動型の角速度センサがある。従来よりある振動型の慣性センサは、四角柱を振動させて回転に伴って働くコリオリの力を検出するものである。
このような従来の慣性センサとして、図2に示すように、音叉型振動子を用いたものがある(特許文献1)。
There are various types of inertial sensors, and there is a vibration type angular velocity sensor that satisfies the requirement of being thin, small and lightweight for incorporation. A conventional vibration type inertial sensor detects a Coriolis force that works with rotation by vibrating a quadrangular prism.
As such a conventional inertial sensor, there is one using a tuning fork vibrator as shown in FIG. 2 (Patent Document 1).

従来よりある慣性センサに用いる圧電振動子は、図2(a)の斜視図に示すように、2本の音叉脚201,202、音叉基部203と支持部204を備えている。図2(b)は、図2(a)の脚部上に示した1点鎖線の断面図である。また音叉脚201,202には、図2(b)の断面図に示すように、電極211,212,213,214および電極221,222,223,224を備えている。なお、図2(a)では電極を省略している。   A conventional piezoelectric vibrator used for an inertial sensor includes two tuning fork legs 201 and 202, a tuning fork base 203 and a support 204 as shown in the perspective view of FIG. FIG. 2B is a cross-sectional view taken along the alternate long and short dash line on the leg portion of FIG. Further, the tuning fork legs 201 and 202 are provided with electrodes 211, 212, 213, 214 and electrodes 221, 222, 223, 224 as shown in the sectional view of FIG. In FIG. 2A, electrodes are omitted.

音叉脚201においては、電極211と電極213が音叉脚201を挟んで対向配置され、電極212と電極214が音叉脚201を挟んで対向配置されている。また、電極211と電極212は同一面に形成され、電極213と電極214も同一面に形成されている。
また、図9(b)に模式的に示すように、音叉脚201においては、電極211と電極214が同極とされ、電極212と電極213とは異極とされている。
In the tuning fork leg 201, the electrode 211 and the electrode 213 are arranged opposite to each other with the tuning fork leg 201 interposed therebetween, and the electrode 212 and the electrode 214 are arranged to face each other across the tuning fork leg 201. The electrode 211 and the electrode 212 are formed on the same surface, and the electrode 213 and the electrode 214 are also formed on the same surface.
Further, as schematically shown in FIG. 9B, in the tuning fork leg 201, the electrode 211 and the electrode 214 have the same polarity, and the electrode 212 and the electrode 213 have different polarities.

一方、音叉脚202においては、音叉脚202の4つの側面の各々に、電極221,222,223,224が設けられ、電極221と電極222とが音叉脚202を挟んで対向配置され、電極223と電極224とは異極とされている。   On the other hand, in the tuning fork leg 202, electrodes 221, 222, 223, and 224 are provided on each of the four side surfaces of the tuning fork leg 202, and the electrode 221 and the electrode 222 are disposed to face each other with the tuning fork leg 202 interposed therebetween. And the electrode 224 have different polarities.

以上に示したように構成された音叉型振動子による慣性センサにおいて、音叉脚202は振動子励振部となり、端子E3、E4が振動子励振端子となる。また、音叉脚201は角速度検出部であり、端子E1、E2が角速度検出端子となる。   In the inertial sensor using the tuning fork type vibrator configured as described above, the tuning fork leg 202 serves as a vibrator excitation unit, and the terminals E3 and E4 serve as vibrator excitation terminals. The tuning fork leg 201 is an angular velocity detection unit, and the terminals E1 and E2 are angular velocity detection terminals.

ここで、端子E3に正、端子E4に負となるように直流電圧を印加すると、電解は矢印のように働き、音叉脚202に示す電解成分の向きが反対となり、音叉脚は曲げを生じる。従って、端子E3、E4に交流電圧を印加すると、音叉脚201、202はX−Y平面内で屈曲振動をする。   Here, when a DC voltage is applied so as to be positive at the terminal E3 and negative at the terminal E4, the electrolysis works as indicated by an arrow, the direction of the electrolytic component shown in the tuning fork leg 202 is reversed, and the tuning fork leg is bent. Therefore, when an AC voltage is applied to the terminals E3 and E4, the tuning fork legs 201 and 202 bend and vibrate in the XY plane.

この状態で、Y軸の回りに回転運動を発生させて角速度を発生させると、X−Y平面に垂直となるZ軸方向に、角速度に比例したコリオリの力が発生し、Z軸方向の成分を持った屈曲振動を引き起こす。このときに音叉脚201に発生するZ軸方向に応じた電荷のみを、電極211,212,213,214に誘電すれば、角速度検出端子E1,E2より角速度の大きさを検出することが可能となる。
特開平10−197253号公報 特開昭61−50031号公報
In this state, when a rotational motion is generated around the Y axis to generate an angular velocity, a Coriolis force proportional to the angular velocity is generated in the Z axis direction perpendicular to the XY plane, and a component in the Z axis direction is generated. Causes bending vibration with At this time, if only the electric charge corresponding to the Z-axis direction generated in the tuning fork leg 201 is diverted to the electrodes 211, 212, 213, and 214, the magnitude of the angular velocity can be detected from the angular velocity detection terminals E1 and E2. Become.
JP-A-10-197253 JP 61-50031 A

しかしながら、慣性センサ素子の小型化に伴って、音叉基部の寸法も縮小されるため、音叉脚部から支持部へ伝播する振動を音叉基部で十分に減衰させることができなくなる。そのため慣性センサ素子を支持部を介して組立るとき、組立によって歪みを生じてしまい、慣性センサ素子を組立てる前後で振動漏れ、0点ドリフト等の特性が大きく変動してしまう。   However, as the size of the inertial sensor element is reduced, the size of the tuning fork base is also reduced, so that the vibration propagating from the tuning fork leg to the support cannot be sufficiently attenuated by the tuning fork base. For this reason, when the inertial sensor element is assembled through the support portion, distortion is caused by the assembly, and characteristics such as vibration leakage and zero-point drift greatly vary before and after the inertial sensor element is assembled.

本発明は、少なくとも複数の脚部、音叉基部、支持部を有している圧電材料から構成された慣性センサ素子であって、前記音叉基部に溝を備えた慣性センサ素子の前記音叉基部の貫通穴または溝である開口部分を形成し、前記開口部分の寸法はX軸方向の寸法Whを対向している2つの脚部の各々の脚部外側間の距離Wfに対して0.3倍以上であり、Y軸方向の寸法Lhを、支持部を除いた音叉基部のY軸方向の距離L2に対して0.3倍以下の支持部を除いた音叉基部中心に備えるものである。   The present invention relates to an inertial sensor element composed of a piezoelectric material having at least a plurality of legs, a tuning fork base, and a support, and the tuning fork base includes a groove in the tuning fork base. An opening part that is a hole or a groove is formed, and the dimension of the opening part is 0.3 times or more the distance Wf between the outer sides of the two leg parts facing the dimension Wh in the X-axis direction. The dimension Lh in the Y-axis direction is provided at the center of the tuning fork base excluding the support part 0.3 times or less of the distance L2 in the Y-axis direction of the tuning fork base excluding the support part.

この慣性センサでは音叉基部に貫通穴または溝を備えることで、音叉脚部から支持部へ伝播する振動を著しく小さくする事が可能である。特にY軸方向成分の振動とZ軸方向成分の振動に対しては大きい効果がある。音叉基部に貫通穴を備えた今回の発明の構造と、従来の貫通穴または溝を備えていない構造のものとを比較した場合、今回の発明の構造は、従来のものの1/10程度まで音叉脚部から支持部へ伝播する振動を小さくすることができた。   In this inertial sensor, by providing the tuning fork base with a through hole or groove, it is possible to significantly reduce the vibration propagating from the tuning fork leg to the support. In particular, it has a great effect on the vibration of the Y-axis direction component and the vibration of the Z-axis direction component. When comparing the structure of the present invention with a through hole in the tuning fork base and the structure of the conventional structure without a through hole or groove, the structure of the present invention has a tuning fork up to about 1/10 of the conventional structure. The vibration propagating from the leg part to the support part could be reduced.

そのため、慣性センサ素子を組立てる前後で、振動漏れ、0点ドリフト等の特性の変動量を従来のものより著しく小さくすることが出来る。
また、音叉基部を大きくしなくても、十分に音叉脚部から支持部へ伝播する振動を抑えられるため、素子の小型化にも効果がある。
Therefore, before and after assembling the inertial sensor element, the amount of fluctuation in characteristics such as vibration leakage and zero-point drift can be made significantly smaller than the conventional one.
Further, since the vibration propagating from the tuning fork leg part to the support part can be sufficiently suppressed without enlarging the tuning fork base part, the element can be miniaturized.

少なくとも複数の脚部、音叉基部、支持部を有している圧電材料から構成された慣性センサ素子であって、前記音叉基部に溝を備えた慣性センサ素子において、
前記音叉基部の貫通穴または溝は、貫通穴の開口寸法はX軸方向の寸法Whを対向している2つの脚部の各々の脚部外側間の距離Wfに対して0.3倍以上であり、Y軸方向の寸法Lhを、支持部を除いた音叉基部のY軸方向の距離L2に対して0.3倍以下、開口位置を支持部を除いた音叉基部中心となるような貫通穴を備える慣性センサ素子である。
An inertial sensor element composed of a piezoelectric material having at least a plurality of legs, a tuning fork base, and a support part, wherein the tuning fork base includes a groove,
In the through hole or groove of the tuning fork base, the opening size of the through hole is not less than 0.3 times the distance Wf between the outer sides of the two legs facing the dimension Wh in the X-axis direction. Yes, the dimension Lh in the Y-axis direction is 0.3 times or less the distance L2 in the Y-axis direction of the tuning fork base excluding the support part, and the through hole is the center of the tuning fork base excluding the support part It is an inertial sensor element provided with.

図1は、本発明の実施の形態における慣性センサの構成例を示す斜視図(a)および脚部の断面を示す断面図(b)である。図1(b)は、図1(a)の脚部上に示した1点鎖線の断面図である。この慣性センサは水晶からなり、2本の音叉脚部101,102を備えた音叉型振動子である。音叉脚部101,102の寸法Wxは0.38mm、Z軸方向の寸法Wzは0.45mm、Y軸方向の長さL1は4.7mmであり、音叉基部103、支持部104を含めた全体の長さは6.5mmである。音叉基部のY軸方向の長さL2は1.2mmである。   FIG. 1 is a perspective view (a) showing a configuration example of an inertial sensor in the embodiment of the present invention and a cross-sectional view (b) showing a cross section of a leg portion. FIG.1 (b) is sectional drawing of the dashed-dotted line shown on the leg part of Fig.1 (a). This inertial sensor is a tuning fork type vibrator made of quartz and provided with two tuning fork legs 101 and 102. The tuning fork legs 101 and 102 have a dimension Wx of 0.38 mm, a dimension Wz in the Z-axis direction of 0.45 mm, and a length L1 in the Y-axis direction of 4.7 mm, including the tuning fork base 103 and the support 104. The length of is 6.5 mm. The length L2 of the tuning fork base in the Y-axis direction is 1.2 mm.

また貫通穴130のX軸方向の寸法Whは1.2mm、Y軸方向の寸法Lhは0.2mmである。また、音叉脚部付け根と貫通穴の中心とのY軸方向の距離Dhを0.6mmとした。音叉脚部101において、電極111,114は同極とされて、端子E1,E2に接続されている。また、電極112,113が同極とされ、端子E2に接続されている。   The dimension Wh in the X-axis direction of the through hole 130 is 1.2 mm, and the dimension Lh in the Y-axis direction is 0.2 mm. The distance Dh in the Y-axis direction between the tuning fork leg base and the center of the through hole was 0.6 mm. In the tuning fork leg 101, the electrodes 111 and 114 have the same polarity and are connected to the terminals E1 and E2. The electrodes 112 and 113 have the same polarity and are connected to the terminal E2.

一方、音叉脚部102において、電極121,122は同極とされ、端子E3に接続されている。また、電極123,124は同極とされ、端子E4に接続されている。   On the other hand, in the tuning fork leg 102, the electrodes 121 and 122 have the same polarity and are connected to the terminal E3. The electrodes 123 and 124 have the same polarity and are connected to the terminal E4.

以上に示したように構成された音叉型振動子による慣性センサにおいて、音叉脚102は振動子励振部となり、電極121,122と電極123,124とが振動子励振電極となる。また、音叉脚101は角速度検出部であり、電極111,114と電極112,113とが角速度検出電極となる。なお、図1におけるXYZの直交座標系において、X軸は慣性センサを構成する水晶の電気軸を示し、Y軸は機械軸、Z軸は光軸である。   In the inertial sensor using the tuning fork type vibrator configured as described above, the tuning fork leg 102 serves as a vibrator excitation unit, and the electrodes 121 and 122 and the electrodes 123 and 124 serve as vibrator excitation electrodes. The tuning fork leg 101 is an angular velocity detection unit, and the electrodes 111 and 114 and the electrodes 112 and 113 serve as angular velocity detection electrodes. In the XYZ orthogonal coordinate system shown in FIG. 1, the X axis indicates the electric axis of the crystal constituting the inertial sensor, the Y axis is the mechanical axis, and the Z axis is the optical axis.

ところで水晶などの圧電材料は、圧電−逆圧電効果を有している。本実施の形態の慣性センサにおいても、適正に構成された電極を介して電気軸に平行に電解をかけると、機械軸に平行に歪(伸あるいは縮)が発生する(逆圧電効果)。これに対し、外部から機械的な外力歪(この場合はコリオリの力による歪)が、本慣性センサに印加されると、歪んだ部分に大きさに比例した電荷が発生する(圧電効果)。この電荷が発生する箇所に適正に構成された電極を配すると、発生した電荷を有効に集める事が可能となる。   Incidentally, a piezoelectric material such as quartz has a piezoelectric-inverse piezoelectric effect. Also in the inertial sensor of the present embodiment, when electrolysis is applied in parallel to the electrical axis through the appropriately configured electrode, strain (extension or contraction) is generated in parallel to the mechanical axis (reverse piezoelectric effect). On the other hand, when mechanical external force strain (in this case, strain due to Coriolis force) is applied to the inertial sensor, a charge proportional to the magnitude is generated in the distorted portion (piezoelectric effect). If an appropriately configured electrode is disposed at a place where this charge is generated, the generated charge can be collected effectively.

ここで、電極121,122に正、電極123,124に負となるように直流電圧を印加すると、音叉脚はX軸方向に曲げを生じる。従って、電極121,122と電極123,124との間に交流電圧を印加すると、音叉脚101,102はX−Y平面で屈曲振動を起こす(励振する)。   Here, when a DC voltage is applied so that the electrodes 121 and 122 are positive and the electrodes 123 and 124 are negative, the tuning fork leg is bent in the X-axis direction. Therefore, when an AC voltage is applied between the electrodes 121 and 122 and the electrodes 123 and 124, the tuning fork legs 101 and 102 cause bending vibration (excited) in the XY plane.

この状態で、Y軸の回りに回転運動を発生させると、X−Y平面に垂直となるZ軸方向に、角速度に比例したコリオリの力が発生し、Z軸方向の成分を持った屈曲振動を引き起こす。この屈曲振動により、音叉脚101には、圧電効果により電荷が発生し、これが角速度検出電極である電極111,114と電極112,113により検出され端子E1,E2より出力される。発生する電荷は、発生させた回転運動の角速度に比例した量となるので、角速度検出電極により検出される電気信号で角速度の大きさを求めることができる。また、上記電荷の極性と励振信号の極性と励振信号との位相を比較することで、角速度の方向も検知することが可能となる。   In this state, when a rotational motion is generated around the Y axis, a Coriolis force proportional to the angular velocity is generated in the Z axis direction perpendicular to the XY plane, and bending vibration having a component in the Z axis direction. cause. Due to this bending vibration, electric charges are generated in the tuning fork leg 101 due to the piezoelectric effect, which are detected by the electrodes 111 and 114 and the electrodes 112 and 113 which are angular velocity detection electrodes and output from the terminals E1 and E2. Since the generated charge is in proportion to the angular velocity of the generated rotational motion, the magnitude of the angular velocity can be obtained from the electrical signal detected by the angular velocity detection electrode. Further, the direction of the angular velocity can also be detected by comparing the phases of the charge polarity, the excitation signal polarity and the excitation signal.

以上のように構成された図1に示す慣性センサ素子によれば、音叉脚部にて生じたX,Y,Zそれぞれの軸方向に生じた振動を音叉基部に備えた貫通穴または溝で減衰させることにより、音叉基部から支持部への振動の伝播を著しく小さくすることができる。   According to the inertial sensor element shown in FIG. 1 configured as described above, vibrations generated in the X, Y, and Z axial directions generated in the tuning fork leg are attenuated by the through hole or groove provided in the tuning fork base. By doing so, propagation of vibration from the tuning fork base to the support can be significantly reduced.

ここで、貫通穴のX軸方向の寸法、Y軸方向の寸法、挿入位置と支持部での振動変位の関係について考察した結果を以下に示す。
図3,図4には、2つの脚部各々の脚部外側間の距離をWf、貫通穴のX軸方向の寸法をWhとした場合、横軸をWh/Wfとして貫通穴のX軸方向の寸法Whを変化させたとき、図1中A点、B点の振動変位の変化を示し、図5,図6には支持部を除いた音叉基部のY軸方向の寸法をL2、貫通穴のY軸方向の寸法をLhとした場合、横軸をLh/L2として貫通穴のY軸方向の寸法Lhを変化させたとき、A点,B点の振動変位の変化を示し、図7,図8には音叉脚部付け根と貫通穴中心とのY軸方向の距離をDhとした場合、横軸をDh/L2として貫通穴の挿入位置Dhを変化させたとき、A点,B点の振動変位の変化を示した。なお、図3〜図8のY軸は貫通穴または溝のない状態の振動変位を1としたとき、各々数値で示す割合で示したものである。
Here, the result of considering the relationship between the dimension of the through hole in the X-axis direction, the dimension in the Y-axis direction, the insertion position and the vibration displacement at the support portion is shown below.
3 and 4, when the distance between the outsides of the two legs is Wf and the dimension of the through hole in the X-axis direction is Wh, the horizontal axis is Wh / Wf and the through-hole is in the X-axis direction. 1 shows the change in vibration displacement at points A and B in FIG. 1. FIGS. 5 and 6 show the Y-axis dimension of the tuning fork base portion excluding the support portion as L2. When the dimension in the Y-axis direction is Lh and the horizontal axis is Lh / L2 and the dimension Lh in the Y-axis direction of the through hole is changed, the change in vibration displacement at points A and B is shown in FIG. In FIG. 8, when the distance in the Y-axis direction between the tuning fork leg base and the center of the through hole is Dh, when the horizontal axis is Dh / L2 and the insertion position Dh of the through hole is changed, points A and B The change of vibration displacement is shown. The Y axis in FIGS. 3 to 8 is a ratio indicated by a numerical value when the vibration displacement without a through hole or groove is 1.

図3,図4よりA,B点の振動変位は、Wh=(0.8〜0.9)×Wfとなるとき音叉脚部から支持部へ伝播する波は最小になり、Wh > 0.3×Wfとなる場合は、貫通穴または溝がないモデルよりも音叉脚部から支持部へ伝播する振動は小さくなる。また図中2つの曲線が存在するのは、音叉脚のスリット幅、音叉基部の大きさ等の寸法がそれぞれ異なるものを比較したためである。   3 and 4, when the vibration displacement at points A and B is Wh = (0.8 to 0.9) × Wf, the wave propagating from the tuning fork leg to the support is minimized, and Wh> 0. In the case of 3 × Wf, the vibration propagating from the tuning fork leg portion to the support portion is smaller than in the model having no through hole or groove. The two curves exist in the figure because the different forks such as the slit width of the tuning fork leg and the size of the tuning fork base are compared.

図5,図6より貫通穴のY軸方向の寸法を変化させた場合のA,B点の振動変位はLhが約0.15×L2となるとき音叉脚部から支持部へ伝播する波は最小となり、Lh < 0.3×L2となるとき、貫通穴または溝のないモデルよりも小さくなる。   5 and 6, the vibration displacement at points A and B when the dimension of the through hole in the Y-axis direction is changed is that the wave propagating from the tuning fork leg to the support when Lh is about 0.15 × L2. When Lh is smaller than 0.3 × L2, it is smaller than the model without through holes or grooves.

図7,図8より貫通穴の音叉基部への挿入位置をY軸方向に変化させた場合のA,B点の振動変位は、支持部を除いた音叉基部の中心部分に貫通穴を備えた場合が音叉脚部から支持部へ伝播する波は最小となり、Dh=(0.3〜0.7)×L2となる位置に貫通穴を挿入した場合、貫通穴または溝が無いものよりも小さくなる。   7 and 8, the vibration displacement at points A and B when the insertion position of the through hole into the tuning fork base is changed in the Y-axis direction has a through hole at the center of the tuning fork base excluding the support. In some cases, the wave propagating from the tuning fork leg part to the support part is minimized, and when a through hole is inserted at a position where Dh = (0.3 to 0.7) × L2, it is smaller than that without a through hole or groove. Become.

図3〜図8のように、貫通穴もしくは溝の最適な寸法と挿入位置を決めることで、音叉脚部から伝播する支持部への振動を著しく小さく抑えることが可能である。そのため、組立後の0点ドリフト、振動漏れ等の特性変化を従来のものと比較すると著しく小さくすることができる。この結果、本実施の形態により従来より高い精度で角速度を検出できるようになる。   As shown in FIGS. 3 to 8, by determining the optimum size and insertion position of the through hole or groove, it is possible to significantly reduce the vibration from the tuning fork leg portion to the support portion. Therefore, characteristic changes such as zero point drift and vibration leakage after assembly can be significantly reduced as compared with the conventional one. As a result, according to the present embodiment, the angular velocity can be detected with higher accuracy than in the past.

また上述した実施の形態では、水晶を用いるようにしたがこれに限るものではなく、ニオブ酸リチウムの結晶や、圧電セラミックなど、他の圧電材料を用いるようにしても良い。   In the embodiment described above, quartz is used. However, the present invention is not limited to this, and other piezoelectric materials such as crystals of lithium niobate and piezoelectric ceramics may be used.

ビデオカメラの画像補正用、航空機、船舶、自動車などの姿勢制御、位置検出などに用いられる角速度センサとしてだけではなく、加速度と角速度の測定が可能な慣性センサへの応用、または2軸あるいは3軸の角速度の測定が可能な慣性センサにも応用することができる。   Application to inertial sensors capable of measuring acceleration and angular velocity, as well as angular velocity sensors used for video camera image correction, attitude control of aircraft, ships, automobiles, etc., position detection, or 2-axis or 3-axis The present invention can also be applied to an inertial sensor capable of measuring the angular velocity.

この発明の実施の形態における慣性センサ素子の構成例を示す斜視図(a)、および脚部の断面図(b)である。It is the perspective view (a) which shows the structural example of the inertial sensor element in embodiment of this invention, and sectional drawing (b) of a leg part. 従来よりある慣性センサ素子の構成例を示す斜視図(a)、および脚部の断面を示す断面図(b)である。It is the perspective view (a) which shows the structural example of a conventional inertial sensor element, and sectional drawing (b) which shows the cross section of a leg part. 本発明による慣性センサ素子の貫通穴をX軸方向に寸法を変化させたときに生じる支持部中央部(図1中A点)での振動変位の変化を示す特性図である。It is a characteristic view which shows the change of the vibration displacement in the support part center part (A point in FIG. 1) produced when the dimension of the through-hole of the inertial sensor element by this invention is changed to the X-axis direction. 本発明による慣性センサ素子の貫通穴をX軸方向に寸法を変化させたときに生じる支持部端部(図1中B点)での振動変位の変化を示す特性図である。It is a characteristic view which shows the change of the vibration displacement in the support part edge part (B point in FIG. 1) produced when the dimension of the through-hole of the inertial sensor element by this invention is changed to an X-axis direction. 本発明による慣性センサ素子の貫通穴をY軸方向に寸法を変化させたときに生じる支持部中央部(図1中A点)での振動変位の変化を示す特性図である。It is a characteristic view which shows the change of the vibration displacement in the support part center part (A point in FIG. 1) produced when the dimension of the through-hole of the inertial sensor element by this invention is changed to a Y-axis direction. 本発明による慣性センサ素子の貫通穴をY軸方向に寸法を変化させたときに生じる支持部端部(図1中B点)での振動変位の変化を示す特性図である。It is a characteristic view which shows the change of the vibration displacement in the support part edge part (B point in FIG. 1) produced when the dimension of the through-hole of the inertial sensor element by this invention is changed to a Y-axis direction. 本発明による慣性センサ素子の貫通穴の挿入位置をY軸方向に変化させたときに生じる支持部中央部(図1中A点)での振動変位の変化を示す特性図である。It is a characteristic view which shows the change of the vibration displacement in the support part center part (A point in FIG. 1) produced when the insertion position of the through-hole of the inertial sensor element by this invention is changed to a Y-axis direction. 本発明による慣性センサ素子の貫通穴の挿入位置をY軸方向に変化させたときに生じる支持部端部(図1中B点)での振動変位の変化を示す特性図である。It is a characteristic view which shows the change of the vibration displacement in the support part edge part (B point in FIG. 1) produced when the insertion position of the through-hole of the inertial sensor element by this invention is changed to a Y-axis direction.

符号の説明Explanation of symbols

101,102・・・音叉脚
103 ・・・・音叉基部
104 ・・・・支持部
111,112,113,114 ・・・・角速度検出電極
121,122,123,124 ・・振動子励振電極
130 ・・・・・貫通穴
E1,E2 ・・・角速度検出端子
E3,E4 ・・・振動子励振端子
201,202 ・・音叉脚
203 ・・・・音叉基部
204 ・・・・・支持部
211,212,213,214 ・・・・角速度検出電極
221,222,223,224 ・・・振動子励振電極
101, 102 ... tuning fork leg 103 ... tuning fork base 104 ... support 111, 112, 113, 114 ... angular velocity detection electrode 121, 122, 123, 124 ... vibrator excitation electrode 130 ... through holes
E1, E2 ... Angular velocity detection terminals
E3, E4 ... vibrator excitation terminals 201, 202 ... tuning fork legs 203 ... tuning fork base 204 ... support parts 211, 212, 213, 214 ... angular velocity detection electrodes 221, 222, 223, 224 ... Vibrator excitation electrode

Claims (2)

少なくとも複数の脚部、音叉基部、支持部を有している圧電材料から構成された慣性センサ素子であって、前記音叉基部に貫通穴または溝を備えた慣性センサ素子において、
前記貫通穴または溝の寸法はX軸方向の寸法Whを対向している2つの脚部の各々の脚部外側間の距離Wfに対して0.3倍以上であり、Y軸方向の寸法Lhは、支持部を除いた音叉基部のY軸方向の距離L2に対して0.3倍以下であることを特徴とする慣性センサ素子。
An inertial sensor element composed of a piezoelectric material having at least a plurality of legs, a tuning fork base, and a support part, wherein the tuning fork base includes a through hole or a groove,
The dimension of the through hole or groove is not less than 0.3 times the distance Wf between the outer sides of the two legs facing the dimension Wh in the X-axis direction, and the dimension Lh in the Y-axis direction. Is 0.3 times or less the distance L2 in the Y-axis direction of the tuning fork base excluding the support portion.
請求項1に記載の慣性センサ素子において、
前記貫通穴または溝の音叉基部への開口位置を、音叉付け根から貫通穴または溝の中心までのY軸方向の距離Dhが支持部を除いた音叉基部のY軸方向寸法L2に対して、0.3から0.7倍となることを特徴とする慣性センサ素子。

The inertial sensor element according to claim 1,
The opening position of the through hole or groove to the tuning fork base is set such that the distance Dh from the root of the tuning fork to the center of the through hole or groove is 0 with respect to the dimension L2 of the tuning fork base excluding the support portion. Inertial sensor element characterized in that it is 3 to 0.7 times.

JP2004107836A 2004-03-31 2004-03-31 Inertia sensor element Pending JP2005291937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107836A JP2005291937A (en) 2004-03-31 2004-03-31 Inertia sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107836A JP2005291937A (en) 2004-03-31 2004-03-31 Inertia sensor element

Publications (1)

Publication Number Publication Date
JP2005291937A true JP2005291937A (en) 2005-10-20

Family

ID=35325022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107836A Pending JP2005291937A (en) 2004-03-31 2004-03-31 Inertia sensor element

Country Status (1)

Country Link
JP (1) JP2005291937A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253554B2 (en) * 2004-09-03 2007-08-07 Eta Sa Manufacture Horlogere Suisse Quartz resonator of small dimensions
WO2007114235A1 (en) 2006-03-30 2007-10-11 Kyocera Corporation Mobile electronic device and method for calibrating terrestrial magnetism sensor
WO2007114236A1 (en) 2006-03-30 2007-10-11 Kyocera Corporation Mobile electronic device and method for calibrating terrestrial magnetism sensor
JP2007298321A (en) * 2006-04-28 2007-11-15 Kyocera Kinseki Corp Acceleration sensor
JP2008249489A (en) * 2007-03-30 2008-10-16 Tdk Corp Angular velocity sensor element and angular velocity sensor device
JP2013007656A (en) * 2011-06-24 2013-01-10 Seiko Epson Corp Flexural vibration piece and electronic apparatus
CN111868819A (en) * 2018-03-20 2020-10-30 雅马哈株式会社 Mute device, mute method, and vibration detection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253554B2 (en) * 2004-09-03 2007-08-07 Eta Sa Manufacture Horlogere Suisse Quartz resonator of small dimensions
WO2007114235A1 (en) 2006-03-30 2007-10-11 Kyocera Corporation Mobile electronic device and method for calibrating terrestrial magnetism sensor
WO2007114236A1 (en) 2006-03-30 2007-10-11 Kyocera Corporation Mobile electronic device and method for calibrating terrestrial magnetism sensor
JP2007298321A (en) * 2006-04-28 2007-11-15 Kyocera Kinseki Corp Acceleration sensor
JP2008249489A (en) * 2007-03-30 2008-10-16 Tdk Corp Angular velocity sensor element and angular velocity sensor device
JP2013007656A (en) * 2011-06-24 2013-01-10 Seiko Epson Corp Flexural vibration piece and electronic apparatus
CN111868819A (en) * 2018-03-20 2020-10-30 雅马哈株式会社 Mute device, mute method, and vibration detection device
CN111868819B (en) * 2018-03-20 2024-01-30 雅马哈株式会社 Mute apparatus, mute method, and vibration detection apparatus

Similar Documents

Publication Publication Date Title
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
JP4258466B2 (en) Piezoelectric gyro element and piezoelectric gyroscope
JP2009250859A (en) Acceleration sensing device
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP4911690B2 (en) Vibrating gyro vibrator
JP2004301734A (en) Inertia sensor
JP2008058062A (en) Angular velocity sensor
JP2005291937A (en) Inertia sensor element
JP5025965B2 (en) Inertial sensor element
JP2008209116A (en) Angular velocity sensor and method for fabricating same
JP2007322200A (en) Inertial sensor element
JP4667858B2 (en) Inertial sensor element
JP3360478B2 (en) Ceramic piezoelectric composite angular velocity sensor
JP3439861B2 (en) Vibratory gyroscope
JP2010032482A (en) Gyro sensor vibrator
JP2008175578A (en) Vibrator for piezoelectric vibrating gyroscope
JP2009128020A (en) Piezoelectric vibration gyroscope using tuning fork type piezoelectric single crystal vibrator
JP5486757B2 (en) Inertial sensor element
JP2004301510A (en) Tuning fork type angular velocity sensor
JP2005156395A (en) Inertia sensor element
JP2008145325A (en) Vibration gyro
JP2009192403A (en) Angular velocity and acceleration detector
JP2006208261A (en) Inertia sensor element
JP2010096695A (en) Vibration gyroscope
JP3958741B2 (en) Piezoelectric vibrator gyro vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222