JP2005285382A - Manufacturing method for active material for lithium secondary battery, active material for the lithium secondary battery and the lithium secondary battery - Google Patents

Manufacturing method for active material for lithium secondary battery, active material for the lithium secondary battery and the lithium secondary battery Download PDF

Info

Publication number
JP2005285382A
JP2005285382A JP2004093823A JP2004093823A JP2005285382A JP 2005285382 A JP2005285382 A JP 2005285382A JP 2004093823 A JP2004093823 A JP 2004093823A JP 2004093823 A JP2004093823 A JP 2004093823A JP 2005285382 A JP2005285382 A JP 2005285382A
Authority
JP
Japan
Prior art keywords
active material
matrix
lithium secondary
silicon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004093823A
Other languages
Japanese (ja)
Other versions
JP4474184B2 (en
Inventor
Yasuo Takeda
保雄 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis Research Institute Inc
Toyota Motor Corp
Original Assignee
Genesis Research Institute Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Research Institute Inc, Toyota Motor Corp filed Critical Genesis Research Institute Inc
Priority to JP2004093823A priority Critical patent/JP4474184B2/en
Publication of JP2005285382A publication Critical patent/JP2005285382A/en
Application granted granted Critical
Publication of JP4474184B2 publication Critical patent/JP4474184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a silicon-based active substance material having high stability. <P>SOLUTION: This manufacturing method comprises (1) a process which mixing and heating silicon-based active substance material powder and a matrix raw material, having a carbon skeleton for pyrolyzing the matrix raw material, (2) a process of applying compression or shear force to a thermally decomposed object, and (3) a process of mixing and heating a second matrix raw material for pyrolyzing. A silicon-carbon composite material, with firm connection between the silicon active substance material powder and the matrix, can be obtained by a mechanical action etc. by applying compression or the shear force, after pyrolyzing the matrix raw material mixed with the silicon active substance material powder. The silicon-carbon composite material can be dispersed to the matrix by mixing and pyrolyzing the second matrix raw material. According to above processes, the silicon-based active substance material powder and the matrix can be firmly combined, without an element little directly affecting a cell reaction, such as a binder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シリコン系活物質材料を用いたリチウム二次電池用活物質の製造方法及びリチウム二次電池用活物質に関し、更にはそれらリチウム二次電池用活物質を用いたリチウム二次電池に関する。   The present invention relates to a method for producing an active material for a lithium secondary battery using a silicon-based active material and an active material for a lithium secondary battery, and further relates to a lithium secondary battery using the active material for a lithium secondary battery. .

1991年、リチウムイオン二次電池が商品化されて以来、その高いエネルギー密度と作動電圧とが大きな注目を集めた。市販の電池では、負極活物質にグラファイト、正極活物質にリチウムインターカレーション酸化物、塩としてLiPF6を含む有機電解液の構成になっている。 Since the lithium ion secondary battery was commercialized in 1991, its high energy density and operating voltage have attracted a great deal of attention. A commercially available battery has a configuration of an organic electrolyte containing graphite as a negative electrode active material, lithium intercalation oxide as a positive electrode active material, and LiPF 6 as a salt.

ここで、グラファイトからなる負極活物質は、電池容量が小さく、リチウムを吸蔵した際の不安定性が問題になっている。そこで、更なる電池容量の向上のために、グラファイト以外の新規な負極材料の探索に焦点が向いている。そのなかでシリコン、ホウ化ケイ素化物、ケイ素化物、酸化ケイ素(SiOX)などのシリコン系活物質材料が有力視されている。シリコンを例に挙げて説明すると、シリコンは低い作動電圧(対 Li)で、電気化学的にLi−Si合金を形成し、4000mAh/gの大きな容量を示すことが知られている。 Here, the negative electrode active material made of graphite has a small battery capacity, and instability when lithium is occluded is a problem. Therefore, in order to further improve the battery capacity, the focus is on the search for new negative electrode materials other than graphite. Among them, silicon-based active material materials such as silicon, silicon boride, siliconide, and silicon oxide (SiO x ) are considered promising. Taking silicon as an example, it is known that silicon forms an Li-Si alloy electrochemically at a low operating voltage (vs. Li) and exhibits a large capacity of 4000 mAh / g.

しかし、この系には応用上大きな問題がある。それは、リチウムが活物質内に挿入脱離する際に、非常に大きな体積変化を伴うことである。粒子サイズを小さく(ナノサイズ)することで、Li−Si合金負極の電極安定性をある程度向上することはできるものの充分ではなかった。   However, this system has significant application problems. That is, a very large volume change is accompanied when lithium is inserted into and desorbed from the active material. Although the electrode stability of the Li—Si alloy negative electrode can be improved to some extent by reducing the particle size (nanosize), it is not sufficient.

ところで、近年、リチウム吸蔵合金と炭素材料との複合材料に注目が集まっている。例えば、CVD法で炭素をコートしたシリコンは600mAh/g以上の容量で非常に優れたサイクル特性を示すことが報告されている(非特許文献1)。また、シリコンとグラファイトとを埋め込んだピッチの熱分解物もまたシリコンを安定化することが報告されている(非特許文献2)。サイクル特性の向上はカーボンマトリクスの中にSiが均一に分散することによるものと考えられる。更に、柔らかいカーボンがLi−Si合金の体積変化を吸収して、電極としての機械的強度を向上できると考えられる。更に、シリコンとグラファイトを混合・粉砕することが報告されている(非特許文献3)。   By the way, in recent years, attention has been focused on a composite material of a lithium storage alloy and a carbon material. For example, it has been reported that silicon coated with carbon by the CVD method exhibits extremely excellent cycle characteristics at a capacity of 600 mAh / g or more (Non-patent Document 1). Further, it has been reported that a thermal decomposition product of pitch in which silicon and graphite are embedded also stabilizes silicon (Non-patent Document 2). The improvement of the cycle characteristics is considered to be due to the uniform dispersion of Si in the carbon matrix. Furthermore, it is thought that soft carbon can absorb the volume change of Li-Si alloy and can improve the mechanical strength as an electrode. Furthermore, it has been reported that silicon and graphite are mixed and pulverized (Non-patent Document 3).

また、シリコン合金とグラファイトとを単純に混合することも報告されている(特許文献1)。そして、所定の格子面間隔をもつ炭素粒子にシリコンを担持し、更に炭素材料にて被覆することが報告されている(特許文献2)。特許文献2における更なる炭素材料での被覆は高分子材料と混合後に、その高分子材料を熱分解することにより行う方法が例示されている。シリコン元素を含む有機化合物と、炭素源となる高分子材料とを縮合・重合して得られる複合体を熱分解して生成するSi−O−C系複合体を負極材料に採用することが報告されている(特許文献3)。
特開2003−331826号公報 特開2003−263986号公報 特開2003−197193号公報 N.Dimov, K.Fukuda, T.Umeno, S.Kugino, M.Yoshio, Journal of Powder Sources 114 (2003) 88-94 Z.S.Wen, J.Yang, B.F.Wang, K.Wang, Y.Liu, Electrochemistry Communications 5 (2003) 165-168 N.Dimov, T.Umeno, S.Kugino, M.Yoshio、Electrochimica Acta 48 (2003) 1579-1587
It has also been reported that a silicon alloy and graphite are simply mixed (Patent Document 1). It has been reported that silicon is supported on carbon particles having a predetermined lattice spacing and further covered with a carbon material (Patent Document 2). Patent Document 2 exemplifies a method in which coating with a further carbon material is performed by thermally decomposing the polymer material after mixing with the polymer material. Reported adoption of Si-O-C-based composites, which are produced by thermal decomposition of composites obtained by condensation / polymerization of organic compounds containing silicon elements and polymer materials used as carbon sources, as negative electrode materials (Patent Document 3).
JP 2003-331826 A JP 2003-263986 A JP 2003-197193 A N. Dimov, K. Fukuda, T. Umeno, S. Kugino, M. Yoshio, Journal of Powder Sources 114 (2003) 88-94 ZSWen, J. Yang, BFWang, K. Wang, Y. Liu, Electrochemistry Communications 5 (2003) 165-168 N. Dimov, T. Umeno, S. Kugino, M. Yoshio, Electrochimica Acta 48 (2003) 1579-1587

しかしながら、従来技術に挙げた技術を採用しても、シリコン系活物質を含む負極活物質を実用化するためには電池性能が充分であるとはいえなかった。   However, even if the techniques listed in the prior art are employed, it cannot be said that the battery performance is sufficient to put a negative electrode active material containing a silicon-based active material into practical use.

本発明は上記実情に鑑み成されたものであり、シリコン系活物質材料の実用化に資するために、シリコン系活物質材料をベースとした活物質を含む負極物質の安定性を向上させ、Liの挿入脱離に伴うサイクル寿命を向上させることができるリチウム二次電池用活物質及びそのようなリチウム二次電池用活物質を製造することができる方法を提供することを解決すべき課題とする。   The present invention has been made in view of the above circumstances, and in order to contribute to the practical use of a silicon-based active material, the stability of a negative electrode material containing an active material based on a silicon-based active material is improved. PROBLEM TO BE SOLVED: To provide an active material for a lithium secondary battery capable of improving the cycle life associated with insertion / extraction of lithium and a method capable of producing such an active material for lithium secondary battery .

そして、上記のリチウム二次電池用活物質を採用したリチウム二次電池を提供することも解決すべき課題とする。   And providing the lithium secondary battery which employ | adopted said active material for lithium secondary batteries is also made into the problem which should be solved.

(1)上記課題を解決する本発明のリチウム二次電池用活物質の製造方法は、リチウムイオンを脱挿入できるシリコン系活物質材料粉末と炭素骨格をもつマトリクス原料とを混合した後、該混合物を加熱して該マトリクス原料を熱分解する工程と、
該熱分解物に対して圧縮乃至剪断力を加える工程と、
更に炭素骨格をもつ第2マトリクス原料を混合した後、加熱して該第2マトリクス原料を熱分解する工程と、を有することを特徴とする。
(1) A method for producing an active material for a lithium secondary battery according to the present invention that solves the above-mentioned problems is obtained by mixing a silicon-based active material powder capable of removing and inserting lithium ions and a matrix raw material having a carbon skeleton, and then mixing the mixture. And pyrolyzing the matrix raw material by heating
Applying a compression or shear force to the pyrolyzate;
And a step of mixing the second matrix material having a carbon skeleton and then heating to thermally decompose the second matrix material.

シリコン系活物質材料粉末と混合したマトリクス原料を熱分解(焼成)した後、圧縮乃至剪断力を加える工程を採用することで、機械的乃至は機械化学的な作用によって、シリコン系活物質材料粉末と主に炭素からなるマトリクスとの結びつきが強固なものになったシリコン−炭素複合材料が得られ、活物質の安定性が向上できる。更に、マトリクス原料(第2マトリクス原料)を混合して熱分解することで、そのシリコン−炭素複合材料を非晶質の炭素であるマトリクス(第2マトリクス)に分散することができる。以上の操作によると、シリコン系活物質材料粉末とマトリクスとの間には結着材などの電池反応などに直接影響の少ない要素を介することなく強固に結合できる。   By adopting a process of applying compression or shear force after pyrolyzing (baking) the matrix raw material mixed with the silicon-based active material powder, the silicon-based active material powder is mechanically or mechanochemically applied. As a result, a silicon-carbon composite material having a strong connection with a matrix composed mainly of carbon can be obtained, and the stability of the active material can be improved. Furthermore, by mixing and thermally decomposing the matrix material (second matrix material), the silicon-carbon composite material can be dispersed in a matrix (second matrix) that is amorphous carbon. According to the above operation, the silicon-based active material powder and the matrix can be firmly bonded without interposing an element that has no direct influence on the battery reaction such as a binder.

つまり、非晶質の柔らかい炭素からなる第2マトリクス中に、そのシリコン−炭素複合材料を分散させることで、Li−Si合金の体積変化を吸収できる効果はそのままに、シリコン系活物質材料粉末とマトリクスとの間の密着性を良くできる。シリコンとマトリクス原料由来のマトリクスとの間は両者の反応により、明確なシリコン−炭素界面が存在しない部分が多くなっていると考えられ、両者の界面を密に結合できる。その結果、活物質の強度を向上することができると共に、シリコン系活物質材料と電解質との反応によるSEI膜の生成を抑制できる。従って、SEI膜の生成、活物質の脱落・電気的接触の低下などにより起こるサイクル特性の低下を効果的に抑制できる結果、サイクル特性を向上できる。   That is, by dispersing the silicon-carbon composite material in the second matrix made of amorphous soft carbon, the effect of absorbing the volume change of the Li—Si alloy is maintained, and the silicon-based active material powder and Adhesion between the matrix can be improved. It is considered that there are many portions where there is no clear silicon-carbon interface due to the reaction between silicon and the matrix derived from the matrix raw material, and the interface between the two can be closely bonded. As a result, the strength of the active material can be improved, and the formation of the SEI film due to the reaction between the silicon-based active material and the electrolyte can be suppressed. Therefore, the cycle characteristics can be improved as a result of effectively suppressing the degradation of the cycle characteristics caused by the generation of the SEI film, the falling off of the active material, and the decrease in electrical contact.

そして、1回目の熱分解及び圧縮乃至剪断力を加える工程により、シリコン系活物質材料粉末にマトリクスを強固に結合できる効果のほか、シリコン−炭素複合材料の粒子の大きさを揃える効果も発揮できる。シリコン−炭素複合材料の粒子径が揃うことで、第2マトリクス原料中への分散性が向上する。従って、2回目の熱分解後に生成するリチウム二次電池用活物質中におけるシリコン系活物質材料粉末の分散性が向上できる。その結果、最終生成物であるリチウム二次電池用活物質の性能も向上できる。   In addition to the effect of firmly bonding the matrix to the silicon-based active material powder by the first thermal decomposition and the step of applying compression or shearing force, the effect of aligning the size of the silicon-carbon composite material particles can be exhibited. . Dispersibility of the silicon-carbon composite material in the second matrix raw material is improved by aligning the particle diameters of the silicon-carbon composite material. Accordingly, the dispersibility of the silicon-based active material powder in the active material for a lithium secondary battery generated after the second thermal decomposition can be improved. As a result, the performance of the active material for a lithium secondary battery, which is the final product, can be improved.

また、1回目の熱分解及び圧縮乃至剪断力を加える工程を経て生成したマトリクスは、2回目の熱分解により生成するマトリクスと比較して、電解質の浸透を効果的に抑制できる好ましい組織(例えば、より緻密な組織)になることが期待できる。その結果、付随的な効果として、シリコン系活物質材料における初期不可逆容量の解消が可能になり、初期効率の向上を図ることができる。   In addition, the matrix generated through the first thermal decomposition and the step of applying compression or shearing force is a preferable structure that can effectively suppress electrolyte permeation as compared to the matrix generated by the second thermal decomposition (for example, It can be expected to become a more precise organization. As a result, as an incidental effect, the initial irreversible capacity in the silicon-based active material can be eliminated, and the initial efficiency can be improved.

ここで、前記圧縮乃至剪断力を加える工程はボールミルで粉砕を行う工程であることが好ましい。更に、前記マトリクス原料及び/又は前記第2マトリクス原料の混合についてもボールミルによる粉砕にて行うことができる。ボールミルにより混合を行うことで、シリコン系活物質材料粉末を均一に分散することができる。   Here, the step of applying the compression or shearing force is preferably a step of pulverizing with a ball mill. Furthermore, the matrix raw material and / or the second matrix raw material can be mixed by pulverization with a ball mill. By mixing with a ball mill, the silicon-based active material powder can be uniformly dispersed.

そして、前記マトリクス原料及び第2マトリクス原料は高分子材料から選択されることが好ましい。なお、マトリクス原料と第2マトリクス原料とは独立して組成を選択することが可能であり、同じ材料を選択しても異なる材料を選択しても良い。具体的には、前記マトリクス原料及び第2マトリクス原料共に、ポリ塩化ビニルであることが好ましい。ポリ塩化ビニルは塩素元素を含有し、この塩素元素が熱分解によりシリコンと反応して(例えば、Si+4Cl→SiCl4)、シリコン系活物質材料粉末の表面を清浄化することができる。シリコン系活物質材料粉末の表面清浄化によって、マトリクス原料由来のマトリクスとの密着性が向上したり、負極活物質としての性能が向上できる。つまり、前記マトリクス原料及び/又は前記第2マトリクス原料は、ハロゲン化合物と共に熱分解する工程を行うことが好ましい。
(2)そして、上記課題を解決する本発明のリチウム二次電池用活物質は、上述の本発明のリチウム二次電池用活物質の製造方法により得ることができるリチウム二次電池用活物質であることを特徴とする。
The matrix material and the second matrix material are preferably selected from polymer materials. Note that the composition of the matrix material and the second matrix material can be selected independently, and the same material or different materials may be selected. Specifically, both the matrix material and the second matrix material are preferably polyvinyl chloride. Polyvinyl chloride contains elemental chlorine, and this elemental chlorine reacts with silicon by thermal decomposition (for example, Si + 4Cl → SiCl 4 ) to clean the surface of the silicon-based active material powder. By cleaning the surface of the silicon-based active material powder, the adhesion with the matrix derived from the matrix material can be improved, and the performance as the negative electrode active material can be improved. That is, it is preferable that the matrix raw material and / or the second matrix raw material is subjected to a thermal decomposition step together with the halogen compound.
(2) And the active material for a lithium secondary battery of the present invention that solves the above problems is an active material for a lithium secondary battery that can be obtained by the above-described method for producing an active material for a lithium secondary battery of the present invention. It is characterized by being.

具体的に上述の本発明のリチウム二次電池用活物質の製造方法により得られるリチウム二次電池用活物質を例示すると、リチウムイオンを脱挿入できるシリコン系活物質材料粉末と、該シリコン系活物質材料粉末を分散する炭素系マトリクスとを有するリチウム二次電池用活物質であって、
前記シリコン系活物質材料粉末は前記炭素系マトリクスと異なる組織をもつ炭素系材料にて被覆されていることを特徴とする。
Specifically, when an active material for a lithium secondary battery obtained by the above-described method for producing an active material for a lithium secondary battery according to the present invention is exemplified, a silicon-based active material material powder capable of removing and inserting lithium ions, and the silicon-based active material An active material for a lithium secondary battery having a carbon-based matrix in which material powder is dispersed,
The silicon-based active material powder is coated with a carbon-based material having a structure different from that of the carbon-based matrix.

また、リチウムイオンを脱挿入できるシリコン系活物質材料粉末と該シリコン系活物質材料粉末を分散する炭素系材料とからなる一次粒子材料と、該一次粒子材料を分散する炭素系マトリクスとを有することを特徴とするリチウム二次電池用活物質も例示できる。   And a primary particle material composed of a silicon-based active material material powder capable of removing and inserting lithium ions, a carbon-based material in which the silicon-based active material material powder is dispersed, and a carbon-based matrix in which the primary particle material is dispersed. The active material for lithium secondary batteries characterized by these can also be illustrated.

ここで、前記シリコン系活物質材料粉末は前記炭素系マトリクスに均一に分散されていることが好ましい。また、前記炭素系材料は、リチウム二次電池に適用した場合に電解質が内部の前記シリコン系活物質材料粉末にまで浸透させない程度の緻密さを備える組織であることが好ましい。
(3)更に、上記課題を解決する本発明のリチウム二次電池は、リチウムイオンを吸蔵乃至は脱蔵できる正負極活物質をもつ電極と、電解質とを有するリチウム二次電池であって、
前記負極活物質は、上述の本発明のリチウム二次電池用活物質の製造方法により製造されたリチウム二次電池用活物質又は上述の本発明のリチウム二次電池用活物質であることを特徴とする。
Here, it is preferable that the silicon-based active material powder is uniformly dispersed in the carbon-based matrix. Moreover, it is preferable that the carbon-based material has a structure having a density sufficient to prevent the electrolyte from penetrating into the silicon-based active material powder inside when applied to a lithium secondary battery.
(3) Furthermore, the lithium secondary battery of the present invention that solves the above problems is a lithium secondary battery having an electrode having a positive and negative electrode active material capable of inserting or extracting lithium ions, and an electrolyte,
The negative electrode active material is an active material for a lithium secondary battery manufactured by the above-described method for manufacturing an active material for a lithium secondary battery of the present invention or an active material for a lithium secondary battery of the present invention described above. And

〔リチウム二次電池用活物質の製造方法〕
本実施形態のリチウム二次電池用活物質の製造方法は、大きく3つの工程を有する。
(1)第1の工程は、シリコン系活物質材料粉末とマトリクス原料とを混合した後、そのマトリクス原料を熱分解する工程である。シリコン系活物質材料粉末とマトリクス原料とを混合する割合は特に限定しないが、1:99〜99:1、10:90〜90:10、30:70〜70:30程度の質量比で混合することができる。なお、最終的に製造される本実施形態のリチウム二次電池用活物質におけるシリコン系活物質材料とその他のマトリクス(マトリクス原料及び第2マトリクス原料の双方に由来する)との質量比は30:70〜50:50程度が好ましく、40:60程度がより好ましい。
[Method for producing active material for lithium secondary battery]
The method for producing an active material for a lithium secondary battery according to the present embodiment has roughly three steps.
(1) The first step is a step of thermally decomposing the matrix material after mixing the silicon-based active material powder and the matrix material. The mixing ratio of the silicon-based active material powder and the matrix raw material is not particularly limited, but is mixed at a mass ratio of about 1:99 to 99: 1, 10:90 to 90:10, and 30:70 to 70:30. be able to. The mass ratio between the silicon-based active material and the other matrix (derived from both the matrix material and the second matrix material) in the lithium secondary battery active material of the present embodiment that is finally manufactured is 30: About 70-50: 50 is preferable and about 40:60 is more preferable.

シリコン系活物質材料粉末はシリコン単体;Si−Cu、Si−Ni、Si−Mg、Si−Ca等のシリコン合金;SiC、Si34などの炭化物や窒化物などが採用できる。特にシリコン単体又はシリコン合金が好ましい。p型シリコンやn型シリコンなども導電率の観点から好適に採用できる。シリコン系活物質材料粉末の粒子径は特に限定しないが、10nm〜5μm程度が好ましい。粒子径をこの範囲にすることで、電池反応に必要な反応面積を充分に保ちながら、リチウムのトラップ、酸化物の生成などが抑制できる。 As the silicon-based active material powder, silicon alone; silicon alloys such as Si—Cu, Si—Ni, Si—Mg, and Si—Ca; carbides and nitrides such as SiC and Si 3 N 4 can be used. In particular, silicon alone or a silicon alloy is preferable. P-type silicon, n-type silicon, and the like can also be suitably employed from the viewpoint of conductivity. The particle diameter of the silicon-based active material material powder is not particularly limited, but is preferably about 10 nm to 5 μm. By setting the particle diameter within this range, lithium trapping, oxide generation, and the like can be suppressed while sufficiently maintaining a reaction area necessary for the battery reaction.

マトリクス原料は後述する熱分解によって主に炭素材料からなるマトリクスを形成することができる材料であり、炭素骨格を有する化合物である。低分子、高分子を問わないが、高分子材料から選択されることが好ましい。特に主鎖が炭素からなる高分子材料は不活性雰囲気下での熱分解により容易に炭化させることができる。マトリクス原料は特に限定されず、固体、液体及び気体などであっても良いが、シリコン系活物質材料粉末との混合性を考慮して、固体であって、シリコン系活物質材料粉末と同様の粉末状にすることが好ましい。マトリクス原料はシリコン系活物質材料粉末に混合する方法は特に限定しない。例えば、一般的な攪拌などによる混合操作のほかに、ボールミルなどを用いた粉砕操作を採用することができる。混合にボールミルを採用することで、シリコン系活物質材料粉末に対するマトリクス原料の密着性を向上することができる。この混合は不活性雰囲気下で行うことが好ましい。ボールミルを採用する場合の混合(粉砕)時間は30分から4時間程度を採用することができる。ボールミルの回転数は、内径が20mm程度の円筒容器を用い、直径4mm程度のジルコニア製のボールを12個用い、充填率が30%程度(1g充填)で粉砕条件において操作を行う場合に100rpm〜600rpm程度にすることができる。また、マトリクス原料を何らかの溶媒に溶融させたり加熱融解させた状態で、シリコン系活物質材料粉末に混合することもできる。また、シリコン系活物質材料粉末を心材として溶融乃至は融解したマトリクス原料をコーティングして造粒する方法も採用できる。また、混合を行いながら、後述の熱分解の操作を進行させることもできる。   The matrix raw material is a material that can form a matrix mainly composed of a carbon material by pyrolysis described later, and is a compound having a carbon skeleton. A low molecular weight or high molecular weight material may be used, but it is preferably selected from polymer materials. In particular, a polymer material whose main chain is made of carbon can be easily carbonized by thermal decomposition in an inert atmosphere. The matrix raw material is not particularly limited, and may be solid, liquid, gas, etc., but considering the miscibility with the silicon-based active material powder, it is solid and is similar to the silicon-based active material powder. It is preferable to use powder. The method of mixing the matrix raw material with the silicon-based active material powder is not particularly limited. For example, in addition to a general mixing operation such as stirring, a pulverizing operation using a ball mill or the like can be employed. By employing a ball mill for mixing, the adhesion of the matrix material to the silicon-based active material powder can be improved. This mixing is preferably performed in an inert atmosphere. When employing a ball mill, the mixing (grinding) time can be from about 30 minutes to about 4 hours. The rotation speed of the ball mill is 100 rpm when a cylindrical container having an inner diameter of about 20 mm is used, twelve zirconia balls having a diameter of about 4 mm are used, and the filling rate is about 30% (1 g filling) and the operation is performed under grinding conditions. It can be about 600 rpm. Further, the matrix raw material can be mixed with the silicon-based active material powder in a state where the matrix raw material is melted in some solvent or heated and melted. A method of granulating by coating a molten or melted matrix material with a silicon-based active material powder as a core material can also be employed. Further, the thermal decomposition operation described later can be performed while mixing.

更にマトリクス原料に加えて、ハロゲン化合物を添加することが好ましい。ハロゲン化合物は熱分解時にシリコン系活物質材料粉末と反応して表面を清浄化できる。ハロゲン化合物を添加する効果は、塩化物、臭化物などのように、マトリクス原料とは別個の材料として添加しても発揮できるほか、マトリクス原料自身にハロゲン元素を導入することでも同様の効果が発揮できる。例えば、マトリクス原料としてポリ塩化ビニルを採用することができる。   Furthermore, it is preferable to add a halogen compound in addition to the matrix raw material. The halogen compound can react with the silicon-based active material powder during thermal decomposition to clean the surface. The effect of adding a halogen compound can be exhibited by adding it as a material separate from the matrix raw material, such as chloride and bromide, and the same effect can also be achieved by introducing a halogen element into the matrix raw material itself. . For example, polyvinyl chloride can be used as the matrix material.

熱分解はマトリクス原料を炭化することを目的とする。熱分解はシリコン系活物質材料粉末及びマトリクス原料の酸化を防止するために、アルゴン、窒素などの不活性雰囲気下で行うことが好ましい。熱分解を行う加熱温度は800〜1100℃程度にすることができる。昇温速度は例えば3℃/分〜10℃/分程度が採用できる。加熱時間はマトリクス原料が炭化するのに充分な長さとすることが好ましい。例えば1時間から3時間程度行うことができる。熱分解が終了した後は室温になるまで不活性雰囲気下で放置することが好ましい。
(2)第2の工程はその熱分解物に対して圧縮乃至剪断力を加える工程である。
Pyrolysis aims at carbonizing the matrix raw material. Pyrolysis is preferably performed in an inert atmosphere such as argon or nitrogen in order to prevent oxidation of the silicon-based active material powder and matrix material. The heating temperature for carrying out the thermal decomposition can be about 800 to 1100 ° C. For example, a rate of temperature increase of about 3 ° C./min to 10 ° C./min can be employed. The heating time is preferably long enough for the matrix material to carbonize. For example, it can be performed for about 1 to 3 hours. After completion of the thermal decomposition, it is preferable to leave it in an inert atmosphere until it reaches room temperature.
(2) The second step is a step of applying a compression or shear force to the pyrolyzate.

圧縮乃至剪断力を加える工程は、アルゴン、窒素などの不活性雰囲気下で行うことが好ましい。圧縮乃至剪断力を加える具体的な手段としてはボールミル、振動ボールミル、乳鉢と乳棒との組み合わせなど一般的に粉砕操作を称されるものが採用できる。特にボールミルや振動ボールミルが好ましい。ボールミルにて粉砕を行う時間としては2時間〜6時間程度を採用することができる。その場合のボールミルの回転数は、内径が20mm程度の円筒容器を用い、直径4mm程度のジルコニア製のボールを12個用い、充填率が30%程度(1g)で粉砕条件において操作を行う場合に100rpm〜600rpm程度にすることができる。圧縮乃至剪断力を加えることで、シリコン系活物質材料粉末とマトリクスとの密着性に優れたシリコン−炭素複合材料からなる粉末が得られる。この粉末の粒子径は5μm〜25μm程度にするまで圧縮乃至剪断力を加える工程を行うことができる。なお、本工程後に、分級操作を行って、シリコン−炭素複合材料の粒径範囲を適正にすることもできる。
(3)第3の工程は、シリコン系活物質材料粉末に代えて、第2工程で得られたシリコン−炭素複合材料を用い、マトリクス原料に代えて第2マトリクス原料を用いた以外は第1工程と同様の工程である。つまり、シリコン−炭素複合材料の粉末を第2マトリクス原料と混合した後、熱分解する工程である。ここで、第2マトリクス原料はマトリクス原料と同様の性質が要求される材料であり、第1工程で説明したマトリクス原料と同様の判断基準で選択することができる。なお、第2マトリクス原料はマトリクス原料とは独立して組成を決定できる。従って第2マトリクス原料に加えて、ハロゲン化合物を添加することが好ましいことも第1工程と同じであり、マトリクス原料と同様にポリ塩化ビニルを採用することが好ましい。シリコン−炭素複合材料と第2マトリクス原料との混合比は特に限定しないが、1:99〜99:1、10:90〜90:10、30:70〜70:30程度の質量比で混合することができる。
The step of applying compression or shearing force is preferably performed under an inert atmosphere such as argon or nitrogen. As a specific means for applying compression or shearing force, a ball mill, a vibration ball mill, a combination of a mortar and a pestle, or the like generally called a grinding operation can be employed. A ball mill and a vibrating ball mill are particularly preferable. As a time for pulverization with a ball mill, about 2 to 6 hours can be employed. The rotation speed of the ball mill in that case is when a cylindrical container having an inner diameter of about 20 mm is used, twelve zirconia balls having a diameter of about 4 mm are used, and the filling rate is about 30% (1 g) and the operation is performed under pulverization conditions. It can be set to about 100 rpm to 600 rpm. By applying compression or shearing force, a powder composed of a silicon-carbon composite material having excellent adhesion between the silicon-based active material powder and the matrix can be obtained. A step of applying compression or shearing force can be performed until the particle diameter of the powder is about 5 μm to 25 μm. In addition, after this process, classification operation can be performed and the particle size range of a silicon-carbon composite material can also be made appropriate.
(3) The third step is the same except that the silicon-carbon composite material obtained in the second step is used instead of the silicon-based active material powder, and the second matrix material is used instead of the matrix material. It is the same process as the process. In other words, the silicon-carbon composite material powder is mixed with the second matrix material and then thermally decomposed. Here, the second matrix material is a material that is required to have the same properties as the matrix material, and can be selected based on the same criteria as the matrix material described in the first step. Note that the composition of the second matrix material can be determined independently of the matrix material. Therefore, it is preferable to add a halogen compound in addition to the second matrix material as in the first step, and it is preferable to employ polyvinyl chloride as in the matrix material. The mixing ratio of the silicon-carbon composite material and the second matrix material is not particularly limited, but is mixed at a mass ratio of about 1:99 to 99: 1, 10:90 to 90:10, and 30:70 to 70:30. be able to.

第2マトリクス原料の形態は特に限定しないが、シリコン−炭素複合材料からなる粉末との混合性を考慮して、同様の粉末状にすることが好ましい。第2マトリクス原料はシリコン系活物質材料粉末に混合する方法は特に限定されず、第1工程での説明がそのまま妥当する。   The form of the second matrix raw material is not particularly limited, but it is preferable that the second matrix raw material be formed in the same powder form in consideration of the mixing property with the powder made of the silicon-carbon composite material. The method of mixing the second matrix raw material with the silicon-based active material powder is not particularly limited, and the description in the first step is just as it is.

熱分解は第2マトリクス原料を炭化することを目的とする。熱分解はシリコン−炭素複合材料及び第2マトリクス原料の酸化を防止するために、アルゴン、窒素などの不活性雰囲気下で行うことが好ましい。熱分解を行う加熱温度は800〜1100℃程度にすることができる。昇温速度は例えば3℃/分〜10℃/分程度が採用できる。加熱時間は第2マトリクス原料が炭化するのに充分な長さとすることが好ましい。例えば1時間から3時間程度行うことができる。熱分解が終了した後は室温になるまで不活性雰囲気下で放置することが好ましい。
(補足)
以上の3工程により製造されたリチウム二次電池用活物質は最終的な使用形態に合わせて加工する。例えば、粉末状にしてリチウム二次電池に適用する場合には適正な粒子径になるまで粉砕する。なお、形態を整えるために粉砕を行う場合には第2マトリクス原料由来のマトリクスの組織を変化させないように緩やかな条件で粉砕操作を行うことが好ましい。また、前述の第3の工程により熱分解を行う前までは形態を比較的自由に変化させることができるので必要な形態(粉末状、板状など)にした後に第3工程の熱分解を行うことができる。
〔リチウム二次電池用活物質〕
(第1実施形態)
本実施形態のリチウム二次電池用活物質は、リチウムイオンを脱挿入できるシリコン系活物質材料粉末と、そのシリコン系活物質材料粉末を分散する炭素系マトリクスとを有するリチウム二次電池用活物質である。本リチウム二次電池用活物質は、粉末状であっても最終的にリチウム二次電池に適用される際の形状(例えば、板状、層状など)であっても構わない。そして、そのシリコン系活物質材料粉末は前記炭素系マトリクスと異なる組織をもつ炭素系材料にて被覆されていることを特徴とする。シリコン系活物質材料粉末は前述した製造方法において説明したものと同様の材料が選択できるので更なる説明は省略する。
The purpose of pyrolysis is to carbonize the second matrix material. Pyrolysis is preferably performed in an inert atmosphere such as argon or nitrogen in order to prevent oxidation of the silicon-carbon composite material and the second matrix material. The heating temperature for carrying out the thermal decomposition can be about 800 to 1100 ° C. For example, a rate of temperature increase of about 3 ° C./min to 10 ° C./min can be employed. The heating time is preferably long enough for the second matrix material to carbonize. For example, it can be performed for about 1 to 3 hours. After completion of the thermal decomposition, it is preferable to leave it in an inert atmosphere until it reaches room temperature.
(Supplement)
The active material for a lithium secondary battery manufactured by the above three steps is processed according to the final usage pattern. For example, when applied to a lithium secondary battery in a powder form, it is pulverized until an appropriate particle size is obtained. In addition, when pulverizing to adjust the form, it is preferable to perform the pulverizing operation under mild conditions so as not to change the structure of the matrix derived from the second matrix raw material. In addition, since the form can be changed relatively freely before the pyrolysis is performed in the third step, the third process is pyrolyzed after the necessary form (powder, plate, etc.) is obtained. be able to.
[Active materials for lithium secondary batteries]
(First embodiment)
The active material for a lithium secondary battery according to the present embodiment is an active material for a lithium secondary battery having a silicon-based active material material powder from which lithium ions can be desorbed and a carbon-based matrix in which the silicon-based active material material powder is dispersed. It is. The active material for a lithium secondary battery may be in a powder form or a shape (for example, a plate shape or a layer shape) when finally applied to a lithium secondary battery. The silicon-based active material powder is coated with a carbon-based material having a structure different from that of the carbon-based matrix. Since the silicon-based active material powder can be selected from the same materials as those described in the above-described manufacturing method, further description is omitted.

炭素系マトリクスは前述の製造方法における第2マトリクス原料由来のマトリクスに相当するもので、非晶質の炭素からなる材料である。シリコン系活物質材料粉末を被覆する炭素材料は前述の製造方法におけるマトリクス原料由来のマトリクスに相当する材料であり、熱分解により生じた非晶質の炭素からなる材料が圧縮乃至剪断力により変化した材料である。例えば、炭素系マトリクスと比較して、結晶性が変化したものや、密度が高いものなどが挙げられる。この相違はEPMAや、TEM、走査型プローブ顕微鏡やこれらの組み合わせなどにより確認できる。   The carbon-based matrix corresponds to the matrix derived from the second matrix raw material in the above-described manufacturing method, and is a material made of amorphous carbon. The carbon material that coats the silicon-based active material powder is a material corresponding to the matrix derived from the matrix raw material in the manufacturing method described above, and the material made of amorphous carbon generated by thermal decomposition was changed by compression or shearing force. Material. For example, the crystallinity is changed or the density is higher than that of the carbon matrix. This difference can be confirmed by EPMA, TEM, scanning probe microscope, or a combination thereof.

(第2実施形態)
本実施形態のリチウム二次電池用活物質はリチウムイオンを脱挿入できるシリコン系活物質材料粉末とそのシリコン系活物質材料粉末を分散する炭素系材料とからなる一次粒子材料と、その一次粒子材料を分散する炭素系マトリクスとを有することを特徴とする。ここで、シリコン系活物質材料粉末、そのシリコン系活物質材料粉末を被覆する炭素材料及び炭素系マトリクスは第1実施形態にて説明したものと同様であるので更なる説明は省略する。一次粒子は内部に複数のシリコン系活物質材料粉末を含むことがある。一次粒子の直径は5μm〜25μm程度が好ましい。
(Second Embodiment)
The active material for a lithium secondary battery of the present embodiment includes a primary particle material composed of a silicon-based active material material powder capable of removing and inserting lithium ions, and a carbon-based material in which the silicon-based active material material powder is dispersed, and the primary particle material And a carbon-based matrix in which is dispersed. Here, the silicon-based active material material powder, the carbon material covering the silicon-based active material material powder, and the carbon-based matrix are the same as those described in the first embodiment, so further description is omitted. The primary particles may contain a plurality of silicon-based active material powders therein. The diameter of the primary particles is preferably about 5 μm to 25 μm.

(補足)
前述のいずれのリチウム二次電池用活物質においても、前記炭素系材料は、リチウム二次電池に適用した場合に電解質が内部の前記シリコン系活物質材料粉末にまで浸透させない程度の緻密さを備える組織であることが好ましい。更に、シリコン系活物質材料粉末と炭素材料とは密着することが好ましい。そして、シリコン系活物質材料粉末は炭素系マトリクス中にて均一に分散されていることが好ましい。
(Supplement)
In any of the active materials for lithium secondary batteries described above, the carbon-based material has a density sufficient to prevent the electrolyte from penetrating into the internal silicon-based active material powder when applied to a lithium secondary battery. An organization is preferred. Furthermore, it is preferable that the silicon-based active material powder and the carbon material are in close contact with each other. The silicon-based active material powder is preferably uniformly dispersed in the carbon-based matrix.

これらの本実施形態のリチウム二次電池用活物質は、上述の製造方法により得ることができるリチウム二次電池用活物質である。なお、本発明のリチウム二次電池用活物質は、第1及び第2実施形態の各リチウム二次電池用活物質に排他的に分類されるものばかりではなく、両者にまたがって分類される場合があることはいうまでもない。   These active materials for lithium secondary batteries of this embodiment are active materials for lithium secondary batteries that can be obtained by the above-described manufacturing method. In addition, the active material for lithium secondary batteries of the present invention is not limited to those classified exclusively as the active materials for lithium secondary batteries of the first and second embodiments, but is classified across both. Needless to say, there is.

また、本実施形態のリチウム二次電池用活物質は、後述の実施例の構成を例に挙げると、700mAh/g以上といった非常に大きな容量を発揮できる性能をもつが、充放電の深度を制限することで(例えば、後述の実施例においては600mAh/g程度)、更に良好なサイクル特性が発揮できる。
〔リチウム二次電池〕
本発明のリチウム電池は、コイン型電池、ボタン型電池、円筒型電池及び角型電池等の公知の電池構造をとることができる。いずれの形状を採る場合であっても、正極および負極をセパレータを介して重畳あるいは捲回等して電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を集電用リード等を用いて接続した後、この電極体を非水電解液とともに電池ケース内に挿設し、これを密閉してリチウム電池を完成することができる。
In addition, the active material for a lithium secondary battery according to the present embodiment has a performance capable of exhibiting a very large capacity of 700 mAh / g or more when the configuration of an example described later is taken as an example, but limits the depth of charge and discharge. By doing so (for example, about 600 mAh / g in the examples described later), even better cycle characteristics can be exhibited.
[Lithium secondary battery]
The lithium battery of the present invention can have a known battery structure such as a coin-type battery, a button-type battery, a cylindrical battery, and a square battery. In any case, the positive electrode and the negative electrode are overlapped or wound via a separator to form an electrode body, and the positive electrode terminal and the negative electrode terminal are connected to the positive electrode terminal and the negative electrode terminal. After connecting the electrodes using a current collecting lead or the like, the electrode body can be inserted into a battery case together with a non-aqueous electrolyte, and the battery can be sealed to complete a lithium battery.

正極は、リチウムイオンを吸蔵・脱離できる正極活物質に導電材および結着剤を混合し、必要に応じ適当な溶媒を加えて、ペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布、乾燥し、その後プレスによって活物質密度を高めることによって形成する。   For the positive electrode, a conductive material and a binder are mixed with a positive electrode active material capable of inserting and extracting lithium ions, and an appropriate solvent is added as necessary to form a paste-like positive electrode mixture, such as a metal such as aluminum. It is formed by applying and drying on the surface of the current collector made of foil and then increasing the active material density by pressing.

正極活物質にはリチウム遷移金属複合酸化物等の公知の正極活物質を用いることができる。リチウム−遷移金属複合酸化物は、その電気抵抗が低く、リチウムイオンの拡散性能に優れ、高い充放電効率と良好な充放電サイクル特性とが得られるため、本正極活物質に好ましい材料である。たとえばリチウムニッケル酸化物、リチウムコバルト酸化物、リチウムマンガン酸化物や、各々にAl、そしてCr等の遷移金属を添加または置換した材料等である。なお、これらのリチウム−金属複合酸化物を正極活物質として用いる場合には単独で用いるばかりでなくこれらを複数種類混合して用いることもできる。   As the positive electrode active material, a known positive electrode active material such as a lithium transition metal composite oxide can be used. The lithium-transition metal composite oxide is a preferable material for the present positive electrode active material because of its low electrical resistance, excellent lithium ion diffusion performance, high charge / discharge efficiency, and good charge / discharge cycle characteristics. Examples thereof include lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide, and materials obtained by adding or replacing each of transition metals such as Al and Cr. When these lithium-metal composite oxides are used as the positive electrode active material, they can be used alone or in combination.

導電材は、正極の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種または2種以上を混合したものを用いることができる。結着剤は、活物質粒子および導電材粒子を繋ぎ止める役割を果たすものでポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。これら活物質、導電材、結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。これら導電材の一部乃至は全部について前述した酸素除去材料及び/又は蓄熱材料を被覆することもできる。   The conductive material is for ensuring the electrical conductivity of the positive electrode, and a mixture of one or two or more carbon material powders such as carbon black, acetylene black, and graphite can be used. The binder plays a role of connecting the active material particles and the conductive material particles, and a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and a thermoplastic resin such as polypropylene and polyethylene can be used. . An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing these active material, conductive material, and binder. Some or all of these conductive materials may be coated with the oxygen removing material and / or the heat storage material described above.

負極については、上述の本実施形態のリチウム二次電池用活物質を用いる以外は特に限定されるものではなく、その他の構成は公知のものを用いることができる。負極活物質として用いるリチウム二次電池用活物質は、必要に応じて正極で説明したような結着材を混合して得られた負極合材が集電体に塗布されてなるものを用いることが好ましい。   The negative electrode is not particularly limited except that the above-described active material for a lithium secondary battery according to this embodiment is used, and other configurations can be used. As the active material for a lithium secondary battery used as the negative electrode active material, a material obtained by applying a negative electrode mixture obtained by mixing a binder as described in the positive electrode to a current collector as necessary is used. Is preferred.

非水電解液は、有機溶媒に電解質を溶解させたものである。   The nonaqueous electrolytic solution is obtained by dissolving an electrolyte in an organic solvent.

有機溶媒は、通常リチウム電池の非水電解液に用いられる有機溶媒であれば特に限定されるものではない。例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、テトラヒドロフラン等及びそれらの混合溶媒が適当である。例えば、エチレンカーボネート、プロピレンカーボネートなどの高誘電率の主溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの低粘性の副溶媒との混合有機溶媒が好ましい。また、副溶媒として、ジメトキシエタン、テトラヒドロフラン及びブチルラクトンなどを用いてもよい。   An organic solvent will not be specifically limited if it is an organic solvent normally used for the non-aqueous electrolyte of a lithium battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, tetrahydrofuran and the like, and mixed solvents thereof are suitable. For example, a mixed organic solvent of a main solvent having a high dielectric constant such as ethylene carbonate or propylene carbonate and a low-viscosity auxiliary solvent such as dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is preferable. Further, dimethoxyethane, tetrahydrofuran, butyl lactone, or the like may be used as a co-solvent.

電解質は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4およびLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32、LiN(SO3CF32、LiN(SO2252およびLiN(SO2CF3)(SO249)から選ばれる有機塩、並びにその有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the electrolyte is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 , an organic salt selected from LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and derivatives of the organic salts It is preferable that there is at least one.

これらの電解質の使用により、電池性能をさらに優れたものとすることができ、かつその電池性能を室温以外の温度域においてもさらに高く維持することができる。電解質の濃度についても特に限定されるものではなく、用途に応じ、電解質および有機溶媒の種類を考慮して適切に選択することが好ましい。   By using these electrolytes, the battery performance can be further improved, and the battery performance can be maintained even higher in a temperature range other than room temperature. The concentration of the electrolyte is not particularly limited, and it is preferable to appropriately select the electrolyte and the organic solvent in consideration of the use.

セパレータは、正極および負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。なおセパレータは、正極と負極との絶縁を担保するため、正極および負極よりもさらに大きいものとするのが好ましい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used. Note that the separator is preferably larger than the positive electrode and the negative electrode in order to ensure insulation between the positive electrode and the negative electrode.

ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。   The case is not particularly limited and can be made of a known material and form.

ガスケットは、ケースと正負の両端子部の間の電気的な絶縁と、ケース内の密閉性とを担保するものである。たとえば、電解液にたいして、化学的、電気的に安定であるポリプロピレンのような高分子等から構成できる。   The gasket secures electrical insulation between the case and both the positive and negative terminal portions and airtightness in the case. For example, it can be composed of a polymer such as polypropylene that is chemically and electrically stable to the electrolyte.

(実施例1)
〈リチウム二次電池用活物質の製造〉
シリコン系活物質材料粉末としてのシリコン粉末(粒子径1μm)と、マトリクス原料としてのポリ塩化ビニル(PVC)とを質量比で7:3となるように混合した。混合はアルゴン雰囲気下30分間ボールミルにて行った。ボールミルによる粉砕条件は内径が20mmの円筒容器を用い、直径4mmのジルコニア製のボールを12個用い、試料の充填率が30%程度(1g充填)で回転数500rpmにて行った。その混合物をアルゴン雰囲気下5℃/分の昇温速度で900℃まで加熱し、900℃で1時間熱分解(焼成)した(第1工程)。
(Example 1)
<Manufacture of active materials for lithium secondary batteries>
Silicon powder (particle diameter: 1 μm) as a silicon-based active material material powder and polyvinyl chloride (PVC) as a matrix material were mixed at a mass ratio of 7: 3. Mixing was performed in a ball mill for 30 minutes under an argon atmosphere. The ball milling was performed using a cylindrical container having an inner diameter of 20 mm, twelve zirconia balls having a diameter of 4 mm, a sample filling rate of about 30% (1 g filling), and a rotation speed of 500 rpm. The mixture was heated to 900 ° C. at a heating rate of 5 ° C./min in an argon atmosphere and pyrolyzed (baked) at 900 ° C. for 1 hour (first step).

得られた生成物をアルゴン雰囲気下で2時間ボールミルにて粉砕を行った。ボールミルによる粉砕条件は内径が20mmの円筒容器を用い、直径4mmのジルコニア製のボールを12個用い、試料の充填率が30%程度(1g充填)で回転数600rpmにて行った(第2工程)。   The obtained product was pulverized with a ball mill under an argon atmosphere for 2 hours. The grinding condition by the ball mill was performed using a cylindrical container having an inner diameter of 20 mm, twelve zirconia balls having a diameter of 4 mm, a sample filling rate of about 30% (1 g filling), and a rotation speed of 600 rpm (second step). ).

粉砕後のシリコン−炭素複合材料粉末に対して、更にPVCを質量比で7:3となるように混合し熱分解を行った。混合及び熱分解は第1工程と同様に行った。熱分解後の試料は乳鉢を用い穏やか条件で解砕した。生成物を本実施例のリチウム二次電池用活物質として試験試料とした。   The pulverized silicon-carbon composite material powder was further subjected to thermal decomposition by mixing PVC so as to have a mass ratio of 7: 3. Mixing and pyrolysis were performed in the same manner as in the first step. The pyrolyzed sample was crushed under mild conditions using a mortar. The product was used as a test sample as an active material for a lithium secondary battery of this example.

第1工程後、第2工程後及び第3工程後の生成物におけるシリコンの分散の様子をEPMAにより検証した(図1:第1工程後、図2:第2工程後、図3:第3工程後)。そして、第3工程後の生成物(本実施例の試験試料、軽く乳鉢中で砕いて粉末状にした)についてX線回折により構成成分(シリコン系活物質材料粉末及びマトリクス)の結晶性を分析した(図4)。また、本実施例の試験試料についてSEMにより外観を観察した(図5)。   After the first step, the state of silicon dispersion in the product after the second step and after the third step was verified by EPMA (FIG. 1: after the first step, FIG. 2: after the second step, FIG. 3: third) After the process). Then, the crystallinity of the constituent components (silicon-based active material powder and matrix) is analyzed by X-ray diffraction for the product after the third step (test sample of this example, lightly crushed in a mortar and powdered). (FIG. 4). Moreover, the external appearance was observed by SEM about the test sample of a present Example (FIG. 5).

図1に示すように、第1工程後の試料(シリコン系活物質材料粉末とPVCとを混合後、熱分解した試料)ではシリコン系活物質材料粉末の分散には偏りが認められ、分散が不十分であると推測される。図2に示すように、第2工程後の試料(第1工程後の試料についてボールミルにより粉砕を行った試料)ではシリコン系活物質材料粉末が均一に分散していることが分かった。図3に示すように、第3工程後の試料(本実施例の試験試料)では、シリコン系活物質材料粉末が均一に分散している状態を保ったまま、マトリクス(第2マトリクス原料由来)に包まれていることが分かった。従って、本実施例の試験試料はマトリクス(マトリクス原料由来)に対して密着性が高く且つシリコン系活物質材料粉末が均一に分散した状態で、マトリクス(第2マトリクス原料由来)により包み込まれることで、シリコン系活物質材料粉末は、マトリクスとの密着性が高いまま、リチウムの脱挿入による体積変化を充分に吸収することができる。   As shown in FIG. 1, in the sample after the first step (a sample obtained by mixing silicon-based active material powder and PVC and then thermally decomposing), there is a bias in the dispersion of the silicon-based active material material powder. Presumed to be insufficient. As shown in FIG. 2, it was found that the silicon-based active material powder was uniformly dispersed in the sample after the second step (sample obtained by pulverizing the sample after the first step with a ball mill). As shown in FIG. 3, in the sample after the third step (the test sample of this example), the matrix (derived from the second matrix raw material) is maintained while the silicon-based active material powder is uniformly dispersed. It turns out that it is wrapped in. Therefore, the test sample of this example has high adhesion to the matrix (derived from the matrix raw material) and is encased in the matrix (derived from the second matrix raw material) in a state where the silicon-based active material powder is uniformly dispersed. The silicon-based active material powder can sufficiently absorb the volume change due to lithium insertion and removal while maintaining high adhesion to the matrix.

図4から明らかなように、シリコンの結晶性は高く、第1〜第3工程(特に第2工程)における粉砕操作によっては変化しないことが分かった。なお、シリコン系活物質材料粉末を被覆乃至は包み込むマトリクスは、結晶性の高い炭素由来のピークは認められず、アモルファス状態の炭素が観測されるに留まった。図5に示したSEM写真より、試験試料の粒子径は15〜30μm程度であることが分かった。   As is clear from FIG. 4, it was found that the crystallinity of silicon is high and does not change depending on the pulverization operation in the first to third steps (particularly the second step). Note that the matrix encapsulating or enveloping the silicon-based active material powder did not show a peak derived from carbon with high crystallinity, and only amorphous carbon was observed. From the SEM photograph shown in FIG. 5, it was found that the particle size of the test sample was about 15 to 30 μm.

〈リチウム二次電池の製造〉
得られたリチウム二次電池用活物質(活物質)を88質量部、アセチレンブラック(AB)4質量部及びPVDF8質量部をNMP中に溶解乃至は懸濁して負極合材とした。具体的には、ABと活物質とを0.02g/mLの濃度としたPVDF/NMP溶液中に懸濁した。その後、厚み20μmのCu薄膜上に負極合材をキャスティングし、120℃で2時間乾燥してNMPを乾燥除去した。Cu薄膜上には50〜60μmの電極層が形成された。
<Manufacture of lithium secondary batteries>
88 parts by mass of the obtained active material for lithium secondary battery (active material), 4 parts by mass of acetylene black (AB) and 8 parts by mass of PVDF were dissolved or suspended in NMP to obtain a negative electrode mixture. Specifically, AB and the active material were suspended in a PVDF / NMP solution having a concentration of 0.02 g / mL. Thereafter, the negative electrode mixture was cast on a Cu thin film having a thickness of 20 μm, and dried at 120 ° C. for 2 hours to dry and remove NMP. An electrode layer of 50-60 μm was formed on the Cu thin film.

電極面積を0.55cm2として2025コインセルを作製し本実施例の試験電池とした。電解液として濃度mol/L LiPF6/EC+DEC(体積比1:1)を用い、正極としてリチウム金属シートを用いた。機械的接触を保つために、負極側に発泡ニッケルを介在させた。正負極間にはセパレータとしてのポリエチレン製の多孔質シートを介在させた。 A 2025 coin cell was prepared with an electrode area of 0.55 cm 2 and used as a test battery of this example. A concentration of 1 mol / L LiPF 6 / EC + DEC (volume ratio 1: 1) was used as the electrolytic solution, and a lithium metal sheet was used as the positive electrode. In order to maintain mechanical contact, nickel foam was interposed on the negative electrode side. A polyethylene porous sheet as a separator was interposed between the positive and negative electrodes.

(比較例1〜3)
実施例1のリチウム二次電池用活物質において、第1工程と第2工程との間(比較例1)、第2工程を省いたもの(比較例2)そして第2工程と第3工程との間(比較例3)の試料をそれぞれの比較例におけるリチウム二次電池用活物質とした。なお、比較例2において、第1工程後の試料は乳鉢中でPVCと粉砕することによりPVCと混合した後、第3工程における熱分解と同様の方法で熱分解を行った。
(Comparative Examples 1-3)
In the active material for a lithium secondary battery of Example 1, between the first step and the second step (Comparative Example 1), the second step is omitted (Comparative Example 2), and the second step and the third step. (Comparative Example 3) was used as the active material for the lithium secondary battery in each Comparative Example. In Comparative Example 2, the sample after the first step was mixed with PVC by grinding with PVC in a mortar, and then pyrolyzed in the same manner as the pyrolysis in the third step.

これらのリチウム二次電池用活物質を用いて実施例1と同様にリチウム二次電池を作製して各比較例の試験電池とした。   Using these active materials for lithium secondary batteries, lithium secondary batteries were produced in the same manner as in Example 1 to obtain test batteries for the respective comparative examples.

(サイクル試験)
サイクル試験は1500mV〜50mVまでの間で電流密度0.3mA・cm-2での充放電を1サイクルとして行った。充電と放電との間には1分間の間隔を設けた。充放電時に充電容量と端子電圧とを継続的に測定した。
(Cycle test)
In the cycle test, charging / discharging at a current density of 0.3 mA · cm −2 between 1500 mV and 50 mV was performed as one cycle. An interval of 1 minute was provided between charging and discharging. The charge capacity and terminal voltage were continuously measured during charging and discharging.

(結果)
結果を図6に示す。実施例1の試験電池は比較例1〜3の試験電池に比べて早いサイクルにて放電容量が安定し、その後の容量低下も小さかった。また、不可逆容量が比較的小さく、初期効率が高いことが分かった。各比較例の試験電池は初期の放電容量は実施例1の試験電池よりも高いものの、その後の低下率が大きく、サイクル数25〜30程度で実施例1の試験電池よりも低くなった。
(result)
The results are shown in FIG. The test battery of Example 1 had a stable discharge capacity at an earlier cycle than the test batteries of Comparative Examples 1 to 3, and the subsequent capacity decrease was small. It was also found that the irreversible capacity was relatively small and the initial efficiency was high. Although the test battery of each comparative example had an initial discharge capacity higher than that of the test battery of Example 1, the subsequent decrease rate was large, and was lower than that of the test battery of Example 1 at about 25 to 30 cycles.

また、実施例1の試験電池について、1、2及び29サイクル目における電圧−充放電容量の関係を図7に示す。典型的なシリコン系活物質材料粉末の充放電曲線を示した。平均電圧は0.3V程度であった。1サイクル目の放電曲線における平らな部分が2サイクル目以降、なだらかな傾斜を示すのはマトリクスの炭素材料の結晶性などが変化したことに由来すると推測できる。1サイクル目から29サイクル目に進んでも僅かな充放電容量の低下が認められたものの顕著な変化は認められず、29サイクル目以降は、ほぼ同じ充放電曲線を示した。   Moreover, about the test battery of Example 1, the relationship of the voltage-charge / discharge capacity in the 1st, 2nd and 29th cycles is shown in FIG. A charge / discharge curve of a typical silicon-based active material powder is shown. The average voltage was about 0.3V. It can be inferred that the flat portion in the discharge curve of the first cycle shows a gentle slope after the second cycle because the crystallinity of the carbon material of the matrix has changed. Although a slight decrease in charge / discharge capacity was observed even when proceeding from the 1st cycle to the 29th cycle, no significant change was observed, and the 29th and subsequent cycles showed substantially the same charge / discharge curve.

(サイクル試験:容量規制)
実施例1及び比較例2の試験電池について、放電容量を600mAh/gに制限して、充放電容量を測定した。充放電条件は放電容量を規制した以外は上述のサイクル試験と同様の条件を採用した。
(Cycle test: Capacity regulation)
For the test batteries of Example 1 and Comparative Example 2, the discharge capacity was limited to 600 mAh / g, and the charge / discharge capacity was measured. The charge / discharge conditions were the same as those in the cycle test described above except that the discharge capacity was regulated.

(結果)
実施例の試験電池では100サイクル経過後においても放電量は600mAh/gを示し600mAh/g以上の放電容量を保つことが分かった(図8)。それに対して、比較例2の試験電池では10〜20サイクル程度の充放電でも放電容量の大幅な低下が認められた(図9)。つまり、本実施例の試験電池は組織の高い安定性を実現できることが分かった。
(result)
In the test battery of the example, the discharge amount was 600 mAh / g even after 100 cycles, and it was found that the discharge capacity of 600 mAh / g or more was maintained (FIG. 8). On the other hand, in the test battery of Comparative Example 2, a significant decrease in the discharge capacity was observed even after charging and discharging for about 10 to 20 cycles (FIG. 9). That is, it was found that the test battery of this example can realize high stability of the structure.

(実施例2)
第1工程及び第2工程において、シリコン系活物質材料粉末とPVCとの混合比を質量比で8.5:1.5にし、熱分解温度を1000℃、昇温速度10℃/分としたこと、第2工程におけるボールミルの粉砕時間を3時間にした以外は実施例1と同様の条件で試験試料を作製し、試験電池を作製した。サイクル試験の結果、実施例1の試験電池を大きな変化は認められなかった。
(Example 2)
In the first step and the second step, the mixing ratio of the silicon-based active material powder and PVC was 8.5: 1.5 in terms of mass ratio, the thermal decomposition temperature was 1000 ° C., and the heating rate was 10 ° C./min. In addition, a test sample was produced under the same conditions as in Example 1 except that the ball milling time in the second step was 3 hours, and a test battery was produced. As a result of the cycle test, there was no significant change in the test battery of Example 1.

実施例の試験試料を製造する各工程においてEPMAにより測定されたシリコン元素の分散状態を示した図である(第1工程後)。It is the figure which showed the dispersion | distribution state of the silicon element measured by EPMA in each process of manufacturing the test sample of an Example (after the 1st process). 実施例の試験試料を製造する各工程においてEPMAにより測定されたシリコン元素の分散状態を示した図である(第2工程後)。It is the figure which showed the dispersion state of the silicon element measured by EPMA in each process of manufacturing the test sample of an Example (after the 2nd process). 実施例の試験試料を製造する各工程においてEPMAにより測定されたシリコン元素の分散状態を示した図である(第3工程後)。It is the figure which showed the dispersion state of the silicon element measured by EPMA in each process of manufacturing the test sample of an Example (after the 3rd process). 実施例の試験試料のX線回折スペクトルを示した図である。It is the figure which showed the X-ray-diffraction spectrum of the test sample of an Example. 実施例の試験試料のSEM写真である。It is a SEM photograph of the test sample of an Example. 実施例及び比較例の試験電池のサイクル試験の結果を示したグラフである。It is the graph which showed the result of the cycle test of the test battery of an Example and a comparative example. 実施例1の試験電池のサイクル試験の結果を示したグラフである。2 is a graph showing the results of a cycle test of the test battery of Example 1. FIG. 実施例1の試験電池のサイクル試験の結果を示したグラフである。2 is a graph showing the results of a cycle test of the test battery of Example 1. FIG. 比較例2の試験電池のサイクル試験の結果を示したグラフである。6 is a graph showing the results of a cycle test of a test battery of Comparative Example 2.

Claims (12)

リチウムイオンを脱挿入できるシリコン系活物質材料粉末と炭素骨格をもつマトリクス原料とを混合した後、該混合物を加熱して該マトリクス原料を熱分解する工程と、
該熱分解物に対して圧縮乃至剪断力を加える工程と、
更に炭素骨格をもつ第2マトリクス原料を混合した後、加熱して該第2マトリクス原料を熱分解する工程と、を有することを特徴とするリチウム二次電池用活物質の製造方法。
A step of mixing a silicon-based active material material powder capable of removing and inserting lithium ions and a matrix material having a carbon skeleton, and then thermally decomposing the matrix material by heating the mixture;
Applying a compression or shear force to the pyrolyzate;
A method for producing an active material for a lithium secondary battery, further comprising: mixing a second matrix material having a carbon skeleton, and then thermally decomposing the second matrix material.
前記圧縮乃至剪断力を加える工程はボールミルで粉砕を行う工程である請求項1に記載のリチウム二次電池用活物質の製造方法。   The method for producing an active material for a lithium secondary battery according to claim 1, wherein the step of applying a compressive or shearing force is a step of pulverizing with a ball mill. 前記マトリクス原料及び/又は前記第2マトリクス原料の混合はボールミルによる粉砕にて行う請求項1又は2に記載のリチウム二次電池用活物質。   The active material for a lithium secondary battery according to claim 1 or 2, wherein the mixing of the matrix material and / or the second matrix material is performed by pulverization with a ball mill. 前記マトリクス原料及び第2マトリクス原料は高分子材料から選択される請求項1〜3のいずれかに記載のリチウム二次電池用活物質の製造方法。   The method for producing an active material for a lithium secondary battery according to claim 1, wherein the matrix material and the second matrix material are selected from polymer materials. 前記マトリクス原料及び第2マトリクス原料はポリ塩化ビニルである請求項4に記載のリチウム二次電池用活物質の製造方法。   The method for producing an active material for a lithium secondary battery according to claim 4, wherein the matrix material and the second matrix material are polyvinyl chloride. 前記マトリクス原料及び/又は前記第2マトリクス原料は、ハロゲン化合物と共に熱分解する工程を行う請求項1〜5のいずれかに記載のリチウム二次電池用活物質の製造方法。   The method for producing an active material for a lithium secondary battery according to claim 1, wherein the matrix material and / or the second matrix material is subjected to a thermal decomposition step together with a halogen compound. 請求項1〜6のいずれかに記載の製造方法により得ることができることを特徴とするリチウム二次電池用活物質。   An active material for a lithium secondary battery, which can be obtained by the production method according to claim 1. リチウムイオンを脱挿入できるシリコン系活物質材料粉末と、該シリコン系活物質材料粉末を分散する炭素系マトリクスとを有するリチウム二次電池用活物質であって、
前記シリコン系活物質材料粉末は前記炭素系マトリクスと異なる組織をもつ炭素系材料にて被覆されていることを特徴とするリチウム二次電池用活物質。
An active material for a lithium secondary battery, comprising: a silicon-based active material material powder capable of removing and inserting lithium ions; and a carbon-based matrix in which the silicon-based active material material powder is dispersed,
The active material for a lithium secondary battery, wherein the silicon-based active material powder is coated with a carbon-based material having a structure different from that of the carbon-based matrix.
リチウムイオンを脱挿入できるシリコン系活物質材料粉末と該シリコン系活物質材料粉末を分散する炭素系材料とからなる一次粒子材料と、該一次粒子材料を分散する炭素系マトリクスとを有することを特徴とするリチウム二次電池用活物質。   It has a primary particle material composed of a silicon-based active material powder capable of desorbing lithium ions, a carbon-based material in which the silicon-based active material powder is dispersed, and a carbon matrix in which the primary particle material is dispersed. An active material for a lithium secondary battery. 前記シリコン系活物質材料粉末は前記炭素系マトリクスに均一に分散されている請求項8又は9に記載のリチウム二次電池用活物質。   The active material for a lithium secondary battery according to claim 8 or 9, wherein the silicon-based active material material powder is uniformly dispersed in the carbon-based matrix. 前記炭素系材料は、リチウム二次電池に適用した場合に電解質が内部の前記シリコン系活物質材料粉末にまで浸透させない程度の緻密さを備える組織である請求項8〜10のいずれかに記載のリチウム二次電池用活物質。   The said carbonaceous material is a structure | tissue provided with the density | concentration of the grade which an electrolyte does not osmose | permeate to the said silicon | silicone type | system | group active material material powder when it applies to a lithium secondary battery. Active material for lithium secondary battery. リチウムイオンを吸蔵乃至は脱蔵できる正負極活物質をもつ電極と、電解質とを有するリチウム二次電池であって、
前記負極活物質は、請求項1〜5のいずれかに記載のリチウム二次電池用活物質の製造方法により製造されたリチウム二次電池用活物質又は請求項6〜11のいずれかに記載のリチウム二次電池用活物質であることを特徴とするリチウム二次電池。
A lithium secondary battery having an electrode having positive and negative electrode active materials capable of inserting or extracting lithium ions, and an electrolyte,
The said negative electrode active material is an active material for lithium secondary batteries manufactured by the manufacturing method of the active material for lithium secondary batteries in any one of Claims 1-5, or in any one of Claims 6-11. A lithium secondary battery characterized by being an active material for a lithium secondary battery.
JP2004093823A 2004-03-26 2004-03-26 Method for producing active material for lithium secondary battery and method for producing lithium secondary battery Expired - Lifetime JP4474184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093823A JP4474184B2 (en) 2004-03-26 2004-03-26 Method for producing active material for lithium secondary battery and method for producing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093823A JP4474184B2 (en) 2004-03-26 2004-03-26 Method for producing active material for lithium secondary battery and method for producing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005285382A true JP2005285382A (en) 2005-10-13
JP4474184B2 JP4474184B2 (en) 2010-06-02

Family

ID=35183556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093823A Expired - Lifetime JP4474184B2 (en) 2004-03-26 2004-03-26 Method for producing active material for lithium secondary battery and method for producing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4474184B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026760A (en) * 2007-07-19 2009-02-05 Samsung Sdi Co Ltd Composite negative electrode active material, and negative electrode and lithium battery adopting the same
WO2010026627A1 (en) * 2008-09-03 2010-03-11 住友大阪セメント株式会社 Method for producing electrode material, electrode material, electrode, and battery
JP2010153346A (en) * 2008-05-27 2010-07-08 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, its manufacturing method, and lithium-ion secondary battery
JP2012059509A (en) * 2010-09-08 2012-03-22 Toyota Central R&D Labs Inc Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
US20140166939A1 (en) * 2010-01-18 2014-06-19 Enevate Corporation Silicon particles for battery electrodes
CN104916865A (en) * 2014-03-12 2015-09-16 巴莱诺斯清洁能源控股公司 Si/C composite anodes for lithium-ion bat-teries with a sustained high capacity per unit area
JP2015529960A (en) * 2012-08-24 2015-10-08 シラ ナノテクノロジーズ インク Skeletal matrix with internal nanoparticles
US9178208B2 (en) 2010-01-18 2015-11-03 Evevate Corporation Composite materials for electrochemical storage
JP2015532514A (en) * 2012-10-22 2015-11-09 ハイドロ−ケベック Method of manufacturing electrode material for lithium-ion secondary battery and lithium-ion battery using the electrode material
CN105244479A (en) * 2014-07-03 2016-01-13 Oci有限公司 Carbon-silicon composite and manufacturing mehtod of the same
CN105489867A (en) * 2016-01-21 2016-04-13 泰山医学院 Porous carbon and silicon material and preparation method thereof
JP2016100178A (en) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. Anode active material for lithium ion secondary battery, method of manufacturing anode active material for lithium ion secondary battery, lithium ion secondary battery, and method of charging lithium ion secondary battery
JP2016100179A (en) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. Anode active material for lithium ion secondary battery, method of manufacturing anode active material for lithium ion secondary battery, lithium ion secondary battery, and method of charging lithium ion secondary battery
JP2016192349A (en) * 2015-03-31 2016-11-10 株式会社豊田自動織機 Method of manufacturing carbon-coated silicon-based negative active material particle
KR101875950B1 (en) * 2011-12-20 2018-07-12 한국과학기술원 Manufacturing method for anode active material of lithium secondary battery comprising carbon composite nano particle with silicon porosity, anode active material of lithium secondary battery manufactured by the same, and lithium secondary battery comprising the same
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10603867B1 (en) * 2011-05-24 2020-03-31 Enevate Corporation Carbon fibers and methods of producing the same
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
WO2020153791A1 (en) * 2019-01-25 2020-07-30 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN114447294A (en) * 2021-12-28 2022-05-06 长沙矿冶研究院有限责任公司 Silicon-carbon composite negative electrode material with high compact structure and preparation method thereof
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
WO2023080367A1 (en) * 2020-11-03 2023-05-11 주식회사 나노신소재 Slurry composition for negative electrode of lithium secondary battery

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906554B2 (en) 2007-07-19 2014-12-09 Samsung Sdi Co., Ltd. Composite anode active material, anode including the same and lithium battery using the anode
JP2009026760A (en) * 2007-07-19 2009-02-05 Samsung Sdi Co Ltd Composite negative electrode active material, and negative electrode and lithium battery adopting the same
JP2010153346A (en) * 2008-05-27 2010-07-08 Kobe Steel Ltd Negative electrode material for lithium ion secondary battery, its manufacturing method, and lithium-ion secondary battery
WO2010026627A1 (en) * 2008-09-03 2010-03-11 住友大阪セメント株式会社 Method for producing electrode material, electrode material, electrode, and battery
US8580155B2 (en) 2008-09-03 2013-11-12 Sumitomo Osaka Cement Co., Ltd. Method for producing electrode material, electrode material, electrode and battery
US11728476B2 (en) 2010-01-18 2023-08-15 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11183712B2 (en) 2010-01-18 2021-11-23 Enevate Corporation Electrolyte compositions for batteries
US11955623B2 (en) 2010-01-18 2024-04-09 Enevate Corporation Silicon particles for battery electrodes
US9553303B2 (en) * 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US9178208B2 (en) 2010-01-18 2015-11-03 Evevate Corporation Composite materials for electrochemical storage
US11196037B2 (en) 2010-01-18 2021-12-07 Enevate Corporation Silicon particles for battery electrodes
US20140166939A1 (en) * 2010-01-18 2014-06-19 Enevate Corporation Silicon particles for battery electrodes
US10622620B2 (en) 2010-01-18 2020-04-14 Enevate Corporation Methods of forming composite material films
US9941509B2 (en) 2010-01-18 2018-04-10 Enevate Corporation Silicon particles for battery electrodes
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US10103378B2 (en) 2010-01-18 2018-10-16 Enevate Corporation Methods of forming composite material films
JP2012059509A (en) * 2010-09-08 2012-03-22 Toyota Central R&D Labs Inc Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
US10603867B1 (en) * 2011-05-24 2020-03-31 Enevate Corporation Carbon fibers and methods of producing the same
KR101875950B1 (en) * 2011-12-20 2018-07-12 한국과학기술원 Manufacturing method for anode active material of lithium secondary battery comprising carbon composite nano particle with silicon porosity, anode active material of lithium secondary battery manufactured by the same, and lithium secondary battery comprising the same
JP2015529960A (en) * 2012-08-24 2015-10-08 シラ ナノテクノロジーズ インク Skeletal matrix with internal nanoparticles
JP2019061967A (en) * 2012-08-24 2019-04-18 シラ ナノテクノロジーズ インク Scaffolding matrix with internal nanoparticles
US10374221B2 (en) 2012-08-24 2019-08-06 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
US11545668B2 (en) 2012-10-22 2023-01-03 Hydro-Quebec Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2015532514A (en) * 2012-10-22 2015-11-09 ハイドロ−ケベック Method of manufacturing electrode material for lithium-ion secondary battery and lithium-ion battery using the electrode material
JP2015176867A (en) * 2014-03-12 2015-10-05 ベレノス・クリーン・パワー・ホールディング・アーゲー Silicon/carbon composite anodes for lithium-ion batteries with sustained high capacity per unit area
KR101749800B1 (en) * 2014-03-12 2017-06-21 벨레노스 클린 파워 홀딩 아게 Si/c composite anodes for lithium-ion batteries with a sustained high capacity per unit area
CN104916865A (en) * 2014-03-12 2015-09-16 巴莱诺斯清洁能源控股公司 Si/C composite anodes for lithium-ion bat-teries with a sustained high capacity per unit area
JP2016013967A (en) * 2014-07-03 2016-01-28 オーシーアイ カンパニー リミテッドOCI Company Ltd. Carbon-silicon composite and method for producing the same
KR101609459B1 (en) * 2014-07-03 2016-04-06 오씨아이 주식회사 Carbon-silicon composite and manufacturing mehtod of the same
CN105244479A (en) * 2014-07-03 2016-01-13 Oci有限公司 Carbon-silicon composite and manufacturing mehtod of the same
JP2016100178A (en) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. Anode active material for lithium ion secondary battery, method of manufacturing anode active material for lithium ion secondary battery, lithium ion secondary battery, and method of charging lithium ion secondary battery
JP2016100179A (en) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. Anode active material for lithium ion secondary battery, method of manufacturing anode active material for lithium ion secondary battery, lithium ion secondary battery, and method of charging lithium ion secondary battery
JP2016192349A (en) * 2015-03-31 2016-11-10 株式会社豊田自動織機 Method of manufacturing carbon-coated silicon-based negative active material particle
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
CN105489867A (en) * 2016-01-21 2016-04-13 泰山医学院 Porous carbon and silicon material and preparation method thereof
US11539041B2 (en) 2017-12-07 2022-12-27 Enevate Corporation Silicon particles for battery electrodes
US11309536B2 (en) 2017-12-07 2022-04-19 Enevate Corporation Silicon particles for battery electrodes
US11777077B2 (en) 2017-12-07 2023-10-03 Enevate Corporation Silicon particles for battery electrodes
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
WO2020153791A1 (en) * 2019-01-25 2020-07-30 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023080367A1 (en) * 2020-11-03 2023-05-11 주식회사 나노신소재 Slurry composition for negative electrode of lithium secondary battery
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
CN114447294A (en) * 2021-12-28 2022-05-06 长沙矿冶研究院有限责任公司 Silicon-carbon composite negative electrode material with high compact structure and preparation method thereof
CN114447294B (en) * 2021-12-28 2024-03-22 长沙矿冶研究院有限责任公司 Silicon-carbon composite negative electrode material with high compact structure and preparation method thereof

Also Published As

Publication number Publication date
JP4474184B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4474184B2 (en) Method for producing active material for lithium secondary battery and method for producing lithium secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2618406B1 (en) Nonaqueous secondary cell
KR100684729B1 (en) Rechargeable lithium battery
Lee et al. Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes
JP5340737B2 (en) Secondary battery electrode active material
JP5511128B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
JP5394065B2 (en) Secondary battery electrode active material
KR20120128125A (en) High capacity anode materials for lithium ion batteries
JP5172564B2 (en) Nonaqueous electrolyte secondary battery
JP2008282819A (en) Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte secondary battery provided thereby
KR20070065906A (en) Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
JP2004259475A (en) Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2009514164A (en) Secondary battery electrode active material
JP7029680B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery
EP2677570A1 (en) Non-aqueous electrolyte secondary battery
JP2014179202A (en) Electrochemical cell
WO2020067609A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
KR100847218B1 (en) Electrode active material for secondary battery
KR100950312B1 (en) Negative active material for lithium secondary battery, method of preparing same and lithium secondary battery comprising same
JP2003263982A (en) Manufacturing method of graphite particle and negative electrode material for lithium ion secondary battery
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP6143216B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US11843110B2 (en) Methods for controlling formation of multilayer carbon coatings on silicon-containing electroactive materials for lithium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4474184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250