JP2005276736A - Fuel cell stack - Google Patents

Fuel cell stack Download PDF

Info

Publication number
JP2005276736A
JP2005276736A JP2004091247A JP2004091247A JP2005276736A JP 2005276736 A JP2005276736 A JP 2005276736A JP 2004091247 A JP2004091247 A JP 2004091247A JP 2004091247 A JP2004091247 A JP 2004091247A JP 2005276736 A JP2005276736 A JP 2005276736A
Authority
JP
Japan
Prior art keywords
gas supply
refrigerant
supply path
fuel
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004091247A
Other languages
Japanese (ja)
Inventor
Soichiro Ogawa
宗一郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004091247A priority Critical patent/JP2005276736A/en
Publication of JP2005276736A publication Critical patent/JP2005276736A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain the differential pressure between fuel gas and oxidizer gas, and a refrigerant at an appropriate value without using any complex pressure control unit in a fuel battery stack. <P>SOLUTION: A reaction gas supply separator is laminated so that a fuel gas supply path and an oxidizer gas supply path that are formed linearly each orthogonally crosses each other, a refrigerant inlet is provided at a corner formed by the fuel gas inlet surface of the reaction gas supply separator and an oxidizer gas inlet surface, a refrigerant outlet is provided at the refrigerant inlet and a corner on a diagonal line, and a refrigerant supply path is obliquely formed toward the refrigerant outlet from the refrigerant inlet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池スタックに関し、詳しくは、燃料ガス供給路又は酸化剤ガス供給路が設けられると共に、冷媒供給路が設けられる反応ガス供給セパレータを介して、セル本体が複数積層される構成の燃料電池スタックに関する。   The present invention relates to a fuel cell stack, and more specifically, a fuel gas supply path or an oxidant gas supply path is provided, and a plurality of cell main bodies are stacked via a reaction gas supply separator provided with a refrigerant supply path. The present invention relates to a fuel cell stack.

特許文献1には、アノード電極及びカソード電極に隣接する多孔質水移動プレートを備え、前記多孔質水移動プレートに、反応物気体流が通る流路と、冷媒流が通る流路とが形成される燃料電池スタックが開示されている。
特表2003−517186号公報
Patent Document 1 includes a porous water movement plate adjacent to an anode electrode and a cathode electrode, and a flow path through which a reactant gas flow and a flow path through which a refrigerant flow pass are formed in the porous water movement plate. A fuel cell stack is disclosed.
Special table 2003-517186 gazette

ところで、上記のように、多孔質水移動プレート(セパレータ)に反応物気体流が通る流路と、冷媒流が通る流路とが形成される場合、反応物気体流と冷媒流との差圧によって、反応物気体が多孔質水移動プレート(セパレータ)内に侵入してガス漏れを生じたり、反応物気体流の流路側に冷媒が漏れて反応物気体流の流路を狭めたりするため、前記差圧を管理する必要があった。   By the way, as described above, when the flow path through which the reactant gas flow passes and the flow path through which the refrigerant flow passes through the porous water moving plate (separator), the differential pressure between the reactant gas flow and the refrigerant flow. Because the reactant gas enters the porous water transfer plate (separator) and causes gas leakage, or the refrigerant leaks to the reactant gas flow channel side and narrows the reactant gas flow channel, It was necessary to manage the differential pressure.

そこで、従来では、反応物気体流及び冷媒流の圧力の検出結果に基づく流量制御によって前記差圧の管理を行なっていたが、差圧を精度良く管理するためには、複数の圧力センサを設置して複雑な流量制御を行なう必要が生じ、これによって部品点数の増加によるコスト増、重量増、又は、制御不具合の要因が増えてしまうという問題があった。
本発明は上記問題点に鑑みなされたものであり、反応物気体(燃料ガス,酸化剤ガス)と冷媒との差圧を、複雑な圧力制御装置を用いることなく適切な値に保つことができる燃料電池スタックを提供することを目的とする。
Therefore, in the past, the differential pressure was managed by flow rate control based on the detection results of the reactant gas flow and the refrigerant flow. However, in order to accurately manage the differential pressure, a plurality of pressure sensors are installed. As a result, it is necessary to perform complicated flow rate control, which increases the cost, weight, or control factors due to the increase in the number of parts.
The present invention has been made in view of the above problems, and can maintain the differential pressure between the reactant gas (fuel gas, oxidant gas) and the refrigerant at an appropriate value without using a complicated pressure control device. An object is to provide a fuel cell stack.

そのため、本発明では、固体高分子膜を挟んで燃料極と酸化剤極が設けられるセル本体を、燃料ガス供給路が形成される反応ガス供給セパレータ及び酸化剤ガス供給路が形成される反応ガス供給セパレータを介して複数積層してなる燃料電池スタックにおいて、燃料ガス供給路及び酸化剤ガス供給路が、反応ガス供給セパレータのガス入口面から対向するガス出口面に向けて直線的に形成されると共に、燃料ガス供給路と酸化剤ガス供給路とが相互に直交する向きになるように反応ガス供給セパレータを配設する一方、前記反応ガス供給セパレータのガス供給路が設けられる面の反対面に冷媒供給路を形成する構成とし、かつ、反応ガス供給セパレータの燃料ガス入口面と酸化剤ガス入口面とがなす角部に冷媒入口を設け、該冷媒入口と対角線上の角部に冷媒出口を設け、冷媒供給路が冷媒入口から冷媒出口に向けて斜めに形成される構成とした。   Therefore, in the present invention, the cell main body in which the fuel electrode and the oxidant electrode are provided with the solid polymer film interposed therebetween, the reaction gas supply separator in which the fuel gas supply path is formed, and the reaction gas in which the oxidant gas supply path is formed In the fuel cell stack formed by stacking a plurality of layers via the supply separator, the fuel gas supply path and the oxidant gas supply path are linearly formed from the gas inlet surface of the reaction gas supply separator toward the opposing gas outlet surface. In addition, the reaction gas supply separator is disposed so that the fuel gas supply path and the oxidant gas supply path are orthogonal to each other, while the reaction gas supply separator has a gas supply path opposite to the surface on which the gas supply path is provided. A refrigerant supply path is formed, and a refrigerant inlet is provided at a corner formed by the fuel gas inlet surface and the oxidant gas inlet surface of the reaction gas supply separator, and is diagonally opposed to the refrigerant inlet. The refrigerant outlet is provided at a corner of the upper, the coolant supply passage is configured to be formed obliquely toward the refrigerant outlet from the refrigerant inlet.

かかる構成によると、直線的に形成される燃料ガス供給路と酸化剤ガス供給路とが相互に直交する向きになるように反応ガス供給セパレータを配設することで、反応ガスの合成圧力が、燃料ガス入口面と酸化剤ガス入口面とがなす角部から対角線上の角部に向かう方向に低下する圧力勾配を示すことになり、この圧力勾配の方向と同じ方向に向けて冷媒を流すことで、反応ガスと冷媒との圧力差が流れの位置によって大きく変化することを抑止できる。   According to such a configuration, by providing the reaction gas supply separator so that the linearly formed fuel gas supply path and the oxidant gas supply path are orthogonal to each other, the synthesis pressure of the reaction gas is This indicates a pressure gradient that decreases in the direction from the corner formed by the fuel gas inlet surface and the oxidant gas inlet surface toward the diagonal corner, and the refrigerant flows in the same direction as this pressure gradient. Thus, it is possible to prevent the pressure difference between the reaction gas and the refrigerant from greatly changing depending on the position of the flow.

従って、複雑な圧力制御を行うことなく、反応ガスと冷媒との圧力差を適切な値に保持することができる。   Therefore, the pressure difference between the reaction gas and the refrigerant can be maintained at an appropriate value without performing complicated pressure control.

以下に本発明の実施の形態を図に基づいて説明する。
図1は、実施形態における燃料電池セルを示す。
図1に示す燃料電池セル1は、固体高分子膜,該固体高分子膜を挟んで設けられる燃料極及び酸化剤極,シール部材を含んで構成されるセル本体2と、前記セル本体2の燃料極側に設けられる燃料ガス通過用セパレートプレート3と、前記セル本体2の酸化剤極側に設けられる酸化剤ガス通過用セパレートプレート4とを含んで構成される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a fuel cell in the embodiment.
A fuel battery cell 1 shown in FIG. 1 includes a solid polymer film, a cell main body 2 including a fuel electrode and an oxidant electrode provided between the solid polymer films, and a seal member. A fuel gas passage separation plate 3 provided on the fuel electrode side and an oxidant gas passage separation plate 4 provided on the oxidant electrode side of the cell body 2 are configured.

そして、図1に示す燃料電池セル1を複数積層することで燃料電池スタックが構成されるる。
即ち、燃料電池スタックにおいては、酸化剤ガス通過用セパレートプレート4,セル本体2,燃料ガス通過用セパレートプレート3,酸化剤ガス通過用セパレートプレート4,セル本体2,燃料ガス通過用セパレートプレート3・・・の順で重ねられることになる。
And a fuel cell stack is comprised by laminating | stacking multiple fuel cell 1 shown in FIG.
That is, in the fuel cell stack, the oxidant gas passage separate plate 4, the cell body 2, the fuel gas passage separate plate 3, the oxidant gas passage separate plate 4, the cell body 2, the fuel gas passage separate plate 3. It will be piled up in the order.

前記セル本体2において、アノード側の燃料極に対して、燃料ガス通過用セパレートプレート3を介して燃料ガスとしての水素が供給され、該水素が前記燃料極上でイオン化されて水素イオンと電子になる。
前記水素イオンは、前記固体高分子膜を介してカソード側の酸化剤極に移動する。
カソード側の酸化剤極には前記酸化剤ガス通過用セパレートプレート4を介して酸化剤ガスとしての空気が供給され、該空気中の酸素と前記固体高分子膜を介して移動してきた水素イオンと外部回路を移動してきた電子とが反応して水が生成される。
In the cell body 2, hydrogen as fuel gas is supplied to the anode-side fuel electrode via the fuel gas passage separation plate 3, and the hydrogen is ionized on the fuel electrode to become hydrogen ions and electrons. .
The hydrogen ions move to the oxidant electrode on the cathode side through the solid polymer film.
Air as an oxidant gas is supplied to the oxidant electrode on the cathode side through the oxidant gas passage separate plate 4, and oxygen in the air and hydrogen ions that have moved through the solid polymer film Water reacts with the electrons moving through the external circuit to produce water.

上記のようにして外部回路を電子が移動することで、電子の移動方向とは逆方向に電流が流れ、電気エネルギーを得ることができる。
前記燃料ガス通過用セパレートプレート3及び酸化剤ガス通過用セパレートプレート4は、多孔質体で形成される。
前記燃料ガス通過用セパレートプレート3の燃料極側の面には、燃料ガスを通過させるための燃料ガス供給路を構成する直線状の燃料ガス供給溝5が一定間隔毎に複数平行に形成される。
When electrons move in the external circuit as described above, current flows in the direction opposite to the direction of movement of electrons, and electric energy can be obtained.
The fuel gas passage separate plate 3 and the oxidant gas passage separate plate 4 are formed of a porous body.
A plurality of linear fuel gas supply grooves 5 constituting a fuel gas supply path for allowing the fuel gas to pass therethrough are formed in parallel at regular intervals on the surface of the fuel gas passage separate plate 3 on the fuel electrode side. .

前記燃料ガス通過用セパレートプレート3は、前記燃料ガス供給溝5が水平方向に延設されるように設置され、図1の右側端面から燃料ガス(水素)が供給され、前記燃料ガス供給溝5を通過した燃料ガス(水素)が図1の左側端面から排出されるよう構成される。
同様に、前記酸化剤ガス通過用セパレートプレート4の酸化剤極側の面には、酸化剤ガス(空気)を通過させるための酸化剤ガス供給路を構成する直線状の酸化剤ガス供給溝6が一定間隔毎に複数平行に形成される。
The fuel gas passage separation plate 3 is installed such that the fuel gas supply groove 5 extends in the horizontal direction, and fuel gas (hydrogen) is supplied from the right end face in FIG. The fuel gas (hydrogen) that has passed through is configured to be discharged from the left end face of FIG.
Similarly, on the surface on the oxidant electrode side of the oxidant gas passage separation plate 4, a straight oxidant gas supply groove 6 constituting an oxidant gas supply path for allowing the oxidant gas (air) to pass therethrough. Are formed in parallel at regular intervals.

酸化ガス通過用セパレートプレート4は、前記酸化剤ガス供給溝6が上下方向(垂直方向)に延設されるように設置され、図1の下端面から酸化剤ガス(空気)が供給され、前記酸化剤ガス供給溝6を通過した酸化剤ガス(空気)が図1の上端面から排出されるよう構成される。
また、前記燃料ガス通過用セパレートプレート3の燃料ガス供給溝5が設けられる面の反対面には、冷媒入口8から冷媒出口9に向けて冷媒(冷却水)を通過させるための冷媒供給路を構成する冷媒供給溝7が形成される。
The oxidant gas passage separation plate 4 is installed such that the oxidant gas supply groove 6 extends in the vertical direction (vertical direction), and oxidant gas (air) is supplied from the lower end surface of FIG. The oxidant gas (air) that has passed through the oxidant gas supply groove 6 is configured to be discharged from the upper end surface of FIG.
Further, a refrigerant supply path for allowing refrigerant (cooling water) to pass from the refrigerant inlet 8 toward the refrigerant outlet 9 is provided on the opposite surface of the fuel gas passage separation plate 3 to the surface where the fuel gas supply groove 5 is provided. A refrigerant supply groove 7 is formed.

前記冷媒入口8は、燃料ガス通過用セパレートプレート3の燃料ガス入口面3aと酸化ガス通過用セパレートプレート4の酸化剤ガス入口面4aとがなす角部11に設けられる。
各燃料ガス通過用セパレートプレート3の冷媒入口8には、冷媒供給マニホールド12によって冷媒(冷却水)が分配供給されるようになっており、前記冷媒供給マニホールド12は、燃料ガス通過用セパレートプレート3,セル本体2及び酸化剤ガス通過用セパレートプレート4を貫通して全セルに渡って形成される。
The refrigerant inlet 8 is provided at a corner 11 formed by the fuel gas inlet surface 3 a of the fuel gas passage separation plate 3 and the oxidant gas inlet surface 4 a of the separation plate 4 for oxidizing gas passage.
Refrigerant (cooling water) is distributed and supplied to the refrigerant inlet 8 of each fuel gas passage separation plate 3 by a refrigerant supply manifold 12, and the refrigerant supply manifold 12 is separated from the fuel gas passage separation plate 3. These are formed over the entire cell through the cell body 2 and the oxidant gas passage separation plate 4.

一方、冷媒出口9は、前記角部11と対角線上で対向する角部13に設けられる。
各燃料ガス通過用セパレートプレート3の冷媒出口9に導入された冷媒は、冷媒排出マニホールド14によって燃料電池セルの外部の排出されるようになっており、前記冷媒排出マニホールド14は、燃料ガス通過用セパレートプレート3,セル本体2及び酸化剤ガス通過用セパレートプレート4を貫通して全セルに渡って形成される。
On the other hand, the refrigerant outlet 9 is provided at a corner portion 13 that diagonally faces the corner portion 11.
The refrigerant introduced into the refrigerant outlet 9 of each fuel gas passage separation plate 3 is discharged outside the fuel cell by a refrigerant discharge manifold 14, and the refrigerant discharge manifold 14 is used for fuel gas passage. It is formed over the entire cell through the separate plate 3, the cell body 2 and the oxidant gas passage separate plate 4.

前記冷媒入口8から冷媒出口9に向けて冷媒(冷却水)を通過させるための冷媒供給溝7は、冷媒入口8から冷媒出口9に向けて斜めに形成される溝であって、外周路溝7aと複数の分岐路溝7bとから構成される。
前記外周路溝7aは、冷媒入口8から左右に分岐し、角部11を挟む燃料ガス通過用セパレートプレート3の2つの面3a,3bに対してそれぞれ平行に進んだ後、冷媒入口8と冷媒出口9との結ぶ対角線とは別の対角線上の角部15a,15bで冷媒出口9に向けて屈曲され、角部13を挟む燃料ガス通過用セパレートプレート3の2つの面3c,3dに対してそれぞれ平行に進んで冷媒出口9に連通される。
The refrigerant supply groove 7 for allowing the refrigerant (cooling water) to pass from the refrigerant inlet 8 toward the refrigerant outlet 9 is a groove formed obliquely from the refrigerant inlet 8 toward the refrigerant outlet 9, and is an outer circumferential groove. 7a and a plurality of branch channel grooves 7b.
The outer circumferential groove 7a branches right and left from the refrigerant inlet 8 and travels in parallel with the two surfaces 3a and 3b of the fuel gas passage separation plate 3 sandwiching the corner portion 11, respectively. With respect to the two surfaces 3c and 3d of the fuel gas passage separation plate 3 which is bent toward the refrigerant outlet 9 at corners 15a and 15b on a diagonal line different from the diagonal line connecting to the outlet 9, and sandwiches the corner part 13 Each travels in parallel and communicates with the refrigerant outlet 9.

一方、前記分岐路溝7bは、燃料ガス通過用セパレートプレート3の面3a,3bと平行な前記外周路溝7aから分岐され、前記冷媒入口8と冷媒出口9との結ぶ対角線と略平行な方向に進んで、燃料ガス通過用セパレートプレート3の面3c,3dと平行な前記外周路溝7aに合流するように複数設けられる。
かかる構成によると、直線的に形成される燃料ガス供給溝5(燃料ガス供給路)と酸化剤ガス供給溝6(酸化剤ガス供給路)とが、相互に直交する向きになるように燃料ガス通過用セパレートプレート3と酸化剤ガス通過用セパレートプレート4とが配設される一方、各溝(流路)における反応ガスの圧力は、流路内圧力損失によって下流側に向けて下がる傾向を示す。
On the other hand, the branch groove 7 b is branched from the outer peripheral groove 7 a parallel to the surfaces 3 a and 3 b of the fuel gas passage separation plate 3, and is substantially parallel to a diagonal line connecting the refrigerant inlet 8 and the refrigerant outlet 9. Then, a plurality of fuel gas passage separation plates 3 are provided so as to join the outer circumferential groove 7a parallel to the surfaces 3c and 3d of the fuel gas passage separation plate 3.
According to such a configuration, the fuel gas supply groove 5 (fuel gas supply path) and the oxidant gas supply groove 6 (oxidant gas supply path) that are formed in a straight line are oriented so as to be orthogonal to each other. While the separation plate 3 for passage and the separation plate 4 for passage of oxidant gas are disposed, the pressure of the reaction gas in each groove (channel) tends to decrease toward the downstream side due to pressure loss in the channel. .

従って、前記燃料ガス通過用セパレートプレート3の背面に酸化剤ガス通過用セパレートプレート4が重ねられる状態における燃料ガス(水素)と酸化剤ガス(空気)との合成圧力は、燃料ガス通過用セパレートプレート3の角部11から角部13に向かう方向に低下する圧力勾配を示すことになる。
一方、冷媒供給溝7は、角部11に設けられる冷媒入口8から角部13に設けられる冷媒出口9に向けて斜めに形成され、冷媒の圧力も流路内圧力損失によって下流側に向けて下がる傾向を示す。
Therefore, the combined pressure of the fuel gas (hydrogen) and the oxidant gas (air) in a state where the oxidant gas passage separate plate 4 is overlapped on the back surface of the fuel gas passage separate plate 3 is determined as follows. 3 indicates a pressure gradient that decreases in the direction from the corner 11 to the corner 13.
On the other hand, the refrigerant supply groove 7 is formed obliquely from the refrigerant inlet 8 provided in the corner portion 11 toward the refrigerant outlet 9 provided in the corner portion 13, and the pressure of the refrigerant is also directed downstream by the pressure loss in the flow path. Shows a downward trend.

従って、燃料ガス(水素)と酸化剤ガス(空気)との合成圧力が低下する方向と、冷媒の圧力が低下する方向とは、共に角部11(冷媒入口8)から角部13(冷媒出口9)に向かう方向となり、反応ガス(燃料ガス,酸化剤ガス)と冷媒との圧力差が、流路位置によって大きく異なるようになることがない。
前記圧力差は、反応ガスのセパレートプレート3,4への侵入や、冷媒の反応ガス流路側への漏れを防止するために管理する必要があるパラメータであるが、上記のように、流路位置によって大きく異なることがなければ、複数の圧力センサを用いた複雑な流量制御によって前記圧力差を調整する必要がなくなり、システム構成を簡略化できる。
Therefore, both the direction in which the combined pressure of the fuel gas (hydrogen) and the oxidant gas (air) decreases and the direction in which the refrigerant pressure decreases are from the corner 11 (refrigerant inlet 8) to the corner 13 (refrigerant outlet). 9), the pressure difference between the reaction gas (fuel gas, oxidant gas) and the refrigerant does not vary greatly depending on the flow path position.
The pressure difference is a parameter that needs to be managed to prevent reaction gas from entering the separation plates 3 and 4 and leakage of refrigerant to the reaction gas flow channel side. If there is no significant difference between the two, the pressure difference need not be adjusted by complicated flow control using a plurality of pressure sensors, and the system configuration can be simplified.

また、本実施形態では、前記燃料ガス通過用セパレートプレート3に形成される燃料ガス供給溝5、及び、前記酸化剤ガス通過用セパレートプレート4に形成される酸化剤ガス供給溝6の断面積が、下流側ほど大きくなるように形成してある(図2参照)。
上記のように燃料ガス供給溝5及び酸化剤ガス供給溝6(反応ガス流路)の断面積を下流側ほど大きくすれば、入口から導入された反応ガスの流速が出口に近づくにつれて低下することになり、速度が低下することで電極(触媒)との反応機会を増大させることになる。
In the present embodiment, the cross-sectional areas of the fuel gas supply groove 5 formed in the fuel gas passage separation plate 3 and the oxidant gas supply groove 6 formed in the oxidant gas passage separation plate 4 are as follows. Further, it is formed so as to become larger toward the downstream side (see FIG. 2).
As described above, if the cross-sectional areas of the fuel gas supply groove 5 and the oxidant gas supply groove 6 (reaction gas flow path) are increased toward the downstream side, the flow rate of the reaction gas introduced from the inlet decreases as it approaches the outlet. Therefore, the reaction rate with the electrode (catalyst) is increased by decreasing the speed.

反応ガス(燃料ガス,酸化剤ガス)の濃度は、反応が進むことで入口側が高く出口に向かって低下することになるが、上記のように、流路断面積を設定すれば、濃度が下がる分を速度の低下による反応機会の増大によって補うことができ、反応面内の発電分布の均一化を図り、ヒートスポットの発生を回避できる。
また、本実施形態では、燃料ガス供給溝5及び酸化剤ガス供給溝6と同様に、冷媒供給溝7の断面積が下流側ほど大きくなるように形成してある。
The concentration of the reaction gas (fuel gas, oxidant gas) is higher on the inlet side and lowers toward the outlet as the reaction proceeds. However, if the cross-sectional area of the flow path is set as described above, the concentration decreases. Minutes can be supplemented by an increase in reaction opportunities due to a decrease in speed, the power generation distribution in the reaction surface can be made uniform, and the occurrence of heat spots can be avoided.
In the present embodiment, similarly to the fuel gas supply groove 5 and the oxidant gas supply groove 6, the refrigerant supply groove 7 is formed so that the cross-sectional area thereof becomes larger toward the downstream side.

本実施形態の多孔質体で形成されるセパレートプレート3,4では、水が余っている部分から水を吸って、加湿の必要な部分にまわすことができる。また、セパレータから水が抜けてしまうと、反応ガスがセパレータを吹き抜けてしまうことになり、水が余り過ぎると触媒が機能できなくなって性能低下を来たす。
一方、反応ガスは、ガス入口側ではセパレータ壁面に対して相対的に湿度が低いのに対して、その後は生成水により水が余り傾向になる。
In the separate plates 3 and 4 formed of the porous body of the present embodiment, water can be sucked from a portion where water remains and can be turned to a portion requiring humidification. Also, if water escapes from the separator, the reaction gas will blow through the separator, and if too much water is used, the catalyst will not function and performance will deteriorate.
On the other hand, the reaction gas has a relatively low humidity on the gas inlet side relative to the separator wall surface, but thereafter, the water tends to be excessive due to the generated water.

従って、ガス入口側では加湿が要求されるのに対して、ガス出口側では逆に除湿が要求さえることになるため、冷媒供給溝7の断面積を加湿が要求される入口側で増やして冷媒流量を増やし、加湿要求から除湿要求への切り換わりに対応して、徐々に断面積を減少させるものである。
これにより、セパレータから水が抜けることによる反応ガスの吹き抜けを防止しつつ、水あふれによる触媒性能の低下を回避することができる。
Therefore, since humidification is required on the gas inlet side, dehumidification is required on the gas outlet side, so the cross-sectional area of the refrigerant supply groove 7 is increased on the inlet side where humidification is required. The flow rate is increased, and the cross-sectional area is gradually reduced in response to switching from a humidification request to a dehumidification request.
Thereby, it is possible to prevent the catalyst performance from being deteriorated due to water overflow while preventing the reaction gas from being blown out due to the escape of water from the separator.

尚、燃料ガス供給溝5,酸化剤ガス供給溝6,冷媒供給溝7の断面積の拡大は、溝の幅の増大、及び/又は、溝の深さの増大によって実現できる。   The expansion of the cross-sectional area of the fuel gas supply groove 5, the oxidant gas supply groove 6, and the refrigerant supply groove 7 can be realized by increasing the groove width and / or increasing the groove depth.

実施形態における燃料電池セルを示す分解斜視図。The disassembled perspective view which shows the fuel battery cell in embodiment. 実施形態における反応ガス供給溝の構成を示す平面図。The top view which shows the structure of the reactive gas supply groove | channel in embodiment.

符号の説明Explanation of symbols

1…燃料電池セル1,2…セル本体,3…燃料ガス通過用セパレートプレート,4…酸化剤ガス通過用セパレートプレート,5…燃料ガス供給溝,6…酸化剤ガス供給溝,7…冷媒供給溝,7a…外周路溝,7b…分岐路溝,8…冷媒入口,9…冷媒出口   DESCRIPTION OF SYMBOLS 1 ... Fuel cell 1, 2 ... Cell main body, 3 ... Separator plate for fuel gas passage, 4 ... Separator plate for oxidant gas passage, 5 ... Fuel gas supply groove, 6 ... Oxidant gas supply groove, 7 ... Refrigerant supply Groove, 7a ... outer peripheral groove, 7b ... branching groove, 8 ... refrigerant inlet, 9 ... refrigerant outlet

Claims (4)

固体高分子膜を挟んで燃料極と酸化剤極が設けられるセル本体を、燃料ガス供給路が形成される反応ガス供給セパレータ及び酸化剤ガス供給路が形成される反応ガス供給セパレータを介して複数積層してなる燃料電池スタックにおいて、
前記燃料ガス供給路及び酸化剤ガス供給路が、前記反応ガス供給セパレータのガス入口面から対向するガス出口面に向けて直線的に形成されると共に、前記燃料ガス供給路と酸化剤ガス供給路とが相互に直交する向きになるように前記反応ガス供給セパレータを配設する一方、
前記反応ガス供給セパレータのガス供給路が設けられる面の反対面に冷媒供給路を形成する構成とし、かつ、前記反応ガス供給セパレータの燃料ガス入口面と酸化剤ガス入口面とがなす角部に冷媒入口を設け、該冷媒入口と対角線上の角部に冷媒出口を設け、前記冷媒供給路が前記冷媒入口から冷媒出口に向けて斜めに形成されることを特徴とする燃料電池スタック。
A plurality of cell bodies provided with a fuel electrode and an oxidant electrode with a solid polymer film interposed therebetween are provided via a reaction gas supply separator in which a fuel gas supply path is formed and a reaction gas supply separator in which an oxidant gas supply path is formed. In the stacked fuel cell stack,
The fuel gas supply path and the oxidant gas supply path are linearly formed from the gas inlet surface of the reaction gas supply separator toward the opposing gas outlet surface, and the fuel gas supply path and the oxidant gas supply path Are arranged such that the reaction gas supply separator is so as to be orthogonal to each other,
A refrigerant supply path is formed on the opposite side of the surface on which the gas supply path of the reaction gas supply separator is provided, and at the corner formed by the fuel gas inlet surface and the oxidant gas inlet surface of the reaction gas supply separator. A fuel cell stack, wherein a refrigerant inlet is provided, a refrigerant outlet is provided at a corner diagonal to the refrigerant inlet, and the refrigerant supply path is formed obliquely from the refrigerant inlet toward the refrigerant outlet.
前記冷媒供給路が、前記冷媒入口から左右に分岐した後、前記反応ガス供給セパレータの周縁に沿って進んで前記冷媒出口に合流する外周路と、前記冷媒入口と冷媒出口とを結ぶ対角線と平行な方向に、前記外周路から分岐して前記外周路に合流する複数の分岐路とから構成されることを特徴とする請求項1記載の燃料電池スタック。   The refrigerant supply path branches from the refrigerant inlet to the left and right, and then travels along the peripheral edge of the reaction gas supply separator and is parallel to the diagonal line connecting the refrigerant inlet and the refrigerant outlet. 2. The fuel cell stack according to claim 1, further comprising a plurality of branch paths that branch from the outer peripheral path and merge into the outer peripheral path in a specific direction. 前記燃料ガス供給路及び/又は酸化剤ガス供給路の断面積が、下流側ほど大きくなるように形成されることを特徴とする請求項1又は2記載の燃料電池スタック。   3. The fuel cell stack according to claim 1, wherein a cross-sectional area of the fuel gas supply path and / or the oxidant gas supply path is formed so as to increase toward a downstream side. 4. 前記冷媒供給路の断面積が、下流側ほど大きくなるように形成されることを特徴とする請求項1〜3のいずれか1つに記載の燃料電池スタック。   The fuel cell stack according to any one of claims 1 to 3, wherein a cross-sectional area of the refrigerant supply path is formed so as to increase toward a downstream side.
JP2004091247A 2004-03-26 2004-03-26 Fuel cell stack Pending JP2005276736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091247A JP2005276736A (en) 2004-03-26 2004-03-26 Fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091247A JP2005276736A (en) 2004-03-26 2004-03-26 Fuel cell stack

Publications (1)

Publication Number Publication Date
JP2005276736A true JP2005276736A (en) 2005-10-06

Family

ID=35176153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091247A Pending JP2005276736A (en) 2004-03-26 2004-03-26 Fuel cell stack

Country Status (1)

Country Link
JP (1) JP2005276736A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115413A (en) * 2005-10-18 2007-05-10 Hitachi Ltd Fuel cell
WO2008070394A2 (en) * 2006-12-06 2008-06-12 3M Innovative Properties Company Compact fuel cell stack with gas ports
FR2913819A1 (en) * 2007-03-16 2008-09-19 Air Liquide Parallelepiped shaped polar or bipolar plate for proton exchange membrane type fuel cell, has outer surface including strips that are oriented along directions having non-zero angle with respect to cooling gas circulation direction
WO2009141990A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Fuel cell separator and fuel cell comprising said separator
WO2009141989A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Separator for fuel cell and fuel cell provided with same
WO2010029758A1 (en) * 2008-09-12 2010-03-18 パナソニック株式会社 Polymer electrolyte fuel cell and fuel cell stack provided with same
US7740962B2 (en) 2006-12-06 2010-06-22 3M Innovative Properties Company Compact fuel cell stack with current shunt
WO2010113630A1 (en) * 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
WO2010113629A1 (en) * 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
JP2011528159A (en) * 2008-07-15 2011-11-10 ダイムラー・アクチェンゲゼルシャフト Bipolar plate for fuel cell structure, especially for placement between two adjacent membrane electrode structures
JP2013101949A (en) * 2012-12-28 2013-05-23 Toshiba Corp Fuel cell power generation system operating method
JP2019079722A (en) * 2017-10-25 2019-05-23 株式会社Soken Fuel cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115413A (en) * 2005-10-18 2007-05-10 Hitachi Ltd Fuel cell
WO2008070394A2 (en) * 2006-12-06 2008-06-12 3M Innovative Properties Company Compact fuel cell stack with gas ports
WO2008070394A3 (en) * 2006-12-06 2008-08-28 3M Innovative Properties Co Compact fuel cell stack with gas ports
US7740962B2 (en) 2006-12-06 2010-06-22 3M Innovative Properties Company Compact fuel cell stack with current shunt
FR2913819A1 (en) * 2007-03-16 2008-09-19 Air Liquide Parallelepiped shaped polar or bipolar plate for proton exchange membrane type fuel cell, has outer surface including strips that are oriented along directions having non-zero angle with respect to cooling gas circulation direction
WO2009141990A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Fuel cell separator and fuel cell comprising said separator
WO2009141989A1 (en) * 2008-05-19 2009-11-26 パナソニック株式会社 Separator for fuel cell and fuel cell provided with same
US8546037B2 (en) 2008-05-19 2013-10-01 Panasonic Corporation Fuel cell separator having reactant gas channels with different cross sections and fuel cell comprising the same
US8546038B2 (en) 2008-05-19 2013-10-01 Panasonic Corporation Fuel cell separator having reactant gas channels with different cross sections and fuel cell comprising the same
JP2011528159A (en) * 2008-07-15 2011-11-10 ダイムラー・アクチェンゲゼルシャフト Bipolar plate for fuel cell structure, especially for placement between two adjacent membrane electrode structures
WO2010029758A1 (en) * 2008-09-12 2010-03-18 パナソニック株式会社 Polymer electrolyte fuel cell and fuel cell stack provided with same
US8691471B2 (en) 2008-09-12 2014-04-08 Panasonic Corporation Polymer electrolyte fuel cell and fuel cell stack comprising the same
JP2010244764A (en) * 2009-04-02 2010-10-28 Honda Motor Co Ltd Fuel cell
JP2010244765A (en) * 2009-04-02 2010-10-28 Honda Motor Co Ltd Fuel cell
WO2010113629A1 (en) * 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
WO2010113630A1 (en) * 2009-04-02 2010-10-07 本田技研工業株式会社 Fuel cell
JP2013101949A (en) * 2012-12-28 2013-05-23 Toshiba Corp Fuel cell power generation system operating method
JP2019079722A (en) * 2017-10-25 2019-05-23 株式会社Soken Fuel cell
JP7048254B2 (en) 2017-10-25 2022-04-05 株式会社Soken Fuel cell

Similar Documents

Publication Publication Date Title
US7566511B2 (en) Solid polymer cell assembly
JP4917755B2 (en) Fuel cell
JP4456188B2 (en) Fuel cell stack
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
US20050255367A1 (en) Fuel cell, separator unit kit for fuel cell, and fuel cell generating unit kit
JP2009043493A (en) Fuel cell stack
KR20200117958A (en) Separator, and Fuel cell comprising the same
JP3971969B2 (en) Polymer electrolyte fuel cell
JP2005276736A (en) Fuel cell stack
JP2008192368A (en) Fuel cell stack
KR20170035532A (en) Fuel cell stack
CN107180986A (en) Membrane electrode assembly and the fuel cell including membrane electrode assembly
JP2007103242A (en) Polymer electrolyte fuel cell
JPH10223238A (en) Solid polymer electrolyte fuel cell laminate, and manufacture of gas separation plate of the same
JP2007018742A (en) Fuel cell
JP5105865B2 (en) Polymer electrolyte fuel cell
JP4185734B2 (en) Fuel cell stack
JP6739971B2 (en) Fuel cell stack
JP6739970B2 (en) Fuel cell stack
JP3910518B2 (en) Membrane humidifier for fuel cell
JP2007250431A (en) Fuel cell
JP5089884B2 (en) Polymer electrolyte fuel cell system
JP2010165692A (en) Solid polymer cell assembly
JP2009054597A (en) Fuel cell stack and reaction gas supply method of fuel cell stack
JP2006216431A (en) Fuel cell system