JP2005275934A - Position detecting device for touch panel - Google Patents

Position detecting device for touch panel Download PDF

Info

Publication number
JP2005275934A
JP2005275934A JP2004089903A JP2004089903A JP2005275934A JP 2005275934 A JP2005275934 A JP 2005275934A JP 2004089903 A JP2004089903 A JP 2004089903A JP 2004089903 A JP2004089903 A JP 2004089903A JP 2005275934 A JP2005275934 A JP 2005275934A
Authority
JP
Japan
Prior art keywords
conductive film
touch panel
current
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004089903A
Other languages
Japanese (ja)
Inventor
Nobuo Okada
伸夫 岡田
Nozomi Harada
望 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Electronic Engineering Co Ltd
Priority to JP2004089903A priority Critical patent/JP2005275934A/en
Publication of JP2005275934A publication Critical patent/JP2005275934A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position detecting device for a touch panel which enhances precision in detecting a contact point position. <P>SOLUTION: The position detecting device is the device for the touch panel including a first conductive film 2b, having a uniform resistance distribution; and a second conductive film 2a which is slightly separated from the first conductive film 2b, arranged so as to superimpose on the first film 2b, and brought into local contact with the first film 2b by pressure. The device especially comprises: first and second electrodes 9a, 9b mutually facing and connected to the outer edge of the first conductive film 2b; an electric current supply part 12 for supplying a current to the second conductive film 2a; electric current detecting circuits 11a, 11b for measuring a first current which flows in the first conductive film 2b from the contact point of the first and second conductive films 2b, 2a toward the first electrode 9a and a second current which flows from the contact point of the first and second conductive films 2b, 2a toward the second electrode 9b; and a processing circuit 8 for performing a processing to specify the position of the contact point, based on the measurement values of the first and second electric currents. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は例えばディスプレイの画面に重ねて配置されるタッチパネルに関し、特にスタイラスペン等のポインタ部材の接触によりタッチパネルに得られる接点の位置を検出するタッチパネル用位置検出装置に関する。   The present invention relates to a touch panel disposed, for example, on a display screen, and more particularly to a position detection device for a touch panel that detects the position of a contact point obtained on a touch panel by contact of a pointer member such as a stylus pen.

液晶ディスプレイに代表される平面表示装置は、例えばノートパソコンやPDA(Personal Digital Assistance)のような携帯情報機器のモニタディスプレイとして広く利用されている。   A flat display device typified by a liquid crystal display is widely used as a monitor display of a portable information device such as a notebook personal computer or a PDA (Personal Digital Assistance).

近年では、タッチパネル(あるいはタブレット)と呼ばれる入力ツールがキーボードやマウスポインタに代わって文字および図形の手書き入力やメニュー選択を行うために携帯情報機器に設けられる。例えば透過型タッチパネルは携帯情報機器の液晶ディスプレイに表示された画像を透過するように構成され、ユーザはこの画像を見ながらポインタ部材をタッチパネルに接触させて入力操作を行う。   In recent years, an input tool called a touch panel (or tablet) is provided in a portable information device to perform handwritten input of characters and figures and menu selection instead of a keyboard and a mouse pointer. For example, a transmissive touch panel is configured to transmit an image displayed on a liquid crystal display of a portable information device, and a user performs an input operation by bringing a pointer member into contact with the touch panel while viewing the image.

図19は従来の透過型タッチパネルの断面構造を示す。このタッチパネルは、一対の透明基板1a,1bおよびこれら透明基板1a,1b上に形成される透明導電膜2a,2bを有する(例えば非特許文献1を参照)。透明導電膜2a,2bはそれぞれ一様な抵抗分布を有する抵抗体である。透明基板1a,1bは外縁に沿って配置されるシール材5aにより透明導電膜2a,2bを僅かに離間させて重ねるようにして互いに接着される。透明基板1a,1b間においてシール材5aで囲まれた空間は、例えば不活性ガス5b(または液体)で満たされる。また、この空間には、ギャップ材5cがポインタ部材6により加圧される部分を除いて透明導電膜2a,2b相互を非接触状態に維持するために散布される。この加圧部分では、透明導電膜2aが透明基板1aと共に湾曲して局所的に透明導電膜2bに接触する。図19において、4a,4bは液晶ディスプレイの横軸(X軸)方向において透明導電膜2bの両端にそれぞれ接続された電極であり、3a,3bはこのX軸方向において透明導電膜2aの両端にそれぞれ接続された電極である。   FIG. 19 shows a cross-sectional structure of a conventional transmissive touch panel. The touch panel includes a pair of transparent substrates 1a and 1b and transparent conductive films 2a and 2b formed on the transparent substrates 1a and 1b (see, for example, Non-Patent Document 1). The transparent conductive films 2a and 2b are each a resistor having a uniform resistance distribution. The transparent substrates 1a and 1b are bonded to each other so that the transparent conductive films 2a and 2b are slightly spaced apart from each other by a sealing material 5a disposed along the outer edge. A space surrounded by the sealing material 5a between the transparent substrates 1a and 1b is filled with, for example, an inert gas 5b (or liquid). Further, the gap material 5c is sprayed in this space in order to maintain the transparent conductive films 2a and 2b in a non-contact state except for a portion pressed by the pointer member 6. In this pressure portion, the transparent conductive film 2a is curved together with the transparent substrate 1a and locally contacts the transparent conductive film 2b. In FIG. 19, 4a and 4b are electrodes respectively connected to both ends of the transparent conductive film 2b in the horizontal axis (X-axis) direction of the liquid crystal display, and 3a and 3b are respectively connected to both ends of the transparent conductive film 2a in the X-axis direction. Each is a connected electrode.

上述のタッチパネルにおいてポインタ部材6の接触に伴って得られる透明導電膜2a,2bの接点の位置座標をX軸方向において検出する場合、図20に示すように、電源電圧E1が電極4aおよび4b間に印加されると共に、電圧検出部7が透明導電膜2a,2bの接点の電圧Vpを測定するために透明導電膜2aに電極3bを介して接続される。この電圧Vpは電極4aおよび接点間の抵抗値Rx1と電極4bおよび接点間の抵抗値Rx2とによって電源電圧E1を分圧した値である。   In the touch panel described above, when the position coordinates of the contact points of the transparent conductive films 2a and 2b obtained with the contact of the pointer member 6 are detected in the X-axis direction, the power supply voltage E1 is between the electrodes 4a and 4b as shown in FIG. The voltage detector 7 is connected to the transparent conductive film 2a via the electrode 3b in order to measure the voltage Vp at the contact point of the transparent conductive films 2a and 2b. This voltage Vp is a value obtained by dividing the power supply voltage E1 by the resistance value Rx1 between the electrode 4a and the contact and the resistance value Rx2 between the electrode 4b and the contact.

透明導電膜2a,2bの接点のX座標は、X座標X=0である透明導電膜2bの左端からの距離X1に等しく、電圧Vpの測定値を次の式1に代入することにより求まる。   The X coordinate of the contact point of the transparent conductive films 2a and 2b is equal to the distance X1 from the left end of the transparent conductive film 2b where the X coordinate X = 0, and is obtained by substituting the measured value of the voltage Vp into the following equation 1.

X1=(1−Vp / E1) Lx …(式1)
ここで、Lxは電極4aおよび4b間の距離、すなわちX軸方向における透明導電膜2bの全長である。
X1 = (1-Vp / E1) Lx (Formula 1)
Here, Lx is the distance between the electrodes 4a and 4b, that is, the total length of the transparent conductive film 2b in the X-axis direction.

また、透明導電膜2a,2bの接点の位置座標をY軸方向において検出する場合には、液晶ディスプレイの縦軸(Y軸)方向において透明導電膜2bの両端に接続される2電極が用いられる。この場合、電源電圧E1はこれら2電極間に印加され、電圧検出部7が透明導電膜2a,2bの接点の電圧Vpを測定するために透明導電膜2aに電極3bを介して接続される。続いて、透明導電膜2a,2bの接点のY座標は電圧Vpの測定値に基づいてX座標の場合と同じ方式で求められる。
所 雅俊, 「7線式アナログ抵抗膜タッチパネル」, 月刊ディスプレイ,株式会社テクノタイムズ社,2001年11月,P.23-26
When detecting the position coordinates of the contact points of the transparent conductive films 2a and 2b in the Y-axis direction, two electrodes connected to both ends of the transparent conductive film 2b in the vertical axis (Y-axis) direction of the liquid crystal display are used. . In this case, the power supply voltage E1 is applied between these two electrodes, and the voltage detector 7 is connected to the transparent conductive film 2a via the electrode 3b in order to measure the voltage Vp at the contact point of the transparent conductive films 2a and 2b. Subsequently, the Y coordinate of the contact point of the transparent conductive films 2a and 2b is obtained in the same manner as in the case of the X coordinate based on the measured value of the voltage Vp.
Masatoshi Tokoro, “7-Wire Analog Resistive Touch Panel”, Monthly Display, Techno Times, Inc., November 2001, P.23-26

ところで、電圧Vpの測定では、特に透明導電膜2aのシート抵抗が十分大きく設定されるが、第1および第2透明導電膜2a,2bの接点から上述の電圧検出部7に向かって僅かながら電流が流れる。これは透明導電膜2aや電圧検出部7の配線で電圧降下を生じさせて電圧Vpの測定結果を変動させる要因となる。   By the way, in the measurement of the voltage Vp, the sheet resistance of the transparent conductive film 2a is set to be sufficiently large. However, a slight current flows from the contact point of the first and second transparent conductive films 2a and 2b toward the voltage detection unit 7 described above. Flows. This causes a voltage drop in the transparent conductive film 2a and the wiring of the voltage detection unit 7 and causes the measurement result of the voltage Vp to fluctuate.

本発明はこのような問題点に鑑みてなされたものであり、接点位置の検出精度を向上できるタッチパネル用位置検出装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a position detection device for a touch panel that can improve the detection accuracy of a contact position.

本発明によれば、一様な抵抗分布を有する第1導電膜、および第1導電膜から僅かに離間して第1導電膜に重なるように配置され、加圧により局所的に第1導電膜に接触する第2導電膜を有するタッチパネル用位置検出装置であって、互いに対向して第1導電膜の外縁に接続される第1および第2電極と、第2導電膜に電流を供給する電流供給部と、第1および第2導電膜の接点から第1電極に向かって第1導電膜を流れる第1電流および第1および第2導電膜の接点から第2電極に向かって流れる第2電流を測定する電流検出回路と、第1および第2電流の測定値に基づいて接点の位置を特定する処理を行う処理回路とを備えるタッチパネル用位置検出装置が提供される。   According to the present invention, the first conductive film having a uniform resistance distribution and the first conductive film are disposed so as to be slightly spaced from the first conductive film and overlap the first conductive film, and locally by pressurization. A position detecting device for a touch panel having a second conductive film in contact with the first and second electrodes facing each other and connected to the outer edge of the first conductive film, and a current for supplying a current to the second conductive film A first current flowing through the first conductive film from the contact point of the supply unit to the first electrode and a second current flowing from the contact point of the first and second conductive films toward the second electrode; A position detection device for a touch panel is provided, which includes a current detection circuit that measures current and a processing circuit that performs processing for specifying the position of the contact based on the measured values of the first and second currents.

このタッチパネル用位置検出装置では、第1および第2導電膜の接点位置が第1および第2電極の対向する方向において第1および第2電流に基づく処理を行うことにより得られる。この場合、第1および第2導電膜の接点から第1導電膜側に流れ出る電流は常に第1電流および第2電流の和に等しい。このため、少なくとも第2導電膜2の抵抗値に依存した電圧降下が生じても、これが接点位置の検出結果に影響しない。いいかえれば、接点位置の検出結果から第2導電膜での電圧降下の影響を排除することができる。従って、接点位置の検出精度を向上させることができる。   In this touch panel position detection device, the contact positions of the first and second conductive films are obtained by performing processing based on the first and second currents in the direction in which the first and second electrodes face each other. In this case, the current flowing out from the contact point of the first and second conductive films to the first conductive film side is always equal to the sum of the first current and the second current. For this reason, even if a voltage drop depending on at least the resistance value of the second conductive film 2 occurs, this does not affect the detection result of the contact position. In other words, the influence of the voltage drop in the second conductive film can be eliminated from the detection result of the contact position. Therefore, the contact position detection accuracy can be improved.

以下、本発明の第1実施形態に係るタッチパネルについて添付図面を参照して説明する。図1はこのタッチパネルTPの断面構造を示す。このタッチパネルTPは、従来と同様に一対の第1および第2透明基板1a,1bと透明基板1a,1b上に形成される第1および第2透明導電膜2a,2bと有する。透明導電膜2a,2bはそれぞれ一様な抵抗分布を持つITO(Indium Tin Oxide)等の抵抗体である。透明基板1a,1bは外縁に沿って配置されるシール材5aにより透明導電膜2a,2bを僅かに離間させて重ねるようにして互いに接着される。透明基板1a,1b間においてシール材5aで囲まれた空間は、例えば不活性ガス5b(または液体)で満たされる。また、この空間には、ギャップ材5cがポインタ部材6により加圧される部分を除いて透明導電膜2a,2b相互を非接触状態に維持するために散布される。ここで、透明導電膜2a,2bは抵抗値において従来と異なる関係に設定される。すなわち、透明導電膜2aのシート抵抗は単位面積当たり10オーム程度であり、透明導電膜2bのシート抵抗は単位面積当たり500オーム程度である。   Hereinafter, a touch panel according to a first embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a cross-sectional structure of the touch panel TP. This touch panel TP has a pair of first and second transparent substrates 1a and 1b and first and second transparent conductive films 2a and 2b formed on the transparent substrates 1a and 1b, as in the conventional case. The transparent conductive films 2a and 2b are resistors such as ITO (Indium Tin Oxide) having a uniform resistance distribution. The transparent substrates 1a and 1b are bonded to each other so that the transparent conductive films 2a and 2b are slightly spaced apart from each other by a sealing material 5a disposed along the outer edge. A space surrounded by the sealing material 5a between the transparent substrates 1a and 1b is filled with, for example, an inert gas 5b (or liquid). Further, the gap material 5c is sprayed in this space in order to maintain the transparent conductive films 2a and 2b in a non-contact state except for a portion pressed by the pointer member 6. Here, the transparent conductive films 2a and 2b are set to have a resistance value different from the conventional relationship. That is, the sheet resistance of the transparent conductive film 2a is about 10 ohms per unit area, and the sheet resistance of the transparent conductive film 2b is about 500 ohms per unit area.

図2は図1に示す透明基板1a側の平面構造を示す。透明導電膜2aは例えば縦:横=3:4というアスペクト比の長方形となるように透明基板1a上に形成される。ストライプ状の電極10a,10bは銀等の金属膜からなり、例えば横軸(X軸)方向における透明導電膜2aの両端である2短辺に沿うと共にこれら2短辺にそれぞれ接続して透明基板1a上に形成される。ここでは、定電流源12が透明導電膜2aに一定電流Ioを供給するために電極10aおよび10bの一方、例えば電極10bに接続される。   FIG. 2 shows a planar structure on the transparent substrate 1a side shown in FIG. The transparent conductive film 2a is formed on the transparent substrate 1a so as to be a rectangle having an aspect ratio of, for example, length: width = 3: 4. The striped electrodes 10a and 10b are made of a metal film such as silver, and are, for example, along the two short sides, which are both ends of the transparent conductive film 2a in the horizontal axis (X-axis) direction, and connected to these two short sides, respectively. Formed on 1a. Here, the constant current source 12 is connected to one of the electrodes 10a and 10b, for example, the electrode 10b, in order to supply the constant current Io to the transparent conductive film 2a.

図3は図1に示す透明基板1b側の平面構造を示す。透明導電膜2bは透明導電膜2aと同様に縦:横=3:4というアスペクト比の長方形となるように透明基板1b上に形成される。ストライプ状の電極9a,9bは銀等の金属膜からなり、横軸(X軸)方向における透明導電膜2bの両端である2短辺に沿うと共にこれら2短辺にそれぞれ接続して透明基板1b上に形成される。また、ストライプ状の電極13a,13bは銀等の金属膜からなり、縦軸(Y軸)方向における透明導電膜2bの両端である2長辺に沿うと共にこれら2長辺にそれぞれ接続して透明基板1b上に形成される。2個の電流検出部11a,11bは電極9a,13aおよび電極9b,13bに対してそれぞれ設けられる。切換スイッチSaは演算処理回路8からのモード制御信号SWCの制御によって電極9aおよび電極13aの一方を電流検出部11aに接続し、切換スイッチSbはモード制御信号SWCの制御によって電極9bおよび電極13bの一方を電流検出部11bに接続する。例えばX軸方向モードがモード制御信号SWCにより設定されると、電流検出部11a,11bは電極9a,9bから切換スイッチSa,Sbを介してそれぞれ供給される電流をそれぞれ測定する。他方、Y軸方向モードがモード制御信号SWCにより設定されると、電流検出部11a,11bは電極13a,13bから切換スイッチSa,Sbを介してそれぞれ供給される電流をそれぞれ測定する。これら測定結果は演算処理回路8に供給される。尚、演算処理回路8、電流検出部11a,11b、および切換スイッチSa,Sb等の周辺回路はタッチパネルTPにおいてシール材5aの外側に配置される。これら周辺回路が例えば透明基板1b上に配置される場合には、周辺回路用の形成領域がシール材5aの外側において透明基板1bに設けられる。   FIG. 3 shows a planar structure on the transparent substrate 1b side shown in FIG. Similar to the transparent conductive film 2a, the transparent conductive film 2b is formed on the transparent substrate 1b so as to be a rectangle having an aspect ratio of length: width = 3: 4. The striped electrodes 9a and 9b are made of a metal film such as silver, and are along the two short sides, which are both ends of the transparent conductive film 2b in the horizontal axis (X-axis) direction, and are connected to these two short sides, respectively. Formed on top. The striped electrodes 13a and 13b are made of a metal film such as silver, and are transparent along the two long sides that are both ends of the transparent conductive film 2b in the vertical axis (Y-axis) direction. It is formed on the substrate 1b. Two current detectors 11a and 11b are provided for the electrodes 9a and 13a and the electrodes 9b and 13b, respectively. The changeover switch Sa connects one of the electrode 9a and the electrode 13a to the current detection unit 11a by the control of the mode control signal SWC from the arithmetic processing circuit 8, and the changeover switch Sb controls the electrodes 9b and 13b by the control of the mode control signal SWC. One is connected to the current detector 11b. For example, when the X-axis direction mode is set by the mode control signal SWC, the current detection units 11a and 11b measure currents supplied from the electrodes 9a and 9b via the changeover switches Sa and Sb, respectively. On the other hand, when the Y-axis direction mode is set by the mode control signal SWC, the current detectors 11a and 11b measure currents supplied from the electrodes 13a and 13b via the changeover switches Sa and Sb, respectively. These measurement results are supplied to the arithmetic processing circuit 8. Note that peripheral circuits such as the arithmetic processing circuit 8, the current detection units 11a and 11b, and the changeover switches Sa and Sb are disposed outside the seal material 5a in the touch panel TP. When these peripheral circuits are arranged on the transparent substrate 1b, for example, a peripheral circuit forming region is provided on the transparent substrate 1b outside the sealing material 5a.

図4は上述のタッチパネルTPと一体化される液晶ディスプレイLCDを示す。この液晶ディスプレイLCDは画面のアスペクト比が縦:横=3:4に設定される携帯情報機器のモニタディスプレイとして用いられるもので、液晶層LQが一対の電極基板AR,CT間に挟持される構造を有する。電極基板ARはマトリクス状に配置される複数画素電極とこれら画素電極を駆動する駆動回路を含み、電極基板CTは電極基板AR側の複数の画素電極に対向する共通電極を含む。液晶層LQはこれら画素電極および対向電極間の電位差に応じた透過率に設定される。この液晶ディスプレイLCDは、電極基板AR側から入射するバックライト光を液晶層LQで光変調し、複数の画素電極のアレイに対応した電極基板CT側の表示領域に画像として表示する。タッチパネルTPは少なくとも表示領域において光透過性を有し、ユーザがこの画像を見ながらポインタ部材6をタッチパネルTPに接触させて携帯情報機器に対する入力操作を行えるように構成されている。   FIG. 4 shows a liquid crystal display LCD integrated with the touch panel TP described above. This liquid crystal display LCD is used as a monitor display of a portable information device in which the aspect ratio of the screen is set to vertical: horizontal = 3: 4, and the liquid crystal layer LQ is sandwiched between a pair of electrode substrates AR and CT. Have The electrode substrate AR includes a plurality of pixel electrodes arranged in a matrix and a drive circuit for driving these pixel electrodes, and the electrode substrate CT includes a common electrode facing the plurality of pixel electrodes on the electrode substrate AR side. The liquid crystal layer LQ is set to a transmittance according to the potential difference between the pixel electrode and the counter electrode. In this liquid crystal display LCD, backlight light incident from the electrode substrate AR side is optically modulated by the liquid crystal layer LQ and displayed as an image on a display region on the electrode substrate CT side corresponding to an array of a plurality of pixel electrodes. The touch panel TP is light transmissive at least in the display area, and is configured such that the user can perform an input operation on the portable information device by bringing the pointer member 6 into contact with the touch panel TP while viewing the image.

図5はタッチパネルTPにポインタ部材6を接触させた状態を示し、図6はこの状態でX軸方向モードを設定したときに得られるタッチパネルTPの等価回路を示す。ポインタ部材6を接触させた部分では、透明導電膜2aが透明基板1aと共に湾曲して局部的に透明導電膜2bに接触する。これにより、定電流Ioが定電流源12から電極10bを介して透明導電膜2aに流れ込み、透明導電膜2a,2bの接点から透明導電膜2b側に流れ出る。透明導電膜2bでは、定電流Ioが電極9aに向かう電流Ix1と電極9bに向かう電流Ix2に分流され、これら電流Ix1,Ix2がそれぞれ電流検出部11a,11bによって測定される。   FIG. 5 shows a state in which the pointer member 6 is in contact with the touch panel TP, and FIG. 6 shows an equivalent circuit of the touch panel TP obtained when the X-axis direction mode is set in this state. At the portion where the pointer member 6 is brought into contact, the transparent conductive film 2a is curved together with the transparent substrate 1a and locally contacts the transparent conductive film 2b. As a result, the constant current Io flows from the constant current source 12 to the transparent conductive film 2a via the electrode 10b, and flows out from the contact points of the transparent conductive films 2a and 2b to the transparent conductive film 2b side. In the transparent conductive film 2b, the constant current Io is divided into a current Ix1 directed to the electrode 9a and a current Ix2 directed to the electrode 9b, and these currents Ix1 and Ix2 are measured by the current detectors 11a and 11b, respectively.

透明導電膜2a,2bの接点のX座標は、図6に示すようにX座標X=0である透明導電膜2bの左端からの距離X1に等しい。図3に示す演算処理回路8は電流Ix1およびIx2の測定値を次の式1に代入して演算処理することにより透明導電膜2a,2bの接点のX座標を求める。   The X coordinate of the contact point of the transparent conductive films 2a and 2b is equal to the distance X1 from the left end of the transparent conductive film 2b where the X coordinate X = 0 as shown in FIG. The arithmetic processing circuit 8 shown in FIG. 3 calculates the X coordinates of the contacts of the transparent conductive films 2a and 2b by substituting the measured values of the currents Ix1 and Ix2 into the following equation 1 and performing arithmetic processing.

X1={Ix2 /(Ix1 + Ix2)} Lx …(式2)
ここで、Lxは電極9aおよび9b間の距離(X1+X2)、すなわちX軸方向における透明導電膜2bの全長である。
X1 = {Ix2 / (Ix1 + Ix2)} Lx (Formula 2)
Here, Lx is the distance (X1 + X2) between the electrodes 9a and 9b, that is, the total length of the transparent conductive film 2b in the X-axis direction.

また、Y軸方向モードが透明導電膜2a,2bの接点のY座標を求めるために設定されると、定電流Ioが定電流源12から電極10bを介して透明導電膜2aに流れ込み、透明導電膜2a,2bの接点から透明導電膜2b側に流れ出る。透明導電膜2bでは、定電流Ioが電極13aに向かう電流Iy1と電極13bに向かう電流Iy2に分流され、これら電流Iy1,Iy2がそれぞれ電流検出部11a,11bによって測定される。   When the Y-axis direction mode is set to obtain the Y coordinate of the contact point of the transparent conductive films 2a and 2b, the constant current Io flows from the constant current source 12 to the transparent conductive film 2a via the electrode 10b, and the transparent conductive film It flows out from the contact point of the films 2a and 2b to the transparent conductive film 2b side. In the transparent conductive film 2b, the constant current Io is divided into a current Iy1 directed to the electrode 13a and a current Iy2 directed to the electrode 13b, and these currents Iy1 and Iy2 are measured by the current detectors 11a and 11b, respectively.

透明導電膜2a,2bの接点のY座標は、Y座標Y=0である透明導電膜2bの下端からの距離Y1に等しい。図3に示す演算処理回路8は電流Iy1およびIy2の測定値を次の式3に代入して演算処理することにより透明導電膜2a,2bの接点のY座標を求める。   The Y coordinate of the contact point of the transparent conductive films 2a and 2b is equal to the distance Y1 from the lower end of the transparent conductive film 2b where the Y coordinate Y = 0. The arithmetic processing circuit 8 shown in FIG. 3 obtains the Y coordinate of the contacts of the transparent conductive films 2a and 2b by substituting the measured values of the currents Iy1 and Iy2 into the following expression 3 and performing arithmetic processing.

Y1={Iy2 /(Iy1 + Iy2)} Ly …(式3)
ここで、Lyは電極13aおよび13b間の距離(Y1+Y2)、すなわちY軸方向における透明導電膜2bの全長である。Y2は透明導電膜2a,2bの接点から透明導電膜2bの上端までの距離である。
Y1 = {Iy2 / (Iy1 + Iy2)} Ly (Formula 3)
Here, Ly is the distance (Y1 + Y2) between the electrodes 13a and 13b, that is, the total length of the transparent conductive film 2b in the Y-axis direction. Y2 is the distance from the contact point of the transparent conductive films 2a and 2b to the upper end of the transparent conductive film 2b.

本実施形態では、透明導電膜2a,2bの接点位置がX軸方向について電流Ix1,Ix2の測定値に基づく演算処理を行うことにより得られ、Y軸方向について電流Iy1,Iy2の測定値に基づく演算処理を行うことにより得られる。この場合、透明導電膜2a,2bの接点から透明導電膜2b側に流れ出る電流は常に電流Ix1 およびIx2の和、あるいは電流Iy1およびIy2の和であり、定電流源12からの電流Ioに等しい。このため、透明導電膜2aおよび配線の抵抗値に依存した電圧降下が生じても、これが接点位置の検出結果に影響しない。いいかえれば、接点位置の検出結果から透明導電膜2aおよび配線での電圧降下の影響を排除することができる。従って、接点位置の検出精度を向上させることができる。   In the present embodiment, the contact positions of the transparent conductive films 2a and 2b are obtained by performing arithmetic processing based on the measured values of the currents Ix1 and Ix2 in the X-axis direction, and are based on the measured values of the currents Iy1 and Iy2 in the Y-axis direction. It is obtained by performing arithmetic processing. In this case, the current flowing out from the contact point of the transparent conductive films 2a and 2b toward the transparent conductive film 2b is always the sum of the currents Ix1 and Ix2, or the sum of the currents Iy1 and Iy2, and is equal to the current Io from the constant current source 12. For this reason, even if a voltage drop depending on the resistance values of the transparent conductive film 2a and the wiring occurs, this does not affect the detection result of the contact position. In other words, the influence of the voltage drop in the transparent conductive film 2a and the wiring can be eliminated from the contact position detection result. Therefore, the contact position detection accuracy can be improved.

さらに、上述の構造では、透明導電膜2aのシート抵抗が接点位置の検出に関与しないため、単位面積当たり10オーム程度という透明導電膜2bのシート抵抗よりも十分小さい値に設定されている。これは、携帯情報機器から漏れる不要な電磁波がこの透明導電膜2aを透過する際に渦電流を発生させて電磁波エネルギーを減衰させるためである。こうして、電磁波が透明導電膜2aで効果的に吸収されることから、電磁波に対して良好なシールド効果を得ることができる。   Further, in the above-described structure, the sheet resistance of the transparent conductive film 2a is not involved in the detection of the contact position, and thus is set to a value sufficiently smaller than the sheet resistance of the transparent conductive film 2b of about 10 ohms per unit area. This is because an unnecessary electromagnetic wave leaking from the portable information device generates an eddy current when the transparent conductive film 2a is transmitted and attenuates electromagnetic wave energy. Thus, since the electromagnetic wave is effectively absorbed by the transparent conductive film 2a, a good shielding effect against the electromagnetic wave can be obtained.

図7は図2に示す透明基板1a側の平面構造を変形した第1変形例を示す。この変形例では、図7に示す単一の電極10が図2に示す電極10a,10bの代わりに用いられる。この電極10は透明導電膜2aを全体的に取り囲んで透明基板1a上に形成され、この透明導電膜2aに接続されている。定電流源12は透明導電膜2aに定電流Ioを供給するために電極10の任意の一点に接続される。   FIG. 7 shows a first modification in which the planar structure on the transparent substrate 1a side shown in FIG. 2 is modified. In this modification, the single electrode 10 shown in FIG. 7 is used instead of the electrodes 10a and 10b shown in FIG. The electrode 10 surrounds the transparent conductive film 2a as a whole, is formed on the transparent substrate 1a, and is connected to the transparent conductive film 2a. The constant current source 12 is connected to an arbitrary point of the electrode 10 in order to supply a constant current Io to the transparent conductive film 2a.

第1変形例によれば、透明導電膜2aの面内電流が均等になることから、応答性が向上する。   According to the first modified example, since the in-plane current of the transparent conductive film 2a becomes uniform, the responsiveness is improved.

図8は図2に示す透明基板1a側の平面構造を変形した第2変形例を示す。この変形例では、図8に示す単一の電極16が図2に示す電極10a,10bの代わりに用いられる。この電極16は給電端17a,17b付近を除いて透明導電膜2aを全体的に取り囲んで透明基板1a上に形成され、この透明導電膜2aに接続されている。切換スイッチSTaは演算処理回路8からのスイッチ信号RFCの制御によって給電端17aを定電流源12および携帯情報端末のトランシーバ部TRの一方に接続し、切換スイッチSTbはこのスイッチ信号RFCの制御によって給電端17bを定電流源12および携帯情報端末のトランシーバ部TRの一方に接続する。透明導電膜2a,2bの接点位置を検出する場合、定電流源12が切換スイッチSTa,STBを介して給電端17a,17bに接続される。また、トランシーバ部TRによる送受信が行われる場合に、トランシーバ部TRが切換スイッチSTa,STBを介して給電端17a,17bに接続される。この場合には、電極16がループアンテナとして機能する。   FIG. 8 shows a second modification in which the planar structure on the transparent substrate 1a side shown in FIG. 2 is modified. In this modification, the single electrode 16 shown in FIG. 8 is used instead of the electrodes 10a and 10b shown in FIG. The electrode 16 is formed on the transparent substrate 1a so as to entirely surround the transparent conductive film 2a except for the vicinity of the power feeding ends 17a and 17b, and is connected to the transparent conductive film 2a. The changeover switch STa connects the power supply end 17a to one of the constant current source 12 and the transceiver unit TR of the portable information terminal by controlling the switch signal RFC from the arithmetic processing circuit 8, and the changeover switch STb supplies power by controlling the switch signal RFC. The end 17b is connected to one of the constant current source 12 and the transceiver unit TR of the portable information terminal. When detecting the contact positions of the transparent conductive films 2a and 2b, the constant current source 12 is connected to the power supply terminals 17a and 17b via the changeover switches STa and STB. When transmission / reception is performed by the transceiver unit TR, the transceiver unit TR is connected to the power supply terminals 17a and 17b via the changeover switches STa and STB. In this case, the electrode 16 functions as a loop antenna.

第2変形例によれば、電極16が定電流源12からの定電流Ioを透明導電膜2aに供給する電極としてだけでなく、ループアンテナとしても共用できる。従って、携帯情報端末においてトランシーバ部TRが外部と通信を行うために独立に設けられるアンテナを不要にできる。   According to the second modification, the electrode 16 can be used not only as an electrode for supplying the constant current Io from the constant current source 12 to the transparent conductive film 2a but also as a loop antenna. Accordingly, an antenna provided independently for the transceiver unit TR to communicate with the outside in the portable information terminal can be eliminated.

図9は図2に示す透明基板1a側の平面構造を変形した第3変形例を示す。この変形例では、図9に示す電極18および19が図2に示す電極10a,10bの代わりに用いられる。この電極18は給電端20a,20b付近を除いて透明導電膜2aを全体的に取り囲んで透明基板1a上に形成され、この透明導電膜2aに接続されている。ここでは、給電端20a,20bは透明導電膜2aの右端に寄せて設けられ、さらに切換スイッチSTa,STbが第2変形例と同様に機能するように設けられる。電極19はループアンテナとして機能する電極18と容量結合して、このループアンテナの指向性を変化させるために設けられている。また、トランシーバ部TRは定電流源12が電極10を利用する接点位置の検出中に送受信を行うために電極19の一端20cに接続されてもよい。この場合には、電極19がロッドアンテナとして機能する。また、この電極19の一端20cは例えばトランシーバ部TRとは異なる周波数帯で送受信を行うために独立して携帯情報端末に設けられる第2のトランシーバ部TRに接続される給電端として用いられてもよい。   FIG. 9 shows a third modification in which the planar structure on the transparent substrate 1a side shown in FIG. 2 is modified. In this modification, the electrodes 18 and 19 shown in FIG. 9 are used instead of the electrodes 10a and 10b shown in FIG. The electrode 18 is formed on the transparent substrate 1a so as to entirely surround the transparent conductive film 2a except for the vicinity of the power feeding ends 20a and 20b, and is connected to the transparent conductive film 2a. Here, the power supply ends 20a and 20b are provided close to the right end of the transparent conductive film 2a, and the changeover switches STa and STb are provided so as to function in the same manner as in the second modification. The electrode 19 is provided for capacitively coupling with the electrode 18 functioning as a loop antenna to change the directivity of the loop antenna. Further, the transceiver unit TR may be connected to one end 20c of the electrode 19 in order to perform transmission / reception while the constant current source 12 detects a contact position using the electrode 10. In this case, the electrode 19 functions as a rod antenna. Further, one end 20c of the electrode 19 may be used as a power feeding end connected to a second transceiver unit TR provided in the portable information terminal independently to perform transmission / reception in a frequency band different from the transceiver unit TR, for example. Good.

第3変形例によれば、電極18が定電流源12からの定電流Ioを透明導電膜2aに供給する電極としてだけでなく、ループアンテナとしても共用される場合に、この電極18と協力する電極19を設けることにより、アンテナとしての応用範囲を広げることが可能となる。   According to the third modification, when the electrode 18 is used not only as an electrode for supplying the constant current Io from the constant current source 12 to the transparent conductive film 2a but also as a loop antenna, it cooperates with this electrode 18. By providing the electrode 19, the application range as an antenna can be expanded.

図10は図3に示す透明基板1b側の電流検出構造を変形した第4変形例を示す。この変形例では、電極9a,9b,13a,13bはそれぞれ外部接続端子P1,P2,P3,P4を介して電流検出部11a,11b,11c,11dに接続される。電流検出部11aは透明導電膜2a,2bの接点から電極13bに向かって透明導電膜2bを流れる電流Iy2を測定し、電流検出部11bは透明導電膜2a,2bの接点から電極9bに向かって透明導電膜2bを流れる電流Ix2を測定し、電流検出部11cは透明導電膜2a,2bの接点から電極13aに向かって透明導電膜2bを流れる電流Iy1を測定し、電流検出部11dは透明導電膜2a,2bの接点から電極9aに向かって透明導電膜2bを流れる電流Ix1を測定する。これら電流Ix1,Ix2,Iy1,Iy2の測定値は電流検出部11a〜11dから演算処理回路8に供給される。演算処理回路8は電流Ix1,Ix2,Iy1,Iy2の測定値をこれら4電流との接点のX座標の関係を規定した演算式並びにこれら4電流と接点のY座標の関係を規定した演算式にそれぞれ代入して演算処理を行うことにより透明導電膜2a,2bの接点のX座標およびY座標を求める。   FIG. 10 shows a fourth modification in which the current detection structure on the transparent substrate 1b side shown in FIG. 3 is modified. In this modification, the electrodes 9a, 9b, 13a, and 13b are connected to the current detection units 11a, 11b, 11c, and 11d via the external connection terminals P1, P2, P3, and P4, respectively. The current detection unit 11a measures a current Iy2 flowing through the transparent conductive film 2b from the contact point of the transparent conductive films 2a and 2b toward the electrode 13b, and the current detection unit 11b moves from the contact point of the transparent conductive films 2a and 2b to the electrode 9b. The current Ix2 flowing through the transparent conductive film 2b is measured, the current detector 11c measures the current Iy1 flowing through the transparent conductive film 2b from the contact point of the transparent conductive films 2a and 2b toward the electrode 13a, and the current detector 11d is transparent conductive A current Ix1 flowing through the transparent conductive film 2b from the contact point between the films 2a and 2b toward the electrode 9a is measured. The measured values of these currents Ix1, Ix2, Iy1, and Iy2 are supplied from the current detection units 11a to 11d to the arithmetic processing circuit 8. The arithmetic processing circuit 8 converts the measured values of the currents Ix1, Ix2, Iy1, and Iy2 into an arithmetic expression that defines the relationship between the X coordinates of the contacts with these four currents and an arithmetic expression that defines the relationship between these four currents and the Y coordinates of the contacts. The X coordinate and the Y coordinate of the contact points of the transparent conductive films 2a and 2b are obtained by performing the calculation process by substituting each.

第4変形例によれば、電流Ix1,Ix2,Iy1,Iy2の測定値が電流検出部11a〜11dから同時に得られる。このため、図3に示すような切換スイッチSa,Sb並びに演算処理回路8から発生されるモード制御信号SWCが不要となる。   According to the fourth modification, measured values of the currents Ix1, Ix2, Iy1, and Iy2 are obtained simultaneously from the current detection units 11a to 11d. Therefore, the changeover switches Sa and Sb and the mode control signal SWC generated from the arithmetic processing circuit 8 as shown in FIG.

図11は図3に示す透明基板1b側の平面構造および電流検出構造を変形した第5変形例を示す。この変形例では、透明導電膜2bが図11に示すように縦:横=3:4というアスペクト比の長方形の4辺を内側に反らせた形状で透明基板1b上に形成され、電極23a,23b,23c,23dが図3に示す電極9a,9b,13a,13bの代わりに互いに対向して透明導電膜2bの外縁に接続される。ここで、電極23a,23cは第1の対角線上で向かい合う透明導電膜2bの2対角からそれぞれ隣接する2辺の中央付近まで延出して配置され、電極23b,23d第2の対角線上で向かい合う透明導電膜2bの2対角からそれぞれ隣接する2辺の中央付近まで延出して配置される。透明導電膜2bはシート抵抗が単位面積当たり500オーム程度である高抵抗領域22と、シート抵抗が単位面積当たり10オーム程度の低抵抗領域24とからなる。低抵抗領域24は透明導電膜2bの外縁として高抵抗領域を取り囲む帯状であり、透明導電膜2bと電極23a,23b,23c,23dとのコンタクト抵抗を低減するために設けられる。透明導電膜2bの形状は、図10に示すように低抵抗領域24に内接する長方形である有効位置検出範囲21の面内電位分布を均等にして接点位置の検出における電極23a,23b,23c,23d間の干渉を低減するために用いられている。   FIG. 11 shows a fifth modification in which the planar structure and the current detection structure on the transparent substrate 1b side shown in FIG. 3 are modified. In this modification, the transparent conductive film 2b is formed on the transparent substrate 1b in a shape in which four sides of a rectangle having an aspect ratio of vertical: horizontal = 3: 4 are warped inward as shown in FIG. 11, and the electrodes 23a, 23b are formed. , 23c and 23d are connected to the outer edge of the transparent conductive film 2b so as to face each other instead of the electrodes 9a, 9b, 13a and 13b shown in FIG. Here, the electrodes 23a and 23c are arranged extending from the two diagonals of the transparent conductive film 2b facing each other on the first diagonal line to the vicinity of the center of the two adjacent sides, and facing each other on the second diagonal line of the electrodes 23b and 23d. The transparent conductive film 2b is disposed so as to extend from the two diagonals to the vicinity of the center of two adjacent sides. The transparent conductive film 2b includes a high resistance region 22 having a sheet resistance of about 500 ohm per unit area and a low resistance region 24 having a sheet resistance of about 10 ohm per unit area. The low resistance region 24 is a band shape surrounding the high resistance region as the outer edge of the transparent conductive film 2b, and is provided to reduce the contact resistance between the transparent conductive film 2b and the electrodes 23a, 23b, 23c, and 23d. As shown in FIG. 10, the shape of the transparent conductive film 2b is such that the in-plane potential distribution of the effective position detection range 21 which is a rectangle inscribed in the low resistance region 24 is made uniform, and the electrodes 23a, 23b, 23c, It is used to reduce interference between 23d.

電極23a,23b,23c,23dはそれぞれ外部接続端子P1,P2,P3,P4を介して電流検出部11a,11b,11c,11dに接続される。電流検出部11aは透明導電膜2a,2bの接点から電極23aに向かって透明導電膜2bを流れる電流を測定し、電流検出部11bは透明導電膜2a,2bの接点から電極23bに向かって透明導電膜2bを流れる電流を測定し、電流検出部11cは透明導電膜2a,2bの接点から電極23cに向かって透明導電膜2bを流れる電流を測定し、電流検出部11dは透明導電膜2a,2bの接点から電極23dに向かって透明導電膜2bを流れる電流を測定する。これら4電流の測定値は電流検出部11a〜11dから演算処理回路8に供給される。演算処理回路8は電流検出部11a〜11dからの4電流の測定値をこれら4電流との接点のX座標の関係を規定した演算式並びにこれら4電流と接点のY座標の関係を規定した演算式にそれぞれ代入して演算処理を行うことにより透明導電膜2a,2bの接点のX座標およびY座標を求める。   The electrodes 23a, 23b, 23c, and 23d are connected to the current detection units 11a, 11b, 11c, and 11d through the external connection terminals P1, P2, P3, and P4, respectively. The current detection unit 11a measures a current flowing through the transparent conductive film 2b from the contact point of the transparent conductive films 2a and 2b toward the electrode 23a, and the current detection unit 11b is transparent from the contact point of the transparent conductive films 2a and 2b to the electrode 23b. The current flowing through the conductive film 2b is measured, the current detection unit 11c measures the current flowing through the transparent conductive film 2b from the contact points of the transparent conductive films 2a and 2b toward the electrode 23c, and the current detection unit 11d receives the transparent conductive film 2a, The current flowing through the transparent conductive film 2b from the contact 2b toward the electrode 23d is measured. The measured values of these four currents are supplied from the current detectors 11a to 11d to the arithmetic processing circuit 8. The arithmetic processing circuit 8 calculates the measurement values of the four currents from the current detectors 11a to 11d, the arithmetic expression defining the relationship between the X coordinates of the contacts with these four currents, and the calculation defining the relationship between these four currents and the Y coordinate of the contact The X and Y coordinates of the contact points of the transparent conductive films 2a and 2b are obtained by substituting each into the equation and performing arithmetic processing.

第5変形例によれば、4電流の測定値が電流検出部11a〜11dから同時に得られる。このため、図3に示すような切換スイッチSa,Sb並びに演算処理回路8から発生されるモード制御信号SWCが不要となる。また、透明導電膜2bが図11に示す形状に設定されるため、4電流の同時測定において生じる接点位置の検出誤差を低減することが可能である。   According to the fifth modification, four current measurement values are obtained simultaneously from the current detectors 11a to 11d. Therefore, the changeover switches Sa and Sb and the mode control signal SWC generated from the arithmetic processing circuit 8 as shown in FIG. Further, since the transparent conductive film 2b is set to the shape shown in FIG. 11, it is possible to reduce the contact position detection error that occurs in the simultaneous measurement of four currents.

尚、有効位置検出範囲21を横長の長方形とする場合には、接点位置の検出誤差を低減するために、図12に示すd1,d2をd2>d1という関係に設定し、図13に示すw1,w2をw2>w1という関係にすることが好ましい。ここで、d1は透明導電膜2bに外接する仮想的な長方形の長辺から高抵抗領域22までの距離であり、d2は透明導電膜2bに外接する仮想的な長方形の短辺から高抵抗領域22までの距離である。また、w1は透明導電膜2bに外接する仮想的な長方形の短辺側に設けられる低抵抗領域24の幅であり、w1は透明導電膜2bに外接する仮想的な長方形の長辺側に設けられる低抵抗領域24の幅である。但し、d2>d1の関係およびw2>w1の関係は少なくとも一方について満足されるだけでもよい。   When the effective position detection range 21 is a horizontally long rectangle, d1 and d2 shown in FIG. 12 are set in a relationship of d2> d1 in order to reduce contact position detection errors, and w1 shown in FIG. , W2 are preferably in a relationship of w2> w1. Here, d1 is the distance from the long side of the virtual rectangle circumscribing the transparent conductive film 2b to the high resistance region 22, and d2 is from the short side of the virtual rectangle circumscribing the transparent conductive film 2b to the high resistance region. It is the distance to 22. Further, w1 is the width of the low resistance region 24 provided on the short side of the virtual rectangle circumscribing the transparent conductive film 2b, and w1 is provided on the long side of the virtual rectangle circumscribing the transparent conductive film 2b. This is the width of the low resistance region 24 to be formed. However, the relationship of d2> d1 and the relationship of w2> w1 may be satisfied only for at least one of them.

図14は図11に示す透明基板1b側の平面構造をさらに変形した第6変形例を示す。この変形例では、透明導電膜2bが高抵抗領域22だけからなり、電極26a,26b,26c,26dが電極23a,23b,23c,23dの代わりに設けられる。これら電極26a,26b,26c,26dは図11に示す低抵抗領域24を兼ねてコンタクト抵抗を増大させないように透明導電膜2bの外縁上に形成される銀等の金属膜である。   FIG. 14 shows a sixth modification in which the planar structure on the transparent substrate 1b side shown in FIG. 11 is further modified. In this modification, the transparent conductive film 2b consists of only the high resistance region 22, and the electrodes 26a, 26b, 26c, and 26d are provided instead of the electrodes 23a, 23b, 23c, and 23d. These electrodes 26a, 26b, 26c, and 26d are metal films such as silver formed on the outer edge of the transparent conductive film 2b so as to serve as the low resistance region 24 shown in FIG.

第6変形例によれば、図11に示す低抵抗領域24を必要としないため、製造プロセスを簡略化できる。   According to the sixth modification, since the low resistance region 24 shown in FIG. 11 is not required, the manufacturing process can be simplified.

ここで、図15を参照して第5および第6変形例で用いられる透明導電膜2bの形状を得る方法を説明する。透明導電膜2bは縦:横=3:4というアスペクト比の長方形の4辺を内側に反らせた形状に形成される。図15では、25がこの長方形を示す。この場合、長方形25のアスペクト比と共通な短軸:長軸=3:4というアスペクト比の楕円を図15に示すように長方形25に重ねて、長方形25の短辺および長辺を内側に反らせた形状を得ればよい。この反り量は、液晶ディスプレイLCDの額縁幅に依存した許容範囲内で設定される。図11および図14では、反り量が非常に大きく描かれているが、実際の値としては、例えば1mm程度である。   Here, a method of obtaining the shape of the transparent conductive film 2b used in the fifth and sixth modifications will be described with reference to FIG. The transparent conductive film 2b is formed in a shape in which four sides of a rectangle having an aspect ratio of vertical: horizontal = 3: 4 are warped inward. In FIG. 15, 25 indicates this rectangle. In this case, an ellipse having an aspect ratio of short axis: major axis = 3: 4 common to the aspect ratio of the rectangle 25 is overlapped on the rectangle 25 as shown in FIG. 15, and the short side and the long side of the rectangle 25 are bent inward. What is necessary is just to obtain the shape. This amount of warpage is set within an allowable range depending on the frame width of the liquid crystal display LCD. In FIGS. 11 and 14, the amount of warpage is drawn very large, but the actual value is, for example, about 1 mm.

以下、本発明の第2実施形態に係るタッチパネルについて添付図面を参照して説明する。図16はこのタッチパネルTPの回路構造を示す。このタッチパネルTPは、定電流源12の接続先を図16に示すように切り換えて接点位置をX軸方向またはY軸方向について検出するように構成されること除いて第1実施形態と同様である。このため、図16では、第1実施形態と同様部分を同一参照符号で表して、詳細な説明を省略する。また、透明導電膜2a,2bは図1に示す一対の透明基板1a,1b上にそれぞれ形成されるが、これら透明基板1a,1bは図16において省略されている。   Hereinafter, a touch panel according to a second embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 16 shows the circuit structure of the touch panel TP. This touch panel TP is the same as that of the first embodiment except that the connection destination of the constant current source 12 is switched as shown in FIG. 16 and the contact position is detected in the X-axis direction or the Y-axis direction. . For this reason, in FIG. 16, the same part as 1st Embodiment is represented by the same referential mark, and detailed description is abbreviate | omitted. The transparent conductive films 2a and 2b are respectively formed on the pair of transparent substrates 1a and 1b shown in FIG. 1, but these transparent substrates 1a and 1b are omitted in FIG.

透明導電膜2a,2bはそれぞれ一様な抵抗分布を持つITO(Indium Tin Oxide)等の抵抗体である。透明導電膜2a,2bのシート抵抗はいずれも単位面積当たり500オーム程度である。   The transparent conductive films 2a and 2b are resistors such as ITO (Indium Tin Oxide) having a uniform resistance distribution. The sheet resistances of the transparent conductive films 2a and 2b are both about 500 ohms per unit area.

ストライプ状の電極10a,10b,13a,13bは銀等の金属膜からなる。電極10a,10bは横軸(X軸)方向における透明導電膜2aの両端である2短辺に沿うと共にこれら2短辺にそれぞれ接続して透明基板1a(図示せず)上に形成される。また、電極10a,10bは縦軸(Y軸)方向における透明導電膜2bの両端である2長辺に沿うと共にこれら2長辺にそれぞれ接続して透明基板1b(図示せず)上に形成される。   The striped electrodes 10a, 10b, 13a, 13b are made of a metal film such as silver. The electrodes 10a and 10b are formed on a transparent substrate 1a (not shown) along the two short sides which are both ends of the transparent conductive film 2a in the horizontal axis (X-axis) direction and connected to the two short sides, respectively. The electrodes 10a and 10b are formed on a transparent substrate 1b (not shown) along the two long sides which are both ends of the transparent conductive film 2b in the direction of the vertical axis (Y axis) and connected to the two long sides. The

2個の電流検出部11a,11bは電極10a,13aおよび電極10b,13bに対してそれぞれ設けられる。切換スイッチSaは演算処理回路8からのモード制御信号SWCの制御によって電極10aおよび電極13aの一方を電流検出部11aに接続し、切換スイッチSbはモード制御信号SWCの制御によって電極10bおよび電極13bの一方を電流検出部11bに接続する。また、切換スイッチScがモード制御信号SWCの制御によって定電流源12を電極10bおよび13bの一方に接続するために設けられる。 Two current detectors 11a and 11b are provided for the electrodes 10a and 13a and the electrodes 10b and 13b, respectively. The changeover switch Sa connects one of the electrode 10a and the electrode 13a to the current detection unit 11a by the control of the mode control signal SWC from the arithmetic processing circuit 8, and the changeover switch Sb controls the electrodes 10b and 13b by the control of the mode control signal SWC. One is connected to the current detector 11b. A changeover switch Sc is provided to connect the constant current source 12 to one of the electrodes 10b and 13b under the control of the mode control signal SWC.

例えばX軸方向モードがモード制御信号SWCにより設定されると、定電流源12が切換スイッチScを介して13bに接続され、電流検出部11a,11bが電極10a,10bから切換スイッチSa,Sbを介してそれぞれ供給される電流をそれぞれ測定する。他方、Y軸方向モードがモード制御信号SWCにより設定されると、定電流源12が切換スイッチScを介して10bに接続され、電流検出部11a,11bは電極13a,13bから切換スイッチSa,Sbを介してそれぞれ供給される電流をそれぞれ測定する。これら測定結果は演算処理回路8に供給される。尚、演算処理回路8、電流検出部11a,11b、および切換スイッチSa,Sb,Sc等の周辺回路はタッチパネルTPにおいてシール材5aの外側に配置される。これら周辺回路が例えば透明基板1b上に配置される場合には、周辺回路用の形成領域がシール材5aの外側において透明基板1bに設けられる。   For example, when the X-axis direction mode is set by the mode control signal SWC, the constant current source 12 is connected to 13b via the changeover switch Sc, and the current detection units 11a and 11b change the changeover switches Sa and Sb from the electrodes 10a and 10b. The current supplied through each is measured. On the other hand, when the Y-axis direction mode is set by the mode control signal SWC, the constant current source 12 is connected to 10b via the changeover switch Sc, and the current detectors 11a and 11b are changed from the electrodes 13a and 13b to the changeover switches Sa and Sb. Each of the currents supplied through each is measured. These measurement results are supplied to the arithmetic processing circuit 8. Note that peripheral circuits such as the arithmetic processing circuit 8, the current detection units 11a and 11b, and the changeover switches Sa, Sb, and Sc are arranged outside the sealing material 5a in the touch panel TP. When these peripheral circuits are arranged on the transparent substrate 1b, for example, a peripheral circuit forming region is provided on the transparent substrate 1b outside the sealing material 5a.

X軸方向モードで実際にポインタ部材6を接触させると、定電流Ioが定電流源12から電極13bを介して透明導電膜2aに流れ込み、透明導電膜2a,2bの接点から透明導電膜2a側に流れ出る。透明導電膜2aでは、定電流Ioが電極10aに向かう電流Ix1と電極10bに向かう電流Ix2に分流され、これら電流Ix1,Ix2がそれぞれ電流検出部11a,11bによって測定される。演算処理回路8は電流Ix1およびIx2の測定値を上述の式2に代入して演算処理することにより透明導電膜2a,2bの接点のX座標を求める。但し、この場合、Lxは電極10aおよび10b間の距離(X1+X2)、すなわちX軸方向における透明導電膜2aの全長である。   When the pointer member 6 is actually contacted in the X-axis direction mode, the constant current Io flows from the constant current source 12 to the transparent conductive film 2a through the electrode 13b, and from the contact points of the transparent conductive films 2a and 2b to the transparent conductive film 2a side. Flows out. In the transparent conductive film 2a, the constant current Io is divided into a current Ix1 directed to the electrode 10a and a current Ix2 directed to the electrode 10b, and these currents Ix1 and Ix2 are measured by the current detectors 11a and 11b, respectively. The arithmetic processing circuit 8 substitutes the measured values of the currents Ix1 and Ix2 into the above-described equation 2 and performs arithmetic processing to obtain the X coordinate of the contact points of the transparent conductive films 2a and 2b. However, in this case, Lx is the distance (X1 + X2) between the electrodes 10a and 10b, that is, the total length of the transparent conductive film 2a in the X-axis direction.

また、Y軸方向モードで実際にポインタ部材6を接触させると、定電流Ioが定電流源12から電極10bを介して透明導電膜2aに流れ込み、透明導電膜2a,2bの接点から透明導電膜2b側に流れ出る。透明導電膜2bでは、定電流Ioが電極13aに向かう電流Iy1と電極13bに向かう電流Iy2に分流され、これら電流Iy1,Iy2がそれぞれ電流検出部11a,11bによって測定される。演算処理回路8は電流Iy1およびIy2の測定値を上述の式3に代入して演算処理することにより透明導電膜2a,2bの接点のY座標を求める。   Further, when the pointer member 6 is actually brought into contact in the Y-axis direction mode, the constant current Io flows from the constant current source 12 into the transparent conductive film 2a through the electrode 10b, and from the contact points of the transparent conductive films 2a and 2b. It flows out to the 2b side. In the transparent conductive film 2b, the constant current Io is divided into a current Iy1 directed to the electrode 13a and a current Iy2 directed to the electrode 13b, and these currents Iy1 and Iy2 are measured by the current detectors 11a and 11b, respectively. The arithmetic processing circuit 8 calculates the Y coordinates of the contacts of the transparent conductive films 2a and 2b by substituting the measured values of the currents Iy1 and Iy2 into the above equation 3 and performing arithmetic processing.

本実施形態では、第1実施形態と同様に、透明導電膜2a,2bの接点位置がX軸方向について電流Ix1,Ix2の測定値に基づく演算処理を行うことにより得られ、Y軸方向について電流Iy1,Iy2の測定値に基づく演算処理を行うことにより得られる。この場合、透明導電膜2a,2bの接点から透明導電膜2a側に流れ出る電流は常に電流Ix1 およびIx2の和に等しく、透明電極2b側に流れ出る電流は電流Iy1およびIy2の和に等しい。このため、X軸方向モードで透明導電膜2b、Y軸方向モードで透明導電膜2aに少なくとも依存した電圧降下が生じても、これが接点位置の検出結果に影響しない。いいかえれば、接点位置の検出結果からこのような電圧降下の影響を排除することができる。また、電極10a,10bと電極13a,13bとの間の干渉も少ない。従って、接点位置の検出精度を確実に向上させることができる。   In the present embodiment, as in the first embodiment, the contact positions of the transparent conductive films 2a and 2b are obtained by performing arithmetic processing based on the measured values of the currents Ix1 and Ix2 in the X-axis direction, and the current in the Y-axis direction. It is obtained by performing arithmetic processing based on the measured values of Iy1 and Iy2. In this case, the current flowing out from the contact point of the transparent conductive films 2a and 2b to the transparent conductive film 2a side is always equal to the sum of the currents Ix1 and Ix2, and the current flowing out to the transparent electrode 2b side is equal to the sum of the currents Iy1 and Iy2. For this reason, even if a voltage drop at least depending on the transparent conductive film 2b in the X-axis direction mode and the transparent conductive film 2a in the Y-axis direction mode occurs, this does not affect the detection result of the contact position. In other words, the influence of such a voltage drop can be eliminated from the detection result of the contact position. Further, there is little interference between the electrodes 10a and 10b and the electrodes 13a and 13b. Therefore, the contact position detection accuracy can be improved with certainty.

以下、本発明の第3実施形態に係るタッチパネルについて添付図面を参照して説明する。図17はタッチパネルTPにポインタ部材を接触させた状態で得られる等価回路を示し、図18はこの等価回路を分かり易く整理して示す。このタッチパネルTPは、図2に示す定電流源12を用いずに接点の位置検出を行うように構成されることを除いて第1実施形態と同様である。このため、図17では、第1実施形態と同様部分を同一参照符号で表して詳細な説明を省略する。また、同様な構成の周辺回路は図17において省略されている。   Hereinafter, a touch panel according to a third embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 17 shows an equivalent circuit obtained with the pointer member in contact with the touch panel TP, and FIG. 18 shows the equivalent circuit in an easy-to-understand manner. The touch panel TP is the same as that of the first embodiment except that the touch panel TP is configured to detect the position of the contact without using the constant current source 12 shown in FIG. For this reason, in FIG. 17, the same part as 1st Embodiment is represented with the same referential mark, and detailed description is abbreviate | omitted. Further, peripheral circuits having the same configuration are omitted in FIG.

この実施形態では、電圧E2を出力するバッテリー等の定電圧源14が定電流源12の代わりに用いられ、透明基板1a側の電極10a,10bに接続される。この場合、透明導電膜2a,2bの接点から透明導電膜2bに流れ出る電流は透明導電膜2a,2bおよび周辺回路の配線抵抗に依存して変化する。   In this embodiment, a constant voltage source 14 such as a battery that outputs a voltage E2 is used instead of the constant current source 12, and is connected to the electrodes 10a and 10b on the transparent substrate 1a side. In this case, the current flowing out from the contact point of the transparent conductive films 2a and 2b to the transparent conductive film 2b varies depending on the wiring resistance of the transparent conductive films 2a and 2b and the peripheral circuit.

例えばX軸方向モードが透明導電膜2a,2bの接点のX座標を求めるために設定されると、接点から流れる電流は抵抗Rx1およびRx2の比に対応してそれぞれ電極9a,9bに向かう電流Ix1およびIx2に分流される。   For example, when the X-axis direction mode is set to obtain the X coordinate of the contact of the transparent conductive films 2a and 2b, the current flowing from the contact corresponds to the ratio of the resistances Rx1 and Rx2 to the currents Ix1 directed to the electrodes 9a and 9b, respectively. And Ix2.

透明導電膜2a,2bの接点のX座標は、図17に示すようにX座標X=0である透明導電膜2bの左端からの距離X1に等しい。従って、図3と同様な演算処理回路は電流Ix1およびIx2の測定値を上述の式2に代入して演算処理することにより透明導電膜2a,2bの接点のX座標を求めることができる。   The X coordinate of the contact point of the transparent conductive films 2a and 2b is equal to the distance X1 from the left end of the transparent conductive film 2b where the X coordinate X = 0 as shown in FIG. Therefore, an arithmetic processing circuit similar to that in FIG. 3 can obtain the X coordinate of the contact point of the transparent conductive films 2a and 2b by substituting the measured values of the currents Ix1 and Ix2 into the above equation 2 and performing arithmetic processing.

また、Y軸方向モードが透明導電膜2a,2bの接点のY座標を求めるために設定されると、接点から流れる電流は抵抗Ry1およびRy2の比に対応してそれぞれ電極13a,13bに向かう電流Iy1およびIy2に分流される。ここで、Ry1は電極13aおよび接点間の抵抗であり、Ry2は接点および電極13b間の抵抗である。   Further, when the Y-axis direction mode is set to obtain the Y coordinate of the contact points of the transparent conductive films 2a and 2b, the current flowing from the contact points to the electrodes 13a and 13b corresponding to the ratio of the resistances Ry1 and Ry2, respectively. Shunt to Iy1 and Iy2. Here, Ry1 is the resistance between the electrode 13a and the contact, and Ry2 is the resistance between the contact and the electrode 13b.

透明導電膜2a,2bの接点のY座標は、Y座標Y=0である透明導電膜2bの下端からの距離Y1に等しい。従って、図3と同様な演算処理回路は電流Iy1およびIy2の測定値を上述の式3に代入して演算処理することにより透明導電膜2a,2bの接点のY座標を求めることができる。   The Y coordinate of the contact point of the transparent conductive films 2a and 2b is equal to the distance Y1 from the lower end of the transparent conductive film 2b where the Y coordinate Y = 0. Therefore, an arithmetic processing circuit similar to that shown in FIG. 3 can obtain the Y coordinate of the contact points of the transparent conductive films 2a and 2b by substituting the measured values of the currents Iy1 and Iy2 into the above-described equation 3 and performing arithmetic processing.

本実施形態では、第1実施形態と同様に、透明導電膜2a,2bの接点位置がX軸方向について電流Ix1,Ix2の測定値に基づく演算処理を行うことにより得られ、Y軸方向について電流Iy1,Iy2の測定値に基づく演算処理を行うことにより得られる。この場合、透明導電膜2a,2bの接点から透明導電膜2b側に流れ出る電流は変化するが、電流Ix1 およびIx2の比あるいは電流Iy1およびIy2の比から接点の位置座標を特定できる。従って、定電流源を必要とせずに接点位置の検出精度を向上させることができる。   In the present embodiment, as in the first embodiment, the contact positions of the transparent conductive films 2a and 2b are obtained by performing arithmetic processing based on the measured values of the currents Ix1 and Ix2 in the X-axis direction, and the current in the Y-axis direction. It is obtained by performing arithmetic processing based on the measured values of Iy1 and Iy2. In this case, the current flowing from the contact point of the transparent conductive films 2a and 2b to the transparent conductive film 2b side changes, but the position coordinates of the contact point can be specified from the ratio of the currents Ix1 and Ix2 or the ratio of the currents Iy1 and Iy2. Therefore, the contact position detection accuracy can be improved without requiring a constant current source.

尚、本発明は上述の実施形態に限定されず、その要旨を逸脱しない範囲において様々に変形可能である。また、上述の変形例は任意に組み合わせてよい。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change variously. Moreover, you may combine the above-mentioned modification arbitrarily.

上述の実施形態では、透明導電膜2a,2bの接点の二次元座標が接点位置として検出されたが、一次元座標が接点位置として検出されるだけであってもよい。   In the above-described embodiment, the two-dimensional coordinates of the contacts of the transparent conductive films 2a and 2b are detected as the contact positions. However, the one-dimensional coordinates may only be detected as the contact positions.

図8および図9に示す変形例では、送受信を行うトランシーバ部TRが無線通信回路として電極16に接続されているが、送信だけを行う送信回路および受信だけを行う受信回路の少なくとも一方を無線通信回路として電極16に接続すればよい。また、単一の電極19が電極16に隣接して形成されているが、複数の電極が任意の無線通信回路のアンテナとして電極16に隣接して形成されてもよい。   8 and 9, the transceiver unit TR that performs transmission and reception is connected to the electrode 16 as a wireless communication circuit. However, at least one of a transmission circuit that performs only transmission and a reception circuit that performs only reception is wirelessly communicated. What is necessary is just to connect to the electrode 16 as a circuit. In addition, although the single electrode 19 is formed adjacent to the electrode 16, a plurality of electrodes may be formed adjacent to the electrode 16 as an antenna of an arbitrary wireless communication circuit.

また、図3,図10,図11,図16に示す演算処理回路8はそれぞれの電流測定値を演算式に代入して接点の二次元位置座標を求めるように構成されたが、それぞれの電流測定値に対して接点の二次元位置座標を出力するようなテーブルメモリを用いて構成されてもよい。   Further, the arithmetic processing circuit 8 shown in FIGS. 3, 10, 11, and 16 is configured to obtain the two-dimensional position coordinates of the contact by substituting each current measurement value into the arithmetic expression. You may comprise using the table memory which outputs the two-dimensional position coordinate of a contact with respect to a measured value.

さらに、上述の実施形態では、透過型タッチパネルについて説明したが、本発明は非透過型のタッチパネルにも適用できる。   Furthermore, although the above-mentioned embodiment demonstrated the transmissive touch panel, this invention is applicable also to a non-transmissive touch panel.

本発明の第1実施形態に係るタッチパネルの断面構造を示す図である。It is a figure which shows the cross-sectional structure of the touchscreen which concerns on 1st Embodiment of this invention. 図1に示す第1透明基板側の平面構造を示す図である。It is a figure which shows the planar structure by the side of the 1st transparent substrate shown in FIG. 図1に示す第2透明基板側の平面構造を示す図である。It is a figure which shows the planar structure by the side of the 2nd transparent substrate shown in FIG. 図1に示すタッチパネルと一体化される液晶ディスプレイを示す図である。It is a figure which shows the liquid crystal display integrated with the touch panel shown in FIG. 図4に示すタッチパネルにポインタ部材を接触させた状態を示す図である。It is a figure which shows the state which made the pointer member contact the touch panel shown in FIG. 図5に示す状態でX軸方向モードを設定したときに得られるタッチパネルの等価回路を示す図である。It is a figure which shows the equivalent circuit of the touchscreen obtained when the X-axis direction mode is set in the state shown in FIG. 図2に示す第1透明基板側の平面構造を変形した第1変形例を示す図である。It is a figure which shows the 1st modification which deform | transformed the planar structure by the side of the 1st transparent substrate shown in FIG. 図2に示す第1透明基板側の平面構造を変形した第2変形例を示す図である。It is a figure which shows the 2nd modification which deform | transformed the planar structure by the side of the 1st transparent substrate shown in FIG. 図2に示す第1透明基板側の平面構造を変形した第3変形例を示す図である。It is a figure which shows the 3rd modification which deform | transformed the planar structure by the side of the 1st transparent substrate shown in FIG. 図3に示す第2透明基板側の電流検出構造を変形した第4変形例を示す図である。It is a figure which shows the 4th modification which deform | transformed the electric current detection structure by the side of the 2nd transparent substrate shown in FIG. 図3に示す第2透明基板側の平面構造および電流検出構造を変形した第5変形例を示す図である。It is a figure which shows the 5th modification which deform | transformed the planar structure and electric current detection structure by the side of the 2nd transparent substrate shown in FIG. 図11に示す高抵抗領域の最適寸法を説明するための図である。It is a figure for demonstrating the optimal dimension of the high resistance area | region shown in FIG. 図11に示す低抵抗領域の最適寸法を説明するための図である。It is a figure for demonstrating the optimal dimension of the low resistance area | region shown in FIG. 図11に示す第2透明基板側の平面構造をさらに変形した第5変形例を示す図である。It is a figure which shows the 5th modification which further deform | transformed the planar structure by the side of the 2nd transparent substrate shown in FIG. 図11および図14に示す第5および第6変形例で用いられる第2透明導電膜の形状を得る方法を説明するための図である。It is a figure for demonstrating the method to obtain the shape of the 2nd transparent conductive film used by the 5th and 6th modification shown in FIG. 11 and FIG. 本発明の第2実施形態に係るタッチパネルの回路構造を示す図である。It is a figure which shows the circuit structure of the touchscreen which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るタッチパネルにポインタ部材を接触させた状態で得られる等価回路を示す図である。It is a figure which shows the equivalent circuit obtained in the state which made the pointer member contact the touchscreen which concerns on 3rd Embodiment of this invention. 図17に示す等価回路を分かり易く整理して示す図である。FIG. 18 is a diagram showing the equivalent circuit shown in FIG. 17 in an easy-to-understand manner. 従来の透過型タッチパネルの断面構造を示す図である。It is a figure which shows the cross-section of the conventional transmissive touch panel. 図19に示すタッチパネルにポインタ部材を接触させた状態で得られる等価回路を示す図である。It is a figure which shows the equivalent circuit obtained in the state which made the pointer member contact the touch panel shown in FIG.

符号の説明Explanation of symbols

1a,1b…第1および第2透明基板、2a,2b…第1および第2透明導電膜、6…ポインタ部材、9a,9b,10a,10b,13a,13b…電極、8…演算処理回路、11a,11b…電流検出部、12…定電流源、Sa,Sb…切換スイッチ、TP…タッチパネル。   DESCRIPTION OF SYMBOLS 1a, 1b ... 1st and 2nd transparent substrate, 2a, 2b ... 1st and 2nd transparent conductive film, 6 ... Pointer member, 9a, 9b, 10a, 10b, 13a, 13b ... Electrode, 8 ... Arithmetic processing circuit, 11a, 11b ... current detector, 12 ... constant current source, Sa, Sb ... changeover switch, TP ... touch panel.

Claims (20)

一様な抵抗分布を有する第1導電膜、および前記第1導電膜から僅に離間して前記第1導電膜に重なるように配置され、加圧により局所的に前記第1導電膜に接触する第2導電膜を有するタッチパネル用位置検出装置であって、互いに対向して前記第1導電膜の外縁に接続される第1および第2電極と、前記第2導電膜に電流を供給する電流供給部と、前記第1および第2導電膜の接点から前記第1電極に向かって前記第1導電膜を流れる第1電流および前記第1および第2導電膜の接点から前記第2電極に向かって流れる第2電流を測定する電流検出回路と、前記第1および第2電流の測定値に基づいて前記接点の位置を特定する処理を行う処理回路とを備えることを特徴とするタッチパネル用位置検出装置。 The first conductive film having a uniform resistance distribution and the first conductive film are disposed so as to be slightly separated from the first conductive film and overlap the first conductive film, and locally contact the first conductive film by pressurization. A position detection device for a touch panel having a second conductive film, the first and second electrodes facing each other and connected to the outer edge of the first conductive film, and a current supply for supplying a current to the second conductive film And a first current flowing through the first conductive film from the contact point of the first and second conductive films toward the first electrode and a contact point of the first and second conductive films toward the second electrode A position detection device for a touch panel, comprising: a current detection circuit that measures a flowing second current; and a processing circuit that performs a process of specifying a position of the contact based on the measured values of the first and second currents. . さらに前記第1および第2電極とは異なる方向において互いに対向して前記第2導電膜の外縁に接続される第3および第4電極を備え、前記電流検出回路はさらに前記電流供給部からの電流の供給先を前記第2導電膜から前記第1導電膜に切換え、これにより前記第1および第2導電膜の接点から前記第3電極に向かって前記第2導電膜を流れる第3電流および前記第1および第2導電膜の接点から前記第4電極に向かって前記第2導電膜を流れる第4電流を測定するように構成され、前記処理回路は前記処理において前記第1および第2電流の測定値に基づいて前記接点の二次元位置座標の一方を求め、前記第3および第4電流の測定値に基づいて前記接点の二次元位置座標の他方を求めるように構成されることを特徴とする請求項1に記載のタッチパネル用位置検出装置。 Furthermore, the current detection circuit further includes third and fourth electrodes connected to the outer edge of the second conductive film so as to face each other in a direction different from the first and second electrodes, and the current detection circuit further includes a current from the current supply unit. Is switched from the second conductive film to the first conductive film, whereby the third current flowing through the second conductive film from the contact point of the first and second conductive films toward the third electrode, and A fourth current flowing through the second conductive film from a contact point of the first and second conductive films toward the fourth electrode; and the processing circuit is configured to measure the first and second currents in the processing. One of the two-dimensional position coordinates of the contact is obtained based on the measured value, and the other of the two-dimensional position coordinates of the contact is obtained based on the measured values of the third and fourth currents. To claim 1 Position detecting device for the touch panel. 一様な抵抗分布を有する第1導電膜、および前記第1導電膜から僅に離間して前記第1導電膜に重なるように配置され、加圧により局所的に前記第1導電膜に接触する第2導電膜を有するタッチパネル用位置検出装置であって、互いに対向して前記第1導電膜の外縁に接続される第1および第2電極と、前記第1および第2電極とは異なる方向において互いに対向して前記第1導電膜の外縁に接続される第3および第4電極と、前記第2導電膜に電流を供給する電流供給部と、前記第1および第2導電膜の接点からそれぞれ前記第1電極、第2電極、第3電極および第4電極に向かって前記第1導電膜を流れる第1、第2、第3、および第4電流を測定する電流検出回路と、前記第1および第2電流の測定値に基づいて前記接点の2次元位置座標の一方を特定し、前記第3および第4電流の測定値に基づいて前記接点の2次元位置座標の他方を特定する処理を行う処理回路とを備えることを特徴とするタッチパネル用位置検出装置。 The first conductive film having a uniform resistance distribution and the first conductive film are disposed so as to be slightly separated from the first conductive film and overlap the first conductive film, and locally contact the first conductive film by pressurization. A position detecting device for a touch panel having a second conductive film, wherein the first and second electrodes are opposed to each other and connected to the outer edge of the first conductive film, and the first and second electrodes are in different directions. Third and fourth electrodes that face each other and are connected to the outer edge of the first conductive film, a current supply unit that supplies current to the second conductive film, and a contact point between the first and second conductive films, respectively. A current detection circuit for measuring first, second, third, and fourth currents flowing through the first conductive film toward the first electrode, the second electrode, the third electrode, and the fourth electrode; And the two-dimensional position of the contact based on the measured value of the second current A touch panel position detecting device comprising: a processing circuit that specifies one of the marks and performs processing for specifying the other of the two-dimensional position coordinates of the contact point based on the measured values of the third and fourth currents. . 前記第2導電膜は前記第1導電膜よりも一様に低い抵抗分布を有することを特徴とする請求項3に記載のタッチパネル用位置検出装置。 The touch panel position detecting device according to claim 3, wherein the second conductive film has a resistance distribution that is uniformly lower than that of the first conductive film. 前記電流供給部は前記第2導電膜に第2導電膜用電極を介して接続されることを特徴とする請求項3に記載のタッチパネル用位置検出装置。 The touch panel position detecting device according to claim 3, wherein the current supply unit is connected to the second conductive film via a second conductive film electrode. 前記第2導電膜用電極は前記第2導電膜を平面的に囲む形状であることを特徴とする請求項5に記載のタッチパネル用位置検出装置。 The position detecting device for a touch panel according to claim 5, wherein the second conductive film electrode has a shape surrounding the second conductive film in a plane. 前記第1および第2導電膜は方形の形状であり、前記第1および第2電極は第1方向において対向する前記第1導電膜の2辺側に配置され、前記第3および第4電極は前記第1方向に直角な第2方向において対向する前記第1導電膜の2辺側に配置されることを特徴とする請求項3に記載のタッチパネル用位置検出装置。 The first and second conductive films have a rectangular shape, the first and second electrodes are disposed on two sides of the first conductive film facing in the first direction, and the third and fourth electrodes are The touch panel position detecting device according to claim 3, wherein the touch panel position detecting device is disposed on two sides of the first conductive film facing each other in a second direction perpendicular to the first direction. 前記電流検出回路は前記第1および第2電極と、前記第3および第4電極とにそれぞれ選択的に接続される第1および第2電流検出部を含むことを特徴とする請求項7に記載のタッチパネル用位置検出装置。 The current detection circuit includes first and second current detection units that are selectively connected to the first and second electrodes and the third and fourth electrodes, respectively. Position detector for touch panels. 前記電流検出回路は前記第1、第2、第3および第4電極にそれぞれ接続される第1、第2、第3および第4電流検出部を備えることを特徴とする請求項7に記載のタッチパネル用位置検出装置。 The current detection circuit includes first, second, third, and fourth current detection units connected to the first, second, third, and fourth electrodes, respectively. Touch panel position detector. 前記第1導電膜は横長の長方形の4辺を内側に反らせた形状であり、前記第1および第2電極は第1の対角線上で向かい合う前記第1導電膜の2対角からそれぞれ隣接する2辺の中央付近まで延出して配置され、前記第3および第4電極は第2の対角線上で向かい合う前記第1導電膜の2対角からそれぞれ隣接する2辺の中央付近まで延出して配置されることを特徴とする請求項3に記載のタッチパネル用位置検出装置。 The first conductive film has a shape in which four sides of a horizontally long rectangle are bent inward, and the first and second electrodes are adjacent to each other from two diagonals of the first conductive film facing each other on a first diagonal line. The third and fourth electrodes are arranged so as to extend from the two diagonals of the first conductive film facing each other on the second diagonal line to the vicinity of the centers of the two adjacent sides. The position detection device for a touch panel according to claim 3. 前記第1導電膜は前記長方形と共通のアスペクト比となる楕円に沿って反らせてあることを特徴とする請求項10に記載のタッチパネル用位置検出装置。 The touch panel position detecting device according to claim 10, wherein the first conductive film is warped along an ellipse having an aspect ratio common to the rectangle. 前記第1導電膜は高抵抗領域および前記外縁として前記高抵抗領域を取り囲む低抵抗領域からなることを特徴とする請求項10に記載のタッチパネル用位置検出装置。 The position detection device for a touch panel according to claim 10, wherein the first conductive film includes a high resistance region and a low resistance region surrounding the high resistance region as the outer edge. 前記長方形の短辺から前記高抵抗領域までの距離は前記長方形の長辺から前記高抵抗領域までの距離よりも大きいことを特徴とする請求項12に記載のタッチパネル用位置検出装置。 The position detection device for a touch panel according to claim 12, wherein a distance from the short side of the rectangle to the high resistance region is larger than a distance from the long side of the rectangle to the high resistance region. 前記長方形の長辺側における前記低抵抗領域の幅は前記長方形の短辺側における前記低抵抗領域の幅よりも大きいことを特徴とする請求項12または13に記載のタッチパネル用位置検出装置。 The position detection device for a touch panel according to claim 12 or 13, wherein the width of the low resistance region on the long side of the rectangle is larger than the width of the low resistance region on the short side of the rectangle. 前記第1、第2、第3および第4電極は前記第1導電膜の外縁上に形成される金属膜であることを特徴とする請求項10に記載のタッチパネル用位置検出装置。 The position detection device for a touch panel according to claim 10, wherein the first, second, third, and fourth electrodes are metal films formed on an outer edge of the first conductive film. 前記第2導電膜用電極は無線通信回路のアンテナを兼ね、スイッチ手段により前記電流供給部の代わりに無線通信回路に接続されることを特徴とする請求項6に記載のタッチパネル用位置検出装置。 The position detection device for a touch panel according to claim 6, wherein the second conductive film electrode also serves as an antenna of a wireless communication circuit, and is connected to the wireless communication circuit instead of the current supply unit by a switch unit. さらに少なくとも1個のアンテナ用電極が前記第2導電膜用電極に隣接して形成されることを特徴とする請求項16に記載のタッチパネル用位置検出装置。 The touch panel position detecting apparatus according to claim 16, wherein at least one antenna electrode is formed adjacent to the second conductive film electrode. 前記電流供給部は定電流源であることを特徴とする請求項1または3に記載のタッチパネル用位置検出装置。 4. The touch panel position detecting device according to claim 1, wherein the current supply unit is a constant current source. 前記電流供給部は電圧源であることを特徴とする請求項1または3に記載のタッチパネル用位置検出装置。 The touch panel position detection device according to claim 1, wherein the current supply unit is a voltage source. 前記第1および第2導電膜は透明であることを特徴とする請求項1または3に記載のタッチパネル用位置検出装置。 The touch panel position detecting device according to claim 1, wherein the first and second conductive films are transparent.
JP2004089903A 2004-03-25 2004-03-25 Position detecting device for touch panel Pending JP2005275934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089903A JP2005275934A (en) 2004-03-25 2004-03-25 Position detecting device for touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089903A JP2005275934A (en) 2004-03-25 2004-03-25 Position detecting device for touch panel

Publications (1)

Publication Number Publication Date
JP2005275934A true JP2005275934A (en) 2005-10-06

Family

ID=35175528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089903A Pending JP2005275934A (en) 2004-03-25 2004-03-25 Position detecting device for touch panel

Country Status (1)

Country Link
JP (1) JP2005275934A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176199A (en) * 2008-01-28 2009-08-06 Panasonic Corp Touch panel
JP2009282608A (en) * 2008-05-20 2009-12-03 Fujitsu Component Ltd Coordinate detecting device and coordinate detecting method
JP2010282375A (en) * 2009-06-03 2010-12-16 Alps Electric Co Ltd Electric field communication system with touch pad as electrode and mobile device with the system
JP2011096260A (en) * 2009-10-30 2011-05-12 Samsung Corning Precision Materials Co Ltd Display filter having touch input function
US9158377B2 (en) 2011-01-27 2015-10-13 Kyocera Corporation Electronic device to maintain contact position during haptic feedback
US9606651B2 (en) 2011-01-27 2017-03-28 Kyocera Corporation Electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176199A (en) * 2008-01-28 2009-08-06 Panasonic Corp Touch panel
US8223135B2 (en) 2008-01-28 2012-07-17 Panasonic Corporation Touch panel
JP2009282608A (en) * 2008-05-20 2009-12-03 Fujitsu Component Ltd Coordinate detecting device and coordinate detecting method
JP2010282375A (en) * 2009-06-03 2010-12-16 Alps Electric Co Ltd Electric field communication system with touch pad as electrode and mobile device with the system
JP2011096260A (en) * 2009-10-30 2011-05-12 Samsung Corning Precision Materials Co Ltd Display filter having touch input function
US9158377B2 (en) 2011-01-27 2015-10-13 Kyocera Corporation Electronic device to maintain contact position during haptic feedback
US9606651B2 (en) 2011-01-27 2017-03-28 Kyocera Corporation Electronic device

Similar Documents

Publication Publication Date Title
JP5493739B2 (en) Sensor device and information processing device
JP5530515B2 (en) Liquid crystal panel, liquid crystal display device
CN205050119U (en) A touch input device for detecting electrode slice of pressure reaches including this electrode slice
KR100921813B1 (en) Touch Panel Device and contact position search method of it
US9239645B2 (en) Input device and method for detecting loads on multiple points using the input device
JP5060845B2 (en) Screen input type image display device
CN107256104B (en) Single-layer capacitive image sensor
KR100837738B1 (en) Electronic device and touch panel arrangement method of the same
US20230273689A1 (en) Sensor for detecting pen signal transmitted from pen
US11334179B2 (en) Display panel to mitigate short-circuiting between touch electrodes, and display device
JP5419272B2 (en) Display device with input function
TWI489335B (en) Conductive substrate and touch panel
TW201042526A (en) Touch panel
US20150220176A1 (en) Touch panel substrate and display device
JP2013171351A (en) Touch panel and display device with touch panel
JP5153890B2 (en) Touch panel and electronic device equipped with touch panel
JP2016126362A (en) Resistance film touch panel, composite touch panel, driving method of touch panel, and display device
WO2020147386A1 (en) Dual-mode touch control display device and implementation method therefor
JP2005275934A (en) Position detecting device for touch panel
JP4508886B2 (en) Resistive touch panel
JP2005134992A (en) Touch panel device
JP2007087202A (en) Position detector
WO2019021572A1 (en) Position detection sensor, position detection device, and information processing system
US10401989B2 (en) Touch electrode structure, touch panel and display apparatus
US11775113B2 (en) Touch sensitive processing apparatus and touch system for calculating pressure calibration function and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006