JP2005274380A - Double refraction measuring instrument - Google Patents

Double refraction measuring instrument Download PDF

Info

Publication number
JP2005274380A
JP2005274380A JP2004088544A JP2004088544A JP2005274380A JP 2005274380 A JP2005274380 A JP 2005274380A JP 2004088544 A JP2004088544 A JP 2004088544A JP 2004088544 A JP2004088544 A JP 2004088544A JP 2005274380 A JP2005274380 A JP 2005274380A
Authority
JP
Japan
Prior art keywords
birefringence
light
optical system
polarization
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004088544A
Other languages
Japanese (ja)
Other versions
JP4556463B2 (en
Inventor
Hiroshi Kajioka
博 梶岡
Takashi Iizuka
孝 飯塚
Yusaku Tottori
鳥取裕作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoquest Co Ltd
Original Assignee
Optoquest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoquest Co Ltd filed Critical Optoquest Co Ltd
Priority to JP2004088544A priority Critical patent/JP4556463B2/en
Publication of JP2005274380A publication Critical patent/JP2005274380A/en
Application granted granted Critical
Publication of JP4556463B2 publication Critical patent/JP4556463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized measuring instrument capable of measuring easily a double refraction in a pick-up optical system and a liquid crystal material, an angle of rotatory polarization in glucose in a living organism, or the like. <P>SOLUTION: In this double refractive measuring instrument of the present invention, a nonreciprocal optical system is provided in a midway of a loop optical path of a ring interferometer, an orthogonal polarization mode is designed to propagate a measured sample to both directions, and a signal processing technique for an optical fiber gyro is applied to the ring interferometer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光学材料や生体の複屈折率測定器に関するものである。さらに詳述すれば本発明はピックアップ光学系用レンズや液晶表示用材料の複屈折やグルコース濃度などを簡略に測定できる高精度で低価格な複屈折率測定器に関するものである。   The present invention relates to an optical material and a biological birefringence measuring instrument. More specifically, the present invention relates to a high-accuracy and low-cost birefringence measuring instrument that can simply measure the birefringence, glucose concentration, etc. of a pickup optical system lens or liquid crystal display material.

従来の複屈折率の測定法に被測定媒体の偏光状態をミューラー行列として求める方法がある。これによって複屈折率、偏光度、偏光依存損失などすべての偏光特性が解析できる。
この方法では入射側で4種類の偏光状態を作り出す必要がある。
従来のもうひとつの複屈折率の測定法は複屈折分散を測定するもので光源にハロゲンランプなどの白色光を用い平行ニコル間にサンプル置きその透過光が波数に対し余弦状に変化する原理から透過光強度を高速フーリエ変換(FFT)法により複屈折を解析するものである。この方法は液晶などの検査に用いられている。この方法では分光器を必要としFFTという解析装置が必要である。またこの方法ではミリラディアンの微小な複屈折率が測定できない。
As a conventional method for measuring the birefringence, there is a method for obtaining the polarization state of a medium to be measured as a Mueller matrix. As a result, all polarization characteristics such as birefringence, polarization degree, and polarization dependent loss can be analyzed.
In this method, it is necessary to create four types of polarization states on the incident side.
Another conventional method for measuring the birefringence is to measure the birefringence dispersion, using a white light source such as a halogen lamp as the light source, and placing the sample between parallel Nicols from the principle that the transmitted light changes in a cosine shape with respect to the wave number. The birefringence is analyzed by the fast Fourier transform (FFT) method for the transmitted light intensity. This method is used for inspection of liquid crystals and the like. This method requires a spectroscope and an analysis device called FFT. In addition, this method cannot measure a minute birefringence of milliradians.

従来のもうひとつの複屈折率の測定法は入射偏光を変化させて試料を通過した光の幾何学的位相をポアンカレー球上に表示させ複屈折が存在した場合の各入射偏光状態に対応する球状の点が囲む面積から複屈折率を求めるものである。この方法においても入射側で複数の偏光状態を作り出す必要がある。すなわち従来の複屈折測定器はいずれも装置が大掛かりで高価であった。従来の複屈折率の測定方法の比較は非特許文献1に記載されている。また糖尿病の検査にグルコースを透過する光の旋回性を測定する方法に関しては非特許文献2に記載されている。鉛ガラスのベルデ定数を利用し入射偏光状態を変調し検光子を通過する光の変化をロックインアンプで検出するものである。健康な人で0.005度という微小な旋光角の測定が必要であることが記載されている。この測定方法は装置が大掛かりであるということおよび鉛ガラスの温度特性の影響を受けやすいと課題がある。   Another conventional method for measuring the birefringence is to change the incident polarization and display the geometric phase of the light passing through the sample on the Poincare sphere, corresponding to each incident polarization state when birefringence exists. The birefringence is obtained from the area surrounded by the spherical point. Even in this method, it is necessary to create a plurality of polarization states on the incident side. That is, all the conventional birefringence measuring instruments are large and expensive. Comparison of conventional methods for measuring birefringence is described in Non-Patent Document 1. Non-patent document 2 describes a method for measuring the swirlability of light that passes through glucose in a test for diabetes. Using the Verde constant of lead glass, the incident polarization state is modulated, and the change in the light passing through the analyzer is detected by a lock-in amplifier. It is described that it is necessary for a healthy person to measure a small optical rotation angle of 0.005 degrees. This measuring method has a problem that the apparatus is large-scale and is susceptible to the temperature characteristics of lead glass.

大谷幸利氏「総論:偏光・複屈折計測における最近の話題」O Plus E 2003年11月号PP.1220−1225.Mr. Yukitoshi Otani, “General Review: Recent Topics in Polarization and Birefringence Measurements” O Plus E November 2003, PP. 1220-1225. 横田正幸他、「鉛ガラスファイバ偏光変調器を用いたグルコースセンサー」、第31回光波センシング技術研究会、LST31−8,PP.51−56,2003年8月.Masayuki Yokota et al., “Glucose Sensor Using Lead Glass Fiber Polarization Modulator”, 31st Lightwave Sensing Technology Study Group, LST 31-8, PP. 51-56, August 2003.

本発明が解決しようとする課題は従来の複屈折率測定器を大幅に簡略化し安価でコンパクトな複屈折率測定器を提供することにある。   The problem to be solved by the present invention is to provide an inexpensive and compact birefringence measuring device by greatly simplifying the conventional birefringence measuring device.

上記の目的を達成するために本発明に係わる複屈折率測定方法はリング干渉計のループ光路の途中に非相反光学系を設け直交する偏光モードが被測定試料を両方向に伝播するように設計しリング干渉計として光ファイバジャイロの信号処理技術を応用したことにある。
光ファイバジャイロに関しては非特許文献3に詳しく記載されている。
In order to achieve the above object, the birefringence measuring method according to the present invention is designed so that a non-reciprocal optical system is provided in the middle of the loop optical path of the ring interferometer so that the orthogonal polarization mode propagates through the sample to be measured in both directions. This is the application of the signal processing technology of an optical fiber gyro as a ring interferometer.
The optical fiber gyro is described in detail in Non-Patent Document 3.

梶岡、於保、「光ファイバジャイロの開発」、第3回光波センシング技術研究会、LST3−9,PP.55−62,1989年6月.Tsujioka, Oho, "Development of optical fiber gyroscope", 3rd Lightwave Sensing Technology Study Group, LST3-9, PP. 55-62, June 1989.

本発明の原理は光の干渉を利用しているので非常に高精度に複屈折率を測定できる。またリング干渉計として商用されている非常にコンパクトで低価格光ファイバジャイロの基本光学系と信号処理回路を検出器として使うので従来型より大幅に安価で小型の複屈折率測定装置が提供できる。   Since the principle of the present invention utilizes the interference of light, the birefringence can be measured with very high accuracy. In addition, since the basic optical system and signal processing circuit of a very compact and low-cost optical fiber gyro, which is commercially available as a ring interferometer, are used as a detector, it is possible to provide a birefringence measuring device that is much cheaper and smaller than the conventional type.

図1にて一実施例を説明する。第1図は本発明の基本構成図を示している。光源1から発せられた光はカップラ21と偏光子31を経てカップラ22で左右両周り光に分岐される。図1において時計方向の光は偏光保持ファイバ5のループを伝播し非相反光学系7を通過し位相変調器4を通過してカップラ22に戻ってくる。一方反時計方向の光ははじめに位相変調器4を通過し、非相反光学系7を通過して光ファイバループ状の偏光保持ファイバ5を伝播しカップラ22に戻る。これら左右両周り光はカップラ22で干渉し干渉強度は偏光子31、カップラ21を介して受光器9で電気信号に変換され光ファイバジャイロの信号処理回路10によって左右両周り光の位相差を電圧として出力する。ここで用いた光ファイバジャイロは非特許文献3に記載されている干渉法に基づくものである。ループ長は200m、位相変調器はPZTで共振周波数は20KHzである。   An embodiment will be described with reference to FIG. FIG. 1 shows a basic configuration diagram of the present invention. The light emitted from the light source 1 passes through the coupler 21 and the polarizer 31, and is split into left and right light by the coupler 22. In FIG. 1, clockwise light propagates through the loop of the polarization maintaining fiber 5, passes through the nonreciprocal optical system 7, passes through the phase modulator 4, and returns to the coupler 22. On the other hand, light in the counterclockwise direction first passes through the phase modulator 4, passes through the nonreciprocal optical system 7, propagates through the polarization maintaining fiber 5 in the form of an optical fiber loop, and returns to the coupler 22. These left and right light beams interfere with each other at the coupler 22, and the interference intensity is converted into an electric signal by the light receiver 9 via the polarizer 31 and the coupler 21, and the phase difference between the left and right light beams is converted into a voltage by the signal processing circuit 10 of the optical fiber gyroscope. Output as. The optical fiber gyro used here is based on the interference method described in Non-Patent Document 3. The loop length is 200 m, the phase modulator is PZT, and the resonance frequency is 20 kHz.

光ファイバジャイロはファイバループを含む系が回転するとSagnac効果によって左右両周り光に位相差が発生しその位相差を測定する装置である。図2は図1の非相反光学系の詳細構成図である。45度ファラデー回転光学系61、62はレンズそれぞれレンズ111,112、偏光子32,33、45度ファラデー回転素子121、122から構成される。被測定試料8は対抗コリメータの間に置かれる。試料8は回転およびX−Y微動ステージ上にセットされる。   An optical fiber gyroscope is a device that measures the phase difference when a system including a fiber loop rotates and a phase difference is generated in both left and right light due to the Sagnac effect. FIG. 2 is a detailed configuration diagram of the nonreciprocal optical system of FIG. The 45-degree Faraday rotation optical systems 61 and 62 include lenses 111 and 112, polarizers 32 and 33, and 45-degree Faraday rotation elements 121 and 122, respectively. The sample 8 to be measured is placed between the counter collimators. Sample 8 is set on a rotating and XY fine movement stage.

このような光学系において光源から発せられた光がどのように試料中を伝播するかについて以下説明する。光源1は広帯域な光源が望ましくここでは波長800nmのSLDを用いた。リング干渉計の光ファイバは偏光保持ファイバを用いた。ここではコアが楕円の単一モード光ファイバを用いた。左右両周り光は偏光子31によって楕円の長軸方向に偏波した固有偏光モードとして伝播する。時計方向の直線偏光はレンズ112で平行光に変換され62によって偏光面が45度右に回転する。一方反時計方向の直線偏光はレンズ111で平行光に変換され61によって偏光面が45度左に回転する。すなわち左右両周り光は試料8に対して直交した偏波面で試料に入射される。ここで試料を回転し左右両周り光が試料の固有偏光軸に整合するように調整すると試料を通過した時計方向の光は光学系61で楕円の長軸方向の直線偏光でループの偏光保持ファイバに再入射する。一方反時計方向の光は光学系62で楕円の長軸方向の直線偏光でループの偏光保持ファイバに再入射する。ここで試料に複屈折がなければ左右両周り光は同一の行路を通るので位相差は発生しない。試料に複屈折があると左右両周り光の位相差として光ジャイロの検出系10によって検出される。   How the light emitted from the light source propagates in the sample in such an optical system will be described below. The light source 1 is preferably a broadband light source, and an SLD having a wavelength of 800 nm is used here. A polarization maintaining fiber was used as the optical fiber of the ring interferometer. Here, a single mode optical fiber having an elliptical core was used. Left and right light propagates as a natural polarization mode polarized in the major axis direction of the ellipse by the polarizer 31. The linearly polarized light in the clockwise direction is converted into parallel light by the lens 112, and the plane of polarization is rotated 45 degrees to the right by 62. On the other hand, the linearly polarized light in the counterclockwise direction is converted into parallel light by the lens 111 and the polarization plane is rotated 45 degrees to the left by 61. That is, the left and right light is incident on the sample with a plane of polarization orthogonal to the sample 8. Here, when the sample is rotated and adjusted so that the light on both the left and right sides is aligned with the intrinsic polarization axis of the sample, the clockwise light that has passed through the sample is linearly polarized in the long axis direction of the ellipse by the optical system 61 and is a polarization maintaining fiber for the loop. Re-incident on. On the other hand, the light in the counterclockwise direction is re-incident on the polarization-maintaining fiber of the loop by the optical system 62 as an elliptical linearly polarized light. Here, if there is no birefringence in the sample, the light around both the left and right passes through the same path, so that no phase difference occurs. If the sample has birefringence, it is detected by the optical gyro detection system 10 as a phase difference between the left and right light.

図3は非相反光学系7において左右両周り光が右円偏光および左円偏光となるようにした光学系の構成図である。図2との違いは4分の1波長板131、132を用いたことである。   FIG. 3 is a configuration diagram of an optical system in which the left and right light beams in the nonreciprocal optical system 7 are right circularly polarized light and left circularly polarized light. The difference from FIG. 2 is that quarter-wave plates 131 and 132 are used.

このような非相反光学系を用いると左右両周り光が左まわり円偏光、右まわり円偏光として試料を伝播するので血液などの試料に旋光性があれば左右両周り光に位相差が発生し光ジャイロの検出器で検出される。   When such a nonreciprocal optical system is used, the left and right bi-directional light propagates through the sample as left-handed circularly polarized light and right-handed circularly polarized light. It is detected by the optical gyro detector.

図4は本発明複屈折測定装置の生体検査への一適用例を示す。被測定対象8は皮膚あるいは眼球でありミラー141,142を用いて左右両周り光を試料に照射しその散乱光を検出している。この構成で生体に含まれるグルコースの濃度による旋光角を測定できる。   FIG. 4 shows an example of application of the birefringence measuring apparatus of the present invention to biopsy. An object to be measured 8 is skin or an eyeball, and the mirrors 141 and 142 are used to irradiate the sample with light from both left and right sides to detect the scattered light. With this configuration, the optical rotation angle depending on the concentration of glucose contained in the living body can be measured.

本発明複屈折測定法の原理を示す基本構成図Basic configuration diagram showing the principle of the birefringence measurement method of the present invention 本発明非相反光学系の構成図Configuration diagram of non-reciprocal optical system of the present invention 本発明旋光角測定用非相反光学系の構成図Configuration diagram of non-reciprocal optical system for optical rotation angle measurement of the present invention 本発明旋光角測定の一応用例を示す構成図The block diagram which shows one application example of this invention optical rotation angle measurement

符号の説明Explanation of symbols

1:光源(SLD)
21,22:カップラ
31,32,33:偏光子
4:位相変調器
5:偏光保持光ファイバループ
61,62:45度ファラデー回転光学系
7:非相反光学系
8:被測定試料
9:受光器
10:光ジャイロ信号処理回路
111,112:コリメートレンズ
121,122:45度ファラデー回転素子
131,132:4分の1波長板
141,142:ミラー
1: Light source (SLD)
21, 22: Couplers 31, 32, 33: Polarizer 4: Phase modulator 5: Polarization-maintaining optical fiber loop 61, 62: 45 degree Faraday rotation optical system 7: Non-reciprocal optical system 8: Sample to be measured 9: Receiver 10: optical gyro signal processing circuit 111, 112: collimating lens 121, 122: 45 degree Faraday rotator 131, 132: quarter wave plate 141, 142: mirror

Claims (3)

左右両周り光の位相差を測定するリング光干渉計のセンシングループの一部に左右両周り光が直交偏光状態で伝播する対向する非相反コリメータ光学系を設け該対向コリメータの光路に被測定媒体を設置しループのそのほかの部分では左右両周り光が同一の偏光で伝播することを特徴とする複屈折測定装置。   A non-reciprocal collimator optical system is provided in the sensing loop of a ring optical interferometer that measures the phase difference between the left and right light beams, and the opposite light beams propagate in the orthogonal polarization state. A birefringence measuring device characterized in that light is propagated with the same polarization in the other part of the loop. 請求項1の複屈折率測定装置において複屈折率を測定するリング干渉計として干渉型光ファイバジャイロスコープを用いた複屈折測定装置。   2. The birefringence measuring apparatus according to claim 1, wherein an interference type optical fiber gyroscope is used as a ring interferometer for measuring the birefringence. 請求項2の複屈折率測定装置において被測定試料を回転および2次元的に位置制御することができることを特徴とする複屈折測定装置。
3. The birefringence measuring apparatus according to claim 2, wherein the sample to be measured can be rotated and two-dimensionally controlled in position.
JP2004088544A 2004-03-25 2004-03-25 Birefringence measuring device Expired - Fee Related JP4556463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088544A JP4556463B2 (en) 2004-03-25 2004-03-25 Birefringence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088544A JP4556463B2 (en) 2004-03-25 2004-03-25 Birefringence measuring device

Publications (2)

Publication Number Publication Date
JP2005274380A true JP2005274380A (en) 2005-10-06
JP4556463B2 JP4556463B2 (en) 2010-10-06

Family

ID=35174209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088544A Expired - Fee Related JP4556463B2 (en) 2004-03-25 2004-03-25 Birefringence measuring device

Country Status (1)

Country Link
JP (1) JP4556463B2 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122082A (en) * 2006-11-08 2008-05-29 Optoquest Co Ltd Reflection type double-refractive index measuring instrument
JP2010509594A (en) * 2006-11-03 2010-03-25 ヴォルカノ コーポレイション Method and apparatus for sensing specimen
WO2010100766A1 (en) 2009-03-04 2010-09-10 有限会社グローバルファイバオプティックス Optical rotation measuring device and optical rotation measuring method
WO2011145652A1 (en) 2010-05-19 2011-11-24 塩野義製薬株式会社 Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
WO2012070646A1 (en) * 2010-11-26 2012-05-31 株式会社グローバルファイバオプティックス Optical rotation measurement device, optical rotation measurement method that can be used in optical rotation measurement system, optical rotation measurement optical system, and sample cell for optical rotation measurement
WO2012070465A1 (en) * 2010-11-26 2012-05-31 株式会社グローバルファイバオプティックス Optical rotation measurement device, polarization conversion optical system that can be used for optical rotation measurement, and method for measuring optical rotation in optical rotation measurement system using said polarization conversion optical system
CN102650595A (en) * 2011-02-24 2012-08-29 日立电线株式会社 Optical ingredient-measuring apparatus
WO2013094362A1 (en) * 2011-12-19 2013-06-27 ソニー株式会社 Measurement device, measurement method, program, and recording medium
WO2013179140A2 (en) 2012-05-29 2013-12-05 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US10238367B2 (en) 2012-12-13 2019-03-26 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US10724082B2 (en) 2012-10-22 2020-07-28 Bio-Rad Laboratories, Inc. Methods for analyzing DNA
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233583A (en) * 1995-12-11 1996-09-13 Hitachi Ltd Optical fiber coil
JP2001004538A (en) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd Apparatus and method for measuring medium
JP2001337035A (en) * 2000-05-30 2001-12-07 Japan Science & Technology Corp Measuring instrument
JP2002131225A (en) * 2000-10-24 2002-05-09 Univ Niigata Method and apparatus for anisotropic analysis
JP2002318169A (en) * 2001-01-12 2002-10-31 Hewlett Packard Co <Hp> Measurement method for optical characteristic of retarding element
JP2003524758A (en) * 1998-09-11 2003-08-19 ジョセフ エイ. イザット, Interferometer for optical coherence area reflectometry and optical coherence tomography using reciprocal optics
JP2003254901A (en) * 2002-02-28 2003-09-10 Japan Science & Technology Corp Reflection type blood sugar measuring instrument using low coherent light interferometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233583A (en) * 1995-12-11 1996-09-13 Hitachi Ltd Optical fiber coil
JP2003524758A (en) * 1998-09-11 2003-08-19 ジョセフ エイ. イザット, Interferometer for optical coherence area reflectometry and optical coherence tomography using reciprocal optics
JP2001004538A (en) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd Apparatus and method for measuring medium
JP2001337035A (en) * 2000-05-30 2001-12-07 Japan Science & Technology Corp Measuring instrument
JP2002131225A (en) * 2000-10-24 2002-05-09 Univ Niigata Method and apparatus for anisotropic analysis
JP2002318169A (en) * 2001-01-12 2002-10-31 Hewlett Packard Co <Hp> Measurement method for optical characteristic of retarding element
JP2003254901A (en) * 2002-02-28 2003-09-10 Japan Science & Technology Corp Reflection type blood sugar measuring instrument using low coherent light interferometer

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
JP2010509594A (en) * 2006-11-03 2010-03-25 ヴォルカノ コーポレイション Method and apparatus for sensing specimen
JP2013210374A (en) * 2006-11-03 2013-10-10 Volcano Corp Method and device for sensing specimen
JP2008122082A (en) * 2006-11-08 2008-05-29 Optoquest Co Ltd Reflection type double-refractive index measuring instrument
US11350906B2 (en) 2007-07-12 2022-06-07 Philips Image Guided Therapy Corporation OCT-IVUS catheter for concurrent luminal imaging
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US20120071738A1 (en) * 2009-03-04 2012-03-22 Global Hero Systems, Inc. Methodology and equipment of optical rotation measurements
JPWO2010100766A1 (en) * 2009-03-04 2012-09-06 株式会社グローバルファイバオプティックス Optical rotation measuring device and optical rotation measuring method
WO2010100766A1 (en) 2009-03-04 2010-09-10 有限会社グローバルファイバオプティックス Optical rotation measuring device and optical rotation measuring method
EP2573544A1 (en) * 2010-05-19 2013-03-27 Shionogi & Co., Ltd. Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
WO2011145652A1 (en) 2010-05-19 2011-11-24 塩野義製薬株式会社 Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
EP2573544A4 (en) * 2010-05-19 2014-01-22 Shionogi & Co Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
US8922760B2 (en) 2010-05-19 2014-12-30 Global Fiberoptics, Ltd. Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
WO2012070465A1 (en) * 2010-11-26 2012-05-31 株式会社グローバルファイバオプティックス Optical rotation measurement device, polarization conversion optical system that can be used for optical rotation measurement, and method for measuring optical rotation in optical rotation measurement system using said polarization conversion optical system
WO2012070646A1 (en) * 2010-11-26 2012-05-31 株式会社グローバルファイバオプティックス Optical rotation measurement device, optical rotation measurement method that can be used in optical rotation measurement system, optical rotation measurement optical system, and sample cell for optical rotation measurement
JPWO2012070646A1 (en) * 2010-11-26 2014-05-19 株式会社グローバルファイバオプティックス Optical rotation measurement device, optical rotation measurement method usable in optical rotation measurement system, optical rotation measurement optical system, sample cell for optical rotation measurement
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US8730481B2 (en) 2011-02-24 2014-05-20 Hitachi Metals, Ltd. Sagnac optical ingredient-measuring apparatus with circular polarizers in parallel
JP2012173261A (en) * 2011-02-24 2012-09-10 Hitachi Cable Ltd Optical component measuring device
CN102650595A (en) * 2011-02-24 2012-08-29 日立电线株式会社 Optical ingredient-measuring apparatus
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
WO2013094362A1 (en) * 2011-12-19 2013-06-27 ソニー株式会社 Measurement device, measurement method, program, and recording medium
JP2013126509A (en) * 2011-12-19 2013-06-27 Sony Corp Measuring apparatus, measuring method, program, and recording medium
US9867559B2 (en) 2011-12-19 2018-01-16 Sony Corporation Measurement device, measurement method, program and recording medium
CN103987316A (en) * 2011-12-19 2014-08-13 索尼公司 Measurement device, measurement method, program, and recording medium
WO2013179140A3 (en) * 2012-05-29 2014-04-17 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method
WO2013179140A2 (en) 2012-05-29 2013-12-05 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US11864870B2 (en) 2012-10-05 2024-01-09 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US11510632B2 (en) 2012-10-05 2022-11-29 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US11890117B2 (en) 2012-10-05 2024-02-06 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US10724082B2 (en) 2012-10-22 2020-07-28 Bio-Rad Laboratories, Inc. Methods for analyzing DNA
US10238367B2 (en) 2012-12-13 2019-03-26 Volcano Corporation Devices, systems, and methods for targeted cannulation
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
US11892289B2 (en) 2012-12-20 2024-02-06 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US11141131B2 (en) 2012-12-20 2021-10-12 Philips Image Guided Therapy Corporation Smooth transition catheters
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US11253225B2 (en) 2012-12-21 2022-02-22 Philips Image Guided Therapy Corporation System and method for multipath processing of image signals
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US11786213B2 (en) 2012-12-21 2023-10-17 Philips Image Guided Therapy Corporation System and method for multipath processing of image signals
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics

Also Published As

Publication number Publication date
JP4556463B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4556463B2 (en) Birefringence measuring device
JP4842930B2 (en) Optical interrogation device for reducing parasitic reflection and method for removing parasitic reflection
US20070030551A1 (en) Imaging polarimetry
CN107462149B (en) Phase-shift interferometry system and wave plate phase-shift method thereof
WO2010100766A1 (en) Optical rotation measuring device and optical rotation measuring method
JP2001356072A (en) Pretilt angle detection method and apparatus
JP3844222B2 (en) Birefringence measuring device
US8730481B2 (en) Sagnac optical ingredient-measuring apparatus with circular polarizers in parallel
EP2610665B1 (en) Depolarizer and circular dichroism spectrometer using the same
KR100293008B1 (en) Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
JP5374762B2 (en) Reflective birefringence measuring device
US20020159069A1 (en) Optical characterization of retarding devices
JP2013231707A (en) Circular dichroism measuring method and circular dichroism measuring device
TW200928348A (en) Device for synchronous measurement of optical rotation angle and phase delay and method thereof
JP2004198286A (en) Angle-of-rotation measuring apparatus
Mukherjee et al. Implementation of a complete Mueller matrix polarimeter using dual photoelastic modulators and rotating wave plates
JPH06109623A (en) Method and device for measuring birefringence quantity
JP2004279380A (en) Angle of rotation measuring instrument
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
Arteaga et al. Mueller Matrix Imaging
US7965395B2 (en) Optical axis orientation measuring device, optical axis orientation measuring method, spherical surface wave device manufacturing device, and spherical surface wave device manufacturing method
JP2009085887A (en) Measuring device and method
JP2009122152A (en) Method of analyzing polarization
TWI688754B (en) Common optical path heterodyne micro-polar rotation measuring meter and method
JP3787344B2 (en) Parameter detection method and detection apparatus for liquid crystal element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20090518

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees