JP2005274363A - Radio location detection system - Google Patents

Radio location detection system Download PDF

Info

Publication number
JP2005274363A
JP2005274363A JP2004088298A JP2004088298A JP2005274363A JP 2005274363 A JP2005274363 A JP 2005274363A JP 2004088298 A JP2004088298 A JP 2004088298A JP 2004088298 A JP2004088298 A JP 2004088298A JP 2005274363 A JP2005274363 A JP 2005274363A
Authority
JP
Japan
Prior art keywords
wireless
position detection
detection means
deviation
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088298A
Other languages
Japanese (ja)
Inventor
Takeshi Kato
猛 加藤
Atsushi Ogino
敦 荻野
Takaki Uta
隆基 雅樂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004088298A priority Critical patent/JP2005274363A/en
Publication of JP2005274363A publication Critical patent/JP2005274363A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for accurately detecting location in a radio location detection system by suppressing the effects of reflection wave of the radio location detection means and the variation of wave environment. <P>SOLUTION: With the radio location detection means detecting the location of a moving body having a radio function by a radio base station, deviation of radio location detection means from a predetermined location is measured, and by correcting the radio detection location using the deviation information, the most probable location of the moving body is derived. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、移動体の位置を高精度に検出するシステムに関する。   The present invention relates to a system for detecting the position of a moving body with high accuracy.

物流、倉庫、工場、プラント、輸送、流通、オフィス、公共施設、娯楽施設、防災、警備など多様な分野において、移動体(物品、人、車など)の位置に基づく情報管理やブロードバンド情報配信サービスの需要が高まっており、近年急速に普及した無線LANを利用した位置検出システムが実用化されている。   Information management and broadband information distribution services based on the location of mobile objects (goods, people, cars, etc.) in various fields such as logistics, warehouses, factories, plants, transportation, distribution, offices, public facilities, entertainment facilities, disaster prevention, and security In recent years, a position detection system using a wireless LAN that has rapidly spread has been put into practical use.

無線LAN位置検出システムは複数の無線LAN基地局から構成されている。無線LAN端末から複数の基地局に達する無線信号の到達時間または到達時間差を用いて三辺測量を行なうことにより端末の位置を検出する技術が知られている(非特許文献1)。この検出原理に基づき、端末から基地局への見通しが良く無線信号の直接波が達する場合には、実用上十分な位置精度を得ている。
他の無線LAN位置検出手段としては、測定時に端末が受けた受信信号強度を用いて求められる位置と無線信号の到達時間差等を用いて求められる位置とを用いて最終的な位置計測結果を求める方法が知られている(特許文献1)。
The wireless LAN position detection system is composed of a plurality of wireless LAN base stations. A technique for detecting the position of a terminal by performing triangulation using arrival times or arrival time differences of radio signals reaching a plurality of base stations from a wireless LAN terminal is known (Non-Patent Document 1). Based on this detection principle, when the direct wave of the radio signal reaches from the terminal to the base station with good visibility, the position accuracy is practically sufficient.
As another wireless LAN position detecting means, a final position measurement result is obtained by using a position obtained by using the received signal strength received by the terminal at the time of measurement and a position obtained by using a difference in arrival time of the wireless signal. A method is known (Patent Document 1).

荻野他、「マルチメディア、分散、協調とモバイル」、DICOMO2003シンポジウム論文集、569頁−572頁、平成15年6月4日Kanno et al., “Multimedia, Distributed, Collaboration and Mobile”, DICOMO2003 Symposium Proceedings, pp. 569-572, June 4, 2003

特開2000-244968号公報JP 2000-244968 A

三辺測量による無線LAN位置検出システムでは、反射体や障害物が多く直接波に多重反射波が重畳する場合や、端末から基地局への見通しが取れない(反射波しか届かない)場合には、反射波に基づいて三辺測量を行なうことになるため位置精度が劣化する問題があった。
受信信号強度による無線LAN位置検出手段では、対象エリアの電波環境が変化する場合、例えばレイアウトが変化する場合や移動体の増減が激しい場合には事前に学習した状況に対して直接波や反射波の状況が変動するため、位置精度が劣化する問題があった。
本発明の課題は、無線測量における反射波や見通し外の影響、信号強度分布における環境変化の影響による位置精度の劣化を抑制し、移動体の最尤位置を求めることにある。
In the wireless LAN position detection system based on trilateration, when there are many reflectors and obstacles and multiple reflected waves are superimposed on the direct wave, or when the line of sight from the terminal to the base station cannot be obtained (only the reflected wave reaches) However, there is a problem that the position accuracy is deteriorated because the three-side survey is performed based on the reflected wave.
In the wireless LAN position detection means based on the received signal strength, when the radio wave environment of the target area changes, for example, when the layout changes or when the number of moving objects increases or decreases rapidly, the direct wave or reflected wave against the situation learned in advance. Since the situation of fluctuates, there is a problem that the position accuracy deteriorates.
It is an object of the present invention to obtain the maximum likelihood position of a mobile object by suppressing degradation of position accuracy due to reflected waves in radio surveying, influence of out of sight, and influence of environmental changes in signal intensity distribution.

本発明は、無線機能を有する移動体の位置を無線基地局により検出する無線位置検出手段において、予め所定の位置に対する無線位置検出手段の偏位を測定しておき、この測定偏位情報を補間して一般の位置に対する偏位を推定し、実際に測定を行なう際に無線検出位置を補正することにより移動体の最尤位置を導出する。   According to the present invention, in a wireless position detecting means for detecting a position of a mobile body having a wireless function by a wireless base station, a deviation of the wireless position detecting means with respect to a predetermined position is measured in advance, and this measured deviation information is interpolated. Then, the deviation from the general position is estimated, and the maximum likelihood position of the moving object is derived by correcting the wireless detection position when actually performing the measurement.

また、無線測量と信号強度分布など異なる無線位置検出手段を併用することにより、両者の無線検出位置またはそれらの補正位置に基づいて移動体の最尤位置を計算する。計算の一手法としては、両者の検出誤差分散を係数として両者の位置の重み付け平均を行なう。さらに、この併用手段の最尤位置を最確値として測定偏位や信号強度分布などの参照情報を修正し、以後の移動体の最尤位置の導出に使用する。   Further, by using different wireless position detection means such as wireless surveying and signal intensity distribution, the maximum likelihood position of the moving object is calculated based on both wireless detection positions or their correction positions. As one method of calculation, weighted average of both positions is performed using both detection error variances as coefficients. Further, reference information such as measurement deviation and signal intensity distribution is corrected with the maximum likelihood position of the combined means as the most probable value, and is used for derivation of the maximum likelihood position of the moving object thereafter.

本発明によれば、無線測量による無線位置検出手段において多重反射波が有る場合や見通しが取れない場合、信号強度分布による無線位置検出手段において十分な位置密度で事前学習を行なえない場合でも、既知の測定偏位情報を用いて無線検出位置を補正することにより移動体の最尤位置を導出できるので、位置精度が向上する効果がある。   According to the present invention, when there are multiple reflected waves in the radio position detection means by radio surveying or when a line of sight cannot be obtained, the radio position detection means by signal intensity distribution is known even if pre-learning cannot be performed with sufficient position density. Since the maximum likelihood position of the moving body can be derived by correcting the wireless detection position using the measured deviation information, there is an effect of improving the position accuracy.

また、無線測量と信号強度分布など異なる無線位置検出手段を併用することにより、両者の無線検出位置と補正位置から更に精度良く移動体の最尤位置を導出することができる。無線測量は反射波に弱いが電波環境変化には追従できる長所があり、信号強度分布は反射波を含めた分布でありその影響は少ないが電波環境の変化に弱い短所があるが、両者の併用により互いに補完し合うことができる。
さらに、併用手段により求めた最尤位置に基づいて測定偏位情報や信号強度分布を修正することにより、これらの初期情報を補って確度を上げると共に、環境の時間的変化に追従することができる。
In addition, by using different wireless position detection means such as wireless surveying and signal intensity distribution, it is possible to derive the maximum likelihood position of the moving body with higher accuracy from both wireless detection positions and correction positions. Wireless surveying is weak against reflected waves, but has the advantage of being able to follow changes in the radio wave environment, and the signal intensity distribution is a distribution that includes the reflected wave, and its influence is small, but there are weak points that are vulnerable to changes in the radio wave environment, but the combination of both Can complement each other.
Furthermore, by correcting measurement deviation information and signal intensity distribution based on the maximum likelihood position obtained by the combination means, it is possible to supplement these initial information to improve accuracy and to follow temporal changes in the environment. .

以下、本発明の実施形態を図面を参照して説明する。
図1は、本発明の無線位置検出システムの構成図である。図1において無線位置検出システムは複数の無線LAN基地局50i(i=1,2,…,n)から構成されている。無線LAN基地局50iはネットワーク60によりサーバ70に接続されている。図1では無線位置検出システムが対象とする移動体の例として、台車10、作業者22が動かすフォークリフト20、人32が扱うカート30、歩行者40を挙げており、それぞれ無線機能である無線LAN端末11、21、31、41を有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a wireless position detection system of the present invention. In FIG. 1, the wireless position detection system includes a plurality of wireless LAN base stations 50 i (i = 1, 2,..., N). The wireless LAN base station 50 i is connected to the server 70 via the network 60. In FIG. 1, as an example of a moving object targeted by the wireless position detection system, a cart 10, a forklift 20 moved by an operator 22, a cart 30 handled by a person 32, and a pedestrian 40 are listed. Terminals 11, 21, 31, and 41 are included.

図10に、本発明で用いられる無線LAN基地局50とサーバ70の構成図を示す。無線LAN基地局は、無線LAN端末からの無線信号を受信する受信部と、その受信結果をネットワーク60を介してサーバ70へ送信するための通信インターフェースを備える。サーバ70は、受信結果を無線LAN基地局から受信するための通信インタフェースと、本発明の実施例1−4で説明する各種のマップの少なくともいずれかを格納するメモリと、メモリを参照して位置計算を行う演算部とを備える。無線信号の到達時間または到達時間差を用いて位置計算を行うためには受信タイミングを検出する受信タイミング検出部が必要となるが、これは無線LAN基地局50とサーバ70のいずれか一方に備えればよい。無線LAN基地局に受信タイミング検出部を備える場合は、無線LAN基地局からサーバへ送信される受信結果は、ここで求められる受信タイミングとなる。一方、サーバ側に受信タイミング検出部を備える場合は、無線LAN基地局で受信された信号の波形データを上述の受信結果として無線LAN基地局からサーバへ送信するとよい。   FIG. 10 shows a configuration diagram of the wireless LAN base station 50 and the server 70 used in the present invention. The wireless LAN base station includes a receiving unit that receives a wireless signal from a wireless LAN terminal, and a communication interface for transmitting the reception result to the server 70 via the network 60. The server 70 includes a communication interface for receiving the reception result from the wireless LAN base station, a memory for storing at least one of various maps described in the embodiment 1-4 of the present invention, and a position referring to the memory. An arithmetic unit that performs calculation. In order to perform position calculation using the arrival time or arrival time difference of the radio signal, a reception timing detection unit for detecting the reception timing is required. This is provided in either the wireless LAN base station 50 or the server 70. That's fine. When the wireless LAN base station includes a reception timing detection unit, the reception result transmitted from the wireless LAN base station to the server is the reception timing obtained here. On the other hand, when a reception timing detection unit is provided on the server side, the waveform data of the signal received at the wireless LAN base station may be transmitted from the wireless LAN base station to the server as the above reception result.

実施例1では第1の無線位置検出手段として、無線LAN端末11、21、31、41から各基地局50iに達する無線信号の到達時間差に基づいて、サーバ40において三辺測量計算を行なうことにより無線LAN端末11、21、31、41の位置を求めている。基地局の位置ベクトルpAPiと到達時間差(ti-t0)、光速cから数式1に示す連立方程式を立てて、移動体の位置ベクトルpTの解を求めている。解は例えば、数式2に示す各連立方程式の誤差δTiにより、数式3に示すようにkTiを係数とする誤差分散δTi 2の総和を最小にするpTを求める最小二乗法により計算することができるが、他の簡便な計算方法を用いても良い。係数kTiは各基地局50iが捕捉した無線信号の信号強度、移動体の位置pTと基地局50i間の距離、反射波の有無による信号波形の良否などを考慮する重み付け係数であるが、簡単のためには定数としても良い。 In the first embodiment, as a first wireless position detection means, the server 40 performs a three-side survey calculation based on the arrival time difference of wireless signals reaching the respective base stations 50 i from the wireless LAN terminals 11, 21, 31, 41. Thus, the positions of the wireless LAN terminals 11, 21, 31, 41 are obtained. A simultaneous equation shown in Equation 1 is established from the position vector p APi of the base station, the arrival time difference (t i −t 0 ), and the speed of light c, and the solution of the position vector p T of the moving object is obtained. The solution is calculated by, for example, the least square method for obtaining p T that minimizes the sum of error variances δ Ti 2 having k Ti as a coefficient, as shown in Equation 3, using the error δ Ti of each simultaneous equation shown in Equation 2. However, other simple calculation methods may be used. The coefficient k Ti is a weighting coefficient that takes into account the signal strength of the radio signal captured by each base station 50 i , the distance between the position p T of the moving body and the base station 50 i , the quality of the signal waveform due to the presence or absence of a reflected wave, and the like. However, it may be a constant for simplicity.

Figure 2005274363
Figure 2005274363

Figure 2005274363
Figure 2005274363

Figure 2005274363
Figure 2005274363

図2は、実施例1の第1の無線位置検出手段の測定結果の説明図である。図2において、点100は移動体の真の位置、Ptrueは原点Oからの真の位置ベクトルを示している。点101は第1の無線位置検出手段による複数回の移動体の測定点、点100'は測定結果の平均値、σTは測定結果の標準偏差、pTは原点Oからの平均位置ベクトル、dTは真の位置ベクトルPtrueに対する平均位置ベクトルpTの偏位ベクトルを示している。σTは上記の連立方程式の解の誤差δTi、環境変化や無線位置検出手段の安定度などに依存する。第1の無線位置検出手段において反射波の影響が有る場合には、この影響下で三辺測量計算を行なうので測定結果分布の中心が真の位置から外れ、測定偏位dTが生じて位置精度の劣化要因と成り得る。しかし、位置が既知である地点において予め本発明で用いる無線信号による位置測定を行なうことにより、既知の実際の位置と測定結果の位置との差分である測定偏位dTの分布を実際の測定前に把握しておくことができる。 FIG. 2 is an explanatory diagram of a measurement result of the first wireless position detection unit according to the first embodiment. In FIG. 2, a point 100 indicates the true position of the moving object, and P true indicates a true position vector from the origin O. Point 101 is the measurement point of the mobile body by the first wireless position detection means multiple times, point 100 ′ is the average value of the measurement results, σ T is the standard deviation of the measurement results, p T is the average position vector from the origin O, d T represents the shift vector of the mean position vector p T to the true position vector P true. σ T depends on the error δ Ti of the solution of the above simultaneous equations, the environmental change, the stability of the wireless position detection means, and the like. If the influence of the reflected wave is present at the first wireless position detector, because under this influence perform trilateration calculation off the center of the measurement distribution from the true position, the position measurement deviation d T is generated It can be a deterioration factor of accuracy. However, advance by performing position measurement by radio signals used in the present invention, the distribution of the actual measurement of the measurement deviation d T is the difference between the known actual position and the position of the measurement results at the point position is known It can be grasped before.

図3は、実施例1の第1の無線位置検出手段の測定偏位マップの説明図である。移動体の位置検出対象エリア110に複数の無線LAN基地局111〜116を配置し、真の位置座標120に対する偏位dTの分布を測定し、測定偏位マップ130を得ている。測定偏位dTのマップ130は数式4に示すように真の位置ベクトルPtrueに対する分布fで表わすことができ、同様にして数式5に示すように測定誤差(標準偏差)σTを分布gで表わすことができる。実際の測定時に測量計算結果としてpTが得られれば、測定偏位マップ130により偏位dTと誤差σTを知ることができる。なお、図3では図面の簡単のためにマップを単純化して描いているが、実際の環境において反射物や障害物が有る場合にはその周囲の測定点を増やし、逆に見通しが良く反射波が少ない場合には測定点を減らし、測定偏位マップの粗密を調整するとよい。なお、測定偏位マップ130はサーバ40に格納されたデータベースであり、真の位置座標120と、その座標に対する測定結果または偏位と、誤差とが対応付けて記載されている。 FIG. 3 is an explanatory diagram of a measurement deviation map of the first wireless position detection unit according to the first embodiment. The position detection target area 110 of the mobile arranging a plurality of wireless LAN base station 111 to 116, measuring the distribution of the deflection d T for true position coordinates 120, to obtain a measurement deviation maps 130. A map 130 of the measurement deviation d T can be expressed by a distribution f with respect to the true position vector P true as shown in Equation 4, and similarly, a measurement error (standard deviation) σ T as a distribution g as shown in Equation 5. It can be expressed as If p T is obtained as a survey calculation result during actual measurement, the deviation d T and the error σ T can be known from the measurement deviation map 130. In Fig. 3, the map is simplified to simplify the drawing, but if there are reflections and obstacles in the actual environment, the surrounding measurement points are increased, and conversely, the reflected wave has good visibility. When there are few, it is good to reduce the number of measurement points and adjust the density of the measurement deviation map. The measurement deviation map 130 is a database stored in the server 40, and describes the true position coordinates 120, measurement results or deviations with respect to the coordinates, and errors.

Figure 2005274363
Figure 2005274363

Figure 2005274363
Figure 2005274363

図4は、実施例1の第1の無線位置検出手段における移動体の最尤位置の導出方法の説明図である。図3で説明したように、図4において真の位置座標系120の所定の位置に対する測定偏位マップ130は予め既知である。点200は無線信号を用いた実際の測定で得られた無線検出位置、pTは原点Oからの検出位置のベクトルを示している。検出位置ベクトルpTを測定偏位マップ130と照合して補間することにより、測定偏位マップ130上にpTの座標131を位置付けることができ、この座標131から測定偏位dTを求めて(pT-dT)を計算することにより、真の位置座標系120における座標121すなわち最尤位置200'を導出することができる。 FIG. 4 is an explanatory diagram of a method for deriving the maximum likelihood position of the moving object in the first wireless position detection unit of the first embodiment. As described with reference to FIG. 3, the measurement deviation map 130 for a predetermined position of the true position coordinate system 120 in FIG. 4 is known in advance. Point 200 is a wireless detection position obtained by the actual measurement using a radio signal, p T denotes the vector of the detected position from the origin O. By interpolating the detected position vector p T matching to the measured deviation map 130, the measurement deviation map 130 can position the coordinates 131 of the p T on, seeking measurement deviation d T from the coordinates 131 By calculating (p T −d T ), the coordinate 121 in the true position coordinate system 120, that is, the maximum likelihood position 200 ′ can be derived.

なお、測定偏位マップには、測定結果として求められる可能性のある位置の全てに対応する測定偏位をくまなく記載しておく必要はない。測定結果として求められた位置に対応する測定偏位の値が測定偏位マップにない場合は、測定偏位マップに格納されている位置のうち測定位置に近い物を選び、その測定偏位を用いるようにするとよい。その際、最も近い1点を測定偏位マップから選んでその測定偏位をそのまま用いても、複数の位置を選んでその測定偏位を重み付け平均する、複数の位置から直線乃至近似曲線により補間するなどして用いてもよい。   In the measurement deviation map, it is not necessary to describe all measurement deviations corresponding to all the positions that may be obtained as measurement results. If the measurement deviation value corresponding to the position obtained as a measurement result is not in the measurement deviation map, select an object close to the measurement position from the positions stored in the measurement deviation map, and enter the measurement deviation. It should be used. At that time, even if the nearest one point is selected from the measurement deviation map and the measurement deviation is used as it is, a plurality of positions are selected and the measurement deviation is weighted and averaged. You may use it.

したがって、実施例1によれば、所定の位置に対する測定偏位マップ130を予め測定しておき、このマップ130を補間して検出位置ベクトルpTに対する測定偏位dTを推定し、これによりpTを補正して最尤位置(pT-dT)を求めることにより、精度良く移動体の位置を計算することができる。位置精度は測定偏位マップ130を詳細化することによりさらに改善することができるが、これは無線位置検出システムの用途、環境、要求精度、マップ作成コストなどを考慮して行なえば良い。 Therefore, according to the first embodiment, the measurement deviation map 130 for a predetermined position is measured in advance, and the map 130 is interpolated to estimate the measurement deviation d T with respect to the detected position vector p T , thereby obtaining p By correcting T and obtaining the maximum likelihood position (p T -d T ), the position of the moving object can be calculated with high accuracy. The position accuracy can be further improved by refining the measurement deviation map 130, but this may be performed in consideration of the use, environment, required accuracy, map creation cost, etc. of the wireless position detection system.

本発明の実施例2では、実施例1の図1と同様の無線位置検出システムにおいて、 第2の無線位置検出手段として、複数の基地局50i(i=1,2,…,n)の信号強度マップを予め作成しておき、測定時に無線LAN端末11、21、31、41が受信した基地局信号強度をマップと照合することにより位置を求めている。位置計算は無線LAN端末11、21、31、41において行なえるが、計算負荷が重い場合には信号強度情報をネットワーク60を介してサーバ70に送り、サーバ70において位置計算を行なっても良い。 In the second embodiment of the present invention, in the same wireless position detection system as in FIG. 1 of the first embodiment, as the second wireless position detection means, a plurality of base stations 50 i (i = 1, 2,..., N) A signal strength map is prepared in advance, and the position is obtained by comparing the base station signal strength received by the wireless LAN terminals 11, 21, 31, and 41 with the map at the time of measurement. The position calculation can be performed in the wireless LAN terminals 11, 21, 31, and 41. However, if the calculation load is heavy, the signal strength information may be sent to the server 70 via the network 60 and the position calculation may be performed in the server 70.

図5は、実施例2の第2の無線位置検出手段の信号強度マップの説明図である。位置検出対象エリア110に複数の無線LAN基地局111〜116を配置し、真の位置座標120に対する各基地局からの信号強度の分布を測定し、信号強度マップ140を得ている。信号強度マップ140は数式5に示すように各基地局50iごとに信号強度Siに対する等高線hiで表わすことができる。図5には一例として基地局111に対するマップだけを示しており、図面の簡単のためにマップを単純化して描いているが、実際の環境において反射物や障害物が有る場合には信号強度の変動が大きいため、その周囲の測定点を増やしている。なお、信号強度マップ140には、真の位置座標と、その座標において測定した信号強度とを記載しておき、等高線はその信号強度から直線または近似曲線により補間して求めるか、または予め求めた等高線を信号強度マップとして用いても良い。 FIG. 5 is an explanatory diagram of a signal intensity map of the second wireless position detection unit according to the second embodiment. A plurality of wireless LAN base stations 111 to 116 are arranged in the position detection target area 110, the distribution of signal intensity from each base station with respect to the true position coordinate 120 is measured, and a signal intensity map 140 is obtained. The signal strength map 140 can be represented by contour lines h i with respect to the signal strength S i for each base station 50 i as shown in Equation 5. FIG. 5 shows only a map for the base station 111 as an example, and the map is simplified for the sake of simplicity of the drawing. However, in the actual environment, when there is a reflector or an obstacle, the signal intensity is shown. Since the fluctuation is large, the surrounding measurement points are increased. The signal intensity map 140 describes the true position coordinates and the signal intensity measured at the coordinates, and the contour lines are obtained by interpolation from the signal intensity by a straight line or an approximate curve, or obtained in advance. Contour lines may be used as a signal intensity map.

Figure 2005274363
Figure 2005274363

図6は、実施例2の第2の無線位置検出手段による位置検出方法の説明図である。実際の測定時に各基地局50iに対する信号強度Siが得られれば、これを既知の信号強度マップと照合して補間することにより信号強度Siに対する等高線140を求め、移動体の位置210を計算している。例えば一方法として、複数の等高線140に対する位置210からの距離に基づいて最小二乗法により計算することができる。すなわち、数式7に示すように位置210を示す位置ベクトルpSと位置210から等高線140に降ろした垂線の位置ベクトルh⊥iとの誤差をδSiとして、数式8に示すようにkSiを係数とする誤差分散δSi 2の総和を最小にするpSを求める。係数kSiは無線信号の信号強度、移動体の位置pSと基地局50i間の距離などによる重み付け係数であるが、簡単には定数として良い。なお、最小二乗法以外の簡易計算方法を用いても良い。 FIG. 6 is an explanatory diagram of a position detection method by the second wireless position detection unit of the second embodiment. As long the actual obtained signal intensity S i for each base station 50 i to the time of measurement, which determine the contour lines 140 to the signal strength S i by matching to the interpolation with the known signal strength map, the location 210 of the mobile I'm calculating. For example, as one method, the calculation can be performed by the least square method based on the distance from the position 210 to the plurality of contour lines 140. That is, the error between the position vector p S indicating the position 210 and the position vector h ⊥i of the perpendicular drawn from the position 210 to the contour line 140 as shown in Equation 7 is δ Si , and k Si is a coefficient as shown in Equation 8. P S that minimizes the sum of error variances δ Si 2 is obtained. The coefficient k Si is a weighting coefficient that depends on the signal strength of the radio signal, the distance between the position p S of the moving object and the base station 50 i , etc., but can be simply a constant. A simple calculation method other than the least square method may be used.

Figure 2005274363
Figure 2005274363

Figure 2005274363
Figure 2005274363

実施例2において、既知の信号強度マップ140を用いて所定の位置で予め位置検出を行なうことにより、実施例1と同様に真の位置座標に対する測定偏位と測定誤差を記したデータベース、すなわち測定偏位マップを得ることができる。数式9に示すように、測定偏位dSのマップを真の位置ベクトルPtrueに対する分布uで表わすことができ、数式10に示すように測定誤差(標準偏差)σを分布vで表わすことができる。測定偏位dSや測定誤差σは、信号強度マップ140の密度や補間誤差、数式7の解の誤差δSi、環境変化などに依存するが、必要に応じて反射物や障害物の周囲のマップ密度を変えて良い。 In Example 2, by performing position detection in advance at a predetermined position using a known signal intensity map 140, a database describing measurement deviations and measurement errors with respect to true position coordinates as in Example 1, that is, measurement An excursion map can be obtained. As shown in Equation 9, a map of measurement deviation d S can be represented by a distribution u with respect to a true position vector P true , and a measurement error (standard deviation) σ S can be represented by a distribution v as shown in Equation 10. Can do. The measurement deviation d S and measurement error σ S depend on the density and interpolation error of the signal intensity map 140, the error δ Si of the solution of Equation 7, the environmental change, etc., but if necessary, around the reflector or obstacle You can change the map density.

Figure 2005274363
Figure 2005274363

Figure 2005274363
Figure 2005274363

実施例2によれば、第2の無線位置検出手段においても、実際の測定時に信号強度マップ140により位置ベクトルpSを計算し、これを数式9に示す測定偏位マップと照合して補間することにより測定偏位dSを求め、移動体の最尤位置を導出することができる。なお、第2の無線位置検出手段では、数式9に示す測定偏位マップに基づいて数式6に示す信号強度の等高線hiを修正し、予め測定偏位マップを信号強度マップに反映させて繰り入れることができる。これにより、測定後の最尤位置の導出計算を省略することもできる。 According to the second embodiment, also in the second wireless position detection means, the position vector p S is calculated by the signal strength map 140 at the time of actual measurement, and this is compared with the measurement deviation map shown in Equation 9 and interpolated. Thus, the measurement deviation d S can be obtained, and the maximum likelihood position of the moving object can be derived. In the second wireless position detection means, correct the contour h i of the signal intensity shown in Equation 6 based on the measured deviation map shown in Equation 9, to reflect the previously measured deviation maps the signal strength map Kuriireru be able to. Thereby, the calculation of deriving the maximum likelihood position after the measurement can be omitted.

本発明の実施例3では、実施例1の図1と同様の無線位置検出システムにおいて、第1の無線位置検出手段(無線測量)と第2の無線位置検出手段(信号強度)を併用している。第1の無線位置検出手段において予め所定の位置で測定した測定偏位マップを用いて移動体の位置を補正し、第2の無線位置検出手段において予め測定した信号強度マップまたは測定偏位マップを繰り込んだ信号強度マップを用いて移動体の位置を求め、第1の無線位置検出手段により求めた位置と第2の無線位置検出手段により求めた位置の双方から移動体の最尤位置を導出している。   In the third embodiment of the present invention, in the same wireless position detection system as in FIG. 1 of the first embodiment, the first wireless position detection means (wireless surveying) and the second wireless position detection means (signal strength) are used in combination. Yes. The position of the moving body is corrected using the measurement deviation map measured in advance at a predetermined position in the first wireless position detection means, and the signal intensity map or measurement deviation map measured in advance in the second wireless position detection means The position of the moving object is obtained using the signal strength map that has been transferred, and the maximum likelihood position of the moving object is derived from both the position obtained by the first wireless position detecting means and the position obtained by the second wireless position detecting means. doing.

図7は、第1及び第2の無線位置検出手段による移動体の最尤位置の導出方法の説明図である。図7において、点200は第1の無線位置検出手段による移動体の測量位置、pTは原点Oからの測量位置のベクトル、点200'は測定偏位dTによる補正位置を示している。点210は第2の無線位置検出手段による移動体の検出位置、pSは原点Oからの検出位置のベクトルを示している。点220は、数式11に示すように(pT-dT)とpSを係数wT、wSを用いて重み付け平均を行なうことにより導出した移動体の最尤位置であり、Pは原点Oに対する最尤位置のベクトルを示している。wT=wS=1の場合は単純平均である。数式12に示すように、係数wT、wSとして数式5に説明した測定誤差σTと数式10に説明した測定誤差σSの分散の逆数を採って、重み付け平均を行なうことができる。これにより、第1と第2の無線位置検出手段のうち測定誤差が小さい方の検出位置に重みを付け、さらに確度の高い最尤位置Pを求めることができる。 FIG. 7 is an explanatory diagram of a method for deriving the maximum likelihood position of the moving object by the first and second wireless position detecting means. In FIG. 7, a point 200 indicates a survey position of the moving body by the first wireless position detection means, p T indicates a vector of the survey position from the origin O, and a point 200 ′ indicates a correction position by the measurement deviation d T. Point 210 indicates the detection position of the moving body by the second wireless position detection means, and p S indicates the vector of the detection position from the origin O. Point 220 is the maximum likelihood position of the moving object derived by performing weighted averaging of (p T -d T ) and p S using coefficients w T and w S as shown in Equation 11, and P is the origin A vector of maximum likelihood positions for O is shown. When w T = w S = 1, it is a simple average. As shown in Expression 12, weighted average can be performed by taking the reciprocal of the variance of the measurement error σ T described in Expression 5 and the measurement error σ S described in Expression 10 as the coefficients w T and w S. As a result, it is possible to weight the detection position with the smaller measurement error between the first and second wireless position detection means and obtain the maximum likelihood position P with higher accuracy.

Figure 2005274363
Figure 2005274363

Figure 2005274363
Figure 2005274363

実施例3によれば、性質の異なる第1の無線位置検出手段と第2の無線位置検出手段を互いに補完的に併用することにより位置精度を向上させることができる。無線測量による第1の無線位置検出手段では、直接波に反射波が重畳する場合や見通しが取れない場合に測量精度が劣化するが、反射物や障害物のレイアウトが或る程度変更しても精度は比較的安定に保たれる。一方、信号強度による第2の無線位置検出手段では、レイアウトが変更されると信号強度マップが現状と合わなくなり精度が劣化するが、反射波の影響は予め信号強度マップに反映されている。したがって、両者は互いに一長一短があるが、併用することにより互いの長所を引き出し短所を補って、反射波とレイアウト変更の双方の影響を押さえて精度良く移動体の位置を導出することができる。   According to the third embodiment, the position accuracy can be improved by using the first wireless position detecting unit and the second wireless position detecting unit having different properties in a complementary manner. In the first wireless position detection means by radio surveying, the accuracy of surveying deteriorates when the reflected wave is superimposed on the direct wave or when the line of sight cannot be obtained, but even if the layout of the reflector or obstacle is changed to some extent The accuracy is kept relatively stable. On the other hand, in the second wireless position detection means based on the signal strength, if the layout is changed, the signal strength map does not match the current situation and the accuracy deteriorates, but the influence of the reflected wave is reflected in the signal strength map in advance. Therefore, both have advantages and disadvantages, but by using them together, it is possible to draw out the advantages of each other and compensate for the disadvantages, and to accurately determine the position of the moving body while suppressing the influence of both reflected waves and layout changes.

実施例4では、実施例3において第1及び第2の無線位置検出手段を併用して求めた移動体の最尤位置に基づいて、測定偏位マップと信号強度マップを修正している。図8は第1の無線位置検出手段における測定偏位マップの修正方法の説明図、図9は第2の無線位置検出手段における信号強度マップの修正方法の説明図である。   In the fourth embodiment, the measurement deviation map and the signal intensity map are corrected based on the maximum likelihood position of the moving object obtained by using the first and second wireless position detection means in the third embodiment. FIG. 8 is an explanatory diagram of a correction method of the measurement deviation map in the first radio position detection means, and FIG. 9 is an explanatory diagram of a correction method of the signal intensity map in the second radio position detection means.

図8において、点200(pT)は実施例1と同様に第1の無線位置検出手段の検出位置、点200'は測定偏位dTによる補正位置である。点220(P)は実施例3で第1及び第2の無線位置検出手段から求めた最尤位置、121'は真の位置座標系120における最尤位置の座標である。実施例4では、最尤位置Pを最確値として測定偏位dTをdT'=pT-Pに補正し、pT(座標131')に対して測定偏位dT'が得られるように、数式3に示した元の測定偏位マップ130を新しい測定偏位マップ130'に修正している。例えば、真の座標系120上での座標121'の相対位置関係と、測定偏位マップ130'上での座標131'の相対位置関係とが整合するように、pTの周囲の測定偏位マップ130を変形させている。 In FIG. 8, the point 200 (p T ) is the detection position of the first wireless position detection means, and the point 200 ′ is the correction position by the measurement deviation d T as in the first embodiment. Point 220 (P) is the maximum likelihood position obtained from the first and second wireless position detection means in the third embodiment, and 121 ′ is the coordinate of the maximum likelihood position in the true position coordinate system 120. In Example 4, the measurement deviation d T is corrected to d T '= p T -P with the maximum likelihood position P as the most probable value, and the measurement deviation d T ' is obtained with respect to p T (coordinate 131 '). Thus, the original measurement deviation map 130 shown in Equation 3 is modified to a new measurement deviation map 130 ′. For example, the measurement displacement around p T so that the relative position relationship of the coordinate 121 ′ on the true coordinate system 120 and the relative position relationship of the coordinate 131 ′ on the measurement displacement map 130 ′ match. The map 130 is deformed.

図9において、点210(pS)は実施例2と同様に第2の無線位置検出手段の検出位置、点220(P)は実施例3の最尤位置である。実施例4では、信号強度マップに基づく検出位置がpSでなく最尤位置Pになるように、数式6に示した元の信号強度マップ140を新しい信号強度マップ140'に修正している。例えば、数式7に示した誤差δSiがpSの代わりにPに対して保存されるように、Pの周囲の等高線hiを変形させている。 In FIG. 9, the point 210 (p S ) is the detection position of the second wireless position detection means as in the second embodiment, and the point 220 (P) is the maximum likelihood position in the third embodiment. In the fourth embodiment, the original signal strength map 140 shown in Formula 6 is modified to a new signal strength map 140 ′ so that the detection position based on the signal strength map is not the p S but the maximum likelihood position P. For example, as the error [delta] Si shown in Equation 7 is stored for P instead of p S, which deforms the contour h i of the surrounding P.

実施例4によれば、第1の無線位置検出手段の測定偏位マップと第2の無線位置検出手段の信号強度マップの確度を向上することができ、測定環境が変化しても双方のマップが更新されていくので、高い位置精度を維持することができる。
以上、実施例1、2、3、4により本発明の実施形態について説明したように、予め所定の位置に対して移動体の位置を無線位置検出手段により測定した際の偏位を求めておき、その測定偏位情報から一般の位置に対する偏位を推定して無線検出位置を補正することにより、移動体の位置を高精度に検出することができる。また、複数の異なる無線位置検出手段を補完的に組み合わせることによりさらに位置精度を向上することができる上、こうして求めた移動体の最尤位置に基づいて初期の測定偏位情報を更新することにより環境変化に対しても位置精度を保つことができる。
According to the fourth embodiment, the accuracy of the measurement deviation map of the first wireless position detection means and the signal strength map of the second wireless position detection means can be improved, and both maps even if the measurement environment changes Since the position is updated, high positional accuracy can be maintained.
As described above, as described in the first, second, third, and fourth embodiments of the present invention, the deviation when the position of the moving body is measured by the wireless position detecting unit with respect to a predetermined position is obtained in advance. The position of the moving body can be detected with high accuracy by correcting the wireless detection position by estimating the deviation relative to the general position from the measured deviation information. Further, it is possible to further improve the position accuracy by complementarily combining a plurality of different wireless position detection means, and by updating the initial measurement deviation information based on the maximum likelihood position of the moving body thus obtained. Position accuracy can be maintained even with environmental changes.

本発明のこのような効果は、無線位置検出手段の測定偏位を補正することにより生まれるものであり、特定の移動体、無線通信機能、無線位置検出手段の構成に依拠するものではない。
移動体としては、実施例1に示した四輪車、フォークリフト、カート、歩行者の他、二輪車、三輪車、キャタピラ車、自動車、電動車、手押し車、自転車、車椅子、カート、ロボット、無線操縦機、動物など、多岐に亘る。
Such an effect of the present invention is generated by correcting the measurement deviation of the wireless position detection means, and does not depend on the configuration of a specific mobile body, wireless communication function, or wireless position detection means.
As the moving body, in addition to the four-wheeled vehicle, forklift, cart, pedestrian shown in Example 1, two-wheeled vehicle, tricycle, caterpillar vehicle, automobile, electric vehicle, wheelbarrow, bicycle, wheelchair, cart, robot, radio pilot , Animals and so on.

無線機能として、実施例1、2、3、4では無線LANをベースに説明してきたが、移動体通信、超広帯域無線(UWB)、小電力無線、微弱無線、準ミリ波、ミリ波、光LANなども位置検出用途に応じて本発明の対象と成り得る。また、無線位置検出手段として三辺測量と信号強度マップによる方法を採っていたが、無線信号の到来角度による三角測量、無線信号間の干渉を利用する手段も採り得る。また、位置検出を行なう空間は、実施例に示した二次元平面だけでなく、一次元の直線または曲線、曲面、三次元空間、これらの組合せが対象になる場合がある。   As the wireless function, the first, second, third, and fourth embodiments have been described based on the wireless LAN. However, the mobile communication, the ultra wideband wireless (UWB), the low power wireless, the weak wireless, the quasi-millimeter wave, the millimeter wave, and the light A LAN or the like can also be an object of the present invention depending on the position detection application. Further, although the method based on the triangulation and the signal intensity map has been adopted as the wireless position detecting means, it is also possible to adopt a means that utilizes triangulation based on the arrival angle of the wireless signal and interference between the wireless signals. The space for position detection is not limited to the two-dimensional plane shown in the embodiment, but may be a one-dimensional straight line or curve, a curved surface, a three-dimensional space, or a combination thereof.

本発明による移動体位置検出システムは、物流、倉庫、工場、輸送などの分野においてフォークリフト、搬送車、輸送機の位置検出に適用することができ、パレット、コンテナ、物品の管理システムを構築することができる。   The mobile body position detection system according to the present invention can be applied to the position detection of forklifts, transport vehicles, and transport machines in the fields of logistics, warehouses, factories, transportation, etc., and constructs a management system for pallets, containers, and articles. Can do.

また、流通、オフィス、公共施設、娯楽施設、防災、警備などの分野におけるスタッフ、作業員、機器などの管理システム、来客者の動線解析や位置情報サービスに適用することができる。   It can also be applied to management systems for staff, workers, equipment, etc. in the fields of distribution, offices, public facilities, entertainment facilities, disaster prevention, security, etc., flow analysis of visitors, and location information services.

本発明の実施形態の無線位置検出システムの構成図である。It is a block diagram of the radio | wireless position detection system of embodiment of this invention. 本発明の実施形態の第1の無線位置検出手段における測定結果の説明図である。FIG. 6 is an explanatory diagram of measurement results in the first wireless position detection unit of the embodiment of the present invention. 本発明の実施形態の第1の無線位置検出手段における測定偏位マップの説明図である。FIG. 6 is an explanatory diagram of a measurement deviation map in the first wireless position detection unit of the embodiment of the present invention. 本発明の実施形態の第1の無線位置検出手段における移動体の最尤位置の導出方法の説明図である。FIG. 6 is an explanatory diagram of a method for deriving the maximum likelihood position of a moving object in the first wireless position detection unit of the embodiment of the present invention. 本発明の実施形態の第2の無線位置検出手段における信号強度マップの説明図である。7 is an explanatory diagram of a signal strength map in the second wireless position detection unit of the embodiment of the present invention. FIG. 本発明の実施形態の第2の無線位置検出手段における移動体の位置検出方法の説明図である。7 is an explanatory diagram of a position detection method for a moving body in the second wireless position detection means of the embodiment of the present invention. FIG. 本発明の実施形態の第1及び第2の無線位置検出手段による移動体の最尤位置の導出方法の説明図である。FIG. 6 is an explanatory diagram of a method for deriving the maximum likelihood position of a moving object by the first and second wireless position detecting means according to the embodiment of the present invention. 本発明の実施形態の第1の無線位置検出手段における測定偏位マップの修正方法の説明図である。FIG. 6 is an explanatory diagram of a method of correcting a measurement deviation map in the first wireless position detection unit of the embodiment of the present invention. 本発明の実施形態の第2の無線位置検出手段における信号強度マップの修正方法の説明図である。FIG. 6 is an explanatory diagram of a signal intensity map correction method in the second wireless position detection unit of the embodiment of the present invention. 本発明の実施形態の基地局及びサーバ装置の構成図である。It is a block diagram of the base station and server apparatus of embodiment of this invention.

符号の説明Explanation of symbols

10、20、30、40:移動体、 11、21、31、41:無線端末、 50、51、52:無線基地局、 60:ネットワーク、 70:サーバ、
120:真の位置座標、 130:第1の無線検出手段の測定偏位マップ、 140:第2の無線検出手段の信号強度マップ、 200:第1の無線検出手段の検出位置、 200':第1の無線検出手段の最尤位置、 210:第2の無線検出手段の最尤位置、 220:第1及び第2の無線検出手段の最尤位置、 130': 第1の無線検出手段の修正測定偏位マップ、 140': 第2の無線検出手段の修正信号強度マップ。
10, 20, 30, 40: Mobile, 11, 21, 31, 41: Wireless terminal, 50, 51, 52: Wireless base station, 60: Network, 70: Server,
120: True position coordinates, 130: Measurement deviation map of the first wireless detection means, 140: Signal intensity map of the second wireless detection means, 200: Detection position of the first wireless detection means, 200 ′: First Maximum likelihood position of one wireless detection means 210: Maximum likelihood position of second wireless detection means 220: Maximum likelihood position of first and second wireless detection means 130 ': Correction of first wireless detection means Measurement deviation map, 140 ′: Modified signal strength map of the second radio detection means.

Claims (5)

無線機能を有する移動体の位置を無線基地局との間で送受信される無線信号を用いて検出する無線位置検出手段を有し、
予め測定されて格納されている、既知の位置に対する無線位置検出手段の偏位を用い、
該測定偏位を補間して上記無線信号を用いて検出された位置に対する偏位を推定し、
該推定偏位から無線検出位置を補正することにより移動体の最尤位置を導出することを特徴とする無線位置検出システム。
Wireless position detection means for detecting the position of a mobile unit having a wireless function using a wireless signal transmitted to and received from a wireless base station,
Using the deviation of the wireless position detection means with respect to a known position, measured and stored in advance,
Interpolating the measured deviation to estimate the deviation relative to the position detected using the radio signal;
A wireless position detection system, wherein a maximum likelihood position of a moving object is derived by correcting a wireless detection position from the estimated deviation.
請求項1記載の無線位置検出システムであって、上記無線位置検出手段において、
無線機能を有する移動体から複数の無線基地局に達する無線信号の到達時間または到達時間差に基づいて三辺測量を行なうこと、
または無線信号の到来角度に基づいて三角測量を行なうこと、
または無線信号の受信信号強度を既知の信号強度分布と照合することを特徴とする無線位置検出システム。
The wireless position detection system according to claim 1, wherein the wireless position detection means,
Performing triangulation based on arrival times or arrival time differences of radio signals reaching a plurality of radio base stations from a mobile unit having a radio function;
Or triangulation based on the arrival angle of the radio signal,
Alternatively, a wireless position detection system that compares a received signal strength of a wireless signal with a known signal strength distribution.
無線機能を有する移動体から複数の無線基地局に達する無線信号に基づいて測量する第1の無線位置検出手段と、無線信号の受信信号強度を既知の信号強度分布と照合する第2の無線位置検出手段を有し、
予め所定の位置に対する第1または第2の無線位置検出手段の偏位を測定しておき、該測定偏位を補間して一般の位置に対する偏位を推定し、該推定偏位から第1または第2の無線検出位置を補正し、
第1の無線検出位置または補正位置と第2の無線検出位置または補正位置とから移動体の最尤位置を導出することを特徴とする無線位置検出システム。
First wireless position detecting means for measuring based on wireless signals reaching a plurality of wireless base stations from a mobile body having a wireless function, and a second wireless position for comparing the received signal strength of the wireless signal with a known signal strength distribution Having detection means;
The deviation of the first or second wireless position detection means with respect to a predetermined position is measured in advance, and the deviation with respect to a general position is estimated by interpolating the measurement deviation, and the first or Correct the second wireless detection position,
A wireless position detection system, wherein a maximum likelihood position of a moving body is derived from a first wireless detection position or correction position and a second wireless detection position or correction position.
請求項3記載の無線位置検出システムであって、
第1の無線位置検出手段の検出誤差と第2の無線位置検出手段の検出誤差を係数として、第1の補正位置と第2の無線検出位置の重み付け平均を行なうことにより移動体の最尤位置を導出することを特徴とする無線位置検出システム。
The wireless position detection system according to claim 3,
The maximum likelihood position of the moving object by performing a weighted average of the first correction position and the second wireless detection position using the detection error of the first wireless position detection means and the detection error of the second wireless position detection means as coefficients. A wireless position detection system characterized by deriving.
請求項3記載の無線位置検出システムであって、
移動体の最尤位置に基づいて、最尤位置近傍の位置範囲における第1の無線位置検出手段の測定偏位と第2の無線位置検出手段の信号強度分布とを修正することを特徴とする無線位置検出システム。
The wireless position detection system according to claim 3,
Based on the maximum likelihood position of the mobile object, the measurement deviation of the first wireless position detection means and the signal intensity distribution of the second wireless position detection means in the position range near the maximum likelihood position are corrected. Wireless position detection system.
JP2004088298A 2004-03-25 2004-03-25 Radio location detection system Pending JP2005274363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088298A JP2005274363A (en) 2004-03-25 2004-03-25 Radio location detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088298A JP2005274363A (en) 2004-03-25 2004-03-25 Radio location detection system

Publications (1)

Publication Number Publication Date
JP2005274363A true JP2005274363A (en) 2005-10-06

Family

ID=35174195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088298A Pending JP2005274363A (en) 2004-03-25 2004-03-25 Radio location detection system

Country Status (1)

Country Link
JP (1) JP2005274363A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114144A (en) * 2005-10-24 2007-05-10 Seiko Precision Inc Position identification device and method, and program
JP2008017027A (en) * 2006-07-04 2008-01-24 Ntt Docomo Inc Position estimator and position estimating method
JP2008046116A (en) * 2006-07-20 2008-02-28 Semiconductor Energy Lab Co Ltd Position information detecting system and position information detection method
JP2010216812A (en) * 2009-03-13 2010-09-30 Fujitsu Ltd Positioning system and method for demodulating data
JP2011508993A (en) * 2007-12-06 2011-03-17 テレフォンブーフ フェアラーク ハンス ミューラー ゲーエムベーハー ウント コンパニー カーゲー Method for WLAN location detection and location-based service provision
JP2011080897A (en) * 2009-10-08 2011-04-21 Nippon Telegr & Teleph Corp <Ntt> Device and method for searching position
JP2011107102A (en) * 2009-11-20 2011-06-02 Rcs:Kk Autonomous movement support system and control method therefor
CN102103248A (en) * 2009-12-21 2011-06-22 索尼公司 Autofocus with confidence measure
JP2012506541A (en) * 2008-10-24 2012-03-15 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Device and method for estimating the orientation of a portable terminal device
US8138974B2 (en) 2007-10-25 2012-03-20 International Busines Machines Corporation Location estimation system, method and program
JP2012525587A (en) * 2009-04-28 2012-10-22 キャタピラー インコーポレイテッド Position monitoring system for mobile machines
KR20130033071A (en) * 2011-09-26 2013-04-03 삼성전자주식회사 A calculating method and acalculating device for accuracy of measuring location, and a method and an apparatus for measuring location of terminal using the accuracy of measuring location
JP2013221943A (en) * 2012-04-13 2013-10-28 Huawei Technologies Co Ltd Positioning method, device, and system
US8587479B2 (en) 2006-07-20 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. Position information detection system and position information detection method
US8818925B2 (en) 2012-05-22 2014-08-26 International Business Machines Corporation Updating policy parameters under Markov decision process system environment
US8823588B2 (en) 2009-06-08 2014-09-02 Fujitsu Limited Radio positioning and ranging system and positioning and ranging program
JP2015190888A (en) * 2014-03-28 2015-11-02 Kddi株式会社 providing device, position determination device, control method, and program
WO2016152619A1 (en) * 2015-03-26 2016-09-29 株式会社村田製作所 Method of detecting position of moving body
WO2018131168A1 (en) * 2017-01-16 2018-07-19 Necソリューションイノベータ株式会社 Positioning assistance device, positioning system, positioning assistance method, and computer-readable recording medium
CN110068794A (en) * 2019-04-24 2019-07-30 华宇智联科技(武汉)有限公司 A kind of AOA positioning and optimizing compensation method
CN113272673A (en) * 2018-12-26 2021-08-17 洛希克斯有限公司 System and method for determining wireless sensor node location using ranging and triangulation based on radio frequency communications between the node and various RF-enabled devices

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649310B2 (en) * 2005-10-24 2011-03-09 セイコープレシジョン株式会社 POSITION IDENTIFICATION DEVICE, POSITION IDENTIFICATION METHOD, AND PROGRAM
JP2007114144A (en) * 2005-10-24 2007-05-10 Seiko Precision Inc Position identification device and method, and program
JP2008017027A (en) * 2006-07-04 2008-01-24 Ntt Docomo Inc Position estimator and position estimating method
JP2008046116A (en) * 2006-07-20 2008-02-28 Semiconductor Energy Lab Co Ltd Position information detecting system and position information detection method
US8587479B2 (en) 2006-07-20 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. Position information detection system and position information detection method
US8405551B2 (en) 2007-10-25 2013-03-26 International Business Machines Corporation Location estimation system, method and program
US8138974B2 (en) 2007-10-25 2012-03-20 International Busines Machines Corporation Location estimation system, method and program
JP2011508993A (en) * 2007-12-06 2011-03-17 テレフォンブーフ フェアラーク ハンス ミューラー ゲーエムベーハー ウント コンパニー カーゲー Method for WLAN location detection and location-based service provision
US8436772B2 (en) 2008-10-24 2013-05-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for estimating an orientation of a mobile terminal device
JP2012506541A (en) * 2008-10-24 2012-03-15 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Device and method for estimating the orientation of a portable terminal device
JP2010216812A (en) * 2009-03-13 2010-09-30 Fujitsu Ltd Positioning system and method for demodulating data
JP2012525587A (en) * 2009-04-28 2012-10-22 キャタピラー インコーポレイテッド Position monitoring system for mobile machines
US8823588B2 (en) 2009-06-08 2014-09-02 Fujitsu Limited Radio positioning and ranging system and positioning and ranging program
JP2011080897A (en) * 2009-10-08 2011-04-21 Nippon Telegr & Teleph Corp <Ntt> Device and method for searching position
JP2011107102A (en) * 2009-11-20 2011-06-02 Rcs:Kk Autonomous movement support system and control method therefor
CN102103248A (en) * 2009-12-21 2011-06-22 索尼公司 Autofocus with confidence measure
KR101345093B1 (en) * 2009-12-21 2013-12-26 소니 주식회사 Autofocus with confidence measure
JP2011128623A (en) * 2009-12-21 2011-06-30 Sony Corp Autofocus with confidence measure
KR101951198B1 (en) * 2011-09-26 2019-02-25 삼성전자주식회사 A calculating method and acalculating device for accuracy of measuring location, and a method and an apparatus for measuring location of terminal using the accuracy of measuring location
KR20130033071A (en) * 2011-09-26 2013-04-03 삼성전자주식회사 A calculating method and acalculating device for accuracy of measuring location, and a method and an apparatus for measuring location of terminal using the accuracy of measuring location
JP2013072875A (en) * 2011-09-26 2013-04-22 Samsung Electronics Co Ltd Positioning accuracy calculation method and device of the same, and positioning method of terminal using the device and device of the same
JP2013221943A (en) * 2012-04-13 2013-10-28 Huawei Technologies Co Ltd Positioning method, device, and system
US8917623B2 (en) 2012-04-13 2014-12-23 Huawei Technologies Co., Ltd. Positioning method, device and system
US8818925B2 (en) 2012-05-22 2014-08-26 International Business Machines Corporation Updating policy parameters under Markov decision process system environment
US8909571B2 (en) 2012-05-22 2014-12-09 International Business Machines Corporation Updating policy parameters under Markov decision process system environment
JP2015190888A (en) * 2014-03-28 2015-11-02 Kddi株式会社 providing device, position determination device, control method, and program
CN107407719A (en) * 2015-03-26 2017-11-28 株式会社村田制作所 The method for detecting position of moving body
JPWO2016152619A1 (en) * 2015-03-26 2017-12-21 株式会社村田製作所 Position detection method for moving objects
WO2016152619A1 (en) * 2015-03-26 2016-09-29 株式会社村田製作所 Method of detecting position of moving body
US10539653B2 (en) 2015-03-26 2020-01-21 Murata Manufacturing Co., Ltd. Method for detecting position of mobile body
WO2018131168A1 (en) * 2017-01-16 2018-07-19 Necソリューションイノベータ株式会社 Positioning assistance device, positioning system, positioning assistance method, and computer-readable recording medium
JPWO2018131168A1 (en) * 2017-01-16 2019-11-07 Necソリューションイノベータ株式会社 POSITIONING SUPPORT DEVICE, POSITIONING SYSTEM, POSITIONING SUPPORT METHOD, AND COMPUTER-READABLE RECORDING MEDIUM
CN113272673A (en) * 2018-12-26 2021-08-17 洛希克斯有限公司 System and method for determining wireless sensor node location using ranging and triangulation based on radio frequency communications between the node and various RF-enabled devices
CN110068794A (en) * 2019-04-24 2019-07-30 华宇智联科技(武汉)有限公司 A kind of AOA positioning and optimizing compensation method
CN110068794B (en) * 2019-04-24 2023-07-25 武汉大数智联科技有限公司 AOA positioning optimization compensation method

Similar Documents

Publication Publication Date Title
JP2005274363A (en) Radio location detection system
CN106950985B (en) Automatic delivery method and device
KR102593435B1 (en) Systems and methods for locating tags in space
US6408246B1 (en) Remote terminal location algorithm
US20130332112A1 (en) State estimation device
CN106896393B (en) Vehicle cooperative type object positioning optimization method and vehicle cooperative positioning device
US9313614B2 (en) Method of and system for estimating position
JP2008128726A (en) Positioning system, device and method using particle filter
JP2009052940A (en) Moving object detection device and autonomous moving body
JP2017072422A (en) Information processing device, control method, program, and storage medium
JP7155284B2 (en) Measurement accuracy calculation device, self-position estimation device, control method, program and storage medium
KR101073318B1 (en) Positioning system and method of terminal comprising multiple antenna
KR101415191B1 (en) Pedestrian Navigation Apparatus
EP3146356B1 (en) Direct geolocation from tdoa, fdoa, and agl
Cheng et al. Localization in the parking lot by parked-vehicle assistance
WO2019239983A1 (en) Propagation environment recognition method and propagation environment recognition device
US11536797B2 (en) Mobile network localization
WO2004104621A1 (en) Self surveying radio location method
KR101342215B1 (en) Method and system for determining position based on radio frequency identification
Kagawa et al. A uwb navigation system aided by sensor-based autonomous algorithm-deployment and experiment in shopping mall
JP6959533B2 (en) Interference source search method and interference source search device
Kim et al. Fusing lidar, radar, and camera using extended Kalman filter for estimating the forward position of vehicles
CN108253968B (en) Barrier winding method based on three-dimensional laser
Park et al. Robust range‐only beacon mapping in multipath environments
Kolakowski Adaptive Anchor Pairs Selection in a TDOA-based System Through Robot Localization Error Minimization

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060515