JP2005269627A - Semiconductor relay device and manufacturing method of wiring board thereof - Google Patents

Semiconductor relay device and manufacturing method of wiring board thereof Download PDF

Info

Publication number
JP2005269627A
JP2005269627A JP2005044237A JP2005044237A JP2005269627A JP 2005269627 A JP2005269627 A JP 2005269627A JP 2005044237 A JP2005044237 A JP 2005044237A JP 2005044237 A JP2005044237 A JP 2005044237A JP 2005269627 A JP2005269627 A JP 2005269627A
Authority
JP
Japan
Prior art keywords
electrode
substrate
light
relay device
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005044237A
Other languages
Japanese (ja)
Inventor
Taizo Tomioka
泰造 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005044237A priority Critical patent/JP2005269627A/en
Publication of JP2005269627A publication Critical patent/JP2005269627A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor relay device suitable for miniaturizing without the impairment of performance. <P>SOLUTION: An LED 3, a photovoltaic IC 4, an MOS-FET 5, and 3 chips are mounted on a silicon substrate 2 with two projections 1 located nearly in parallel, each of the projections having a slanting side including a curve with an inflection point. The LED 3 is mounted on an LED-connected electrode 10 arranged between the two projections 1, and is connected to another LED-connected electrode 10 arranged between the projections 1 by a gold wire 11. The photovoltaic IC 4 is placed on the upper part of the projection so as to oppose the LED 3, and is connected through a gold bump 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体リレー装置を小型化する際に好適な半導体リレー装置およびその配線基板の製造方法に関する。   The present invention relates to a semiconductor relay device suitable for downsizing a semiconductor relay device and a method for manufacturing a wiring board thereof.

近年、半導体テスターなどの計測器では、信頼性の向上や小型化を目的として、従来の有接点リレーの代わりに半導体リレー装置などの無接点リレーを用いる場合が増加している。   In recent years, measuring instruments such as semiconductor testers are increasingly using non-contact relays such as semiconductor relay devices in place of conventional contact relays for the purpose of improving reliability and downsizing.

半導体リレー装置の動作原理を図4を用いて説明する。Light Emitting Diode(以下LED)55と光起電力IC56とが対向して配置され、光起電力IC56とMetal Oxide Silicon Field Effect Transistor(以下MOS−FET)57とが接続されている。LED55からの光は光起電力IC56で光電変換される。ここで発生した電圧でMOS−FET57を駆動し、MOS−FET57中で、図4中のAとBの間を流れる電流のNO/OFFを行う。LED55からの光を光起電力IC56表面のフォトダイオードアレイ全体に当てるため、LED55と光起電力IC56はある程度離しておく必要がある。   The operation principle of the semiconductor relay device will be described with reference to FIG. A light emitting diode (hereinafter referred to as LED) 55 and a photovoltaic IC 56 are arranged to face each other, and a photovoltaic IC 56 and a metal oxide silicon field effect transistor (hereinafter referred to as MOS-FET) 57 are connected to each other. The light from the LED 55 is photoelectrically converted by the photovoltaic IC 56. The MOS-FET 57 is driven by the voltage generated here, and NO / OFF of the current flowing between A and B in FIG. 4 is performed in the MOS-FET 57. In order to apply light from the LED 55 to the entire photodiode array on the surface of the photovoltaic IC 56, the LED 55 and the photovoltaic IC 56 need to be separated to some extent.

半導体テスターでは、機器内に数千個のリレーを用い、かつ、そのリレーを搭載する基
板は非常に高価である。半導体リレー装置を小型化することにより、半導体テスターの小
型化とテスターに搭載する基板の価格の低減とを実現できる。それ故、半導体リレー装置
の小型化が市場から要望されている。
In a semiconductor tester, thousands of relays are used in a device, and a board on which the relays are mounted is very expensive. By downsizing the semiconductor relay device, it is possible to reduce the size of the semiconductor tester and reduce the price of the board mounted on the tester. Therefore, there is a demand from the market for miniaturization of the semiconductor relay device.

このような市場背景から、様々な半導体リレー装置が発明されている。1つの半導体リレー装置を図5を用いて説明する。この半導体リレー装置は配線基板37を有する。配線基板37は、その略中央に設けられた凹部36と、図示しない配線パターンとを有する。凹部36底面に発光素子であるLED38がマウントされ、金属ワイヤ39によりLED表電極と図示しない基板電極とが接続されている。そして凹部36の開口部を覆い、かつLED38と対向するように受光素子である光起電力IC40が配置され、バンプ41を介して配線基板37ヘフリップチップボンディングされている。   Due to such market background, various semiconductor relay devices have been invented. One semiconductor relay device will be described with reference to FIG. This semiconductor relay device has a wiring board 37. The wiring board 37 has a recess 36 provided in the approximate center thereof and a wiring pattern (not shown). An LED 38, which is a light emitting element, is mounted on the bottom surface of the recess 36, and an LED surface electrode and a substrate electrode (not shown) are connected by a metal wire 39. A photovoltaic IC 40 that is a light receiving element is disposed so as to cover the opening of the recess 36 and face the LED 38, and is flip-chip bonded to the wiring substrate 37 via the bumps 41.

配線基板37の光起電力IC40が実装された面と同一面上には、出力素子であるMOS−FET42がバンプ43を介してフリップチップボンディングされている。光起電力IC40とMOS−FET42とは、配線基板37上の図示しない配線パターンにより電気的に接続されている。LED38と光起電力IC40の間には透光樹脂44が充填され、光起電力IC40とMOS−FET42の配線基板37側の部分は、それぞれ遮光樹脂45により封止されている。   On the same surface as the surface on which the photovoltaic IC 40 of the wiring board 37 is mounted, a MOS-FET 42 as an output element is flip-chip bonded via a bump 43. The photovoltaic IC 40 and the MOS-FET 42 are electrically connected by a wiring pattern (not shown) on the wiring board 37. A transparent resin 44 is filled between the LED 38 and the photovoltaic IC 40, and the portions of the photovoltaic IC 40 and the MOS-FET 42 on the wiring board 37 side are sealed with a light shielding resin 45, respectively.

この半導体リレー装置においては、光起電力IC40とMOS−FET42とを配線基板37に対してフリップチップボンディングで実装することにより、従来のワイヤボンディングで実装した場合と比較して、パッケージサイズを小型化することができる。なお、この半導体リレー装置に用いるMOS−FET42には、ゲート電極、ソース電極、ドレイン電極がチップの同一面上に存在するLateral Double−Diffusion MOS−FET(以下ラテラルMOS−FET)を用いる必要がある(例えば、特許文献1参照。)。   In this semiconductor relay device, the photovoltaic IC 40 and the MOS-FET 42 are mounted on the wiring substrate 37 by flip-chip bonding, thereby reducing the package size compared to the case of mounting by conventional wire bonding. can do. As the MOS-FET 42 used in this semiconductor relay device, it is necessary to use a Lateral Double-Diffusion MOS-FET (hereinafter referred to as a lateral MOS-FET) having a gate electrode, a source electrode, and a drain electrode on the same surface of the chip. (For example, refer to Patent Document 1).

ドレイン電極がチップ裏面に設けてある通常のMOS−FETの場合、図6に示すように基板にLEDを搭載する穴46と、MOS−FETを搭載する2つの穴47、48を設け、実装する。この場合には、MOS−FETをワイヤボンディングで実装している。そうすると、チップを収めるスペースと、ワイヤボンディング用のキャピラリが入るスペースとを設ける必要があり、パッケージサイズは格段に大きくなってしまう。   In the case of a normal MOS-FET in which the drain electrode is provided on the back surface of the chip, as shown in FIG. 6, a hole 46 for mounting the LED and two holes 47 and 48 for mounting the MOS-FET are provided and mounted on the substrate. . In this case, the MOS-FET is mounted by wire bonding. In this case, it is necessary to provide a space for accommodating the chip and a space for accommodating a wire bonding capillary, and the package size is significantly increased.

また、従来のシリコン基板の製造方法例について図7を用いて説明する。まずシリコンウエハ49の表面側から穴50を設ける(図7(a))。次に、熱酸化処理により基板表面へ絶縁膜となる酸化シリコン層51を形成する(図7(b))。そして、穴50中および基板表面ヘチタン膜などの密着層52をスパッタリングで形成し、さらにめっき処理により穴50を銅53で充填する(図7(c))。そして、基板の両面を機械研磨し、穴を貫通させる(図7(d))。基板の表裏面へChemical Vapor Deposition(CVD)にて絶縁膜54を形成し(図7(e))、必要部分をReactive Ion Etching(RIE)で開口する(図7(f))。その後、必要に応じて基板表面へ配線を形成する。
特開平11−163705号公報
An example of a conventional method for manufacturing a silicon substrate will be described with reference to FIG. First, a hole 50 is provided from the surface side of the silicon wafer 49 (FIG. 7A). Next, a silicon oxide layer 51 serving as an insulating film is formed on the substrate surface by thermal oxidation treatment (FIG. 7B). Then, an adhesion layer 52 such as a titanium film is formed in the hole 50 and on the substrate surface by sputtering, and the hole 50 is filled with copper 53 by plating (FIG. 7C). Then, both surfaces of the substrate are mechanically polished to penetrate the holes (FIG. 7D). An insulating film 54 is formed on the front and back surfaces of the substrate by chemical vapor deposition (CVD) (FIG. 7E), and necessary portions are opened by reactive ion etching (RIE) (FIG. 7F). Thereafter, wiring is formed on the substrate surface as necessary.
JP-A-11-163705

前述した従来の半導体リレー装置では、以下に述べる問題点があった。   The above-described conventional semiconductor relay device has the following problems.

図5で紹介した半導体リレー装置では、基板底面に配されている外部接続端子とMOS−FET端子の接続経路が長くなり、十分な高周波信号の通過特性が得られない。   In the semiconductor relay device introduced in FIG. 5, the connection path between the external connection terminal and the MOS-FET terminal arranged on the bottom surface of the substrate becomes long, and sufficient high-frequency signal passing characteristics cannot be obtained.

図6に示されたような基板では、ワイヤの引き回しにより半導体リレー装置が非常に大きくなったり、外部接続端子とMOS−FET端子の接続経路が長くなったりする。   In the substrate as shown in FIG. 6, the semiconductor relay device becomes very large due to the routing of the wire, and the connection path between the external connection terminal and the MOS-FET terminal becomes long.

また、このような形状の小型半導体リレー装置用基板を従来のセラミック基板や樹脂基板を用いて製造することは、電極位置制度や平坦度の点から難しい。寸法精度の高いシリコン基板を選択した場合、表面に大きな凸部を設け、かつ貫通電極で表裏面電極を接続する基板の製造が困難である。例えば、従来方法では凸部形成も貫通電極形成もシリコンウエハの表面側から行うが、貫通電極を裏面へ露出させる研磨工程において、ウエハを保持することが困難である。   In addition, it is difficult to manufacture a substrate for a small semiconductor relay device having such a shape using a conventional ceramic substrate or resin substrate in terms of electrode position system and flatness. When a silicon substrate with high dimensional accuracy is selected, it is difficult to manufacture a substrate in which large protrusions are provided on the surface and the front and back electrodes are connected by through electrodes. For example, in the conventional method, the convex portion and the through electrode are formed from the surface side of the silicon wafer, but it is difficult to hold the wafer in the polishing step in which the through electrode is exposed to the back surface.

本発明は前記事情に鑑みてなされたもので、その目的とするところは、性能を損なうことなく小型化するのに好適な半導体リレー装置の構造および基板の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a structure of a semiconductor relay device and a substrate manufacturing method suitable for downsizing without impairing performance.

前記課題を解決するため、本発明は、一方の面に少なくとも2つの凸部があり、前記角凸部の凸端部に形成された少なくとも1つ以上の第1の電極と前記面上に形成された電極とが前記凸部の側面に形成される部分を含む配線にて電気的に接続され、かつ前記面に形成された電極と他方の面に形成された第2の電極とが貫通電極にて電気的に接続されている基板と、前記凸部間に配置された発光素子と、前記発光素子に対して受光部を対向させて配置され、前記凸端部に電極が接続されるようボンディングされる受光素子と、前記基板にボンディングされる出力素子と、前記発光素子と前記受光素子との間に充填され、前記発光素子から出射される光を透過させる透光性樹脂と、前記透光性樹脂、前記発光素子、及び前記受光素子を覆う遮光樹脂とを具備している。   In order to solve the above-mentioned problem, the present invention has at least two convex portions on one surface, and is formed on the surface with at least one first electrode formed on the convex end portion of the angular convex portion. And the electrode formed on the surface and the second electrode formed on the other surface are through-electrodes. A substrate electrically connected to the light emitting element, a light emitting element disposed between the convex parts, a light receiving part opposed to the light emitting element, and an electrode connected to the convex end part A light-receiving element to be bonded; an output element to be bonded to the substrate; a light-transmitting resin that is filled between the light-emitting element and the light-receiving element and transmits light emitted from the light-emitting element; Light shielding covering the light-sensitive resin, the light emitting element, and the light receiving element It is and a fat.

このとき、基板の凸部の側面のうち、少なくとも1面以上が前記基板の他の部分がなす面に対して斜面となっており、且つ、前記傾斜面のうち、少なくとも1面以上に前記配線がなされていることが好ましい。   At this time, at least one of the side surfaces of the convex portion of the substrate is an inclined surface with respect to a surface formed by another portion of the substrate, and at least one of the inclined surfaces includes the wiring. It is preferable that

また、前記凸部の側面がなす斜面の、前記凸端部付近および基板の一方の面付近における傾斜角が前記斜面の中程の傾斜角よりも緩くなっていることが好ましい。   In addition, it is preferable that an inclination angle of the slope formed by the side surface of the convex portion near the convex end portion and near one surface of the substrate is gentler than an intermediate inclination angle of the slope.

また、前記凸部の側面がなす斜面は、変曲点を有する曲線を断面に持つ曲面により形成されていることが好ましい。   Moreover, it is preferable that the slope formed by the side surface of the convex portion is formed by a curved surface having a curved surface having an inflection point in its cross section.

また、前記第2の電極が前記基板の他方の面に形成された長方形の溝に形成されていることが好ましい。   The second electrode is preferably formed in a rectangular groove formed on the other surface of the substrate.

また、前記基板が主にシリコンあるいはシリコン化合物で形成されており、前記基板の配線部分が絶縁層上に形成されており、前記貫通電極が絶縁層で覆われていることが好ましい。   Further, it is preferable that the substrate is mainly formed of silicon or a silicon compound, a wiring portion of the substrate is formed on an insulating layer, and the through electrode is covered with the insulating layer.

また、本発明は、表面に凸部を有する配線基板の製造方法において、ウエハの裏面に未貫通穴を設ける工程と、ウエハ裏面および未貫通穴へ絶縁層を形成する工程と、未貫通穴へ導電体を充填する工程と、ウエハ表面をエッチングにより加工し2つの凸部を設ける工程と、裏面からの未貫通穴の底面を基板表面から加工し露出させる工程と、ウエハ表面に絶縁層を形成する工程と、ウエハ表面側の絶縁層の貫通穴部分を開口する工程と、ウエハ表面へ電極パッドおよびそれらを結ぶ導電パターンを形成する工程とを具備している。   According to another aspect of the present invention, there is provided a method of manufacturing a wiring board having a convex portion on a front surface, a step of providing a non-through hole on the back surface of the wafer, a step of forming an insulating layer on the back surface of the wafer and the non-through hole, A step of filling the conductor, a step of processing the wafer surface by etching to provide two convex portions, a step of processing and exposing the bottom surface of the non-through hole from the back surface from the substrate surface, and forming an insulating layer on the wafer surface And a step of opening a through hole portion of the insulating layer on the wafer surface side, and a step of forming an electrode pad and a conductive pattern connecting them on the wafer surface.

このとき、未貫通穴へ充填する導電体として、直径20nm以下の金属粒子を含むペーストを硬化させたものを用いることも可能である。   At this time, it is also possible to use a hardened paste containing metal particles with a diameter of 20 nm or less as the conductor filling the non-through holes.

また、ウエハ表面の導電パターン形成を直径20nm以下の金属粒子を含むペーストの塗布により行うことも可能である。   It is also possible to form a conductive pattern on the wafer surface by applying a paste containing metal particles having a diameter of 20 nm or less.

このような構造および製造方法によれば、半導体リレー装置を生産性や品質を低下させ
ることなく飛躍的に小型化することを可能とする。
According to such a structure and manufacturing method, it is possible to drastically reduce the size of the semiconductor relay device without reducing productivity or quality.

本発明によれば、性能を損なうことなく半導体リレー装置の構造を小型化することができる。   According to the present invention, the structure of the semiconductor relay device can be reduced without impairing performance.

以下、本発明の一実施の形態について、図1および図2を参照にしながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は本発明の第一の実施の形態に係る半導体リレー装置の断面構造を示す図である。半導体リレー装置の外形は2.0×2.0×1.2(mm)である。略平行に並んだ2つの凸部1を有するシリコン基板2(基板)の上にLED3(発光素子)、光起電力IC4(受光素子)、及びMOS−FET5(出力素子)が搭載されている。すなわち3つのチップが搭載されている。 FIG. 1 is a diagram showing a cross-sectional structure of the semiconductor relay device according to the first embodiment of the present invention. The external shape of the semiconductor relay device is 2.0 × 2.0 × 1.2 (mm 3 ). An LED 3 (light emitting element), a photovoltaic IC 4 (light receiving element), and a MOS-FET 5 (output element) are mounted on a silicon substrate 2 (substrate) having two convex portions 1 arranged substantially in parallel. That is, three chips are mounted.

LED3のサイズは0.2×0.2×0.2(mm)である。光起電力IC4及びMOS−FET5の外形サイズは同一で、0.6×1.2×0.2(mm)である。シリコン基板2の凸部1とベース板6とは単一のブロックより成っている。 The size of the LED 3 is 0.2 × 0.2 × 0.2 (mm 3 ). The external dimensions of the photovoltaic IC 4 and the MOS-FET 5 are the same and are 0.6 × 1.2 × 0.2 (mm 3 ). The convex portion 1 and the base plate 6 of the silicon substrate 2 are formed of a single block.

ベース板6のサイズは2.0×2.0×0.2(mm)で、凸部1のサイズは0.35×0.95×0.45(mm)である。それぞれの凸部1は、その側面の一つに傾斜面7(側面)を有している。傾斜面7の傾斜角度は約45°である。 The size of the base plate 6 is 2.0 × 2.0 × 0.2 (mm 3 ), and the size of the convex portion 1 is 0.35 × 0.95 × 0.45 (mm 3 ). Each convex portion 1 has an inclined surface 7 (side surface) on one of its side surfaces. The inclination angle of the inclined surface 7 is about 45 °.

傾斜面7上には配線8(配線)が施されている。なお、傾斜面7と平坦面の境界で配線8が切断されないように、変曲点を持つ曲線を含む曲面で前記側面を形成している。これにより、凸部1の凸端となる傾斜面7の上端、及び凸部1の基端部となる傾斜面7の下端が、それぞれシリコン基板2の凸部1以外の平面部がなす面に対してやや緩い傾斜角で連結されるようにしている。   A wiring 8 (wiring) is provided on the inclined surface 7. The side surface is formed of a curved surface including a curve having an inflection point so that the wiring 8 is not cut at the boundary between the inclined surface 7 and the flat surface. Thereby, the upper end of the inclined surface 7 that is the convex end of the convex portion 1 and the lower end of the inclined surface 7 that is the base end portion of the convex portion 1 are the surfaces formed by the planar portion other than the convex portion 1 of the silicon substrate 2, respectively. On the other hand, it is connected with a slightly gentle inclination angle.

シリコン基板2の表面側にある電極と裏面電極17(電極)とは貫通電極16(貫通電極)で接続されている。この裏面電極17は外部接続端子となる。LED3は2つの凸部1の間に配置されたLED搭載電極9(電極)の上にマウントされ、凸部1の間に配置されたもう一つのLED接続電極10と金ワイヤ11で接続されている。光起電力IC4は凸部上面15にLED3と対向するように配置され、金バンプ12を介して接続されている。光起電力IC4にはフォトダイオードアレイとMOS−FET駆動回路がその表層に形成されている。   The electrode on the front side of the silicon substrate 2 and the back electrode 17 (electrode) are connected by a through electrode 16 (through electrode). The back electrode 17 serves as an external connection terminal. The LED 3 is mounted on the LED mounting electrode 9 (electrode) disposed between the two protrusions 1 and is connected to another LED connection electrode 10 disposed between the protrusions 1 by a gold wire 11. Yes. The photovoltaic IC 4 is disposed on the upper surface 15 of the convex portion so as to face the LED 3, and is connected via the gold bump 12. The photovoltaic IC 4 is formed with a photodiode array and a MOS-FET driving circuit on its surface layer.

MOS−FET5は2つの凸部1の開口方向に光起電力IC4と略平行に配置され、光起電力IC4同様、金バンプを介して基板電極と接続されている。LED3と光起電力IC4の間には略透明なシリコーンゴム13(透光性樹脂)が注入されており、ベース板6の上面側は全体が黒色のエポキシ樹脂14(エポキシ樹脂)で覆われている。   The MOS-FET 5 is disposed substantially parallel to the photovoltaic IC 4 in the opening direction of the two convex portions 1 and is connected to the substrate electrode via a gold bump, like the photovoltaic IC 4. A substantially transparent silicone rubber 13 (translucent resin) is injected between the LED 3 and the photovoltaic IC 4, and the upper surface of the base plate 6 is entirely covered with a black epoxy resin 14 (epoxy resin). Yes.

図2にパッケージ上方から見た、シリコン基板2とチップの位置関係を示す。電極は凸部上面15に4つ、ベース板6に6つ設けてある。4つの凸部上面電極の中で2つはベース板6の電極に接続されている。また、6つのベース電極の中で4つは基板を貫通する貫通電極16により4つの裏面電極17へそれぞれ接続されている。電極はチタン/銅/ニッケル/金の4層構成である。今回用いたMOS−FET5は2つのドレイン電極18(電極)、ソース電極19(電極)、ゲート電極20(電極)をチップ表面側に有するラテラル型MOS−FETである。ドレイン電極18は貫通電極16により裏面電極17と接続される。ソース電極19は光起電力IC4のカソード電極21(第1の電極)と接続されている。ゲート電極20は光起電力IC4のアノード電極22(第2の電極)と接続される。光起電力IC4の電極はカソード電極21とアノード電極22の2つであり、残り2つの電極はチップと基板の接合強度を高くするためのダミー電極である。   FIG. 2 shows the positional relationship between the silicon substrate 2 and the chip as viewed from above the package. Four electrodes are provided on the upper surface 15 of the convex portion and six electrodes are provided on the base plate 6. Two of the four convex upper surface electrodes are connected to the electrode of the base plate 6. Further, four of the six base electrodes are connected to the four back electrodes 17 by through electrodes 16 penetrating the substrate. The electrode has a four-layer structure of titanium / copper / nickel / gold. The MOS-FET 5 used this time is a lateral MOS-FET having two drain electrodes 18 (electrodes), a source electrode 19 (electrodes), and a gate electrode 20 (electrodes) on the chip surface side. The drain electrode 18 is connected to the back electrode 17 by the through electrode 16. The source electrode 19 is connected to the cathode electrode 21 (first electrode) of the photovoltaic IC 4. The gate electrode 20 is connected to the anode electrode 22 (second electrode) of the photovoltaic IC 4. The photovoltaic IC 4 has two electrodes, a cathode electrode 21 and an anode electrode 22, and the remaining two electrodes are dummy electrodes for increasing the bonding strength between the chip and the substrate.

この半導体リレー装置は以下に述べるように動作する。入力側の信号電流がLED3に流れ、LED3が発光する。LED3からの光を光起電力IC4のフォトダイオードアレイが受け、発生した電圧をMOS−FET5のゲート電極20へ印加する。この電圧の印加により、MOS−FET5の2つのドレイン電極18間に流れる電流をON/OFFする。   This semiconductor relay device operates as described below. The signal current on the input side flows to the LED 3 and the LED 3 emits light. The photodiode array of the photovoltaic IC 4 receives the light from the LED 3 and applies the generated voltage to the gate electrode 20 of the MOS-FET 5. By applying this voltage, the current flowing between the two drain electrodes 18 of the MOS-FET 5 is turned ON / OFF.

図3に本発明の半導体リレー装置の製造工程を示す。基板製造には厚さ0.65mm、径150mmのシリコンウエハ23を用い、1シリコンウエハあたり約3000個の基板を作製した。なお、図2においては、このうち1つのリレー装置に対応する部分のみを抜き出して記載している。   FIG. 3 shows a manufacturing process of the semiconductor relay device of the present invention. The substrate was manufactured using a silicon wafer 23 having a thickness of 0.65 mm and a diameter of 150 mm, and about 3000 substrates were manufactured per silicon wafer. In FIG. 2, only a portion corresponding to one relay device is extracted and described.

まずシリコンウエハ23の裏面24に、深さが200μmで径がφ100μmの穴25(未貫通穴)と、深さが200μmで径がφ200μmの穴26(未貫通穴)とをRIEにより設けた(図3(a))。このRIEにはBoschプロセスと呼称される、側壁にCF堆積膜を設けて保護しながらシリコンをエッチングする方法を用いた。   First, a hole 25 (non-through hole) having a depth of 200 μm and a diameter of φ100 μm and a hole 26 (non-through hole) having a depth of 200 μm and a diameter of φ200 μm were provided on the back surface 24 of the silicon wafer 23 by RIE ( FIG. 3 (a)). For this RIE, a method called a Bosch process was used, in which a CF deposited film was provided on the side wall and silicon was etched while protecting it.

次に穴25、26を含む裏面全体に熱酸化膜27(第1の絶縁層)を約1μmの厚さに形成した(図3(b))。そして裏面全体にスパッタリングによりチタンを100nmの厚さで成膜し、その上に銅を300nmの厚さで成膜した。すなわち、裏面全体にチタン及び銅からなる400nmの厚さの金属膜28を形成した(図3(c))。次に電気めっきにより穴25、26へ銅29(導電体)を充填するとともに、裏面全体に銅を10μmの厚さで成膜した(図3(d))。ウェットエッチングにより穴25、26及び裏面電極以外の不要部分を除去し、裏面電極17を形成した(図3(e))。   Next, a thermal oxide film 27 (first insulating layer) was formed to a thickness of about 1 μm on the entire back surface including the holes 25 and 26 (FIG. 3B). Then, a titanium film with a thickness of 100 nm was formed on the entire back surface by sputtering, and copper was formed thereon with a thickness of 300 nm. That is, a 400 nm thick metal film 28 made of titanium and copper was formed on the entire back surface (FIG. 3C). Next, copper 29 (conductor) was filled in the holes 25 and 26 by electroplating, and copper was formed to a thickness of 10 μm on the entire back surface (FIG. 3D). Unnecessary portions other than the holes 25 and 26 and the back electrode were removed by wet etching to form the back electrode 17 (FIG. 3E).

一方の面である裏面からのプロセス(図3(a)〜(e))を完了後、他方の面となるシリコンウエハ23の表面側よりRIEで2つの凸部1が残るようシリコンを加工した(図3(f))。加工した表面にはPlasma Chemical Vapor Deposition(P−CVD)を用い酸化シリコン膜31(第2の絶縁層)を約1μmの厚さに形成した(図3(g))。   After completing the process from the back surface, which is one surface (FIGS. 3A to 3E), the silicon was processed so that the two convex portions 1 remain by RIE from the surface side of the silicon wafer 23 which is the other surface. (FIG. 3 (f)). On the processed surface, the silicon oxide film 31 (second insulating layer) was formed to a thickness of about 1 μm by using Plasma Chemical Vapor Deposition (P-CVD) (FIG. 3G).

次に穴25、36に対応した部分32を表面側からRIEを用いて開口した(図3(h))。なお、この穴25、36に対応した部分32は、前記貫通電極16となる部分である。次に表面全体ヘスパッタリングによりチタンを10nmの厚さで成膜し、その上に銅を300nmの厚さで成膜した。すなわち、表面全体にチタン及び銅からなる310nmの厚さの金属膜33を形成した。そして金属膜33の不要部分をウエットエッチングで除去した(図3(i))。なお、このときのエッチングにおいて、レジスト塗布はスプレーコーティングにより行っている。   Next, the portion 32 corresponding to the holes 25 and 36 was opened from the surface side using RIE (FIG. 3 (h)). The portion 32 corresponding to the holes 25 and 36 is a portion that becomes the through electrode 16. Next, a titanium film having a thickness of 10 nm was formed by sputtering on the entire surface, and a copper film having a thickness of 300 nm was formed thereon. That is, a 310 nm thick metal film 33 made of titanium and copper was formed on the entire surface. Then, unnecessary portions of the metal film 33 were removed by wet etching (FIG. 3 (i)). In this etching, the resist is applied by spray coating.

そしてシリコンウエハの表裏面へ厚さ1μmのニッケルめっき膜34と、厚さ0.2μmの金めっき膜35を形成した(図3(j))。なお、ニッケル、金いずれも無電解めっきで実施した。これにより、シリコンウエハの表面には、図1と図2に示す配線8、LED搭載電極9、LED接続電極10、ドレイン電極18、ソース電極19、ゲート電極20、カソード電極21、及びアノード電極22が形成される。   Then, a nickel plating film 34 having a thickness of 1 μm and a gold plating film 35 having a thickness of 0.2 μm were formed on the front and back surfaces of the silicon wafer (FIG. 3J). Both nickel and gold were electroless plated. Accordingly, the wiring 8, the LED mounting electrode 9, the LED connection electrode 10, the drain electrode 18, the source electrode 19, the gate electrode 20, the cathode electrode 21, and the anode electrode 22 shown in FIGS. Is formed.

シリコン基板2の2つの凸部1の間のLED搭載電極9へ銀ペーストを塗布し、その上にLED3をマウントした。このLED3はチップの上下面に電極があるタイプのものである。マウント後に150℃で5分間加熱し、銀ペーストを硬化させた。そしてLED3上面の電極と2つの凸部1の間にあるLED接続電極10をワイヤボンディングにより接続した。   Silver paste was applied to the LED mounting electrode 9 between the two convex portions 1 of the silicon substrate 2, and the LED 3 was mounted thereon. This LED 3 is of a type having electrodes on the upper and lower surfaces of the chip. After mounting, the silver paste was cured by heating at 150 ° C. for 5 minutes. The LED connection electrode 10 between the electrode on the upper surface of the LED 3 and the two convex portions 1 was connected by wire bonding.

通常ワイヤボンディングでは、チップ電極から基板電極ヘワイヤを結線する。しかし、
この方法では、金ワイヤと光起電力ICとの距離が短くなりリレー特性が劣化する。そのため、LED3の上面電極へ金ボールバンプを形成し、基板電極からチップ電極ヘワイヤ結線した。LED3上面電極ヘバンプを形成するのは、電極のクラックを防止するためである。使用した金ワイヤの径はφ28μmで、ワイヤ先端にはφ75μmの金ボールを形成した。ボンディング温度は200℃とした。
In normal wire bonding, a wire is connected from a chip electrode to a substrate electrode. But,
In this method, the distance between the gold wire and the photovoltaic IC is shortened, and the relay characteristics are deteriorated. Therefore, a gold ball bump was formed on the upper electrode of the LED 3, and the substrate electrode was wired to the chip electrode. The reason why the bumps are formed on the upper electrode of the LED 3 is to prevent cracking of the electrode. The diameter of the gold wire used was φ28 μm, and a gold ball of φ75 μm was formed at the wire tip. The bonding temperature was 200 ° C.

次に、予め電極に金ボールバンプを形成した光起電力ICを図示しないボンディングツールで6Nの荷重で加圧し、超音波振動を200ms印加して接合した。超音波の振幅は約1.5μmである。ボンディング温度はワイヤボンディングと同じ200℃とした。この条件において、バンプ当り約6Nせん断強度が得られている。続いて、予め電極に金ボールバンプを形成したMOS−FETを同様にフリップチップボンディングした(図3(k))。   Next, a photovoltaic IC in which a gold ball bump was previously formed on the electrode was pressed with a 6 N load with a bonding tool (not shown), and ultrasonic vibration was applied for 200 ms for bonding. The amplitude of the ultrasonic wave is about 1.5 μm. The bonding temperature was 200 ° C., the same as that for wire bonding. Under this condition, a shear strength of about 6N per bump is obtained. Subsequently, a MOS-FET in which a gold ball bump was previously formed on the electrode was similarly flip-chip bonded (FIG. 3 (k)).

LED3から出射される光の光路を確保するため、LED3と光起電力IC4の間にシリコーンゴム13を図示しないディスペンサーにより注入し、硬化させた(図3(l))。そして、基板上面の全面に黒色のエポキシ樹脂14を塗布して硬化させ、ダイヤモンドブレードを用いて個別のパッケージに切り分けた(図3(m))。   In order to ensure the optical path of the light emitted from the LED 3, the silicone rubber 13 was injected between the LED 3 and the photovoltaic IC 4 by a dispenser (not shown) and cured (FIG. 3 (l)). Then, a black epoxy resin 14 was applied to the entire upper surface of the substrate and cured, and cut into individual packages using a diamond blade (FIG. 3 (m)).

以上、本発明の一実施の形態について述べたが、本発明はこれ以外にも種々変形可能で
ある。以下、それについて述べる。本実施の形態においては、LED3はワイヤボンディングで金ワイヤ11により電気的に接続されていたが、例えばチップのある一平面にのみ電極の備わる発光素子であればフリップチップボンディングで実装しても構わない。
Although one embodiment of the present invention has been described above, the present invention can be variously modified in addition to this. This will be described below. In the present embodiment, the LED 3 is electrically connected by the gold wire 11 by wire bonding. However, for example, a light emitting element having electrodes only on one plane with a chip may be mounted by flip chip bonding. Absent.

また、光起電力ICおよびMOS−FETの実装では、チップの電極にバンプを形成してから基板ヘフリップチップボンディングしているが、バンプの形成を基板側にしても構わない。   In the mounting of the photovoltaic IC and the MOS-FET, bumps are formed on the chip electrodes and then flip-chip bonded to the substrate. However, the bumps may be formed on the substrate side.

また、フリップチップボンディングについて金ボールバンプを用いた超音波併用熱圧着
で行っているが、はんだ付けや導電樹脂を用いた接合などでも同様の効果が得られる。LED3と光起電力IC4との間にシリコーンゴム13を充填しているが、このシリコーンゴム13を光起電力IC4の背面にまで回りこませる場合もある。
Moreover, although flip chip bonding is performed by ultrasonic thermocompression bonding using gold ball bumps, similar effects can be obtained by soldering or bonding using a conductive resin. Although the silicone rubber 13 is filled between the LED 3 and the photovoltaic IC 4, the silicone rubber 13 may be circulated to the back surface of the photovoltaic IC 4.

また、基板については、LED3と光起電力IC4との間隔をひろげるため、基板23のLED3が搭載される部分をさらに他方の表面側に向けて掘り込む場合もある。   Moreover, about the board | substrate, in order to open the space | interval of LED3 and photovoltaic IC4, the part in which LED3 of the board | substrate 23 is mounted may be dug further toward the other surface side.

また、裏面全体にチタン及び銅からなる金属膜28を形成した後、穴25、26への銅29の充填と、裏面全体への銅の成膜とを行ってから、ウェットエッチングにより穴25、26及び裏面電極17以外の不要部分を除去している。しかしながら、チタン及び銅からなる金属膜28を形成した後、ウェットエッチングにより穴25、26及び裏面電極以外の不要部分を除去してから、電気めっきにより穴25、26への銅29の充填を行ってもよい。   Further, after forming the metal film 28 made of titanium and copper on the entire back surface, filling the holes 25 and 26 with copper 29 and forming the copper film on the entire back surface, Unnecessary portions other than 26 and the back electrode 17 are removed. However, after the metal film 28 made of titanium and copper is formed, unnecessary portions other than the holes 25 and 26 and the back electrode are removed by wet etching, and then the copper 29 is filled into the holes 25 and 26 by electroplating. May be.

また、前記工程は順序を換えることも可能である。例えば、最初にシリコンウエハ23の表面側に凸部1を形成してもよい。   Further, the order of the steps can be changed. For example, the convex portion 1 may be first formed on the surface side of the silicon wafer 23.

本発明は、前記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

本発明の第一の実施の形態に係る半導体リレー装置の断面構造を示す図。The figure which shows the cross-section of the semiconductor relay apparatus which concerns on 1st embodiment of this invention. 本発明の第一の実施の形態に係る半導体リレー装置の基板電極配置とチップ位置の関係を示した図。The figure which showed the relationship between the board | substrate electrode arrangement | positioning and chip position of the semiconductor relay apparatus which concerns on 1st embodiment of this invention. 本発明の第一の実施の形態に係る半導体リレー装置の製造工程を示す図。The figure which shows the manufacturing process of the semiconductor relay apparatus which concerns on 1st embodiment of this invention. 半導体リレー装置の動作原理を示す図。The figure which shows the principle of operation of a semiconductor relay apparatus. 従来の半導体リレー装置の構造の第一例を示す図。The figure which shows the 1st example of the structure of the conventional semiconductor relay apparatus. 従来の半導体リレー装置の構造の第二例を示す図。The figure which shows the 2nd example of the structure of the conventional semiconductor relay apparatus. 従来のシリコン基板の製造工程を示す図。The figure which shows the manufacturing process of the conventional silicon substrate.

符号の説明Explanation of symbols

1…凸部、2…シリコン基板(基板)、3…LEC(発光素子)、4…光起電力IC(受光素子)、5…MOS−FET(出力素子)、7…傾斜面(側面)、8…配線、9…LED搭載電極(電極)、10…LED接続電極(電極)、13…シリコーンゴム(透光性樹脂)、14…エポキシ樹脂(遮光性樹脂)、16…貫通電極、17…裏面電極、18…ドレイン電極(電極)、19…ソース電極(電極)、20…ゲート電極(電極)、21…カソード電極(電極)、22…アノード電極(電極)、23…シリコンウエハ(ウエハ)、25…穴(未貫通穴)、26…穴(未貫通穴)、27…熱酸化膜(第1の絶縁層)、29…銅(導電体)、31…酸化シリコン膜(第2の絶縁膜)。   DESCRIPTION OF SYMBOLS 1 ... Convex part, 2 ... Silicon substrate (substrate), 3 ... LEC (light emitting element), 4 ... Photovoltaic IC (light receiving element), 5 ... MOS-FET (output element), 7 ... Inclined surface (side surface), DESCRIPTION OF SYMBOLS 8 ... Wiring, 9 ... LED mounting electrode (electrode), 10 ... LED connection electrode (electrode), 13 ... Silicone rubber (translucent resin), 14 ... Epoxy resin (light-shielding resin), 16 ... Through electrode, 17 ... Back electrode, 18 ... drain electrode (electrode), 19 ... source electrode (electrode), 20 ... gate electrode (electrode), 21 ... cathode electrode (electrode), 22 ... anode electrode (electrode), 23 ... silicon wafer (wafer) , 25 ... hole (non-through hole), 26 ... hole (non-through hole), 27 ... thermal oxide film (first insulating layer), 29 ... copper (conductor), 31 ... silicon oxide film (second insulation) film).

Claims (9)

一方の面に少なくとも2つの凸部を有し、前記各凸部の凸端部に形成された少なくとも1つ以上の第1の電極と前記面上に形成された電極とが前記凸部の側面に形成される部分を含む配線にて電気的に接続され、かつ前記面上に形成された電極と他方の面に形成された第2の電極とが貫通電極にて電気的に接続されている基板と、
前記凸部間に配置される発光素子と、
前記発光素子に対して受光部を対向させて配置され、前記凸端部に電極が接続されるようボンディングされる受光素子と、
前記基板にボンディングされる出力素子と、
前記発光素子と前記受光素子との間に充填され、前記発光素子から出射する光を透過させる透光性樹脂と、
前記透光性樹脂、前記発光素子、及び前記受光素子を覆う遮光樹脂と、
を具備することを特徴とする半導体リレー装置。
At least one first electrode formed on a convex end portion of each convex portion and at least two convex portions on one surface, and an electrode formed on the surface are side surfaces of the convex portion. The electrode formed on the surface and the second electrode formed on the other surface are electrically connected by the through electrode. A substrate,
A light emitting element disposed between the convex portions;
A light receiving element that is disposed so that a light receiving part faces the light emitting element and is bonded so that an electrode is connected to the convex end part;
An output element bonded to the substrate;
A light-transmitting resin that is filled between the light-emitting element and the light-receiving element and transmits light emitted from the light-emitting element;
A light-shielding resin that covers the light-transmitting resin, the light-emitting element, and the light-receiving element;
A semiconductor relay device comprising:
前記基板の凸部の側面のうち、少なくとも1面以上が前記基板の他の部分がなす面に対して斜面となっており、且つ、前記斜面の少なくとも1面以上に前記配線がなされていることを特徴とする請求項1の半導体リレー装置。   Of the side surfaces of the convex portion of the substrate, at least one surface is an inclined surface with respect to a surface formed by another portion of the substrate, and the wiring is formed on at least one surface of the inclined surface. The semiconductor relay device according to claim 1. 前記凸部の側面がなす斜面の、前記凸端部付近及び基板の一方の面付近における傾斜角が前記斜面の中程の傾斜角よりも緩くなっていることを特徴とする請求項2の半導体リレー装置。   3. The semiconductor according to claim 2, wherein an inclination angle of the inclined surface formed by the side surface of the protruding portion in the vicinity of the protruding end portion and in the vicinity of one surface of the substrate is smaller than an intermediate inclination angle of the inclined surface. Relay device. 前記凸部の側面がなす斜面は、変曲点を有する曲線を断面に持つ曲面により形成されていることを特徴とする請求項2の半導体リレー装置。   3. The semiconductor relay device according to claim 2, wherein the slope formed by the side surface of the convex portion is formed by a curved surface having a curved surface having an inflection point in cross section. 前記第2の電極は、前記基板の他方の面に形成された長方形の溝に形成されていることを特徴とする請求項1の半導体リレー装置。   2. The semiconductor relay device according to claim 1, wherein the second electrode is formed in a rectangular groove formed on the other surface of the substrate. 前記基板は主にシリコンあるいはシリコン化合物で形成されており、前記基板の配線部分は絶縁層上に形成されており、前記貫通電極が絶縁層で覆われていることを特徴とする請求項1の半導体リレー装置。   2. The substrate according to claim 1, wherein the substrate is mainly formed of silicon or a silicon compound, a wiring portion of the substrate is formed on an insulating layer, and the through electrode is covered with the insulating layer. Semiconductor relay device. 表面に凸部を有する配線基板の製造方法において、
ウエハの裏面に未貫通穴を設ける工程と、
前記ウエハの裏面および前記未貫通穴へ第1の絶縁層を形成する工程と、
前記未貫通穴へ導電体を充填する工程と、
前記ウエハの表面をエッチングにより加工して2つの凸部を設ける工程と、
前記未貫通穴の底面を前記ウエハ表面から加工して貫通させる工程と、
前記ウエハの表面に第2の絶縁層を形成する工程と、
前記第2の絶縁層の前記貫通穴部分を開口する工程と、
前記ウエハの表面へ電極パッド及びこれらを結ぶ導電パターンを形成する工程と、
を具備することを特徴とする配線基板の製造方法。
In the method of manufacturing a wiring board having a convex portion on the surface,
Providing a non-through hole on the back surface of the wafer;
Forming a first insulating layer on the back surface of the wafer and the non-through hole;
Filling the non-through holes with a conductor;
Processing the surface of the wafer by etching to provide two protrusions;
Processing and penetrating the bottom surface of the non-through hole from the wafer surface;
Forming a second insulating layer on the surface of the wafer;
Opening the through hole portion of the second insulating layer;
Forming electrode pads and conductive patterns connecting them to the surface of the wafer;
A method for manufacturing a wiring board, comprising:
前記未貫通穴へ充填する導電体として、直径20nm以下の金属粒子を含むペーストを硬化させたものを用いることを特徴とする請求項7記載の配線基板の製造方法。   8. The method of manufacturing a wiring board according to claim 7, wherein the conductor filled in the non-through hole is a hardened paste containing metal particles having a diameter of 20 nm or less. 前記ウエハの表面への導電パターン形成を直径20nm以下の金属粒子を含むペーストの塗布により行うことを特徴とする請求項7記載の配線基板の製造方法。   8. The method of manufacturing a wiring board according to claim 7, wherein the conductive pattern is formed on the surface of the wafer by applying a paste containing metal particles having a diameter of 20 nm or less.
JP2005044237A 2004-02-20 2005-02-21 Semiconductor relay device and manufacturing method of wiring board thereof Pending JP2005269627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044237A JP2005269627A (en) 2004-02-20 2005-02-21 Semiconductor relay device and manufacturing method of wiring board thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004044233 2004-02-20
JP2005044237A JP2005269627A (en) 2004-02-20 2005-02-21 Semiconductor relay device and manufacturing method of wiring board thereof

Publications (1)

Publication Number Publication Date
JP2005269627A true JP2005269627A (en) 2005-09-29

Family

ID=35093615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044237A Pending JP2005269627A (en) 2004-02-20 2005-02-21 Semiconductor relay device and manufacturing method of wiring board thereof

Country Status (1)

Country Link
JP (1) JP2005269627A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009086289A2 (en) * 2007-12-21 2009-07-09 Solfocus, Inc. Solar cell package for solar concentrator
US7985921B2 (en) 2007-11-14 2011-07-26 Solfocus, Inc. Systems to retain an optical element on a solar cell
US8759138B2 (en) 2008-02-11 2014-06-24 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9012771B1 (en) 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9806215B2 (en) 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells
JP2021089971A (en) * 2019-12-04 2021-06-10 株式会社東芝 Photo relay

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985921B2 (en) 2007-11-14 2011-07-26 Solfocus, Inc. Systems to retain an optical element on a solar cell
WO2009086289A2 (en) * 2007-12-21 2009-07-09 Solfocus, Inc. Solar cell package for solar concentrator
WO2009086289A3 (en) * 2007-12-21 2009-10-08 Solfocus, Inc. Solar cell package for solar concentrator
US8759138B2 (en) 2008-02-11 2014-06-24 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9331228B2 (en) 2008-02-11 2016-05-03 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
US9012771B1 (en) 2009-09-03 2015-04-21 Suncore Photovoltaics, Inc. Solar cell receiver subassembly with a heat shield for use in a concentrating solar system
US9806215B2 (en) 2009-09-03 2017-10-31 Suncore Photovoltaics, Inc. Encapsulated concentrated photovoltaic system subassembly for III-V semiconductor solar cells
JP2021089971A (en) * 2019-12-04 2021-06-10 株式会社東芝 Photo relay
JP7273701B2 (en) 2019-12-04 2023-05-15 株式会社東芝 photo relay

Similar Documents

Publication Publication Date Title
KR100581643B1 (en) Semiconductor relay apparatus and wiring board fabrication method
US7205674B2 (en) Semiconductor package with build-up layers formed on chip and fabrication method of the semiconductor package
EP1662564B1 (en) Semiconductor package and manufacturing method thereof
US7884459B2 (en) Semiconductor device suitable for a stacked structure
US7919875B2 (en) Semiconductor device with recess portion over pad electrode
US20040238945A1 (en) Thermally enhanced semiconductor package and fabrication method thereof
US20080138935A1 (en) Chip scale package structure and method for fabricating the same
JP2008244437A (en) Image sensor package having die receiving opening and method thereof
KR20080064090A (en) Multi-chip package and method of forming the same
KR20080106082A (en) Cmos image sensor chip scale package with die receiving opening and method of the same
JP2000074993A (en) High performance integrated circuit chip package
JP5615936B2 (en) Panel-based leadframe packaging method and apparatus
JP2002231918A (en) Solid-state image pickup device and its manufacturing method
JP2005269627A (en) Semiconductor relay device and manufacturing method of wiring board thereof
JP2003197856A (en) Semiconductor device
JP2002198463A (en) Chip size package and its manufacturing method
JP2002231854A (en) Semiconductor device and its manufacturing method
US20110147905A1 (en) Semiconductor device and method of manufacturing the same
JPH11150090A (en) Manufacture of semiconductor device
JP4511148B2 (en) Manufacturing method of semiconductor device
JP2005294875A (en) Semiconductor device and manufacturing method therefor
JP2004273561A (en) Semiconductor device and its manufacturing method
JP2008211225A (en) Semiconductor package
JP2006191152A (en) Semiconductor device and manufacturing method thereof
JP2004319792A (en) Semiconductor device and its manufacturing method