JP2005262363A - Extra-smooth grinding method - Google Patents

Extra-smooth grinding method Download PDF

Info

Publication number
JP2005262363A
JP2005262363A JP2004077299A JP2004077299A JP2005262363A JP 2005262363 A JP2005262363 A JP 2005262363A JP 2004077299 A JP2004077299 A JP 2004077299A JP 2004077299 A JP2004077299 A JP 2004077299A JP 2005262363 A JP2005262363 A JP 2005262363A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
wheel
smooth
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004077299A
Other languages
Japanese (ja)
Other versions
JP4118829B2 (en
JP2005262363A5 (en
Inventor
Heiji Yasui
平司 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004077299A priority Critical patent/JP4118829B2/en
Publication of JP2005262363A publication Critical patent/JP2005262363A/en
Publication of JP2005262363A5 publication Critical patent/JP2005262363A5/ja
Application granted granted Critical
Publication of JP4118829B2 publication Critical patent/JP4118829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extra-smooth grinding processing method for remarkably improving processing efficiency, when extra-smoothly grinding a surface of a workpiece such as metal and nonmetal. <P>SOLUTION: The processing efficiency is numerically expressed by using a parameter for determining the processing efficiency of a highly smooth grinding method. A practicable maximally highly smooth processing efficiency is determined on the basis of its numerical expression and a practical technology, and extra-smooth grinding processing of finishing surface roughness of 100 nm or less, is performed at a predetermined grinding wheel diameter and grinding wheel peripheral velocity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄鋼、非鉄金属などの金属やセラミック、ガラス、プラスチックなどの非金属等の工作物の表面を平滑面に仕上げる超平滑研削加工方法に関するものである。   The present invention relates to an ultra-smooth grinding method for finishing a surface of a workpiece such as a metal such as steel or non-ferrous metal or a non-metal such as ceramic, glass or plastic to a smooth surface.

近年、機器の高品位化や低価格化が、従来にも増して急速に押し進められつつある。これに伴い、部品の高精度化や高平滑化等についての要求は強くなっている。現在、金属、非金属工作物の加工工程において高平滑仕上げを行うには、まず、粗粒の砥石で粗研削を行い、その後、細粒・微粒の砥石を用いて、仕上加工をした後、最終的に、ラッピングやポリシング等の研摩加工により、高平滑面に仕上げている。   In recent years, higher quality and lower prices of equipment are being pushed more rapidly than ever before. In connection with this, the request | requirement about the high precision and high smoothness of components, etc. is increasing. Currently, in order to achieve a high smooth finish in the machining process for metal and non-metal workpieces, first, coarse grinding is performed with a coarse grindstone, and then finish processing is performed using fine and fine grindstones. Finally, it is finished to a highly smooth surface by polishing such as lapping and polishing.

しかし、このような加工工程を経て、高平滑面に仕上げる加工法では、加工工程が変わる毎に工作物を移し替える必要があり、そのための多くの時間を要する。さらに、ラッピングやポリシング等の定圧力加工法で、高平滑面に仕上げる研摩加工は、加工精度を向上することが出来ず、また、工作物表面の除去速度が非常に小さいため、所要の加工量を加工するのに長時間を要する。   However, in such a processing method that finishes a highly smooth surface through such a processing step, it is necessary to transfer the workpiece every time the processing step changes, which requires a lot of time. Furthermore, polishing processing that finishes to a high smooth surface by constant pressure processing methods such as lapping and polishing cannot improve the processing accuracy, and the removal speed of the workpiece surface is very low. It takes a long time to process.

このようなことから、現在行われている研摩加工を用いる高平滑仕上げ法では、最終仕上加工工程を終えるまでに、多大の時間と労力を要し、加工コストが非常に大きくなっている。このため、その改善策が、近年の高品位加工における加工価格の低減化への強い要求にとともに、従来にも増して、大きく期待されている。   For this reason, the current high smoothing finishing method using polishing requires a great deal of time and labor to finish the final finishing process, and the processing cost is very high. For this reason, the improvement measures are greatly expected in comparison with the conventional demands in addition to the strong demand for reduction of the processing price in the high-quality processing in recent years.

ラッピングやポリシング等のように遊離砥粒を用いて、定圧力で高平滑面に仕上げる研摩加工に替わる改善策の一方法として、研削加工による高平滑仕上げが、従来から、検討されてきている。砥粒を固定した砥石を用いる研削加工では、高精度な研削盤の切込み装置で、砥石を工作物に切込んで研削することにより、高能率な仕上げ加工を行うことができる。したがって、研削加工で高平滑仕上げが可能になれば、(1)加工能率の向上や工作物の移し替え工程の省略による総加工時間の短縮と(2)高平滑に加えて高精度で加工が出来る等の利点が生じる。   Conventionally, high smooth finish by grinding has been studied as one method for improving the polishing process by using loose abrasive grains such as lapping and polishing to finish a high smooth surface at a constant pressure. In the grinding process using the grindstone with the abrasive grains fixed, a highly efficient finishing process can be performed by cutting the grindstone into the workpiece and grinding with a cutting device of a highly accurate grinder. Therefore, if a high smooth finish can be achieved by grinding, (1) improvement of machining efficiency and shortening of the total machining time by omitting the workpiece transfer process, and (2) machining with high accuracy in addition to high smoothness. Advantages such as being possible arise.

このような研削加工による高平滑加工は、研摩加工の代替までとはいかなくとも、研摩加工に近い高平滑仕上げが行えれば、研摩加工工程における大幅な加工時間の短縮につながる。このため、研削加工による高平滑仕上げへの期待は非常に高いものがある。   Such high-smoothing processing by grinding can lead to a significant reduction in processing time in the polishing process if high-smooth finishing close to that of polishing can be performed, even if it is not an alternative to polishing. For this reason, there are very high expectations for a high smooth finish by grinding.

しかし、現在行われているプランジ研削法やトラバ−ス研削法で、通常、仕上面粗さ1μm(Ry値)以下にすることは簡単ではない。特に、100nm(Ry値)以下の鏡面の仕上面を得ることは難しく(非特許文献1)、研摩加工に替わり得るような高平滑研削加工は非常に難しいのが現状である。   However, it is usually not easy to reduce the finished surface roughness to 1 μm (Ry value) or less by the plunge grinding method or the traverse grinding method currently being performed. In particular, it is difficult to obtain a mirror-finished surface of 100 nm (Ry value) or less (Non-Patent Document 1), and it is very difficult to perform highly smooth grinding that can replace polishing.

このようなことから、最近、本発明者は、新たな概念の高平滑研削法を開発した(特許文献1、非特許文献2)。   For these reasons, the present inventor recently developed a new concept of high smooth grinding (Patent Document 1, Non-Patent Document 2).

特開2003-94296号公報Japanese Patent Laid-Open No. 2003-94296 小林昭監修:超精密生産技術体系(第1巻)基本技術、フジテクノシステム(1995)p.181Supervised by Akira Kobayashi: Super Precision Production Technology System (Volume 1) Basic Technology, Fuji Techno System (1995) p.181 安井平司:精密工学会誌、第69巻、第12号(2002) pp.1713-1717Heiji Yasui: Journal of Japan Society for Precision Engineering, Vol. 69, No. 12 (2002) pp.1713-1717

本発明者が開発した前記の高平滑研削法を、横軸角テ−ブル型平面研削に適用する場合の例を、図1の斜視図に模式的に示す。まず、(1)砥石1又は工作物2を、研削方向とは直角方向に、砥石1の1回転当たりの研削方向と直角方向の工作物2の送り量fGn(以下、「工作物直角送り量」と記す)が、研削方向と直角な切れ刃逃げ面3摩耗幅wn(異なる切れ刃逃げ面が連なっていると見なされる場合には、その総和の逃げ面幅)以下の送り速度になるように送り、砥石−工作物接触幅を加工する(第1の要件)。(2)その後、幾何学的に計算される砥石−工作物の干渉高さ(研削方向に平行な仕上面粗さHpに相当)が、要求する高平滑仕上面粗さHmax以下になるように、研削方向に微少な送り量fpだけ、砥石1又は工作物2を間欠的に移動する(第2の要件)。そして、次の砥石−工作物接触幅を仕上げる。このようなことを繰り返して、工作物全面を高平滑面に仕上げることができる。この方法は、研摩加工に替え得る、又は、研摩加工に近い高平滑面に仕上げる研削加工方法である。 An example of applying the high smooth grinding method developed by the present inventor to horizontal axis angle table type surface grinding is schematically shown in the perspective view of FIG. First, (1) the feed amount f Gn of the workpiece 2 in the direction perpendicular to the grinding direction per rotation of the grinding stone 1 in the direction perpendicular to the grinding direction of the grindstone 1 or the workpiece 2 (hereinafter referred to as “workpiece perpendicular feed”). The cutting speed of the cutting edge flank 3 perpendicular to the grinding direction 3 wear width w n (if different cutting edge flank surfaces are considered to be connected, the total flank width) Then, the grinding wheel-workpiece contact width is processed (first requirement). (2) After that, the geometrically calculated grinding wheel-workpiece interference height (corresponding to the finished surface roughness Hp parallel to the grinding direction) is less than the required high smooth finished surface roughness Hmax. The grindstone 1 or the workpiece 2 is intermittently moved by a minute feed amount fp in the grinding direction (second requirement). Then, the next grindstone-workpiece contact width is finished. By repeating this, the entire surface of the workpiece can be finished to a highly smooth surface. This method is a grinding method that can be replaced with a polishing process or finishes a highly smooth surface close to the polishing process.

図1に示すような、通常の横軸角テ−ブル型平面研削盤で、超平滑研削を行う場合に適用すると、研摩加工法に比較すると加工能率は良いが、研削加工としては、除去速度が遅く加工能率が悪い。円筒研削法や曲面研削法等の場合も同様と言える。このため、加工能率を格段に改善できる方法および装置の開発が強く期待されている。本発明は、超平滑研削を行う場合に、加工能率を格段に向上させる加工方法の開発を課題としている。  When applied to ultra-smooth grinding with a normal horizontal axis table surface grinder as shown in FIG. 1, the machining efficiency is better than that of the polishing method, but the removal rate is as grinding. Is slow and processing efficiency is poor. The same can be said for the cylindrical grinding method and the curved grinding method. For this reason, development of the method and apparatus which can improve processing efficiency markedly is anticipated strongly. This invention makes it a subject to develop the processing method which improves a processing efficiency markedly when performing super smooth grinding.

本発明者は、高平滑研削法の加工能率を決めるパラメ−タを用いて、加工能率を数式化し、その数式と実用的技術を基に、実用化出来る最大高平滑加工能率を決めて、高能率超平滑加工を行う方法を開発した。
すなわち、本発明は、(1)砥石を工具として用いて仕上げる平面研削法、円筒研削法、内面研削法、曲面研削法等の各種研削法で、砥石または工作物を、砥石回転方向(研削方向)と直角方向に、砥石1回転当たりの工作物送り量fGnが、研削方向と直角な切れ刃逃げ面摩耗幅(異なる切れ刃逃げ面が連なっていると見なされる場合には、その総和の逃げ面幅)未満の送り速度になるように送ることにより、砥石−工作物接触幅を加工した後、幾何学的に計算される砥石−工作物の干渉高さが、要求する高平滑仕上面粗さ未満になるように、工作物または砥石を研削方向に平行方向に間欠的に微少送り量fpだけ移動して、次の砥石−工作物接触幅を仕上げていくことを繰り返して、工作物全面を高平滑面に仕上げる高平滑研削加工方法において、
下記(1)式で定まる最大除去速度M(ただし、tは砥石切込深さ、Ngは砥石回転数)
M=fGn・t・fp・Ng――(1)
下記(2)式で定まる最大仕上面粗さ (Hp)LIM(ただし、Dgは砥石直径)
(Hp)LIM=(fp)2/4Dg ――(2)
下記(3)又は(4)式で定まる許容砥石軸回転数(ただし、Dpは使用する砥石軸直径)(Ng)max =(Vg)max /π・(Dg)max ――(3)
(Ng)max=(D・N)max /Dp――(4)(Dp:使用する砥石軸直径)
を満たす、砥石直径及び砥石周速度で仕上げ面粗さ100nm以下の超平滑研削加工を行う方法、である。
The present inventor formulates the machining efficiency using the parameter for determining the machining efficiency of the high smooth grinding method, and determines the maximum high smoothing machining efficiency that can be put into practical use based on the mathematical formula and the practical technique. A method of performing ultra-smooth machining has been developed.
That is, the present invention includes (1) various grinding methods such as a surface grinding method, a cylindrical grinding method, an inner surface grinding method, and a curved surface grinding method that use a grinding wheel as a tool to finish the grinding wheel or workpiece in the grinding wheel rotation direction (grinding direction). )), The workpiece feed rate f Gn per rotation of the grinding wheel is the cutting edge flank wear width perpendicular to the grinding direction (if different cutting edge flank faces are considered to be connected, the total After machining the grinding wheel-workpiece contact width by feeding it to a feed speed less than the clearance surface width), the geometrically calculated grinding wheel-workpiece interference height requires a high smooth finish surface. Repeatedly moving the workpiece or grindstone intermittently by a small feed amount fp in the direction parallel to the grinding direction so that the roughness is less than the roughness, and finishing the next whetstone-workpiece contact width. High smooth grinding method that finishes the entire surface to a high smooth surface ,
Maximum removal speed M determined by the following formula (1) (where t is the grinding wheel cutting depth and Ng is the grinding wheel speed)
M = f Gn・ t ・ fp ・ Ng ―― (1)
Maximum finished surface roughness determined by the following formula (2) (Hp) LIM (where Dg is the wheel diameter)
(Hp) LIM = (fp) 2 / 4Dg ―― (2)
Allowable wheel shaft rotation speed determined by the following formula (3) or (4) (where Dp is the wheel shaft diameter to be used) (Ng) max = (Vg) max / π · (Dg) max ―― (3)
(Ng) max = (D · N) max / Dp-(4) (Dp: Grinding wheel shaft diameter)
And a method of performing ultra-smooth grinding with a finished surface roughness of 100 nm or less at a grinding wheel diameter and a grinding wheel peripheral speed.

また、本発明は、砥石軸を研削方向に直角方向へ傾け角θで傾けることによって、傾けない場合の仕上面粗さHpに対して、下記(5)式で定まる仕上面粗さHmax とすることを特徴とする上記(1)の超平滑研削加工を行う方法、である
Hmax=Hp ・sinθ=[(fp) 2/4Dg ] ・sinθ――(5)
Further, in the present invention, by finishing the grindstone shaft in a direction perpendicular to the grinding direction at an angle θ, the finished surface roughness Hmax determined by the following equation (5) with respect to the finished surface roughness Hp when not inclined is obtained. (1) The method for performing ultra-smooth grinding according to the above (1)
Hmax = Hp • sinθ = [(fp) 2 / 4Dg] • sinθ— (5)

本発明の超平滑研削加工法は、次のような効果がある。
1)通常の研削盤で、一般に良く使用される直径の砥石を用いた、現用の一般的研削技術を超平滑研削法に適用した場合に比較して、加工能率を10倍にもすることが出来る。
2)本超平滑研削加工法によって形成される平滑度は、通常の研削盤で、現用の一般的研削技術を超平滑研削法に適用した場合で行った場合と、同程度になる。
3)小径の砥石を使用する場合、製造価格も少なく、また、安価な小さな研削盤で、加工が可能であると言う利点もある。
The ultra-smooth grinding method of the present invention has the following effects.
1) The machining efficiency can be increased by 10 times compared to the case where the current general grinding technique using a grindstone with a commonly used diameter is applied to an ultra-smooth grinding method. I can do it.
2) The smoothness formed by the ultra-smooth grinding method is almost the same as that obtained when an ordinary general grinding technique is applied to the super-smooth grinding method with an ordinary grinder.
3) When a small-diameter grindstone is used, the manufacturing cost is low, and there is an advantage that processing is possible with a small and inexpensive grinder.

本発明の超平滑研削加工法を、平面研削に適用する場合を例にとって以下に詳細に説明する。図1に示す高平滑研削加工法を実施するには、次の制約を満たす必要がある。
(1)砥石または工作物を、砥石回転方向(研削方向)と直角方向に、砥石1回転当たりの工作物送り量(fGn)が、研削方向と直角な切れ刃逃げ面摩耗幅(異なる切れ刃逃げ面が連なっていると見なされる場合には、その総和の逃げ面幅)未満の送り速度になるように送ること、
(2)幾何学的に計算される砥石−工作物の干渉高さが、要求する高平滑仕上面粗さ未満になるように、工作物または砥石を研削方向に平行方向に間欠的に微少量(fp)移動すること。
The ultra-smooth grinding method of the present invention will be described in detail below by taking as an example the case of applying to surface grinding. In order to implement the high smooth grinding method shown in FIG. 1, it is necessary to satisfy the following constraints.
(1) Cutting wheel flank wear width (different cutting distance) when the grinding wheel or workpiece is perpendicular to the grinding wheel rotation direction (grinding direction) and the workpiece feed rate (f Gn ) per grinding wheel rotation is perpendicular to the grinding direction. If the blade flank surfaces are considered to be connected, feed them so that the feed speed is less than the total flank width)
(2) The work piece or the grindstone is intermittently minutely parallel to the grinding direction so that the geometrically calculated grindstone-workpiece interference height is less than the required high smooth finish surface roughness. (Fp) To move.

(1)の要件を考えると、現状の砥石の形直しと目直しで形成し得る砥石作業面の平坦化にはある限界があるため、図2に示すように、砥石1回転当たりの研削方向に直角方向工作物送り量fGnは、幾らでも大きく出来るのではなく、最大許容送り量(fGn)cr(図2の場合は約40μm程度)があり、それ以上にすると、仕上面粗さが急激に悪くなるので、大きくできない。 Considering the requirement (1), since there is a limit to the flattening of the grinding wheel work surface that can be formed by reshaping and reshaping the current grinding wheel, as shown in FIG. 2, the grinding direction per grinding wheel rotation The workpiece feed rate f Gn perpendicular to the axis cannot be increased as much as possible, but has a maximum allowable feed rate (f Gn ) cr (about 40 μm in the case of FIG. 2). Cannot get bigger because it gets worse quickly.

また、(2)の要件から、所要の仕上面粗さを得るためには、例えば、角テ−ブル型横軸平面研削では、形成される仕上面粗さHpが幾何学的にHp=(fp)2/4Dg(Dg:砥石直径)の関係を基に求められることから、この関係を用いて、最大仕上面粗さ(Hp)LIMを得るためのfpとDgを決める必要がある。 In order to obtain the required finished surface roughness from the requirement (2), for example, in the angular table type horizontal axis surface grinding, the formed finished surface roughness Hp is geometrically Hp = ( Since fp) 2 / 4Dg (Dg: wheel diameter) is obtained, it is necessary to determine fp and Dg for obtaining the maximum finished surface roughness (Hp) LIM using this relationship.

一方、被研削物の除去速度Mについて、研削条件パラメ−タを用いて数式を導出すると、図1に示す横軸角テ−ブル型平面研削の例では、超平滑研削を行う場合の単位時間あたりの除去量、すなわち、除去速度Mは、1研削パスあたりの研削方向直角除去面積をSとすると、次式で示される(図1参照)。   On the other hand, when the mathematical expression is derived using the grinding condition parameter for the removal speed M of the workpiece, in the example of the horizontal axis table surface grinding shown in FIG. The removal amount per round, that is, the removal speed M, is represented by the following equation, where S is the removal area perpendicular to the grinding direction per grinding pass (see FIG. 1).

M=S・vwn ――(A)(ここで,vwn =fGn・Ng:砥石の送り速度、Ng:砥石回転数)
また、除去面積Sは、図1の模式図からわかるように、次式で近似出来る。
S≒(1/2)・lc・gmax――(B)(ここで,lc=(t・Dg)0.5:接触弧長さ、Dg=2Rg:砥石直径、t:砥石切込深さ、 gmax=fp・(4t/ Dg) 0.5: 最大砥石切込み深さ)
M = S ・ v wn ―― (A) (where v wn = f Gn・ Ng: Wheel feed speed, Ng: Wheel rotation speed)
Moreover, the removal area S can be approximated by the following equation, as can be seen from the schematic diagram of FIG.
S ≒ (1/2) ・ l c ・ g max ―― (B) (where l c = (t ・ D g ) 0.5 : contact arc length, Dg = 2Rg: grinding wheel diameter, t: grinding wheel cutting Depth, g max = fp ・ (4t / D g ) 0.5 : Maximum grinding wheel cutting depth)

(B)式を(A)式に代入し、整理すると、除去速度は
M=fGn・t・fp・Ng――(1)
となる。
Substituting (B) into (A) and rearranging, the removal rate is
M = f Gn・ t ・ fp ・ Ng ―― (1)
It becomes.

したがって、本発明の研削方法では、fGn、t、fp、Ngの値によって除去速度Mが求まり、これらの値を大きくすることで、除去速度を向上させることができる。そこで、それらのパラメ−タの増大の可能性を検討してみる。まず、最初にfGnであるが、上述の(1)の要件を満たす必要があることから、fGnを大きくするのは、現状では限界があり、非常に小さな値の約40μm/revが限度である。 Therefore, in the grinding method of the present invention, the removal rate M is determined by the values of f Gn , t, fp, and Ng, and the removal rate can be improved by increasing these values. Therefore, we will examine the possibility of increasing those parameters. First, it is f Gn , but since it is necessary to satisfy the above requirement (1), there is a limit to increasing f Gn at present, and a very small value of about 40 μm / rev is the limit. It is.

次いで、第2番目の砥石切込み深さtについては、取り代と関係する量であり、適当に変化し得る量ではない。ただし、取り代が大きい場合には、砥石軸剛性が耐える範囲で、悪い研削現象発生(研削焼け・割れ等他)以下の範囲までは、砥石切込みを大きくすることは可能と言える。   Next, the second grinding wheel cutting depth t is an amount related to the machining allowance and is not an amount that can be appropriately changed. However, if the machining allowance is large, it can be said that the grinding wheel cutting can be increased up to the range where the grinding wheel shaft rigidity can withstand and the range where the bad grinding phenomenon occurs (grinding burn, cracking, etc.) or less.

第3番目に、fpであるが、上述の(2)の制約を満たす必要があり、次式を満足しなければならない。
(Hp)LIM=(fp)2/4Dg――(2)
Third, fp needs to satisfy the above-mentioned constraint (2), and the following equation must be satisfied.
(Hp) LIM = (fp) 2 / 4Dg-(2)

上式からわかるように、fpを増加すると、砥石直径を、その2乗で大きくしなければ同じ仕上げ面粗さを得ることが出来ない。図3に、Dgをパラメ−タとした、fpと仕上げ面粗さHpの関係を示す。砥石直径はφ10mm〜φ300mmの範囲で示しているが、通常良く使用されているのは、φ100mm〜φ300mm程度までである。   As can be seen from the above equation, when fp is increased, the same finished surface roughness cannot be obtained unless the grindstone diameter is increased by its square. FIG. 3 shows the relationship between fp and finished surface roughness Hp with Dg as a parameter. The diameter of the grinding wheel is shown in the range of φ10 mm to φ300 mm, but it is usually about φ100 mm to φ300 mm that is often used.

また、超平滑研削面、すなわち100nm(Rz)以下の表面粗さの研削面を得ようとする場合、例えば、Hp=100nmの表面粗さの場合を考え、砥石直径Dgとfpの範囲をみると、例えば、φ10mmの砥石では、fpは約80μm/revであり、一方、φ300mmの砥石ではfpは約450μm/revとなり、約5.4倍大きくし得る。   In addition, when trying to obtain an ultra-smooth ground surface, that is, a ground surface having a surface roughness of 100 nm (Rz) or less, for example, considering a surface roughness of Hp = 100 nm, the range of the grindstone diameters Dg and fp is viewed. For example, in a whetstone of φ10 mm, fp is about 80 μm / rev, whereas in a whetstone of φ300 mm, fp is about 450 μm / rev, which can be increased by about 5.4 times.

最後に、砥石回転数Ngであるが、これは、実用的な最大砥石回転数が、砥石の回転破壊に関係する許容砥石周速度(Vg)max=π・Ng・Dg(Dg:通常の砥石製造技術では、100m/s)や砥石軸の軸直径Dと軸回転数Nの積により決められるD・N値の最大値である(D・N)max(現状:2,500,000程度)以下にすることが拘束条件になる。   Finally, the rotation speed of the grinding wheel is Ng. This is because the practical maximum grinding wheel rotation speed is the allowable grinding wheel peripheral speed (Vg) related to rotational breakage of the grinding wheel, max = π · Ng · Dg (Dg: normal grinding wheel) In manufacturing technology, the maximum D / N value (D · N) max (currently about 2,500,000) determined by the product of the shaft diameter D and the shaft speed N of the grinding wheel shaft is 100m / s) or less. Is a constraint.

したがって、最大許容砥石回転数(Ng)maxは、下記の式(3)又は(4)の式を用いて、計算決定し、それ以下の砥石回転数で使用することが必要である。
(Ng)max =(Vg)max /π・(Dg)max ――(3)
(Ng)max=(D・N)max /Dp――(4)(Dp:使用する砥石軸直径)
Therefore, it is necessary to calculate and determine the maximum allowable grinding wheel rotational speed (Ng) max using the following formula (3) or (4) and use it at a grinding wheel rotational speed lower than that.
(Ng) max = (Vg) max / π ・ (Dg) max ―― (3)
(Ng) max = (D · N) max / Dp-(4) (Dp: Grinding wheel shaft diameter)

砥石直径と回転数の積が一定なので、使用できる最大許容砥石回転数は、砥石直径の減少に反比例して増加する。例えば、φ300mmの砥石を使用する場合に比較して、φ10mmの砥石を使用すると、最大回転数は、30倍まで大きくできる。   Since the product of the wheel diameter and the rotation speed is constant, the maximum allowable wheel rotation speed that can be used increases in inverse proportion to the decrease in the wheel diameter. For example, the maximum number of rotations can be increased up to 30 times when a φ10 mm grindstone is used, compared to the case where a φ300 mm grindstone is used.

以上のように、除去速度Mを増大するには、fpとNgの増加が適当と考えられるが、それらの最大許容値は、砥石直径に関係し、砥石直径を減少すると、それに反比例して最大許容砥石回転数を大きくすることが出来るが、最大許容送りは、1/2乗に反比例してしか、大きくできない。このことから、除去速度Mは、基本的に、砥石直径を減少して、砥石回転数を大きくする方が、より大きく増大し得ることになる。   As described above, it is considered appropriate to increase fp and Ng in order to increase the removal rate M. However, the maximum permissible values are related to the wheel diameter. The allowable wheel speed can be increased, but the maximum allowable feed can only be increased in inverse proportion to the 1/2 power. From this, the removal speed M can basically be increased more greatly by decreasing the grindstone diameter and increasing the grindstone rotation speed.

例えば、同じ表面粗さを得るためには、砥石直径φ300mmの砥石の方が、砥石直径φ10mmの場合よりも、fpを増加することにより、除去速度を5.4倍まで増加することが出来る。この一方、最大許容砥石回転数の観点からすれば、砥石直径φ10mmの場合の方が、砥石直径φ300mmの砥石の場合よりも、30倍大きくできることになり、基本的に、小さな砥石直径のものを、高速で回転させる方が、fpを小さくする必要があるが、大きな除去速度まで増加し得ると言える。   For example, in order to obtain the same surface roughness, the removal speed can be increased up to 5.4 times by increasing the fp of the grindstone having a diameter of 300 mm than by the grindstone having a diameter of 10 mm. On the other hand, from the viewpoint of the maximum allowable wheel rotation speed, the wheel diameter of φ10mm can be 30 times larger than that of the wheel with a wheel diameter of φ300mm. Although it is necessary to reduce fp when rotating at high speed, it can be said that it can increase to a large removal speed.

以上、角テ−ブル型横軸平面研削の場合を例にとって、除去速度の向上を検討したが、その場合、図1に示すように、砥石作業面と工作物との角度は直角(90度)であった。この角度を、立軸平面研削による超平滑平面研削の図4の例で示すように、砥石を傾けて研削を行うと、幾何学的仕上面粗さHmaxが、
次式で表される。
As described above, the improvement of the removal speed has been examined by taking the case of the angle table type horizontal axis surface grinding as an example. In this case, as shown in FIG. )Met. As shown in the example of FIG. 4 of ultra-smooth surface grinding by vertical surface grinding, when this angle is ground and the grindstone is tilted, the geometric finished surface roughness Hmax is
It is expressed by the following formula.

Hmax=Hp・sinθ=[(fp) 2/4Dg ] ・sinθ ――(5)
従って、図1に示す横軸研削の場合の砥石軸を大きく傾ければ、同じ砥石直径のものを用いても、仕上面粗さを小さく抑えることが出来る。このことを利用すれば、上述のように小径砥石を用いても、研削方向平行間欠送り量fpを小さくせずに対処し得る。また、(5)式を変形すると、次のように書き換えられる。
Hmax = Hp · sinθ = [(fp) 2 / 4Dg] • sinθ ―― (5)
Therefore, if the grindstone axis in the case of the horizontal axis grinding shown in FIG. 1 is greatly inclined, the finished surface roughness can be kept small even if the grindstone having the same grindstone diameter is used. If this is utilized, even if a small-diameter grindstone is used as described above, it can be coped with without reducing the grinding direction parallel intermittent feed amount fp. Further, when the equation (5) is modified, it can be rewritten as follows.

(fp)r=[Hp ・4Dg/sinθ]0.5――(6)
Dg(fp)r=[Hp ・4Dg/sinθ]0.5
(Fp) r = [Hp • 4Dg / sinθ] 0.5 ―― (6)
Dg (fp) r = [Hp • 4Dg / sinθ] 0.5

図5は、研削方向平行間欠送り量fpおよび傾き角θと幾何学的仕上面粗さHpの関係を示すものである。なお、傾き角θは、工作物に対して横軸研削の場合を90度とし、それを直角に傾けた場合を0度としている。図5より、横軸平面研削における砥石軸を大きく傾け、傾き角θを小さくすると、幾何学的仕上面粗さは、非常に小さくなるのがわかる。例えば、傾き角θを3度程度にし、立軸研削に近いものとすると、fp=60μmとしても、Hmaxは4nmとなり、十分に小さくすることが出来る。なお、砥石径φ100mmの場合は、fp=40μmで、4nmとなる。また、砥石軸を傾けると、研削方向平行間欠送り量fpを大きくしても、幾何学的仕上面粗さを小さくし得ることもわかる。   FIG. 5 shows the relationship between the grinding direction parallel intermittent feed amount fp and the inclination angle θ and the geometric finished surface roughness Hp. Note that the inclination angle θ is 90 degrees in the case of horizontal axis grinding with respect to the workpiece, and 0 degrees when it is inclined at a right angle. From FIG. 5, it is understood that when the grindstone axis in the horizontal surface grinding is greatly inclined and the inclination angle θ is decreased, the geometric finished surface roughness becomes very small. For example, if the tilt angle θ is set to about 3 degrees and is close to vertical axis grinding, even if fp = 60 μm, Hmax is 4 nm, which can be sufficiently reduced. In the case of a grindstone diameter of φ100 mm, fp = 40 μm and 4 nm. It can also be seen that when the grindstone axis is tilted, the geometric finished surface roughness can be reduced even if the grinding direction parallel intermittent feed amount fp is increased.

図6は、砥石周速度を通常の砥石周速度50m/sとし、(1)通常の研削で良く使用
される砥石としては小さい方の砥石径である砥石径φ100mmの砥石を用いて、角テ−ブル型横軸平面研削盤で超平滑面に仕上げる研削を行う場合と、(2)小径砥石であるφ14mmを用いて立軸研削盤で、傾き角θを3度とし、高平滑面に仕上げる研削を行う場合の除去速度を比較したものである。φ100mmの砥石とφ14mmの砥石の回転数はそれぞれ、約159rpsと約1137rpsになる。
Fig. 6 shows a grinding wheel circumferential speed of 50 m / s as a normal grinding wheel speed. (1) A grinding wheel with a grinding wheel diameter of 100 mm, which is the smaller grinding wheel diameter, is used as a grinding wheel often used in normal grinding. -When grinding to make an ultra-smooth surface with a bull-type horizontal-axis surface grinder, and (2) Grinding with a vertical-shaft grinder with a small-diameter grindstone of φ14mm and a high-smooth surface with an inclination angle θ of 3 degrees. This is a comparison of the removal rate when performing the above. The rotation speeds of the φ100 mm and φ14 mm wheels are about 159 rps and about 1137 rps, respectively.

なお、両研削法の場合とも、砥石1回転当たりの研削方向直角送り量はfGn=20μm/revと同じにしている。また、両研削方法の場合とも、形成される幾何学的仕上面粗さは、約4nmとしている。このため、研削方向平行間欠送り量fpは横軸研削の場合はfp=40μm、立軸研削の場合はfp=60μmを用いて、計算している。図6より、除去速度は、約10倍になり、格段に加工能率を向上し得るのがわかる。 Note that, in both grinding methods, the feed amount in the grinding direction per rotation of the grindstone is the same as f Gn = 20 μm / rev. In both grinding methods, the geometric finished surface roughness formed is about 4 nm. For this reason, the grinding direction parallel intermittent feed amount fp is calculated using fp = 40 μm for horizontal axis grinding and fp = 60 μm for vertical axis grinding. From FIG. 6, it can be seen that the removal rate is about 10 times, and the processing efficiency can be remarkably improved.

超高速スピンドル砥石軸をもつ立型研削盤に直径φ14mmの小径砥石軸を取り付け、60000rpm(1000rps)の超高速回転で、10mm角の炭化けい素ファインセラミックを超平滑平面研削加工を行った。砥石は、粗粒の粒度#140、集中度50のメタルボンド砥石を使用した。研削液はソリュブルを用いた。砥石軸は工作物表面に垂直方向に対して3度傾けて取り付けた。工作物直角送り量fGnを5μm/rev、砥石切込深さtを5μm、研削方向に平行な間欠送り量fpを90μm/revとした。砥石回転数は、通常の横軸平面研削の比較的速い回転数である(3600rpm/60rps)に比較して、17倍(60000rpm/1000rps)になっている。一方、砥石周速度Vgは、約50m/sで、通常の砥石製造技術の範疇にある。単位時間当たりの研削による除去量Mは0.37mm3/minであった。 A small grinding wheel shaft with a diameter of 14 mm was attached to a vertical grinding machine with an ultra-high-speed spindle grinding wheel shaft, and ultra-smooth surface grinding of 10 mm square silicon carbide fine ceramic was performed at an ultra-high speed rotation of 60000 rpm (1000 rps). As the grindstone, a metal bond grindstone having a coarse grain size of # 140 and a concentration of 50 was used. Soluble was used as the grinding fluid. The grinding wheel shaft was attached to the workpiece surface with an inclination of 3 degrees with respect to the vertical direction. The workpiece normal feed rate f Gn was 5 μm / rev, the grinding wheel cutting depth t was 5 μm, and the intermittent feed rate fp parallel to the grinding direction was 90 μm / rev. The rotation speed of the grinding wheel is 17 times (60000 rpm / 1000 rps) compared to the relatively high speed (3600 rpm / 60 rps) of normal horizontal axis surface grinding. On the other hand, the grinding wheel peripheral speed Vg is about 50 m / s, which is in the category of ordinary grinding wheel manufacturing technology. The removal amount M by grinding per unit time was 0.37 mm 3 / min.

図7に、実施例1により研削した炭化けい素ファインセラミックの工作物の表面の光
干渉式高精度表面測定器(WYKO)による二次元粗さ測定によるX,Yプロファイルを示す。図7よりわかるように、実際に得られた研削方向平行仕上面粗さは、P−V値で14μm(図7では、Rt値)、Ra値で3nm以下であり、一方、研削方向直角仕上面粗さは、P−V値で約23nm、Ra値で約4nmとなっており、高能率に超平滑研削加工が行えたことが分かる。
FIG. 7 shows X and Y profiles obtained by two-dimensional roughness measurement of the surface of a silicon carbide fine ceramic workpiece ground according to Example 1 using an optical interference type high precision surface measuring instrument (WYKO). As can be seen from FIG. 7, the grinding surface parallel finished surface roughness actually obtained is 14 μm in PV value (Rt value in FIG. 7) and 3 nm or less in Ra value. The surface roughness is about 23 nm in terms of PV value and about 4 nm in terms of Ra value, which indicates that ultra-smooth grinding can be performed with high efficiency.

本発明の方法により、平面研削、円筒研削、内面研削、曲面研削等に適用することを目的として、超高速スピンドル砥石軸をもつ研削盤に小径砥石を取り付け、金属(鉄鋼・非鉄金属)や非金属(セラミック・ガラス・プラスチック)等の超平滑研削を行うことができる。また、平面研削や曲面研削等に適用することを目的として、超高速スピンドル砥石軸をもつ立型研削盤や立型NC研削盤等に小径砥石を取り付け、砥石軸を垂直方向に対して小さく傾けて超平滑研削を行うことができる。   With the method of the present invention, a small-diameter grindstone is attached to a grinder having an ultrahigh-speed spindle grindstone shaft for the purpose of applying to surface grinding, cylindrical grinding, internal grinding, curved surface grinding, etc. Super smooth grinding of metal (ceramic, glass, plastic) can be performed. In addition, a small-diameter grindstone is attached to a vertical grinder or vertical NC grinder with an ultra-high-speed spindle grindstone shaft for the purpose of applying to surface grinding or curved surface grinding, and the grindstone shaft is tilted slightly with respect to the vertical direction. Super smooth grinding can be performed.

本発明の超平滑研削法の原理を横軸角テ−ブル型平面研削に適用する場合の例を模式的に示す斜視図である。It is a perspective view which shows typically the example in the case of applying the principle of the super smooth grinding method of this invention to a horizontal axis angle table type surface grinding. 砥石1回転当たりの工作物送り速度fGnと仕上面粗さの関係(H3D:256mm角面積についての仕上面粗さ、Hp:研削方向平行測定長さが256mmについての仕上面粗さ、Hn:研削方向直角測定長さが256mmについての仕上面粗さ)を示すグラフである。Relationship between workpiece feed rate f Gn per grinding wheel revolution and finish surface roughness (H 3D : Finished surface roughness for 256 mm square area, Hp: Finished surface roughness for grinding direction parallel measurement length of 256 mm, Hn : Grinding direction perpendicular measurement length is a graph showing the finished surface roughness for 256 mm. 各種砥石直径に対する研削方向平行間欠送り量と幾何学的研削方向仕上面粗さの関係を示すグラフである。It is a graph which shows the relationship between the grinding direction parallel intermittent feed amount with respect to various grindstone diameters, and geometric grinding direction finishing surface roughness. 本発明の方法により小径砥石を超高速回転する方法を平面研削へ適用し、高能率超平滑研削加工を行う方法を示す模式図である。It is a schematic diagram which shows the method of applying to the surface grinding the method of rotating a small diameter grindstone ultra-high speed by the method of this invention, and performing a highly efficient super smooth grinding process. 砥石軸の傾け角θおよび研削方向平行間欠送りfp と幾何学的仕上げ面粗さHmaxの関係を示すグラフである。It is a graph which shows the inclination angle (theta) of a grindstone axis | shaft, the grinding direction parallel intermittent feed fp, and geometric finish surface roughness Hmax. 通常の横軸平面研削盤で、良く使用される砥石直径の砥石を用いて超平滑研削を行う場合と立型研削盤で、小径砥石を用い、小さな傾け角θで超平滑研削を行う場合の除去速度の比較結果を示すグラフである。When using an ordinary horizontal axis surface grinder for ultra-smooth grinding using a grindstone with a commonly used grindstone diameter, or when using a vertical grinder with a small-diameter grinder and performing ultra-smooth grinding with a small tilt angle θ It is a graph which shows the comparison result of a removal rate. 実施例1により研削した炭化けい素ファインセラミックの工作物の表面の光干渉式高精度表面測定器(WYKO)による二次元粗さ測定によるX,Yプロファイルを示す図面代用写真である。2 is a drawing-substituting photograph showing X and Y profiles obtained by two-dimensional roughness measurement using a light interference type high precision surface measuring device (WYKO) of a surface of a silicon carbide fine ceramic workpiece ground according to Example 1;

Claims (2)

砥石を工具として用いて仕上げる平面研削法、円筒研削法、内面研削法、曲面研削法等の各種研削法で、砥石または工作物を、砥石回転方向(研削方向)と直角方向に、砥石1回転当たりの工作物送り量fGnが、研削方向と直角な切れ刃逃げ面摩耗幅(異なる切れ刃逃げ面が連なっていると見なされる場合には、その総和の逃げ面幅)未満の送り速度になるように送ることにより、砥石−工作物接触幅を加工した後、幾何学的に計算される砥石−工作物の干渉高さが、要求する高平滑仕上面粗さ未満になるように、工作物または砥石を研削方向に平行方向に間欠的に微少送り量fpだけ移動して、次の砥石−工作物接触幅を仕上げていくことを繰り返して、工作物全面を高平滑面に仕上げる高平滑研削加工方法において、
下記(1)式で定まる最大除去速度M(ただし、tは砥石切込深さ、Ngは砥石回転数)
M=fGn・t・fp・Ng――(1)
下記(2)式で定まる最大仕上面粗さ (Hp)LIM(ただし、Dgは砥石直径)
(Hp)LIM=(fp)2/4Dg ――(2)
下記(3)又は(4)式で定まる許容砥石軸回転数(ただし、Dpは使用する砥石軸直径)(Ng)max =(Vg)max /π・(Dg)max ――(3)
(Ng)max=(D・N)max /Dp――(4)(Dp:使用する砥石軸直径)
を満たす、砥石直径及び砥石周速度で仕上げ面粗さ100nm以下の超平滑研削加工を行う方法。
The grinding wheel or workpiece is rotated one time in the direction perpendicular to the grinding wheel rotation direction (grinding direction) by various grinding methods such as the surface grinding method, cylindrical grinding method, internal grinding method, and curved surface grinding method. The workpiece feed rate f Gn is less than the cutting edge flank wear width perpendicular to the grinding direction (the total flank width if different cutting edge flank surfaces are considered to be connected). After machining the grinding wheel-workpiece contact width, the geometrical calculation of the grinding wheel-workpiece interference height is less than the required high smooth finish surface roughness. High smoothness that finishes the entire surface of the workpiece to a highly smooth surface by repeatedly moving the workpiece or the grindstone by the minute feed amount fp in the direction parallel to the grinding direction to finish the next wheel-workpiece contact width. In the grinding method,
Maximum removal speed M determined by the following formula (1) (where t is the grinding wheel cutting depth and Ng is the grinding wheel speed)
M = f Gn・ t ・ fp ・ Ng ―― (1)
Maximum finished surface roughness determined by the following formula (2) (Hp) LIM (where Dg is the wheel diameter)
(Hp) LIM = (fp) 2 / 4Dg ―― (2)
Allowable wheel shaft rotation speed determined by the following formula (3) or (4) (where Dp is the wheel shaft diameter to be used) (Ng) max = (Vg) max / π · (Dg) max ―― (3)
(Ng) max = (D · N) max / Dp-(4) (Dp: Grinding wheel shaft diameter)
A method of performing ultra-smooth grinding with a finished surface roughness of 100 nm or less at a grinding wheel diameter and grinding wheel peripheral speed.
砥石軸を研削方向に直角方向へ傾け角θで傾けることによって、傾けない場合の仕上面粗さHpに対して、下記(5)式で定まる仕上面粗さHmax とすることを特徴とする請求項1記載の超平滑研削加工を行う方法。
Hmax=Hp ・sinθ=[(fp) 2/4Dg ] ・sinθ――(5)
By inclining the grindstone axis in a direction perpendicular to the grinding direction at an angle θ, the finished surface roughness Hmax determined by the following equation (5) is set to the finished surface roughness Hp when not inclined. Item 2. A method for performing ultra-smooth grinding according to Item 1.
Hmax = Hp • sinθ = [(fp) 2 / 4Dg] • sinθ— (5)
JP2004077299A 2004-03-17 2004-03-17 Super smooth grinding method Expired - Fee Related JP4118829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077299A JP4118829B2 (en) 2004-03-17 2004-03-17 Super smooth grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077299A JP4118829B2 (en) 2004-03-17 2004-03-17 Super smooth grinding method

Publications (3)

Publication Number Publication Date
JP2005262363A true JP2005262363A (en) 2005-09-29
JP2005262363A5 JP2005262363A5 (en) 2006-03-16
JP4118829B2 JP4118829B2 (en) 2008-07-16

Family

ID=35087431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077299A Expired - Fee Related JP4118829B2 (en) 2004-03-17 2004-03-17 Super smooth grinding method

Country Status (1)

Country Link
JP (1) JP4118829B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179364A (en) * 2008-12-23 2010-08-19 Barnes Group Inc Method for forming stamped metal part
WO2011096959A1 (en) * 2010-02-02 2011-08-11 Apple Inc. Cosmetic co-removal of material for electronic device surfaces
CN110188501A (en) * 2019-06-06 2019-08-30 厦门理工学院 A kind of plunge grinding outer circle circumferential direction surface roughness determines method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179364A (en) * 2008-12-23 2010-08-19 Barnes Group Inc Method for forming stamped metal part
WO2011096959A1 (en) * 2010-02-02 2011-08-11 Apple Inc. Cosmetic co-removal of material for electronic device surfaces
US9363905B2 (en) 2010-02-02 2016-06-07 Apple Inc. Cosmetic co-removal of material for electronic device surfaces
US10234906B2 (en) 2010-02-02 2019-03-19 Apple Inc. Cosmetic co-removal of material for electronic device surfaces
US10353436B2 (en) 2010-02-02 2019-07-16 Apple Inc. Cosmetic co-removal of material for electronic device surfaces
US10754388B2 (en) 2010-02-02 2020-08-25 Apple Inc. Handheld device enclosure having outer periphery members and a front cover assembly
US11099609B2 (en) 2010-02-02 2021-08-24 Apple Inc. Cosmetic co-removal of material for electronic device surfaces
US11194362B2 (en) 2010-02-02 2021-12-07 Apple Inc. Handheld device enclosure having an outer periphery member and front and rear cover assemblies
US11669131B2 (en) 2010-02-02 2023-06-06 Apple Inc. Handheld device enclosure
CN110188501A (en) * 2019-06-06 2019-08-30 厦门理工学院 A kind of plunge grinding outer circle circumferential direction surface roughness determines method
CN110188501B (en) * 2019-06-06 2022-10-11 厦门理工学院 Method for determining roughness of circumferential surface of transversely-ground excircle

Also Published As

Publication number Publication date
JP4118829B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
Xie et al. Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy
JP2009255186A (en) Grinder and grinding method
Chen et al. On-machine precision form truing of arc-shaped diamond wheels
Zhong Surface finish of precision machined advanced materials
US7308745B2 (en) Method and device for edge-machining of a plastic optical lens and a combination tool therefor
JP2008302475A (en) Wheel spindle device in grinder
Guo et al. Wheel normal grinding of hard and brittle materials
US9592581B2 (en) Tool grinder
CN110948380A (en) Planet grinding device and removal function optimization method thereof
Guo et al. Parallel axis precision grinding of micro-tooth internal thread with the coarse-grains CBN wheels
Wojciechowski et al. Surface texture formation in precision machining of direct laser deposited tungsten carbide
CN107457703B (en) A kind of bronze boart boart wheel disc precise dressing method of the end surface full jumping better than 2 μm
CN103707003B (en) The processing method of tungsten titanium alloy plate
JP4118829B2 (en) Super smooth grinding method
Wang et al. Arc envelope grinding of sapphire steep aspheric surface with sic-reinforced resin-bonded diamond wheel
JP5300939B2 (en) Machining method using finishing tools
JP5751706B2 (en) Gear type workpiece processing method
JP3989211B2 (en) High smooth grinding method
Qiao et al. Experimental investigation on ultrasonic-assisted truing/dressing of diamond grinding wheel with cup-shaped GC wheel
JP2012168742A (en) Machining center provided with grindstone wear correction function
CN205703712U (en) Dome-type hydrodynamic bearing part grinding tool
JP5399651B2 (en) Cutting method using round piece insert
JP2013240871A (en) Method of dressing rotary grinding wheel, rotary grinding wheel, and grinding method
CN215036240U (en) Swing grinding device for special-shaped workpiece
JP2006263834A (en) Grinding method and cylindrical grinder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Ref document number: 4118829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees