JP2005257097A - Start/stop plan formulation system for heat source device - Google Patents

Start/stop plan formulation system for heat source device Download PDF

Info

Publication number
JP2005257097A
JP2005257097A JP2004065772A JP2004065772A JP2005257097A JP 2005257097 A JP2005257097 A JP 2005257097A JP 2004065772 A JP2004065772 A JP 2004065772A JP 2004065772 A JP2004065772 A JP 2004065772A JP 2005257097 A JP2005257097 A JP 2005257097A
Authority
JP
Japan
Prior art keywords
stop
heat
plan
heat source
utility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004065772A
Other languages
Japanese (ja)
Inventor
Yasuo Takagi
木 康 夫 高
Kazunori Iwabuchi
渕 一 徳 岩
Masaru Murayama
山 大 村
Tetsuya Funatsu
津 徹 也 船
Tadashi Nakamaru
丸 正 中
Yuji Nakada
田 裕 二 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004065772A priority Critical patent/JP2005257097A/en
Publication of JP2005257097A publication Critical patent/JP2005257097A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an utility device start/stop plan creating system capable of surely obtaining the optimum schedule without going through a problem on a non-linear mixed integer plan which is hardly solved in a practical use scale. <P>SOLUTION: In operating a plant having a plurality of heat source devices or generators by using a graphical user interface, a stop data input means 2 inputs each time data of operation and stop in a specific period from the external and displays an operation stop state in accordance with a heat demand prediction trend of the specific period, an operation plan creating means 3 creates the operation plan of the device on the basis of the predicted amount demanded, and the time data of start and stop of the device input from the external, and a primary energy evaluating means 4 calculates and displays amounts of consumption of fuel and electricity or the operation cost of the plant of the specific period on the basis of the operation plan. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はビル、病院、熱供給プラントなどの発電機や冷凍機など複数の熱源機器を運用するに当たり、グラフィカルユーザーインターフェース(GUI:Graphical User Interface)を用いて熱源機器の起動停止を策定するユーティリティー機器起動停止計画策定システムに関する。   The present invention is a utility device that formulates start / stop of a heat source device using a graphical user interface (GUI) when operating a plurality of heat source devices such as generators and refrigerators in buildings, hospitals, heat supply plants, etc. The present invention relates to a start / stop planning system.

従来の熱源機器の監視制御システムでは、熱源機器や発電機の起動停止は、基本的に数時間程度の短期需要予測に基づき、その需要を満足する運転機器の種類及び台数を決定する方法が採用されていた(例えば、特許文献1参照)。これらのシステムでは、場合によっては最も省エネルギーを、又は、最も低コストを実現する組み合わせが選ばれていた。そのために実行される演算は、対象となるプラントにより大きく異なることになる。例えば、蓄電池や蓄熱層を持つ熱源機器では、1日単位の運転を最適化する必要がある。すなわち、これらの熱源機器では、夜間に蓄電して昼間に放電する等の操作を最適化する必要があるので、操作としての1サイクルをまとめて扱う必要があるからである。   In conventional heat source equipment monitoring and control systems, the start and stop of heat source equipment and generators are basically based on short-term demand forecasts of several hours, and the method of determining the type and number of operating equipment that satisfies the demand is adopted. (For example, refer to Patent Document 1). In these systems, in some cases, the combination that achieves the most energy saving or the lowest cost has been selected. For this purpose, the calculations executed vary greatly depending on the target plant. For example, in a heat source device having a storage battery or a heat storage layer, it is necessary to optimize daily operation. That is, in these heat source devices, since it is necessary to optimize operations such as storing electricity at night and discharging in the daytime, it is necessary to collectively handle one cycle as the operation.

一方、蓄電池や蓄熱層がない場合には、瞬時瞬時の最適化を行えばよいので、実行される演算は格段に簡易化されるが、その場合でも、吸収式冷凍機のように時定数が大きい場合には、大きな最適化計算が必要となる。これらの最適化演算は、一般的に非線形混合整数計画法が採用される。非線形が入るのは機器特性、例えば、燃料消費量と発電出力などとの関係が線形ではないからであり、混合整数計画になるのは、機器の起動停止が入るからである。このように必然的に解かざるを得ない非線形混合整数計画法であるが、実際の大規模プラントに対して実用的な時間で解くのは容易ではなかった。
特開平8−145435号公報
On the other hand, when there is no storage battery or heat storage layer, instantaneous optimization can be performed, so the operation to be executed is greatly simplified, but even in that case, the time constant is as in an absorption refrigerator. If it is large, a large optimization calculation is required. These optimization operations generally employ nonlinear mixed integer programming. The reason why the nonlinearity is entered is because the equipment characteristics, for example, the relationship between the fuel consumption and the power generation output is not linear, and the mixed integer design is because the equipment is started and stopped. Although it is a nonlinear mixed integer programming method that must be solved in this way, it has not been easy to solve in a practical time for an actual large-scale plant.
JP-A-8-145435

ユーティリティーの最適運転計画の作成で出現する非線形混合整数計画の大きさを簡単に説明すると、例えば、10台の機器の最適運転計画を作るものとして、30分毎のオン、オフ操作を含んだ蓄熱槽を持つプラントの最適運転問題を解こうとすると、オン、オフの変数は48×10=480個も存在する。このような大きな問題を非線形混合整数計画法により解くことは、大変に厳しく、また、局所最適解に落ち込んで適切な解が得られないことも多い。   A simple explanation of the size of the nonlinear mixed integer plan that appears in the creation of the optimal operation plan of the utility is, for example, a heat storage including an on / off operation every 30 minutes as an optimal operation plan for 10 devices. When trying to solve the optimal operation problem of a plant having a tank, there are 48 × 10 = 480 variables of on and off. Solving such a large problem by nonlinear mixed integer programming is very strict, and often falls into a local optimal solution and an appropriate solution cannot be obtained.

この結果、ユーティリティの最適運転計画システムは、蓄熱槽や蓄電池のないシステムでは実用化されているものの、最適計画のニーズが真に高い蓄熱槽や蓄電池を備えたシステムに対しては、十分に生かされて来なかった。   As a result, the utility's optimal operation planning system has been put to practical use in systems without thermal storage tanks or storage batteries, but it can be fully utilized for systems with thermal storage tanks or storage batteries that have truly high needs for optimal planning. Did not come.

本発明は上記の課題を解決するためになされたもので、その目的は、実用規模で解くことが困難であった非線形混合整数計画問題に陥ることなく、確実に最適スケジュールが得られるユーティリティ機器起動停止計画作成システムを提供することにある。   The present invention has been made to solve the above problems, and its purpose is to start utility equipment that can reliably obtain an optimal schedule without falling into a nonlinear mixed integer programming problem that has been difficult to solve on a practical scale. It is to provide a stop planning system.

請求項1に係る発明は、複数の熱源機器を有する熱供給プラントを運用するに当たり、グラフィカルユーザーインターフェースを用いて、熱源機器の起動停止を策定するユーティリティー機器起動停止計画策定システムであって、所定期間の熱需要予測トレンドを表示する熱需要予測手段と、熱需要予測トレンドに従って、所定期間における熱源機器の運転、停止の各時刻データを外部から入力して運転停止の状態を表示する熱源機器の起動停止データ入力手段と、予測された熱需要量及び外部から入力された熱源機器の起動、停止の時刻データに基づいて熱源機器の運転計画を作成する運転計画作成手段と、作成された運転計画に基づいて所定期間の熱供給プラントの燃料および電気消費量又は運用コストを算出し表示する一次エネルギー評価手段とを備えたものである。   The invention according to claim 1 is a utility device activation / deactivation plan formulation system for devising activation / deactivation of a heat source device using a graphical user interface when operating a heat supply plant having a plurality of heat source devices, and for a predetermined period of time Heat demand forecasting means to display the heat demand forecast trend of the heat source, and start the heat source equipment to display the operation stop status by inputting the time data of the heat source equipment operation and stop for a predetermined period from the outside according to the heat demand forecast trend Stop data input means, operation plan creation means for creating an operation plan of the heat source equipment based on the predicted heat demand and the start and stop time data of the heat source equipment input from the outside, and the created operation plan Primary energy that calculates and displays fuel and electricity consumption or operating costs for a heat supply plant for a given period based on It is obtained by a valence means.

請求項2に係る発明は、請求項1に記載のユーティリティー機器起動停止計画策定システムにおいて、所定期間が1日としたものである。   The invention according to claim 2 is the utility device start / stop plan formulation system according to claim 1, wherein the predetermined period is one day.

請求項3に係る発明は、請求項1に記載のユーティリティー機器起動停止計画策定システムにおいて、運転計画作成手段は、所定期間の予め定めた時間毎に、起動状態の熱源機器に関して、熱需要予測値に出力が一致し、かつ、消費エネルギー又はコスト、又は、種々の評価関数について負荷配分最適化演算を実行する。   The invention according to claim 3 is the utility device start / stop plan formulation system according to claim 1, wherein the operation plan creation means is a heat demand prediction value for the heat source device in the activated state at every predetermined time in a predetermined period. And the load allocation optimization calculation is executed for the energy consumption or cost, or various evaluation functions.

請求項4に係る発明は、請求項3に記載のユーティリティー機器起動停止計画策定システムにおいて、負荷配分最適化演算は非線形最適化計画法を用いる。   The invention according to claim 4 is the utility device start / stop plan formulation system according to claim 3, wherein the load distribution optimization calculation uses a nonlinear optimization planning method.

請求項5に係る発明は、請求項3に記載のユーティリティー機器起動停止計画策定システムにおいて、熱源機器の起動停止データ入力手段は、起動された熱源機器の熱容量の総和を所定期間に関してトレンド表示する。   According to a fifth aspect of the present invention, in the utility device start / stop plan formulation system according to the third aspect, the start / stop data input means of the heat source device displays a trend of the sum of the heat capacities of the started heat source devices for a predetermined period.

請求項6に係る発明は、請求項1〜5のいずれか1項に記載のユーティリティー機器起動停止計画策定システムにおいて、熱供給プラントが蓄熱槽を有し、熱源機器の起動停止データ入力手段は、蓄熱槽利用率を算出し表示する。   The invention according to claim 6 is the utility equipment start / stop plan formulation system according to any one of claims 1 to 5, wherein the heat supply plant has a heat storage tank, and the start / stop data input means of the heat source equipment is: Calculate and display heat storage tank utilization.

請求項7に係る発明は、請求項6に記載のユーティリティー機器起動停止計画策定システムにおいて、熱需要予測値と熱源機器の運転計画に基づき蓄熱槽の蓄熱量を算出する機能と算出された蓄熱量の時間トレンドを出力する機能を有することを特徴とする。   The invention according to claim 7 is the utility device start / stop plan formulation system according to claim 6, and a function for calculating the heat storage amount of the heat storage tank based on the predicted heat demand value and the operation plan of the heat source device, and the calculated heat storage amount It has the function to output the time trend of.

請求項8に係る発明は、請求項6に記載のユーティリティー機器起動停止計画策定システムにおいて、一次エネルギー評価手段は、予測熱負荷と熱源器運転計画に基づき蓄熱槽の蓄熱量を算出する機能と蓄熱量が下限値以下になったとき、又は運転範囲を逸脱したときに、アラームを表示する機能を有する。   The invention according to claim 8 is the utility device start / stop plan formulation system according to claim 6, wherein the primary energy evaluation means calculates the heat storage amount of the heat storage tank based on the predicted heat load and the heat source operation plan and the heat storage It has a function to display an alarm when the amount falls below the lower limit value or deviates from the operating range.

請求項9に係る発明は、蓄電池および複数の発電機を有するユーティリティーを運用するに当たり、グラフィカルユーザーインターフェースを用いてユーティリティーの起動停止を策定するユーティリティー機器起動停止計画策定システムであって、所定期間の電力需要予測トレンドを表示する電力需要予測手段と、
電力需要予測トレンドに従って、所定期間における発電機の運転、停止の各時刻データを外部から入力して起動停止の状態を表示する発電機の起動停止データ入力手段と、予測された電力需要量及び外部から入力された発電機の起動、停止の時刻データに基づいて発電機の運転計画を作成する運転計画作成手段と、作成された運転計画に基づいて所定期間のユーティリティーの燃料消費量又は運用コストを算出して表示する一次エネルギー評価手段とを備えたものである。
The invention according to claim 9 is a utility device activation / deactivation plan formulation system that formulates activation / deactivation of a utility using a graphical user interface when operating a utility having a storage battery and a plurality of generators. A power demand forecasting means for displaying a demand forecast trend;
In accordance with the power demand forecast trend, the generator start / stop data input means for inputting the time data of the generator operation and stop in the predetermined period from the outside and displaying the start / stop state, the predicted power demand amount and the external An operation plan creation means for creating an operation plan of the generator based on the start / stop time data of the generator input from, and the fuel consumption or operation cost of the utility for a predetermined period based on the created operation plan Primary energy evaluation means for calculating and displaying.

請求項10に係る発明は、請求項9に記載のユーティリティー機器起動停止計画策定システムにおいて、運転計画作成手段は、所定期間の予め定めた時間毎に、起動状態の発電機に関して、電力需要予測値に出力が一致し、かつ、消費エネルギー又はコスト、又は、種々の評価関数について負荷配分最適化演算を実行する。   According to a tenth aspect of the present invention, in the utility device activation / deactivation plan formulation system according to the ninth aspect, the operation plan creation means relates to a predicted power demand value for the activated generator at predetermined time intervals in a predetermined period. And the load allocation optimization calculation is executed for the energy consumption or cost, or various evaluation functions.

請求項11に係る発明は、請求項10に記載のユーティリティー機器起動停止計画策定システムにおいて、負荷配分最適化演算は非線形最適化計画法を用いる。   The invention according to claim 11 is the utility device start / stop plan formulation system according to claim 10, wherein the load distribution optimization calculation uses a non-linear optimization planning method.

請求項12に係る発明は、請求項9に記載のユーティリティー機器起動停止計画策定システムにおいて、起動停止データ入力手段は、起動された発電機の発電容量の総和を所定期間に関してトレンド表示する。   According to a twelfth aspect of the present invention, in the utility device start / stop plan formulation system according to the ninth aspect, the start / stop data input means displays a trend of the sum of the power generation capacities of the started generators for a predetermined period.

請求項13に係る発明は、請求項9〜12のいずれか1項に記載のユーティリティー機器起動停止計画策定システムにおいて、起動停止データ入力手段は、蓄電池利用率を算出し表示する。   According to a thirteenth aspect of the present invention, in the utility device start / stop plan planning system according to any one of the ninth to twelfth aspects, the start / stop data input means calculates and displays the storage battery utilization rate.

請求項14に係る発明は、請求項9に記載のユーティリティー機器起動停止計画策定システムにおいて、電力需要予測値と発電機の運転計画に基づき蓄電池の蓄電量を算出する機能と算出された蓄電量の時間トレンドを出力する機能を有する。   According to a fourteenth aspect of the present invention, in the utility device start / stop plan formulation system according to the ninth aspect, a function for calculating the storage amount of the storage battery based on the predicted power demand value and the operation plan of the generator and the calculated storage amount It has a function to output a time trend.

請求項15に係る発明は、請求項9に記載のユーティリティー機器起動停止計画策定システムにおいて、一次エネルギー評価手段は、電力重要予測値と発電機運転計画に基づき蓄電池の蓄電量を算出する機能と蓄電量が下限値以下になったとき、又は運転範囲を逸脱したときに、アラームを表示する機能を有する。   According to a fifteenth aspect of the present invention, in the utility device start / stop plan formulation system according to the ninth aspect, the primary energy evaluation means has a function of calculating the storage amount of the storage battery based on the important power prediction value and the generator operation plan, and the storage It has a function to display an alarm when the amount falls below the lower limit value or deviates from the operating range.

本発明は、機器の起動、停止を人が熱又は電気の需要量を見ながら、最初に入力することによって、自動的に解くのが難しい起動、停止の問題を回避することができ、これによって、各機器の運用は、与えられた運用可能な機器を用いて各時刻の容量最適配分問題を解けばよい。容量最適配分問題は非線形連続最適化問題となり、整数変数が無いことから大幅な計算時間短縮が達成される。また、一般的に混合整数計画に比べて計算結果が安定化する効果がある。   The present invention can avoid starting and stopping problems that are difficult to solve automatically by first inputting the starting and stopping of equipment while watching the demand for heat or electricity. The operation of each device may be performed by solving the capacity optimal allocation problem at each time using a given operable device. The capacity optimal allocation problem becomes a nonlinear continuous optimization problem, and since there are no integer variables, a significant reduction in calculation time is achieved. In general, the calculation result is more stable than the mixed integer design.

以下、本発明を図面に示す好適な実施形態に基づいて詳細に説明する。図1は本発明に係るユーティリティ機器起動停止計画作成システムを、蓄熱槽を備えた熱供給プラントの最適運用システムに適用した一実施形態の構成を示すブロック図である。この実施形態はグラフィカルユーザーインターフェース(GUI)により実現されるもので、所定期間の熱需要を予測し、そのトレンドを表示する熱需要予測手段1と、運用計画者が熱需要の予測トレンドに従って熱源機器の起動、停止時刻データを入力し、その状態を表示する熱源機器起動、停止データ入力手段2と、予測された熱需要及び外部から入力された熱源機器の起動、停止時刻データに基づいてボイラの運転計画を作成するボイラ運転計画作成手段3と、作成された運転計画に基づいて一次エネルギーを評価する一次エネルギー評価手段4とを備えている。   Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings. FIG. 1 is a block diagram showing a configuration of an embodiment in which a utility device start / stop plan creation system according to the present invention is applied to an optimum operation system of a heat supply plant having a heat storage tank. This embodiment is realized by a graphical user interface (GUI), which predicts heat demand for a predetermined period and displays the trend, and an operation planner according to the heat demand forecast trend and heat source equipment. The heat source equipment activation / stop data input means 2 for inputting the start / stop time data of the boiler and displaying the state thereof, and the boiler heat based on the predicted heat demand and the start / stop time data of the heat source equipment input from the outside Boiler operation plan creation means 3 for creating an operation plan and primary energy evaluation means 4 for evaluating primary energy based on the created operation plan are provided.

上記のように構成された本実施形態の動作について図2乃至図5をも参照して以下に説明する。図2は熱需要予測表示手段1の動作を説明するための画面例であり、同図(c)に示す入力フィールドに3時間毎の湿度と気温の予測値を入力する。なお、同図(c)には図面の簡単化のために朝、昼、夜の3つの入力フィールドしか示されていないが、一般的には天気予報から得られる値であり、3時間毎のデータを容易に入力することができる。熱需要予測手段1はこの入力データに従って、同図(a)に示したような温度及び湿度について時間の経過に従って変化するグラフとして表示する。続いて、グラフとして表示された温度及び湿度を変数として当日の熱需要を予測計算し、同図(b)に示したように時間の経過に従って変化するグラフとして表示する。熱需要を予測計算する方法は種々に提案されて公知でもあるので、そのうちの適切な方法を選択して使用する。   The operation of the present embodiment configured as described above will be described below with reference to FIGS. FIG. 2 is an example of a screen for explaining the operation of the heat demand prediction display means 1, and the predicted values of humidity and temperature every three hours are input into the input fields shown in FIG. Note that for simplicity of the drawing, only three input fields of morning, noon, and night are shown in FIG. 5C, but generally, this is a value obtained from a weather forecast, and every three hours. Data can be input easily. According to this input data, the heat demand predicting means 1 displays the temperature and humidity as shown in FIG. Subsequently, the heat demand of the day is predicted and calculated using the temperature and humidity displayed as a graph as variables, and displayed as a graph that changes over time as shown in FIG. Since various methods for predicting and calculating the heat demand have been proposed and known, an appropriate method is selected and used.

図3は熱源機器の起動、停止の状態を入力する熱源機器起動、停止データ入力手段2の動作を説明するための画面例である。この場合、同図(b)に示すように、画面中央に5台分の冷凍機が表示され、それぞれに対して、運用計画者が起動停止の時刻を指定するデータ入力を行う。ここで、横軸は時刻であり、運転状態が定格か半量かを示す、「1」又は「0.5」を併せて入力する。なお、ブランクの部分は停止の状態を表している。このとき、熱源機器起動、停止データ入力手段2は、起動、停止の時刻及び運転状態データに基づいて、同図(a)に示すように、冷凍機容量の総和を各時刻について描画する。同図(a)には前述の熱需要に対応する冷水需要量の予測値が併せてプロットされている。これら2つの線図から、各時刻の冷凍機による生産冷水の過不足が分かり、不足分は蓄熱槽より供給される。蓄熱槽には1時間当たりの最大供給能力と、1日あたりの供給量の限界があるので、それを超えると供給できない時刻は、例えば、赤い表示に変更する。限界以内であれば、蓄熱槽の供給熱量と能力から下式に従って蓄熱槽の利用率を演算し、同図(c)に示すように所定の欄に表示する。   FIG. 3 is an example of a screen for explaining the operation of the heat source device start / stop data input means 2 for inputting the start / stop state of the heat source device. In this case, as shown in FIG. 5B, five refrigerators are displayed in the center of the screen, and the operation planner inputs data for specifying the start and stop times for each. Here, the horizontal axis represents time, and “1” or “0.5” indicating whether the operation state is rated or half is input together. Note that the blank portion represents a stopped state. At this time, the heat source device activation / stop data input means 2 draws the total capacity of the refrigerator for each time, as shown in FIG. The predicted value of the cold water demand corresponding to the above-mentioned heat demand is also plotted in FIG. From these two diagrams, it can be seen that there is an excess or deficiency of production cold water by the refrigerator at each time, and the deficiency is supplied from the heat storage tank. Since the heat storage tank has a maximum supply capacity per hour and a limit on the supply amount per day, the time when the heat storage tank cannot be supplied is changed to a red display, for example. If it is within the limit, the utilization rate of the heat storage tank is calculated according to the following formula from the amount of heat supplied and the capacity of the heat storage tank, and displayed in a predetermined column as shown in FIG.

蓄熱利用率 =蓄熱槽利用熱量/蓄熱槽容量
また、熱源機器起動、停止データ入力手段2は、同時に各時刻について、入力された熱源器の運用状況を前提に、起動状態の熱源機器に関して、熱需要予測値に出力が一致し、かつ、消費エネルギー又はコスト、又は、種々の評価関数について、非線形最適化計画法を用いて最適化する負荷配分最適化を行い、これにより、当該1日の蒸気消費量と電気消費量とを計算する。必要蒸気量は各冷凍機の負荷と効率特性から算出された値を、すべての冷凍機について加えたものである。電気量は冷凍機の運転に伴い冷水や冷却水ポンプが消費する電力の総和である。電気式冷凍機があれば、その動力も加える。
Heat storage utilization rate = heat storage tank heat consumption / heat storage tank capacity
In addition, the heat source device activation / deactivation data input means 2 simultaneously outputs an output that matches the predicted heat demand value for the activated heat source device on the premise of the operation status of the input heat source device at each time and is consumed. Load distribution optimization is performed by using nonlinear optimization programming for energy or cost, or various evaluation functions, thereby calculating the daily steam consumption and electricity consumption. The required amount of steam is the value calculated from the load and efficiency characteristics of each refrigerator and added to all refrigerators. The amount of electricity is the sum of the electric power consumed by the chilled water and the cooling water pump as the refrigerator is operated. If you have an electric refrigerator, add its power.

図4はボイラ運転計画作成手段3及び一次エネルギー評価手段4の動作を説明するための画面例であり、冷凍機に必要な蒸気を生産するボイラの運用スケジュールを計画するに当たり、同図(b)に示すように、運用計画者が各ボイラに対して各時刻の起動、停止の状態データを入力する。図中、「1」で示した部分が運転状態であり、空白の部分は運転していないことを示す。これに従って、同図(a)のグラフに示すように、各時刻のボイラの蒸気生産能力と蒸気需要量が表示される。ボイラの運転は需要量を上回るように設定する。すると、同図(c)に示すように、この運転計画とボイラの特性により一次エネルギー評価手段4が必要とされる1日のガス消費量と電気消費とを計算する。図5(a)(b)はその計算結果を各時刻についてプロットした画面例である。   FIG. 4 is an example of a screen for explaining the operation of the boiler operation plan creation means 3 and the primary energy evaluation means 4. In planning the operation schedule of the boiler that produces the steam necessary for the refrigerator, FIG. As shown in FIG. 3, the operation planner inputs start and stop status data at each time to each boiler. In the figure, the portion indicated by “1” is the operating state, and the blank portion indicates that the vehicle is not operating. Accordingly, the steam production capacity and the steam demand of the boiler at each time are displayed as shown in the graph of FIG. Boiler operation is set to exceed demand. Then, as shown in FIG. 5C, the daily gas consumption and the electricity consumption required by the primary energy evaluation means 4 are calculated based on the operation plan and the characteristics of the boiler. 5A and 5B are screen examples in which the calculation results are plotted for each time.

運用計画者はこの1日の電力所要量とガス所要量を見て、冷凍機やボイラの起動、停止のスケジュールを試行錯誤的に入力することにより、最適な運用スケジュールを求めることができる。一般的に、冷凍機やボイラは頻繁に起動、停止するものでなく、また、毎日同様の運転を繰り返すので、起動、停止の設定自体は運用計画者にとってさほど難しいものではない。そこで、容易に最適スケジュールが求まることになる。   The operation planner can determine the optimum operation schedule by looking at the daily power requirement and gas requirement and inputting the start and stop schedules of the refrigerator and the boiler on a trial and error basis. Generally, refrigerators and boilers are not frequently started and stopped, and since the same operation is repeated every day, setting of starting and stopping is not so difficult for the operation planner. Therefore, an optimal schedule can be easily obtained.

なお、一次エネルギー評価手段は、熱需要予測手段1での予測熱負荷とボイラ運転計画作成手段3の熱源器運転計画に基づき、蓄熱槽の蓄熱量を算出する機能を備え、蓄熱量が下限値以下になったとき、又は運転範囲を逸脱したときに、アラームを表示する機能をも有している。   The primary energy evaluation means has a function of calculating the heat storage amount of the heat storage tank based on the predicted heat load in the heat demand prediction means 1 and the heat source operation plan of the boiler operation plan creation means 3, and the heat storage amount is a lower limit value. It also has a function of displaying an alarm when it becomes below or when it deviates from the operating range.

なお、本実施形態では蓄熱槽のある熱供給プラントを起動停止計画策定の対象としたが、蓄電池を備えた発電システムについても上述したと全く同様にして構築することができる。その場合、蓄熱利用率に代わり蓄電利用率がシステムの有効利用を示す指標になる。   In the present embodiment, the heat supply plant having the heat storage tank is the target of the start / stop plan, but the power generation system including the storage battery can be constructed in exactly the same manner as described above. In that case, instead of the heat storage utilization rate, the power storage utilization rate becomes an index indicating the effective use of the system.

本発明に係るユーティリティ機器起動停止計画作成システムを、蓄熱槽を備えた熱供給プラントの最適運用システムに適用した一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment which applied the utility apparatus starting stop plan preparation system which concerns on this invention to the optimal operation system of the heat supply plant provided with the heat storage tank. 図1に示した実施形態を構成する熱需要予測表示手段の動作を説明するための表示画面例。The example of a display screen for demonstrating operation | movement of the heat demand prediction display means which comprises embodiment shown in FIG. 図1に示した実施形態を構成する熱源機器起動、停止データ入力手段の動作を説明するための表示画面例。The example of a display screen for demonstrating operation | movement of the heat-source apparatus starting and stop data input means which comprises embodiment shown in FIG. 図1に示した実施形態を構成するボイラ運転計画作成手段及び一次エネルギー評価手段の動作を説明するための表示画面例。The example of a display screen for demonstrating operation | movement of the boiler operation plan preparation means and primary energy evaluation means which comprise embodiment shown in FIG. 図1に示した一次エネルギー評価手段の計算結果を各時刻についてプロットした表示画面例。The display screen example which plotted the calculation result of the primary energy evaluation means shown in FIG. 1 about each time.

符号の説明Explanation of symbols

1 熱需要予測手段
2 熱源機器起動、停止データ入力手段
3 ボイラ運転計画作成手段
4 一次エネルギー評価手段
1 heat demand prediction means 2 heat source equipment start / stop data input means 3 boiler operation plan creation means 4 primary energy evaluation means

Claims (15)

複数の熱源機器を有する熱供給プラントを運用するに当たり、グラフィカルユーザーインターフェースを用いて、前記熱源機器の起動停止を策定するユーティリティー機器起動停止計画策定システムであって、
所定期間の熱需要予測トレンドを表示する熱需要予測手段と、
前記熱需要予測トレンドに従って、所定期間における前記熱源機器の運転、停止の各時刻データを外部から入力して運転停止の状態を表示する熱源機器の起動停止データ入力手段と、
予測された熱需要量及び外部から入力された前記熱源機器の起動、停止の時刻データに基づいて前記熱源機器の運転計画を作成する運転計画作成手段と、
作成された運転計画に基づいて所定期間の熱供給プラントの燃料および電気消費量又は運用コストを算出し表示する一次エネルギー評価手段と、
を備えたユーティリティー機器起動停止計画策定システム。
In operating a heat supply plant having a plurality of heat source devices, a utility device start / stop plan formulation system that determines start / stop of the heat source device using a graphical user interface,
A heat demand prediction means for displaying a heat demand prediction trend for a predetermined period;
According to the heat demand prediction trend, start and stop data input means of the heat source device that displays the operation stop state by inputting each time data of operation and stop of the heat source device in a predetermined period,
An operation plan creation means for creating an operation plan of the heat source device based on the predicted heat demand and the time data of start and stop of the heat source device input from the outside;
Primary energy evaluation means for calculating and displaying the fuel and electricity consumption or operation cost of the heat supply plant for a predetermined period based on the created operation plan;
Utility equipment start / stop plan formulation system with
所定期間が1日である請求項1に記載のユーティリティー機器起動停止計画策定システム。   The utility device start / stop plan formulation system according to claim 1, wherein the predetermined period is one day. 前記運転計画作成手段は、所定期間の予め定めた時間毎に、起動状態の熱源機器に関して、熱需要予測値に出力が一致し、かつ、消費エネルギー又はコスト、又は、種々の評価関数について負荷配分最適化演算を実行する請求項1に記載のユーティリティー機器起動停止計画策定システム。   The operation plan creation means is configured to distribute the load for energy consumption or cost, or various evaluation functions with respect to the heat demand prediction value for the heat source device in the activated state at predetermined time intervals in a predetermined period. The utility device start / stop plan formulation system according to claim 1, which executes an optimization operation. 負荷配分最適化演算は非線形最適化計画法を用いる請求項3に記載のユーティリティー機器起動停止計画策定システム。   4. The utility device start / stop plan formulation system according to claim 3, wherein the load distribution optimization calculation uses a nonlinear optimization planning method. 前記熱源機器の起動停止データ入力手段は、起動された熱源機器の熱容量の総和を所定期間に関してトレンド表示する請求項3に記載のユーティリティー機器起動停止計画策定システム。   4. The utility device start / stop plan formulation system according to claim 3, wherein the start / stop data input means of the heat source device displays a trend of the total heat capacity of the started heat source devices over a predetermined period. 前記熱供給プラントが蓄熱槽を有し、前記熱源機器の起動停止データ入力手段は、蓄熱槽利用率を算出し表示する請求項1〜5のいずれか1項に記載のユーティリティー機器起動停止計画策定システム。   The utility device start / stop plan formulation according to any one of claims 1 to 5, wherein the heat supply plant has a heat storage tank, and the start / stop data input means of the heat source device calculates and displays the heat storage tank utilization rate. system. 前記熱需要予測値と前記熱源機器の運転計画に基づき蓄熱槽の蓄熱量を算出する機能と算出された蓄熱量の時間トレンドを出力する機能を有することを特徴とする請求項6に記載のユーティリティー機器起動停止計画策定システム。   The utility according to claim 6, further comprising a function of calculating a heat storage amount of a heat storage tank based on the predicted heat demand value and an operation plan of the heat source device and a function of outputting a time trend of the calculated heat storage amount. Equipment start / stop planning system. 前記一次エネルギー評価手段は、前記予測熱負荷と熱源器運転計画に基づき蓄熱槽の蓄熱量を算出する機能と蓄熱量が下限値以下になったとき、又は運転範囲を逸脱したときに、アラームを表示する機能を有する請求項6に記載のユーティリティー機器起動停止計画策定システム。   The primary energy evaluation means generates an alarm when the heat storage capacity of the heat storage tank is calculated based on the predicted heat load and the heat source operation plan, and when the heat storage amount falls below the lower limit value or deviates from the operation range. The utility device start / stop plan formulation system according to claim 6 having a function of displaying. 蓄電池および複数の発電機を有するユーティリティーを運用するに当たり、グラフィカルユーザーインターフェースを用いて前記ユーティリティーの起動停止を策定するユーティリティー機器起動停止計画策定システムであって、
所定期間の電力需要予測トレンドを表示する電力需要予測手段と、
前記電力需要予測トレンドに従って、所定期間における前記発電機の運転、停止の各時刻データを外部から入力して起動停止の状態を表示する発電機の起動停止データ入力手段と、
予測された電力需要量及び外部から入力された前記発電機の起動、停止の時刻データに基づいて前記発電機の運転計画を作成する運転計画作成手段と、
作成された運転計画に基づいて所定期間の前記ユーティリティーの燃料消費量又は運用コストを算出して表示する一次エネルギー評価手段と、
を備えたユーティリティー機器起動停止計画策定システム。
When operating a utility having a storage battery and a plurality of generators, a utility device start / stop plan formulation system that formulates start / stop of the utility using a graphical user interface,
A power demand forecasting means for displaying a power demand forecast trend for a predetermined period;
In accordance with the power demand forecast trend, the generator start / stop data input means for displaying the start / stop state by inputting each time data of the operation and stop of the generator in a predetermined period from the outside,
An operation plan creation means for creating an operation plan of the generator based on the predicted power demand and the time data of start and stop of the generator input from the outside;
Primary energy evaluation means for calculating and displaying the fuel consumption or operation cost of the utility for a predetermined period based on the created operation plan;
Utility equipment start / stop plan formulation system with
前記運転計画作成手段は、所定期間の予め定めた時間毎に、起動状態の発電機に関して、電力需要予測値に出力が一致し、かつ、消費エネルギー又はコスト、又は、種々の評価関数について負荷配分最適化演算を実行する請求項9に記載のユーティリティー機器起動停止計画策定システム。   The operation plan creation means outputs the power demand predicted value for the activated generator at predetermined time intervals in a predetermined period, and distributes the load for energy consumption or cost, or various evaluation functions. The utility device start / stop plan formulation system according to claim 9, which executes an optimization operation. 負荷配分最適化演算は非線形最適化計画法を用いる請求項10に記載のユーティリティー機器起動停止計画策定システム。   11. The utility device start / stop plan formulation system according to claim 10, wherein the load distribution optimization calculation uses a nonlinear optimization planning method. 前記起動停止データ入力手段は、起動された発電機の発電容量の総和を所定期間に関してトレンド表示する請求項9に記載のユーティリティー機器起動停止計画策定システム。   10. The utility device activation / deactivation plan formulation system according to claim 9, wherein the activation / deactivation data input means displays a trend of the total power generation capacity of activated generators for a predetermined period. 前記起動停止データ入力手段は、蓄電池利用率を算出し表示する請求項9〜12のいずれか1項に記載のユーティリティー機器起動停止計画策定システム。   The utility device start / stop plan formulation system according to any one of claims 9 to 12, wherein the start / stop data input means calculates and displays a storage battery utilization rate. 前記電力需要予測値と発電機の運転計画に基づき前記蓄電池の蓄電量を算出する機能と算出された蓄電量の時間トレンドを出力する機能を有する請求項9に記載のユーティリティー機器起動停止計画策定システム。   The utility device start / stop plan formulation system according to claim 9, which has a function of calculating a storage amount of the storage battery based on the predicted power demand value and a generator operation plan and a function of outputting a time trend of the calculated storage amount. . 前記一次エネルギー評価手段は、電力重要予測値と発電機運転計画に基づき蓄電池の蓄電量を算出する機能と蓄電量が下限値以下になったとき、又は運転範囲を逸脱したときに、アラームを表示する機能を有する請求項9に記載のユーティリティー機器起動停止計画策定システム。   The primary energy evaluation means displays an alarm when a function for calculating the storage amount of the storage battery based on the important power prediction value and the generator operation plan and when the storage amount falls below the lower limit value or deviates from the operation range. The utility device start / stop plan formulation system according to claim 9, which has a function of:
JP2004065772A 2004-03-09 2004-03-09 Start/stop plan formulation system for heat source device Pending JP2005257097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065772A JP2005257097A (en) 2004-03-09 2004-03-09 Start/stop plan formulation system for heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065772A JP2005257097A (en) 2004-03-09 2004-03-09 Start/stop plan formulation system for heat source device

Publications (1)

Publication Number Publication Date
JP2005257097A true JP2005257097A (en) 2005-09-22

Family

ID=35082993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065772A Pending JP2005257097A (en) 2004-03-09 2004-03-09 Start/stop plan formulation system for heat source device

Country Status (1)

Country Link
JP (1) JP2005257097A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107373A1 (en) 2008-02-29 2009-09-03 株式会社 東芝 Operation plan creatiion method and device for energy storage device
JP2010169347A (en) * 2009-01-26 2010-08-05 Sanyo Electric Co Ltd Air conditioning system and method of controlling air conditioning system
JP2011201488A (en) * 2010-03-26 2011-10-13 Denso Corp Heat source control device of vehicle
JP2013160435A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Heat source selection assisting device, method thereof, and heat source system
US8823203B2 (en) 2009-11-12 2014-09-02 Denso Corporation Controller for engine
US9317022B2 (en) 2012-06-26 2016-04-19 International Business Machines Corporation Controlling power generators and chillers
US9916630B2 (en) 2012-11-09 2018-03-13 Kabushiki Kaisha Toshiba Electricity suppressing type electricity and heat optimizing control device, optimizing method, and optimizing program
US10345766B2 (en) 2012-12-11 2019-07-09 Kabushiki Kaisha Toshiba Energy management server, energy management method, and medium
CN111339474A (en) * 2020-02-17 2020-06-26 山东大学 Comprehensive energy system prediction operation method based on trend prediction analysis method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213740A (en) * 1988-06-30 1990-01-18 Toshiba Corp Heat reserve type heat pump airconditioner and its control method
JPH0581231A (en) * 1991-09-19 1993-04-02 Toshiba Corp Demand pattern forming device
JPH05232291A (en) * 1992-02-25 1993-09-07 Hitachi Ltd Preparing equipment of reactor operation plan
JPH07110147A (en) * 1993-10-14 1995-04-25 Tokyo Electric Power Co Inc:The Operation support apparatus for heat generating/heat storing apparatus
JPH08145435A (en) * 1994-11-18 1996-06-07 Toshiba Corp Optimum operation controller for cooling and heating plant
JPH09179604A (en) * 1995-09-13 1997-07-11 Toshiba Corp System and method for controlling operation of plant
JPH11142075A (en) * 1997-11-10 1999-05-28 Toshiba Corp Controller for thermal storage plant
JP2001022437A (en) * 1999-07-13 2001-01-26 Toshiba Corp Plant controller and computer readable recording medium storing plant control program
JP2002227721A (en) * 2001-01-31 2002-08-14 Hitachi Ltd Cogeneration planning system and cogeneration optimization system
JP2002300720A (en) * 2001-03-29 2002-10-11 Toshiba Corp Generation interruption programming device for generator
JP2003143757A (en) * 2001-10-30 2003-05-16 Hitachi Ltd Operation support system
JP2003216697A (en) * 2002-01-25 2003-07-31 Ebara Corp Energy control network system
JP2004032983A (en) * 2002-02-06 2004-01-29 Hitachi Ltd Power supply system and its operating method
JP2004064960A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Power supply system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213740A (en) * 1988-06-30 1990-01-18 Toshiba Corp Heat reserve type heat pump airconditioner and its control method
JPH0581231A (en) * 1991-09-19 1993-04-02 Toshiba Corp Demand pattern forming device
JPH05232291A (en) * 1992-02-25 1993-09-07 Hitachi Ltd Preparing equipment of reactor operation plan
JPH07110147A (en) * 1993-10-14 1995-04-25 Tokyo Electric Power Co Inc:The Operation support apparatus for heat generating/heat storing apparatus
JPH08145435A (en) * 1994-11-18 1996-06-07 Toshiba Corp Optimum operation controller for cooling and heating plant
JPH09179604A (en) * 1995-09-13 1997-07-11 Toshiba Corp System and method for controlling operation of plant
JPH11142075A (en) * 1997-11-10 1999-05-28 Toshiba Corp Controller for thermal storage plant
JP2001022437A (en) * 1999-07-13 2001-01-26 Toshiba Corp Plant controller and computer readable recording medium storing plant control program
JP2002227721A (en) * 2001-01-31 2002-08-14 Hitachi Ltd Cogeneration planning system and cogeneration optimization system
JP2002300720A (en) * 2001-03-29 2002-10-11 Toshiba Corp Generation interruption programming device for generator
JP2003143757A (en) * 2001-10-30 2003-05-16 Hitachi Ltd Operation support system
JP2003216697A (en) * 2002-01-25 2003-07-31 Ebara Corp Energy control network system
JP2004032983A (en) * 2002-02-06 2004-01-29 Hitachi Ltd Power supply system and its operating method
JP2004064960A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Power supply system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8626351B2 (en) 2008-02-29 2014-01-07 Kabushiki Kaisha Toshiba Method and device for operation scheduling for energy storage equipment
JP2009211185A (en) * 2008-02-29 2009-09-17 Toshiba Corp Operation plan creation method and operation plan creation device of energy storage device
WO2009107373A1 (en) 2008-02-29 2009-09-03 株式会社 東芝 Operation plan creatiion method and device for energy storage device
JP2010169347A (en) * 2009-01-26 2010-08-05 Sanyo Electric Co Ltd Air conditioning system and method of controlling air conditioning system
US8823203B2 (en) 2009-11-12 2014-09-02 Denso Corporation Controller for engine
JP2011201488A (en) * 2010-03-26 2011-10-13 Denso Corp Heat source control device of vehicle
JP2013160435A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Heat source selection assisting device, method thereof, and heat source system
US9317022B2 (en) 2012-06-26 2016-04-19 International Business Machines Corporation Controlling power generators and chillers
US9429924B2 (en) 2012-06-26 2016-08-30 International Business Machines Corporation Controlling power generators and chillers
US9916630B2 (en) 2012-11-09 2018-03-13 Kabushiki Kaisha Toshiba Electricity suppressing type electricity and heat optimizing control device, optimizing method, and optimizing program
US10345766B2 (en) 2012-12-11 2019-07-09 Kabushiki Kaisha Toshiba Energy management server, energy management method, and medium
CN111339474A (en) * 2020-02-17 2020-06-26 山东大学 Comprehensive energy system prediction operation method based on trend prediction analysis method
CN111339474B (en) * 2020-02-17 2022-02-08 山东大学 Comprehensive energy system prediction operation method based on trend prediction analysis method

Similar Documents

Publication Publication Date Title
ES2544271T3 (en) Integrated demand response for energy use
Li et al. Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation
US10122166B2 (en) System for integrated multi-energy scheduling control in a micro-grid
EP2919079A2 (en) Optimization and control method for a distributed micro-generation energy plant
US20120109394A1 (en) Household Energy Management System
CN104412481A (en) Energy management server, energy management method, and program
JP2007129873A (en) Device and method for managing energy demand
KR20040087337A (en) Setting device of distributed energy supply system
EP3343128A1 (en) Profiling of hot water use from electrical thermal storage vessels
JP2013156937A (en) Optimal operation control device of energy network
Zavala et al. Proactive energy management for next-generation building systems
Sadat-Mohammadi et al. Robust scheduling of multi-chiller system with chilled-water storage under hourly electricity pricing
JP2015099417A (en) Energy system optimization method, energy system optimization device and program
KR20170133055A (en) Recording medium storing computer program for energy management system
JP2021168595A (en) Operation planning system and method of micro grid, and area energy management system and energy management system used in the operation planning system of the micro grid
JP2005257097A (en) Start/stop plan formulation system for heat source device
Bio Gassi et al. Analysis of a linear programming‐based decision‐making model for microgrid energy management systems with renewable sources
Sawant et al. Experimental demonstration of grid-supportive scheduling of a polygeneration system using economic-MPC
JP2020060847A (en) Hydrogen supply/demand matching system
JP6567302B2 (en) Energy management apparatus, energy management method and program
Wolfrum et al. Optimal control of combined heat and power units under varying thermal loads
JP5780989B2 (en) Equipment controller and distributed power supply system
JP2019057035A (en) Operation plan creating device, control device, operation plan creating method and operation plan creating program
JP2015119575A (en) Energy management system and energy management method
Guo et al. Cost optimization for a large-scale hybrid central cooling plant with multiple energy sources under a complex electricity cost structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090703