JP2005240917A - Control device for vehicle drive device - Google Patents

Control device for vehicle drive device Download PDF

Info

Publication number
JP2005240917A
JP2005240917A JP2004052211A JP2004052211A JP2005240917A JP 2005240917 A JP2005240917 A JP 2005240917A JP 2004052211 A JP2004052211 A JP 2004052211A JP 2004052211 A JP2004052211 A JP 2004052211A JP 2005240917 A JP2005240917 A JP 2005240917A
Authority
JP
Japan
Prior art keywords
transmission
state
stepped
switching
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004052211A
Other languages
Japanese (ja)
Other versions
JP4026604B2 (en
JP2005240917A5 (en
Inventor
Atsushi Tabata
淳 田端
Yutaka Taga
豊 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004052211A priority Critical patent/JP4026604B2/en
Priority to US11/019,337 priority patent/US7822524B2/en
Priority to PCT/JP2004/019743 priority patent/WO2005064199A1/en
Priority to CN201110079155.5A priority patent/CN102166950B/en
Priority to CN2011100791521A priority patent/CN102166946B/en
Priority to CN2004800421005A priority patent/CN1926356B/en
Priority to KR1020077025342A priority patent/KR100882176B1/en
Priority to KR1020077025345A priority patent/KR20070112430A/en
Priority to EP04808093A priority patent/EP1701061B1/en
Priority to KR1020077025340A priority patent/KR100863172B1/en
Priority to KR1020077025343A priority patent/KR100882177B1/en
Priority to EP11002541.8A priority patent/EP2375103B1/en
Priority to KR1020067015144A priority patent/KR100887204B1/en
Priority to KR1020077025341A priority patent/KR100863173B1/en
Priority to KR1020077025344A priority patent/KR20070112304A/en
Publication of JP2005240917A publication Critical patent/JP2005240917A/en
Publication of JP2005240917A5 publication Critical patent/JP2005240917A5/ja
Application granted granted Critical
Publication of JP4026604B2 publication Critical patent/JP4026604B2/en
Priority to US12/269,633 priority patent/US7941259B2/en
Priority to US12/269,659 priority patent/US7848858B2/en
Priority to US12/269,591 priority patent/US20090075774A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Structure Of Transmissions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive device capable of switching between a continuously variable transmission state in which the device functions as an electrically continuously variable transmission and a stepped transmission state in which the device functions as an electrically stepped transmission, and a control device for a vehicle drive device capable of appropriately switching between the continuously variable transmission state and the stepped transmission state and improving fuel efficiency further. <P>SOLUTION: A transmission state switching type transmission mechanism 10 switchable between a continuously variable transmission state in which the device is operable as an electrically continuously variable transmission and a stepped transmission state in which the device is operable as an electrically stepped transmission, is optionally switched between the continuously variable transmission state and the stepped transmission state by a switching control means 50 on the basis of which one of travels in the continuously variable transmission state and the stepped transmission state offers better fuel efficiency rate f. By so doing, an appropriate travel can be obtained while improving a fuel efficiency further. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両用駆動装置の制御装置に係り、特に、その駆動装置が電気的な無段変速状態と有段変速状態とに切換制御される構成とされる場合においてその切換制御に関するものである。   The present invention relates to a control device for a vehicle drive device, and more particularly to the switch control in the case where the drive device is configured to be switched between an electric continuously variable transmission state and a stepped transmission state. is there.

エンジンの出力を第1電動機および出力軸へ分配する動力分配機構と、その動力分配機構の出力軸と駆動輪との間に設けられた第2電動機とを備えた駆動装置を制御する制御装置を備えた車両が知られている。例えば、特許文献1に記載されたハイブリッド車両の制御装置がそれである。このようなハイブリッド車両の駆動装置では、エンジンからの動力の主部を駆動輪へ直接機械的に伝達し、そのエンジンからの動力の残部を第1電動機から第2電動機への電気パスを用いて電気的に伝達することにより、エンジンを最適な作動状態に維持しつつ車両を走行させるように制御されて燃費が向上させられる。   A control device that controls a drive device including a power distribution mechanism that distributes engine output to the first motor and the output shaft, and a second motor provided between the output shaft of the power distribution mechanism and the drive wheels. Vehicles equipped are known. For example, the control apparatus of the hybrid vehicle described in patent document 1 is it. In such a hybrid vehicle drive device, the main part of the power from the engine is mechanically transmitted directly to the drive wheels, and the remaining part of the power from the engine is transmitted using an electric path from the first motor to the second motor. By electrically transmitting, the fuel consumption is improved by controlling the vehicle to run while maintaining the engine in an optimum operating state.

特開2003−130202号公報JP 2003-130202 A 特開2003−130203号公報JP 2003-130203 A 特開2003−127681号公報JP 2003-127681 A 特開平11−198668号公報JP-A-11-198668 特開平11−198670号公報JP-A-11-198670 特開平11−217025号公報Japanese Patent Application Laid-Open No. 11-217025 WO 03/016749A1公報WO 03 / 016749A1 publication

一般に、無段変速機はエンジン回転速度が車速に対して固定されないのでエンジンの燃料消費率が最善域となるように制御され車両の燃費を良くする装置として知られているが、上記のような従来の車両用駆動装置では、第1電動機から第2電動機への電気エネルギの電気パスすなわち車両の駆動力の一部を電気エネルギで伝送する伝送路を含むためエンジンの出力の一部が一旦電気エネルギに変換されて駆動輪に伝達されるので、有段式自動変速機のような歯車式伝動装置に比較して伝達効率がよくない。一方、その歯車式伝動装置は上記電気パスがなく伝達効率が良い装置として知られているが、エンジン回転速度が車速に対して固定されるので必ずしもエンジンの燃料消費率が最善域となるように制御されない。そして、燃費に対してそれ等の長所を兼ね備えた動力伝達機構は未だ存在しなかった。   In general, a continuously variable transmission is known as a device that improves the fuel consumption of a vehicle by controlling the fuel consumption rate of the engine to be the best because the engine rotation speed is not fixed with respect to the vehicle speed. In the conventional vehicle drive device, since an electric path of electric energy from the first electric motor to the second electric motor, that is, a transmission path for transmitting a part of the driving force of the vehicle by electric energy is included, a part of the engine output is once electric. Since it is converted into energy and transmitted to the drive wheels, the transmission efficiency is not as good as that of a gear transmission such as a stepped automatic transmission. On the other hand, the gear transmission is known as a device having no electrical path and good transmission efficiency. However, since the engine rotation speed is fixed with respect to the vehicle speed, the fuel consumption rate of the engine is not necessarily in the best range. Not controlled. And there has not yet been a power transmission mechanism that combines these advantages with respect to fuel efficiency.

そこで、本発明者等は、以上の課題を解決するために種々検討を重ねた結果、上記従来の車両用駆動装置を電気的な無段変速機として作動可能な無段変速状態と電気パスが無くなって動力と電気との間の変換損失が抑制される状態すなわち専ら機械的な動力伝達経路でエンジンの出力を駆動輪へ伝達するような有段変速機として作動可能な有段変速状態とに切り換え可能に構成することを見いだした。そしてこの車両用駆動装置を上記無段変速状態と有段変速状態とに切換制御することで燃費を向上できることが考えられる。   Accordingly, the present inventors have made various studies in order to solve the above-described problems. As a result, there are continuously variable transmission states and electric paths in which the conventional vehicle drive device can be operated as an electric continuously variable transmission. A state where the loss of conversion between power and electricity is suppressed, that is, a stepped speed change state that can be operated as a stepped transmission that transmits engine output to drive wheels exclusively through a mechanical power transmission path. I found it to be switchable. It is conceivable that fuel efficiency can be improved by switching control of the vehicle drive device between the continuously variable transmission state and the stepped transmission state.

しかしながら、上記無段変速状態と有段変速状態との切換制御のための変速状態の選択は容易でなく、その選択によっては必ずしも燃費が良い車両走行とならない。すなわち、その選択を誤ると燃費が悪化する可能性があった。   However, it is not easy to select a speed change state for switching control between the continuously variable speed change state and the stepped speed change state, and depending on the selection, the vehicle travel is not necessarily good in fuel efficiency. That is, if the selection is wrong, the fuel consumption may be deteriorated.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、電気的な無段変速機として機能する無段変速状態と有段変速機として機能する有段変速状態とに切り換えられる駆動装置を提供するとともに、無段変速状態と有段変速状態とが適切に切り換えられて一層燃費向上する車両用駆動装置の制御装置を提供することにある。   The present invention has been made against the background of the above circumstances, and its purpose is to provide a continuously variable transmission state that functions as an electric continuously variable transmission and a stepped transmission state that functions as a stepped transmission. The present invention provides a control device for a vehicle drive device that is further switched between a continuously variable transmission state and a stepped transmission state and further improves fuel efficiency.

すなわち、請求項1にかかる発明の要旨とするところは、エンジンの出力を駆動輪へ伝達する車両用駆動装置の制御装置であって、(a) 電気的な無段変速機として作動可能な無段変速状態と有段の変速機として作動可能な有段変速状態とに切り換え可能な変速状態切換型変速機構と、(b) 前記無段変速状態および前記有段変速状態の何れの走行での車両の燃料消費率が良いかに基づいて前記変速状態切換型変速機構を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える切換制御手段とを、含むことにある。   That is, the gist of the invention according to claim 1 is a control device for a vehicle drive device that transmits the output of the engine to the drive wheels, and (a) a control device that can operate as an electric continuously variable transmission. A shift state switching type transmission mechanism capable of switching between a stepped shift state and a stepped shift state operable as a stepped transmission, and (b) in any of the continuously variable shift state and the stepped shift state traveling And switching control means for selectively switching the shift state switching type transmission mechanism between the continuously variable transmission state and the stepped transmission state based on whether the fuel consumption rate of the vehicle is good.

このようにすれば、電気的な無段変速機として作動可能な無段変速状態と有段の変速機として作動可能な有段変速状態とに切り換え可能な変速状態切換型変速機構が、前記無段変速状態および前記有段変速状態の何れの走行での車両の燃料消費率が良いかに基づいて切換制御手段により無段変速状態と有段変速状態とのいずれかに選択的に切り換えられることから、一層燃費が向上する適切な走行が得られる。   According to this configuration, the transmission state switching type transmission mechanism capable of switching between the continuously variable transmission state operable as an electrical continuously variable transmission and the stepped transmission state operable as a stepped transmission is provided with the continuously variable transmission mechanism. The switching control means selectively switches between the continuously variable transmission state and the stepped transmission state based on whether the fuel consumption rate of the vehicle in the stepped transmission state or the stepped transmission state is good. Therefore, it is possible to obtain an appropriate traveling with further improved fuel efficiency.

また、好適には、請求項2にかかる発明では、前記燃料消費率は車両状態から逐次算出されるものである。このようにすれば、前記無段変速状態および前記有段変速状態での燃料消費率が逐次算出されて変速状態切換型変速機構の変速状態が燃費の良い走行状態とされる。また、好適には、前記燃料消費率を車両状態から逐次算出する燃料消費率算出手段を備えるものである。このようにすれば、燃料消費率算出手段により前記無段変速状態および前記有段変速状態での燃料消費率が逐次算出されて変速状態切換型変速機構の変速状態が常に燃費の良い走行状態とされる。   Preferably, in the invention according to claim 2, the fuel consumption rate is sequentially calculated from a vehicle state. In this way, the fuel consumption rate in the continuously variable transmission state and the stepped transmission state is sequentially calculated, and the transmission state of the transmission state switching type transmission mechanism is changed to a traveling state with good fuel consumption. Preferably, the apparatus further comprises a fuel consumption rate calculating means for sequentially calculating the fuel consumption rate from the vehicle state. In this way, the fuel consumption rate calculation means sequentially calculates the fuel consumption rate in the continuously variable transmission state and the stepped transmission state, so that the transmission state of the transmission state change-type transmission mechanism is always the driving state with good fuel consumption. Is done.

また、好適には、請求項3にかかる発明では、前記車両状態から逐次算出される燃料消費率は、予め記憶された関係から求められるエンジンの燃料消費率に基づいて算出されるものである。このようにすれば、車両の燃料消費率が適切に算出される。   Preferably, in the invention according to claim 3, the fuel consumption rate sequentially calculated from the vehicle state is calculated based on the fuel consumption rate of the engine obtained from a previously stored relationship. In this way, the fuel consumption rate of the vehicle is calculated appropriately.

また、好適には、請求項4にかかる発明では、前記車両状態から算出される燃料消費率は、エンジンから駆動輪への伝達効率が考慮されるものである。このようにすれば、燃料消費率が適切に算出される。また、好適には、エンジンから駆動輪への伝達効率を算出する伝達効率算出手段を備えるものである。このようにすれば、伝達効率算出手段により算出された伝達効率が考慮されて車両の燃料消費率が適切に算出される。   Preferably, in the invention according to claim 4, the fuel consumption rate calculated from the vehicle state takes into account the transmission efficiency from the engine to the drive wheels. In this way, the fuel consumption rate is calculated appropriately. Preferably, the apparatus further comprises transmission efficiency calculation means for calculating transmission efficiency from the engine to the drive wheels. In this way, the fuel consumption rate of the vehicle is appropriately calculated in consideration of the transmission efficiency calculated by the transmission efficiency calculation means.

また、好適には、請求項5にかかる発明では、前記伝達効率は車両の走行抵抗によって変化するものである。このようにすれば、燃料消費率が適切に算出される。   Preferably, in the invention according to claim 5, the transmission efficiency changes depending on the running resistance of the vehicle. In this way, the fuel consumption rate is calculated appropriately.

また、好適には、請求項6にかかる発明では、前記伝達効率は車速によって変化するものである。このようにすれば、燃料消費率が適切に算出される。   Preferably, in the invention according to claim 6, the transmission efficiency varies depending on the vehicle speed. In this way, the fuel consumption rate is calculated appropriately.

また、好適には、請求項7にかかる発明では、前記伝達効率は車両の駆動力関連値によって変化するものである。このようにすれば、燃料消費率が適切に算出される。ここで、上記駆動力関連値は、エンジンの出力トルク、変速機の出力トルク、駆動輪の駆動トルク等の動力伝達経路における伝達トルクや回転力、それを要求するスロットル開度、アクセル操作量など、車両の駆動力に直接或いは間接的に関連するパラメータである。   Preferably, in the invention according to claim 7, the transmission efficiency varies depending on a driving force related value of the vehicle. In this way, the fuel consumption rate is calculated appropriately. Here, the driving force-related values include the output torque of the engine, the output torque of the transmission, the transmission torque and the rotational force in the power transmission path such as the driving torque of the driving wheel, the throttle opening that requires it, the accelerator operation amount, etc. , A parameter directly or indirectly related to the driving force of the vehicle.

ここで、好適には、請求項8にかかる発明の要旨とするところは、前記無段変速状態および前記有段変速状態の何れでの走行が燃料消費率が良いかにより該無段変速状態或いは該有段変速状態とするための領域が設定された予め記憶された関係から現在の車両状態に基づいて前記変速状態切換型変速機構が前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換えられるものである。このようにすれば、変速状態切換型変速機構の変速状態が簡単に燃費の良い走行状態に切り替えられる。   Preferably, the gist of the invention according to claim 8 is that the stepless speed change state or the stepless speed change state depends on whether the stepless speed change state or the stepped speed change state has a good fuel consumption rate. Based on the current vehicle state, the shift state change-type transmission mechanism is set to either the continuously variable shift state or the stepped shift state based on a previously stored relationship in which an area for the stepped shift state is set. Can be selectively switched. In this way, the shift state of the shift state switching type transmission mechanism can be easily switched to a traveling state with good fuel consumption.

また、好適には、請求項9にかかる発明では、前記切換制御手段は、実際の車速が予め設定された高速走行判定値を越えたときに前記変速状態切換型変速機構を前記有段変速状態とするものである。このようにすれば、例えば実際の車速が高車速側に設定された高速走行判定値を越えると、専ら機械的な動力伝達経路でエンジンの出力が駆動輪へ伝達されて、電気的な無段変速機として作動させる場合に発生する動力と電気との間の変換損失が抑制されるので燃費が向上させられる。また、上記高速走行判定値は、燃料消費率に基づくことなく前記変速状態切換型変速機構を有段変速状態に切り換える方が明らかに燃費上有利となる車両の高速走行を判定するために予め実験等で求められて設定された値である。   Preferably, in the invention according to claim 9, the switching control means sets the shift state switching type transmission mechanism to the stepped shift state when the actual vehicle speed exceeds a preset high-speed traveling determination value. It is what. In this way, for example, when the actual vehicle speed exceeds the high-speed running determination value set on the high vehicle speed side, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path, and the electric continuously variable Since the conversion loss between the power and electricity generated when operating as a transmission is suppressed, fuel efficiency is improved. Further, the high-speed running determination value is not used based on the fuel consumption rate, but is tested in advance to determine the high-speed running of the vehicle in which it is clearly advantageous in terms of fuel consumption to switch the shift state switching type transmission mechanism to the stepped shift state. It is a value that is obtained and set by, for example.

また、好適には、前記切換制御手段は、実際の車速が予め設定された高速走行判定値を越えたときに前記変速状態切換型変速機構の無段変速状態を禁止するものである。このようにすれば、例えば実際の車速が高車速側に設定された高速走行判定値を越えると、変速状態切換型変速機構の無段変速状態が禁止されて、電気的な無段変速機として作動させる場合に発生する動力と電気との間の変換損失が抑制されるので、専ら機械的な動力伝達経路でエンジンの出力が駆動輪へ伝達されて、車両の燃費が向上させられる。   Preferably, the switching control means prohibits a continuously variable transmission state of the transmission state switching type transmission mechanism when an actual vehicle speed exceeds a preset high-speed traveling determination value. In this way, for example, if the actual vehicle speed exceeds the high-speed traveling determination value set on the high vehicle speed side, the continuously variable transmission state of the transmission state switching type transmission mechanism is prohibited, and an electric continuously variable transmission is obtained. Since the conversion loss between the power and electricity generated when operating is suppressed, the engine output is transmitted to the drive wheels exclusively through the mechanical power transmission path, and the fuel efficiency of the vehicle is improved.

また、好適には、請求項10にかかる発明では、前記切換制御手段は、車両の駆動力関連値が予め設定された高出力走行判定値を越えたときに前記変速状態切換型変速機構を前記有段変速状態とするものである。このようにすれば、例えば要求駆動力或いは実際の駆動力などの駆動力関連値が比較的高出力側に設定された高出力走行判定値を越えると、専ら機械的な動力伝達経路でエンジンの出力が駆動輪へ伝達されて電気的な無段変速機として作動させる場合の電動機が伝える電気的エネルギの最大値を小さくできてその電動機或いはそれを含む車両の駆動装置が一層小型化される。また、上記高出力走行判定値は、燃料消費率に基づくことなく前記変速状態切換型変速機構を有段変速状態に切り換える必要がある車両の高出力走行すなわち前記変速状態切換型変速機構を電気的な無段変速機として作動させられない電動機の定格出力に基づいて定められたエンジン出力の制限値を越えるような車両の高出力走行を判定するために予め設定された値である。   Preferably, in the invention according to claim 10, the switching control means sets the shift state switching type transmission mechanism when the driving force-related value of the vehicle exceeds a preset high output traveling determination value. The stepped gear shift state is set. In this way, for example, if the driving force related value such as the required driving force or the actual driving force exceeds the high output traveling determination value set on the relatively high output side, the engine power is exclusively transmitted through the mechanical power transmission path. When the output is transmitted to the drive wheels to operate as an electric continuously variable transmission, the maximum value of the electric energy transmitted by the electric motor can be reduced, and the electric motor or a drive device of the vehicle including the electric motor can be further downsized. Further, the high output travel determination value is not based on the fuel consumption rate, but the high output travel of the vehicle that needs to switch the shift state switching type transmission mechanism to the stepped shift state, that is, the shift state switching type transmission mechanism is electrically This is a value set in advance to determine the high-power running of the vehicle that exceeds the engine output limit value determined based on the rated output of the electric motor that cannot be operated as a continuously variable transmission.

また、好適には、前記切換制御手段は、車両の駆動力関連値が予め設定された高出力走行判定値を越えたときに前記変速状態切換型変速機構の無段変速状態を禁止するものである。このようにすれば、例えば要求駆動力或いは実際の駆動力などの駆動力関連値が比較的高出力側に設定された高出力走行判定値を越えると、変速状態切換型変速機構の無段変速状態が禁止されて、電気的な無段変速機として作動させる場合の電動機が伝える電気的エネルギの最大値が小さくされるので、専ら機械的な動力伝達経路でエンジンの出力が駆動輪へ伝達されて、その電動機或いはそれを含む車両の駆動装置が一層小型化される。   Preferably, the switching control means prohibits the continuously variable transmission state of the shift state switching type transmission mechanism when the driving force related value of the vehicle exceeds a preset high output travel determination value. is there. In this way, for example, when the driving force-related value such as the required driving force or the actual driving force exceeds the high output traveling determination value set on the relatively high output side, the continuously variable transmission of the shift state switching transmission mechanism is performed. Since the state is prohibited and the maximum electric energy transmitted by the motor when operating as an electric continuously variable transmission is reduced, the engine output is transmitted to the drive wheels exclusively through a mechanical power transmission path. Thus, the electric motor or the drive device for the vehicle including the electric motor is further reduced in size.

また、好適には、請求項11にかかる発明では、前記切換制御手段は、前記変速状態切換型変速機構を前記電気的な無段変速状態とするための制御機器の機能低下を判定する故障判定条件が成立した場合に前記変速状態切換型変速機構を前記有段変速状態とするものである。このようにすれば、前記変速状態切換型変速機構が通常は無段変速状態とされる場合であっても優先的に有段変速状態とされることで、有段走行ではあるが無段走行と略同様の車両走行が確保される。   Preferably, in the invention according to claim 11, the switching control means determines a malfunction of a control device for setting the shift state switching type transmission mechanism to the electric continuously variable transmission state. When the condition is satisfied, the shift state switching type transmission mechanism is set to the stepped shift state. In this way, even if the shift state change-type transmission mechanism is normally set to the continuously variable transmission state, it is set to the stepped transmission state preferentially, so that the stepless traveling is performed continuously. And substantially the same vehicle traveling is ensured.

また、好適には、前記切換制御手段は、前記変速状態切換型変速機構を前記電気的な無段変速状態とするための制御機器の機能低下を判定する故障判定条件が成立した場合に前記変速状態切換型変速機構の無段変速状態を禁止するものである。このようにすれば、例えば電気的な無駄変速状態するための制御機器の機能低下が判定されると、変速状態切換型変速機構の無段変速状態が禁止されるので、前記変速状態切換型変速機構が無段変速状態とされない場合でも有段変速状態とされることで、有段走行ではあるが無段走行と略同様の車両走行が確保される。   Preferably, the switching control means is configured to switch the shift state when a failure determination condition for determining a function deterioration of a control device for setting the shift state switching type transmission mechanism to the electric continuously variable shift state is satisfied. The continuously variable transmission state of the state switching type transmission mechanism is prohibited. In this way, for example, if it is determined that the function of the control device is deteriorated to cause an electrical wasteful shift state, the continuously variable state of the shift state switching type transmission mechanism is prohibited. Even when the mechanism is not in a continuously variable transmission state, the stepped variable speed state is ensured, so that the vehicle traveling substantially the same as the continuously variable traveling is ensured.

また、好適には、請求項12にかかる発明では、前記変速状態切換型変速機構は、第1電動機と、前記エンジンの出力をその第1電動機および伝達部材へ分配する動力分配機構と、その伝達部材と前記駆動輪との間に設けられた第2電動機とを備える。好適には、前記動力分配機構は、前記エンジンに連結された第1要素と、第1電動機に連結された第2要素と、第2電動機および伝達部材に連結された第3要素とを有する。その動力分配機構は、前記変速状態切換型変速機構を前記無段変速状態および前記有段変速状態のいずれかの状態に切換可能とするための作動状態切換装置を有し、前記切換制御手段は、その作動状態切換装置を制御することで前記無段変速状態と前記有段変速状態とを選択的に切り換えるものである。このようにすれば、切換制御手段により作動状態切換装置が制御されることにより、車両の駆動装置内の変速状態切換型変速機構が無段変速機として作動可能な無段変速状態と有段変速機として作動可能な有段変速状態とに簡単に切り換えられる。   Preferably, in the invention according to claim 12, the shift state switching type transmission mechanism includes a first electric motor, a power distribution mechanism that distributes the output of the engine to the first electric motor and a transmission member, and transmission thereof. A second electric motor provided between the member and the driving wheel. Preferably, the power distribution mechanism includes a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the second electric motor and the transmission member. The power distribution mechanism has an operation state switching device for enabling the shift state switching type transmission mechanism to switch between the continuously variable transmission state and the stepped transmission state, and the switching control means includes: The operation state switching device is controlled to selectively switch between the continuously variable transmission state and the stepped transmission state. According to this configuration, the operation state switching device is controlled by the switching control means, so that the transmission state switching type transmission mechanism in the vehicle drive device can operate as a continuously variable transmission and a continuously variable transmission. It can be easily switched to the stepped speed change state operable as a machine.

また、好適には、請求項13にかかる発明では、前記動力分配機構は、前記エンジンに連結された第1要素と前記第1電動機に連結された第2要素と前記伝達部材に連結された第3要素とを有するものであり、前記作動状態切換装置は、前記第1要素乃至第3要素のうちのいずれか2つを相互におよび/またはその第2要素を非回転部材に連結する係合装置例えば摩擦係合装置であり、前記切換制御手段は、前記係合装置を解放してその第1要素、第2要素、および第3要素を相互に相対回転可能とすることにより前記無段変速状態とし、前記係合装置を係合してその第1要素、第2要素、および第3要素のうちの少なくとも2つを相互に連結するか或いはその第2要素を非回転状態とすることにより前記有段変速状態とするものである。このようにすれば、動力分配機構が簡単に構成されるとともに切換制御手段により無段変速状態と有段変速状態とが簡単に制御される。   Preferably, in the invention according to claim 13, the power distribution mechanism includes a first element coupled to the engine, a second element coupled to the first electric motor, and a first element coupled to the transmission member. And the operating state switching device is configured to engage any two of the first to third elements with each other and / or the second element with a non-rotating member. Device, for example, a friction engagement device, wherein the switching control means releases the engagement device so that the first element, the second element, and the third element can be rotated relative to each other, thereby allowing the continuously variable transmission. And engaging at least two of the first element, the second element, and the third element with each other, or bringing the second element into a non-rotating state. The stepped shift state is set. In this way, the power distribution mechanism is simply configured, and the continuously variable transmission state and the stepped transmission state are easily controlled by the switching control means.

また、好適には、請求項14にかかる発明では、前記動力分配機構は遊星歯車装置であり、前記第1要素はその遊星歯車装置のキャリヤであり、前記第2要素はその遊星歯車装置のサンギヤであり、前記第3要素はその遊星歯車装置のリングギヤであり、前記係合装置は、前記キャリヤ、サンギヤ、リングギヤのうちのいずれか2つを相互に連結するクラッチおよび/またはそのサンギヤを非回転部材に連結するブレーキを備えたものである。このようにすれば、動力分配機構の軸方向寸法が小さくなるとともに、1つの遊星歯車装置によって簡単に構成される。   Preferably, in the invention according to claim 14, the power distribution mechanism is a planetary gear device, the first element is a carrier of the planetary gear device, and the second element is a sun gear of the planetary gear device. The third element is a ring gear of the planetary gear device, and the engagement device is a clutch that interconnects any two of the carrier, sun gear, and ring gear and / or non-rotates the sun gear. A brake connected to the member is provided. In this way, the axial dimension of the power distribution mechanism is reduced, and the planetary gear device is simply configured.

また、好適には、請求項15にかかる発明では、前記遊星歯車装置はシングルピニオン型遊星歯車装置である。このようにすれば、動力分配機構の軸方向寸法が小さくなるとともに、動力分配機構が1つのシングルピニオン型遊星歯車装置によって簡単に構成される。   Preferably, in the invention according to claim 15, the planetary gear device is a single pinion type planetary gear device. In this way, the axial dimension of the power distribution mechanism is reduced, and the power distribution mechanism is simply configured by one single pinion type planetary gear device.

また、好適には、請求項16にかかる発明では、前記切換制御手段は、前記シングルピニオン型遊星歯車装置を変速比が1である変速機とするために前記キャリヤとサンギヤを相互に連結するか、或いは前記シングルピニオン型遊星歯車装置を変速比が1より小さい増速変速機とするために前記サンギヤを非回転状態とするように前記係合装置を制御するものである。このようにすれば、動力分配機構が1つのシングルピニオン型遊星歯車装置による単段または複数段の定変速比を有する変速機として前記切換制御手段によって簡単に制御される。   Preferably, in the invention according to claim 16, wherein the switching control means connects the carrier and the sun gear to each other in order to make the single pinion type planetary gear device a transmission having a gear ratio of 1. Alternatively, the engagement device is controlled so that the sun gear is in a non-rotating state so that the single pinion type planetary gear device is a speed-up transmission with a gear ratio smaller than 1. In this way, the power distribution mechanism is easily controlled by the switching control means as a transmission having a single gear stage or a plurality of gear stages with a single pinion type planetary gear device.

また、好適には、請求項17にかかる発明では、前記変速状態切換型変速機構は、前記伝達部材と前記駆動輪との間において前記動力分配機構と直列に設けられた自動変速機を含み、その自動変速機の変速比に基づいて前記変速状態切換型変速機構の変速比が形成されるものである。このようにすれば、自動変速機の変速比を利用することによって駆動力が幅広く得られるようになる。   Preferably, in the invention according to claim 17, the shift state switching type transmission mechanism includes an automatic transmission provided in series with the power distribution mechanism between the transmission member and the drive wheel, Based on the transmission gear ratio of the automatic transmission, the transmission gear ratio of the transmission state switching type transmission mechanism is formed. In this way, a wide driving force can be obtained by utilizing the gear ratio of the automatic transmission.

また、好適には、請求項18にかかる発明では、前記動力分配機構の変速比と前記自動変速機の変速比とに基づいて前記変速状態切換型変速機構の総合変速比が形成されるものである。このようにすれば、自動変速機の変速比を利用することによって駆動力が幅広く得られるようになるので、動力分配機構における無段変速制御の効率が一層高められる。また、好適には、前記自動変速機は有段式自動変速機である。このようにすれば、前記変速状態切換型変速機構において動力分配機構と有段式自動変速機とで無段変速状態としての無段変速機が構成され、動力分配機構と有段式自動変速機とで有段変速状態としての有段式自動変速機が構成される。   Preferably, in the invention according to claim 18, the overall transmission ratio of the transmission state switching type transmission mechanism is formed based on the transmission ratio of the power distribution mechanism and the transmission ratio of the automatic transmission. is there. In this way, since the driving force can be widely obtained by using the gear ratio of the automatic transmission, the efficiency of the continuously variable transmission control in the power distribution mechanism is further enhanced. Preferably, the automatic transmission is a stepped automatic transmission. According to this configuration, in the shift state switching type transmission mechanism, the power distribution mechanism and the stepped automatic transmission constitute the continuously variable transmission as the continuously variable transmission state, and the power distribution mechanism and the stepped automatic transmission And a stepped automatic transmission as a stepped shift state is configured.

また、好適には、請求項19にかかる発明では、前記自動変速機は有段式自動変速機であり、前記有段式自動変速機の変速は、予め記憶された変速線図に基づいて実行されるものである。このようにすれば、有段式自動変速機の変速が容易に実行される。   Preferably, in the invention according to claim 19, the automatic transmission is a stepped automatic transmission, and the shift of the stepped automatic transmission is executed based on a pre-stored shift diagram. It is what is done. In this way, the shift of the stepped automatic transmission is easily performed.

また、好適には、前記変速状態切換型変速機構において、第2電動機が前記伝達部材に直接に連結される。このようにすれば、前記自動変速機の出力軸に対して低トルクの出力でよいので、第2電動機が一層小型化される。   Preferably, in the shift state switching type transmission mechanism, the second electric motor is directly connected to the transmission member. In this case, the second motor can be further miniaturized because an output with a low torque is sufficient for the output shaft of the automatic transmission.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例である制御装置が適用されるハイブリッド車両の駆動装置としての変速状態切換型変速機構10(以下、変速機構10という)を説明する骨子図である。図1において、変速機構10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された切換型変速部11と、その切換型変速部11と出力軸22との間で伝達部材(伝動軸)18を介して直列に連結されている有段式自動変速機としての自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この変速機構10は、車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、走行用の駆動力源としてのエンジン8と一対の駆動輪との間に設けられて、図5に示すように動力を差動歯車装置(終減速機)36および一対の車軸等を順次介して一対の駆動輪38へ伝達する。なお、変速機構10はその軸心に対して対称的に構成されているため、図1の変速機構10を表す部分においてはその下側が省略されている。以下の各実施例についても同様である。   FIG. 1 is a skeleton diagram illustrating a shift state switching type transmission mechanism 10 (hereinafter referred to as a transmission mechanism 10) as a drive device for a hybrid vehicle to which a control apparatus according to an embodiment of the present invention is applied. In FIG. 1, a transmission mechanism 10 includes an input shaft 14 as an input rotating member disposed on a common axis in a transmission case 12 (hereinafter referred to as a case 12) as a non-rotating member attached to a vehicle body, A switching transmission 11 connected directly to the input shaft 14 or indirectly via a pulsation absorbing damper (vibration damping device) (not shown), and a transmission member (between the switching transmission 11 and the output shaft 22). An automatic transmission unit 20 as a stepped automatic transmission connected in series via a transmission shaft 18 and an output shaft 22 as an output rotation member connected to the automatic transmission unit 20 are provided in series. ing. The speed change mechanism 10 is preferably used in an FR (front engine / rear drive) type vehicle vertically installed in a vehicle, and is disposed between an engine 8 as a driving force source for traveling and a pair of driving wheels. As shown in FIG. 5, the power is transmitted to the pair of drive wheels 38 through the differential gear unit (final reduction gear) 36 and the pair of axles in order. In addition, since the speed change mechanism 10 is configured symmetrically with respect to the axis, the lower side is omitted in the portion representing the speed change mechanism 10 in FIG. The same applies to each of the following embodiments.

切換型変速部11は、第1電動機M1と、入力軸14に入力されたエンジン8の出力を機械的に合成し或いは分配する機械的機構であって、エンジン8の出力を第1電動機M1および伝達部材18に分配し、或いはエンジン8の出力とその第1電動機M1の出力とを合成して伝達部材18へ出力させる動力分配機構16と、伝達部材18と一体的に回転するように設けられている第2電動機M2とを備えている。なお、この第2電動機M2は伝達部材18から出力軸22までの間のいずれの部分に設けられてもよい。本実施例の第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータであるが、第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は駆動力を出力するためのモータ(電動機)機能を少なくとも備える。   The switching-type transmission unit 11 is a mechanical mechanism that mechanically synthesizes or distributes the output of the engine 8 input to the first electric motor M1 and the input shaft 14, and outputs the output of the engine 8 to the first electric motor M1 and A power distribution mechanism 16 that distributes to the transmission member 18 or combines the output of the engine 8 and the output of the first electric motor M1 to output to the transmission member 18, and is provided to rotate integrally with the transmission member 18. The second electric motor M2 is provided. The second electric motor M2 may be provided at any portion between the transmission member 18 and the output shaft 22. The first motor M1 and the second motor M2 of the present embodiment are so-called motor generators that also have a power generation function, but the first motor M1 has at least a generator (power generation) function for generating a reaction force, and the second motor M2 has at least a motor (electric motor) function for outputting driving force.

動力分配機構16は、例えば「0.418」程度の所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24と、切換クラッチC0および切換ブレーキB0とを主体的に備えている。この第1遊星歯車装置24は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素(要素)として備えている。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1とすると、上記ギヤ比ρ1はZS1/ZR1である。   The power distribution mechanism 16 mainly includes, for example, a single pinion type first planetary gear unit 24 having a predetermined gear ratio ρ1 of about “0.418”, a switching clutch C0, and a switching brake B0. The first planetary gear unit 24 includes a first sun gear S1, a first planetary gear P1, a first carrier CA1 that supports the first planetary gear P1 so as to rotate and revolve, and a first sun gear via the first planetary gear P1. A first ring gear R1 meshing with S1 is provided as a rotating element (element). When the number of teeth of the first sun gear S1 is ZS1 and the number of teeth of the first ring gear R1 is ZR1, the gear ratio ρ1 is ZS1 / ZR1.

この動力分配機構16においては、第1キャリヤCA1は入力軸14すなわちエンジン8に連結され、第1サンギヤS1は第1電動機M1に連結され、第1リングギヤR1は伝達部材18に連結されている。また、切換ブレーキB0は第1サンギヤS1とトランスミッションケース12との間に設けられ、切換クラッチC0は第1サンギヤS1と第1キャリヤCA1との間に設けられている。それら切換クラッチC0および切換ブレーキB0が解放されると、第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1がそれぞれ相互に相対回転可能な状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されるとともに、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、切換型変速部11がその変速比γ0(入力軸14の回転速度/伝達部材18の回転速度)が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。   In the power distribution mechanism 16, the first carrier CA1 is connected to the input shaft 14, that is, the engine 8, the first sun gear S1 is connected to the first electric motor M1, and the first ring gear R1 is connected to the transmission member 18. The switching brake B0 is provided between the first sun gear S1 and the transmission case 12, and the switching clutch C0 is provided between the first sun gear S1 and the first carrier CA1. When the switching clutch C0 and the switching brake B0 are released, the first sun gear S1, the first carrier CA1, and the first ring gear R1 are brought into a state in which they can rotate relative to each other. Since it is distributed to the electric motor M1 and the transmission member 18 and is stored with electric energy generated from the first electric motor M1 with a part of the output of the distributed engine 8, or the second electric motor M2 is rotationally driven. In a so-called continuously variable transmission state (electric CVT state), the rotation of the transmission member 18 is continuously changed regardless of the predetermined rotation of the engine 8. That is, the switch-type transmission unit 11 is an electric continuously variable transmission whose speed ratio γ0 (the rotational speed of the input shaft 14 / the rotational speed of the transmission member 18) is continuously changed from the minimum value γ0min to the maximum value γ0max. A functioning continuously variable transmission state is set.

この状態で、エンジン8の出力で車両走行中に上記切換クラッチC0が係合させられて第1サンギヤS1と第1キャリヤCA1とが一体的に係合させられると、第1遊星歯車装置24の3要素S1、CA1、R1が一体回転することから、エンジン8の回転と伝達部材18の回転速度とが一致する状態となるので、切換型変速部11は変速比γ0が「1」に固定された変速機として機能する定変速状態とされる。次いで、上記切換クラッチC0に替えて切換ブレーキB0が係合させられて第1サンギヤS1が非回転状態とされると、第1リングギヤR1は第1キャリヤCA1よりも増速回転されるので、切換型変速部11は変速比γ0が「1」より小さい値例えば0.7程度に固定された増速変速機として機能する定変速状態とされる。このように、本実施例では、上記切換クラッチC0および切換ブレーキB0は、切換型変速部11を、変速比が連続的変化可能な無段変速機として作動可能な無段変速状態と、無段変速機として作動させず無段変速作動を非作動として変速比変化を一定にロックするロック状態すなわち1または2種類以上の変速比の単段または複数段の変速機として作動可能な定変速状態、換言すれば変速比が一定の1段または複数段の変速機として作動可能な定変速状態とに選択的に切換える作動状態切換装置として機能している。   In this state, when the switching clutch C0 is engaged and the first sun gear S1 and the first carrier CA1 are integrally engaged while the vehicle is running with the output of the engine 8, the first planetary gear device 24 is engaged. Since the three elements S1, CA1, and R1 rotate integrally, the rotation of the engine 8 and the rotation speed of the transmission member 18 coincide with each other. Therefore, the transmission type transmission unit 11 has the gear ratio γ0 fixed to “1”. It is in a constant shift state that functions as a transmission. Next, when the switching brake B0 is engaged instead of the switching clutch C0 and the first sun gear S1 is brought into the non-rotating state, the first ring gear R1 is rotated at a higher speed than the first carrier CA1, so the switching is performed. The mold transmission unit 11 is set to a constant transmission state that functions as a speed increasing transmission in which the transmission ratio γ0 is fixed to a value smaller than “1”, for example, about 0.7. Thus, in the present embodiment, the switching clutch C0 and the switching brake B0 have the continuously variable transmission state in which the switching transmission 11 can be operated as a continuously variable transmission in which the gear ratio can be continuously changed, A lock state in which a continuously variable transmission operation is not operated as a transmission and a change in the transmission gear ratio is locked at a constant state, that is, a constant transmission state that can be operated as a single-stage or multiple-stage transmission with one or more transmission ratios; In other words, it functions as an operation state switching device that selectively switches to a constant transmission state that can operate as a single-stage or multiple-stage transmission with a constant gear ratio.

自動変速部20は、シングルピニオン型の第2遊星歯車装置26、シングルピニオン型の第3遊星歯車装置28、およびシングルピニオン型の第4遊星歯車装置30を備えている。第2遊星歯車装置26は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.562」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置28は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.425」程度の所定のギヤ比ρ3を有している。第4遊星歯車装置30は、第4サンギヤS4、第4遊星歯車P4、その第4遊星歯車P4を自転および公転可能に支持する第4キャリヤCA4、第4遊星歯車P4を介して第4サンギヤS4と噛み合う第4リングギヤR4を備えており、例えば「0.421」程度の所定のギヤ比ρ4を有している。第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3、第4サンギヤS4の歯数をZS4、第4リングギヤR4の歯数をZR4とすると、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3、上記ギヤ比ρ4はZS4/ZR4である。   The automatic transmission unit 20 includes a single pinion type second planetary gear device 26, a single pinion type third planetary gear device 28, and a single pinion type fourth planetary gear device 30. The second planetary gear unit 26 includes a second sun gear S2 via a second sun gear S2, a second planetary gear P2, a second carrier CA2 that supports the second planetary gear P2 so as to rotate and revolve, and a second planetary gear P2. The second ring gear R2 that meshes with the second gear R2 has a predetermined gear ratio ρ2 of about “0.562”, for example. The third planetary gear device 28 includes a third sun gear S3, a third planetary gear P3, a third carrier CA3 that supports the third planetary gear P3 so as to rotate and revolve, and a third sun gear S3 via the third planetary gear P3. A third ring gear R3 that meshes with the gear, and has a predetermined gear ratio ρ3 of, for example, about “0.425”. The fourth planetary gear unit 30 includes a fourth sun gear S4, a fourth planetary gear P4, a fourth carrier CA4 that supports the fourth planetary gear P4 so as to rotate and revolve, and a fourth sun gear S4 via the fourth planetary gear P4. A fourth ring gear R4 that meshes with the gear, and has a predetermined gear ratio ρ4 of about “0.421”, for example. The number of teeth of the second sun gear S2 is ZS2, the number of teeth of the second ring gear R2 is ZR2, the number of teeth of the third sun gear S3 is ZS3, the number of teeth of the third ring gear R3 is ZR3, the number of teeth of the fourth sun gear S4 is ZS4, When the number of teeth of the fourth ring gear R4 is ZR4, the gear ratio ρ2 is ZS2 / ZR2, the gear ratio ρ3 is ZS3 / ZR3, and the gear ratio ρ4 is ZS4 / ZR4.

自動変速部20では、第2サンギヤS2と第3サンギヤS3とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第2キャリヤCA2は第2ブレーキB2を介してケース12に選択的に連結され、第4リングギヤR4は第3ブレーキB3を介してケース12に選択的に連結され、第2リングギヤR2と第3キャリヤCA3と第4キャリヤCA4とが一体的に連結されて出力軸22に連結され、第3リングギヤR3と第4サンギヤS4とが一体的に連結されて第1クラッチC1を介して伝達部材18に選択的に連結されている。   In the automatic transmission unit 20, the second sun gear S2 and the third sun gear S3 are integrally connected and selectively connected to the transmission member 18 via the second clutch C2, and the case 12 via the first brake B1. The second carrier CA2 is selectively connected to the case 12 via the second brake B2, the fourth ring gear R4 is selectively connected to the case 12 via the third brake B3, and the second carrier CA2 is selectively connected to the case 12 via the third brake B3. The two ring gear R2, the third carrier CA3, and the fourth carrier CA4 are integrally connected to the output shaft 22, and the third ring gear R3 and the fourth sun gear S4 are integrally connected to connect the first clutch C1. And selectively connected to the transmission member 18.

前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3は従来の車両用自動変速機においてよく用いられている油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介装されている両側の部材を選択的に連結するためのものである。   The switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, the first brake B1, the second brake B2, and the third brake B3 are hydraulic types that are often used in conventional automatic transmissions for vehicles. It is a friction engagement device, and a wet multi-plate type in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, or one end of one or two bands wound around the outer peripheral surface of a rotating drum It is configured by a band brake or the like tightened by a hydraulic actuator, and is for selectively connecting members on both sides on which the brake is interposed.

以上のように構成された変速機構10では、例えば、図2の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第5速ギヤ段(第5変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力歯車回転速度NOUT )が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、切換型変速部11は前述した無段変速機として作動可能な無段変速状態に加え、変速比が一定の変速機として作動可能な定変速状態を構成することが可能とされている。したがって、変速機構10では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた切換型変速部11と自動変速部20とで有段変速機として作動可能な有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた切換型変速部11と自動変速部20とで電気的な無段変速機として作動可能な無段変速状態が構成される。言い換えれば、変速機構10は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。また、切換型変速部11も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。   In the speed change mechanism 10 configured as described above, for example, as shown in the engagement operation table of FIG. 2, the switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, and the first brake B1. When the second brake B2 and the third brake B3 are selectively engaged, any one of the first gear (first gear) to the fifth gear (fifth gear) or A reverse gear stage (reverse gear stage) or neutral is selectively established, and a gear ratio γ (= input shaft rotational speed NIN / output gear rotational speed NOUT) that changes substantially is obtained for each gear stage. It is like that. In particular, in this embodiment, the power distribution mechanism 16 is provided with a switching clutch C0 and a switching brake B0, and the switching transmission 11 is operated by engaging either the switching clutch C0 or the switching brake B0. In addition to the continuously variable transmission state operable as a continuously variable transmission, it is possible to constitute a constant transmission state operable as a transmission having a constant gear ratio. Therefore, the transmission mechanism 10 can be operated as a stepped transmission by the switching type transmission unit 11 and the automatic transmission unit 20 that are brought into a constant transmission state by engaging and operating either the switching clutch C0 or the switching brake B0. An electric continuously variable transmission is constituted by the switching type transmission unit 11 and the automatic transmission unit 20 which are configured to be in a stepless speed change state and in which neither the switching clutch C0 nor the switching brake B0 is engaged and operated. The continuously variable transmission state that can be operated as is configured. In other words, the speed change mechanism 10 is switched to the stepped speed change state by engaging one of the switching clutch C0 and the switching brake B0, and is not operated by engaging neither the switching clutch C0 nor the switching brake B0. It is switched to the step shifting state. In addition, it can be said that the switching-type transmission unit 11 is also a transmission that can be switched between a stepped transmission state and a continuously variable transmission state.

例えば、変速機構10が有段変速機として機能する場合には、図2に示すように、切換クラッチC0、第1クラッチC1および第3ブレーキB3の係合により、変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ5が第4速ギヤ段よりも小さい値例えば「0.705」程度である第5速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「3.209」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば切換クラッチC0のみが係合される。   For example, when the speed change mechanism 10 functions as a stepped transmission, as shown in FIG. 2, the gear ratio γ1 is set to a maximum value, for example, “1” due to the engagement of the switching clutch C0, the first clutch C1, and the third brake B3. The first speed gear stage of about 3.357 "is established, and the gear ratio γ2 is smaller than the first speed gear stage by engagement of the switching clutch C0, the first clutch C1, and the second brake B2, for example,“ A second speed gear stage of about 2.180 "is established, and the gear ratio γ3 is smaller than the second speed gear stage by engagement of the switching clutch C0, the first clutch C1, and the first brake B1, for example," A third gear that is approximately 1.424 "is established, and the gear ratio γ4 is smaller than the third gear, for example," 3 "due to the engagement of the switching clutch C0, the first clutch C1, and the second clutch C2. The fourth speed gear stage that is about .000 "is established, and the gear ratio γ5 is smaller than the fourth speed gear stage by engagement of the first clutch C1, the second clutch C2, and the switching brake B0, for example,“ A fifth gear stage of about 0.705 "is established. Further, by the engagement of the second clutch C2 and the third brake B3, a reverse gear stage in which the gear ratio γR is a value between the first speed gear stage and the second speed gear stage, for example, about “3.209” is established. Be made. When the neutral “N” state is set, for example, only the switching clutch C0 is engaged.

しかし、変速機構10が無段変速機として機能する場合には、図2に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、切換型変速部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構10全体としてのトータル変速比γTが無段階に得られるようになる。   However, when transmission mechanism 10 functions as a continuously variable transmission, both switching clutch C0 and switching brake B0 in the engagement table shown in FIG. 2 are released. Thereby, the switching-type transmission unit 11 functions as a continuously variable transmission, and the automatic transmission unit 20 in series functions as a stepped transmission, whereby the first speed, the second speed, and the third speed of the automatic transmission unit 20 are achieved. The rotational speed input to the automatic transmission unit 20, that is, the rotational speed of the transmission member 18 is continuously changed with respect to the respective gear speeds of the fourth speed and the fourth speed, so that each gear stage has a continuously variable speed ratio width. can get. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio γT of the transmission mechanism 10 as a whole can be obtained continuously.

図3は、無段変速部或いは第1変速部として機能する切換型変速部11と有段変速部或いは第2変速部として機能する自動変速部20とから構成される変速機構10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、横軸方向において各遊星歯車装置24、26、28、30のギヤ比ρの相対関係を示し、縦軸方向において相対的回転速度を示す二次元座標であり、3本の横軸のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度NEを示し、横軸XGが伝達部材18の回転速度を示している。また、切換型変速部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する第1サンギヤS1、第1回転要素(第1要素)RE1に対応する第1キャリヤCA1、第3回転要素(第3要素)RE3に対応する第1リングギヤR1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置24のギヤ比ρ1に応じて定められている。すなわち、縦線Y1とY2との間隔を1に対応するとすると、縦線Y2とY3との間隔はギヤ比ρ1に対応するものとされる。さらに、自動変速部20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第2サンギヤS2および第3サンギヤS3を、第5回転要素(第5要素)RE5に対応する第2キャリヤCA2を、第6回転要素(第6要素)RE6に対応する第4リングギヤR4を、第7回転要素(第7要素)RE7に対応し且つ相互に連結された第2リングギヤR2、第3キャリヤCA3、第4キャリヤCA4を、第8回転要素(第8要素)RE8に対応し且つ相互に連結された第3リングギヤR3、第4サンギヤS4をそれぞれ表し、それらの間隔は第2、第3、第4遊星歯車装置26、28、30のギヤ比ρ2、ρ3、ρ4に応じてそれぞれ定められている。すなわち、図3に示すように、各第2、第3、第4遊星歯車装置26、28、30毎にそのサンギヤとキャリヤとの間が1に対応するものとされ、キャリヤとリングギヤとの間がρに対応するものとされる。   FIG. 3 shows a gear stage in a transmission mechanism 10 comprising a switching transmission 11 that functions as a continuously variable transmission or a first transmission and an automatic transmission 20 that functions as a stepped transmission or a second transmission. The collinear diagram which can represent on a straight line the relative relationship of the rotational speed of each rotation element from which a connection state differs for every is shown. The collinear diagram of FIG. 3 is a two-dimensional coordinate that shows the relative relationship of the gear ratio ρ of each planetary gear unit 24, 26, 28, 30 in the horizontal axis direction and the relative rotational speed in the vertical axis direction. Of the three horizontal axes, the lower horizontal line X1 indicates the rotational speed zero, and the upper horizontal line X2 indicates the rotational speed “1.0”, that is, the rotational speed NE of the engine 8 connected to the input shaft 14. An axis XG indicates the rotational speed of the transmission member 18. In addition, three vertical lines Y1, Y2, Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the switch-type transmission unit 11 are the first corresponding to the second rotation element (second element) RE2 from the left side. 1 shows a relative rotational speed of the first ring gear R1 corresponding to the sun gear S1, the first carrier CA1 corresponding to the first rotating element (first element) RE1, and the third rotating element (third element) RE3. Is determined in accordance with the gear ratio ρ1 of the first planetary gear unit 24. That is, assuming that the interval between the vertical lines Y1 and Y2 corresponds to 1, the interval between the vertical lines Y2 and Y3 corresponds to the gear ratio ρ1. Further, the five vertical lines Y4, Y5, Y6, Y7, Y8 of the automatic transmission unit 20 correspond to the fourth rotation element (fourth element) RE4 and are connected to each other in order from the left. And the third sun gear S3, the second carrier CA2 corresponding to the fifth rotating element (fifth element) RE5, the fourth ring gear R4 corresponding to the sixth rotating element (sixth element) RE6, and the seventh rotating element ( Seventh element) The second ring gear R2, the third carrier CA3, and the fourth carrier CA4 corresponding to RE7 and connected to each other are connected to the eighth rotation element (eighth element) RE8 and connected to each other. The three-ring gear R3 and the fourth sun gear S4 are respectively represented, and the distance between them is determined according to the gear ratios ρ2, ρ3, and ρ4 of the second, third, and fourth planetary gear devices 26, 28, and 30, respectively. That is, as shown in FIG. 3, for each of the second, third, and fourth planetary gear devices 26, 28, and 30, the distance between the sun gear and the carrier corresponds to 1, and between the carrier and the ring gear. Corresponds to ρ.

上記図3の共線図を用いて表現すれば、本実施例の変速機構10は、動力分配機構(無段変速部)16において、第1遊星歯車装置24の3回転要素(要素)の1つである第1キャリヤCA1が入力軸14に連結されるとともに切換クラッチC0を介して他の回転要素の1つである第1サンギヤS1と選択的に連結され、その他の回転要素の1つである第1サンギヤS1が第1電動機M1に連結されるとともに切換ブレーキB0を介してトランスミッションケース12に選択的に連結され、残りの回転要素である第1リングギヤR1が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を前記伝達部材18を介して自動変速部(有段変速部)20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1リングギヤR1の回転速度との関係が示される。例えば、上記切換クラッチC0および切換ブレーキB0の解放により無段変速状態に切換えられたときは、第1電動機M1の発電による反力を制御することによって直線L0と縦線Y1との交点で示される第1サンギヤS1の回転が上昇或いは下降させられると、直線L0と縦線Y3との交点で示される第1リングギヤR1の回転速度が下降或いは上昇させられる。また、切換クラッチC0の係合により第1サンギヤS1と第1キャリヤCA1とが連結されると、上記3回転要素が一体回転するので、直線L0は横線X2と一致させられ、エンジン回転速度NEと同じ回転で伝達部材18が回転させられる。また、切換ブレーキB0の係合によって第1サンギヤS1の回転が停止させられると、直線L0は図3に示す状態となり、その直線L0と縦線Y3との交点で示される第1リングギヤR1すなわち伝達部材18の回転速度は、エンジン回転速度NEよりも増速された回転で自動変速部20へ入力される。   If expressed using the collinear diagram of FIG. 3 described above, the speed change mechanism 10 of the present embodiment is one of the three rotating elements (elements) of the first planetary gear device 24 in the power distribution mechanism (continuously variable transmission portion) 16. The first carrier CA1 is connected to the input shaft 14 and is selectively connected to the first sun gear S1, which is one of the other rotating elements, via the switching clutch C0. A certain first sun gear S1 is connected to the first electric motor M1 and selectively connected to the transmission case 12 via the switching brake B0, and the first ring gear R1 as the remaining rotating element is connected to the transmission member 18 and the second electric motor M2. The rotation of the input shaft 14 is transmitted (inputted) to the automatic transmission unit (stepped transmission unit) 20 via the transmission member 18. At this time, the relationship between the rotational speed of the first sun gear S1 and the rotational speed of the first ring gear R1 is indicated by an oblique straight line L0 passing through the intersection of Y2 and X2. For example, when switching to the continuously variable transmission state by releasing the switching clutch C0 and the switching brake B0 is indicated by the intersection of the straight line L0 and the vertical line Y1 by controlling the reaction force generated by the power generation of the first electric motor M1. When the rotation of the first sun gear S1 is increased or decreased, the rotation speed of the first ring gear R1 indicated by the intersection of the straight line L0 and the vertical line Y3 is decreased or increased. Further, when the first sun gear S1 and the first carrier CA1 are connected by the engagement of the switching clutch C0, the three rotating elements rotate together, so that the straight line L0 is made to coincide with the horizontal line X2, and the engine rotational speed NE The transmission member 18 is rotated by the same rotation. When the rotation of the first sun gear S1 is stopped by the engagement of the switching brake B0, the straight line L0 is in the state shown in FIG. 3, and the first ring gear R1, that is, the transmission indicated by the intersection of the straight line L0 and the vertical line Y3. The rotation speed of the member 18 is input to the automatic transmission unit 20 at a rotation speed increased from the engine rotation speed NE.

自動変速部20では、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線X2との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速の出力軸22の回転速度が示される。上記第1速乃至第4速では、切換クラッチC0が係合させられている結果、エンジン回転速度NEと同じ回転速度で第8回転要素RE8に切換型変速部11すなわち動力分配機構16からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、切換型変速部11からの動力がエンジン回転速度NEよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L5と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第5速の出力軸22の回転速度が示される。   In the automatic transmission unit 20, as shown in FIG. 3, when the first clutch C1 and the third brake B3 are engaged, the intersection of the vertical line Y8 indicating the rotational speed of the eighth rotation element RE8 and the horizontal line X2 And an oblique straight line L1 passing through the intersection of the vertical line Y6 indicating the rotational speed of the sixth rotational element RE6 and the horizontal line X1, and a vertical line Y7 indicating the rotational speed of the seventh rotational element RE7 connected to the output shaft 22. The rotational speed of the output shaft 22 of the first speed is shown at the intersection point. Similarly, at an intersection of an oblique straight line L2 determined by engaging the first clutch C1 and the second brake B2 and a vertical line Y7 indicating the rotational speed of the seventh rotating element RE7 connected to the output shaft 22. The rotational speed of the output shaft 22 at the second speed is shown, and an oblique straight line L3 determined by engaging the first clutch C1 and the first brake B1 and the seventh rotational element RE7 connected to the output shaft 22 The rotation speed of the output shaft 22 of the third speed is indicated by the intersection with the vertical line Y7 indicating the rotation speed, and the horizontal straight line L4 and the output shaft determined by engaging the first clutch C1 and the second clutch C2. The rotation speed of the output shaft 22 of the fourth speed is indicated by the intersection with the vertical line Y7 indicating the rotation speed of the seventh rotation element RE7 connected to the second rotation element RE7. In the first to fourth speeds, the switching clutch C0 is engaged, so that the power from the switching transmission 11 or the power distribution mechanism 16 is transferred to the eighth rotating element RE8 at the same rotational speed as the engine rotational speed NE. Is entered. However, when the switching brake B0 is engaged instead of the switching clutch C0, the power from the switching transmission 11 is input at a higher rotational speed than the engine rotational speed NE, so the first clutch C1, the second clutch The output shaft of the fifth speed at the intersection of the horizontal straight line L5 determined by engaging the clutch C2 and the switching brake B0 and the vertical line Y7 indicating the rotational speed of the seventh rotation element RE7 connected to the output shaft 22 A rotational speed of 22 is indicated.

図4は、本実施例の変速機構10を制御するための電子制御装置40に入力される信号及びその電子制御装置40から出力される信号を例示している。この電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、電動機M1、M2に関するハイブリッド駆動制御、前記自動変速部20の変速制御等の駆動制御を実行するものである。   FIG. 4 illustrates a signal input to the electronic control device 40 for controlling the speed change mechanism 10 of the present embodiment and a signal output from the electronic control device 40. The electronic control unit 40 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like. By performing the above, drive control such as hybrid drive control for the engine 8 and the electric motors M1 and M2 and shift control for the automatic transmission unit 20 is executed.

上記電子制御装置40には、図4に示す各センサやスイッチから、エンジン水温を示す信号、シフトポジションを表す信号、エンジン8の回転速度であるエンジン回転速度NE を表す信号、ギヤ比列設定値を示す信号、M(モータ走行)モードを指令する信号、エアコンの作動を示すエアコン信号、出力軸22の回転速度に対応する車速信号、自動変速部20の作動油温を示す油温信号、サイドブレーキ操作を示す信号、フットブレーキ操作を示す信号、触媒温度を示す触媒温度信号、アクセルペダルの操作量を示すアクセル開度信号、カム角信号、スノーモード設定を示すスノーモード設定信号、車両の前後加速度を示す加速度信号、オートクルーズ走行を示すオートクルーズ信号、車両の重量を示す車重信号、各駆動輪の車輪速を示す車輪速信号、変速機構10を有段変速機として機能させるために切換型変速部11を定変速状態に切り換えるための有段スイッチ操作の有無を示す信号、変速機構10を無段変速機として機能させるために切換型変速部11を無段変速状態に切り換えるための無段スイッチ操作の有無を示す信号などが、それぞれ供給される。また、上記電子制御装置40からは、スロットル弁の開度を操作するスロットルアクチュエータへの駆動信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、エンジン8の点火時期を指令する点火信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフト位置表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、動力分配機構16や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42に含まれる電磁弁を作動させるバルブ指令信号、上記油圧制御回路42の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。   The electronic control unit 40 includes a signal indicating the engine water temperature, a signal indicating the shift position, a signal indicating the engine rotation speed NE, which is the rotation speed of the engine 8, and a gear ratio string set value. , A signal for instructing an M (motor running) mode, an air conditioner signal indicating the operation of the air conditioner, a vehicle speed signal corresponding to the rotational speed of the output shaft 22, an oil temperature signal indicating the operating oil temperature of the automatic transmission unit 20, and a side Signal indicating brake operation, signal indicating foot brake operation, catalyst temperature signal indicating catalyst temperature, accelerator opening signal indicating accelerator pedal operation amount, cam angle signal, snow mode setting signal indicating snow mode setting, front and rear of vehicle Acceleration signal indicating acceleration, auto cruise signal indicating auto cruise driving, vehicle weight signal indicating vehicle weight, vehicle indicating wheel speed of each drive wheel A speed signal, a signal indicating the presence or absence of a stepped switch operation for switching the switching-type transmission unit 11 to a constant transmission state in order to cause the transmission mechanism 10 to function as a stepped transmission, and function the transmission mechanism 10 as a continuously variable transmission. Therefore, a signal indicating the presence or absence of a continuously variable switch operation for switching the switching transmission 11 to the continuously variable transmission state is supplied. Further, the electronic control unit 40 receives a drive signal for a throttle actuator that controls the opening of the throttle valve, a boost pressure adjustment signal for adjusting the boost pressure, and an electric air conditioner drive signal for operating the electric air conditioner. An ignition signal for instructing the ignition timing of the engine 8, an instruction signal for instructing the operation of the motors M1 and M2, a shift position display signal for operating the shift indicator, a gear ratio display signal for displaying the gear ratio, and a snow mode A snow mode display signal for indicating that the vehicle is braking, an ABS operation signal for operating an ABS actuator for preventing wheel slippage during braking, an M mode display signal for indicating that the M mode is selected, and power In order to control the hydraulic actuator of the hydraulic friction engagement device of the distribution mechanism 16 and the automatic transmission unit 20 A valve command signal for operating an electromagnetic valve included in the pressure control circuit 42, a drive command signal for operating an electric hydraulic pump that is a hydraulic source of the hydraulic control circuit 42, a signal for driving an electric heater, cruise control control Signals to the computer are output.

図5は、電子制御装置40による制御機能の要部を説明する機能ブロック線図である。   FIG. 5 is a functional block diagram for explaining a main part of the control function by the electronic control unit 40.

燃費曲線選択手段80は、燃費或いはエネルギ効率と運転性とが考慮されることにより車両にとって最適なエンジン10の作動となるように燃費曲線記憶手段82に予め記憶されているエンジン8の燃料消費マップ(以下、燃費マップと表す)すなわち燃費曲線を選択する。この燃費マップはリアルタイムで変化するものでもよいが、予め実験的に求められ且つ記憶されたものをマップ化して記憶したものでもよい。図6の破線に示すエンジン8の最適燃費曲線はその燃費マップの一例であって、例えばエンジン回転速度NEとエンジントルクTe との二次元座標において等高線のように表される等燃費率曲線のうちの最も低い燃費領域をエンジン回転速度NEの上昇に伴って通過するように形成された予め実験的に求められた最適燃費点を結ぶ曲線である。この最適燃費曲線は最低燃費動作点を表す点の連なりでもある。図6において、上記等燃費率曲線は等しいエンジン燃料消費率fe の点を結んだものを示している。また、この等燃費率曲線は内周側ほどエンジン燃料消費率fe が小さいすなわち良い燃費を表している。つまり、この等燃費率曲線はエンジン8の中速高負荷域に最良燃費領域が形成される。   The fuel consumption curve selection means 80 is a fuel consumption map of the engine 8 stored in advance in the fuel consumption curve storage means 82 so that the operation of the engine 10 is optimal for the vehicle by taking fuel efficiency or energy efficiency and drivability into consideration. (Hereinafter referred to as a fuel consumption map), that is, a fuel consumption curve is selected. The fuel consumption map may be changed in real time, but may be a map obtained by experimentally obtained and stored in advance. The optimum fuel consumption curve of the engine 8 shown by the broken line in FIG. 6 is an example of the fuel consumption map. For example, among the constant fuel consumption rate curves expressed as contour lines in the two-dimensional coordinates of the engine rotational speed NE and the engine torque Te. Is a curve connecting the optimal fuel consumption points obtained experimentally in advance so as to pass through the lowest fuel consumption region as the engine speed NE increases. This optimum fuel consumption curve is also a series of points representing the minimum fuel consumption operating point. In FIG. 6, the above equal fuel consumption rate curve shows a point connecting equal engine fuel consumption rates fe. Further, this equal fuel consumption rate curve indicates that the engine fuel consumption rate fe is smaller toward the inner peripheral side, that is, better fuel consumption. That is, this equal fuel consumption rate curve forms the best fuel consumption region in the medium speed and high load region of the engine 8.

上記燃費マップは、基本的にはエンジン8の仕様に基づいて決定されるが、車両状態例えばエンジン10の内部的要因或いは外部的要因に影響される。このため、この燃費マップはエンジン水温、触媒温度、エンジン作動油温、或いは燃焼状態すなわちリーンやストイキで示される空燃比等の内外的要因で変化させられる。従って、燃費曲線記憶手段82は複数種類の燃費マップを記憶するか、或いは1種類の燃費マップを上記内外的要因に基づいてリアルタイムで燃費マップを変化させる。結果として、燃費曲線選択手段80は上記内外的要因に基づいて複数種類の燃費マップから1つを選択することになる。   The fuel consumption map is basically determined based on the specifications of the engine 8, but is influenced by vehicle conditions such as internal factors or external factors of the engine 10. Therefore, this fuel efficiency map is changed by internal and external factors such as engine water temperature, catalyst temperature, engine hydraulic oil temperature, or combustion state, that is, an air-fuel ratio indicated by lean or stoichiometric. Therefore, the fuel consumption curve storage means 82 stores a plurality of types of fuel consumption maps, or changes one type of fuel consumption map in real time based on the above internal and external factors. As a result, the fuel consumption curve selecting means 80 selects one from a plurality of types of fuel consumption maps based on the internal and external factors.

以下に、燃料消費率fとエンジン8から駆動輪38への動力伝達効率η(以下、伝達効率ηと表す)との関係を簡単に述べる。   Below, the relationship between the fuel consumption rate f and the power transmission efficiency η from the engine 8 to the drive wheels 38 (hereinafter referred to as transmission efficiency η) will be briefly described.

一般にエンジン単体の燃費性能はエンジン燃料消費率fe すなわち単位出力×時間(=単位仕事)当たりの燃料消費質量で表され、例えば単位出力当たり1時間に使用される燃料をグラムで表したg/ps・h またはg/kW・h が用いられる。つまり、概念的には エンジン燃料消費率fe =燃料消費量F/エンジン出力Pe で表される。従って、燃料消費量Fが少ない程またエンジン出力Pe が大きい程エンジン燃料消費率fe が小さくなるすなわち良い燃費を示すことになる。言い換えれば、燃費の良し悪しは燃料消費量Fが同じであれば得られるエンジン出力Pe の大きさで比較することができるので、最適燃費曲線に沿ってエンジン8が作動させられる場合がそうでない場合に比較して高いエンジン出力Pe が得られていることになる。前記図6には変速機構10の無段変速状態での燃費マップが前記最適燃費曲線として示した破線で、および有段変速状態での燃費マップが実線で例示してある。無段変速状態の場合は車速Vに対してエンジン回転速度NEが最適燃費曲線に沿うように連続的に変速比が変化させられる。一方、有段変速状態の場合は段階的に変速比が変化するため車速Vに対してエンジン回転速度NEが固定される。よって、図6のようにそれぞれの燃費マップが示される。本実施例では無段変速状態の場合の燃費マップを破線に示す最適燃費曲線と同じとしたが、無段変速状態の場合と有段変速状態の場合との違いを明確にするための例示であり必ずしも一致したものでなくてもよい。   In general, the fuel efficiency of an engine alone is expressed by the fuel consumption rate fe, that is, the fuel consumption mass per unit output x time (= unit work). For example, the fuel used per hour per unit output is expressed in grams / ps.・ H or g / kW ・ h is used. That is, conceptually, the engine fuel consumption rate fe = the fuel consumption amount F / the engine output Pe. Therefore, the smaller the fuel consumption F and the larger the engine output Pe, the smaller the engine fuel consumption rate fe, that is, a better fuel consumption. In other words, if the fuel consumption F is the same, it can be compared by the magnitude of the engine output Pe that can be obtained if the fuel consumption F is the same, so the case where the engine 8 is operated along the optimal fuel consumption curve is not The engine output Pe is higher than that in FIG. In FIG. 6, the fuel consumption map of the transmission mechanism 10 in the continuously variable transmission state is illustrated by a broken line shown as the optimum fuel consumption curve, and the fuel consumption map in the stepped transmission state is illustrated by a solid line. In the continuously variable transmission state, the gear ratio is continuously changed with respect to the vehicle speed V so that the engine rotational speed NE follows the optimum fuel consumption curve. On the other hand, in the stepped transmission state, the engine speed NE is fixed with respect to the vehicle speed V because the gear ratio changes stepwise. Therefore, each fuel consumption map is shown as shown in FIG. In the present embodiment, the fuel consumption map in the case of the continuously variable transmission state is the same as the optimum fuel consumption curve shown by the broken line. It does not necessarily have to match.

上述した燃費マップより無段変速状態での車両走行となる無段変速走行で得られるエンジン出力Pecvtと有段変速状態での車両走行となる有段変速走行で得られるエンジン出力Peuとを例えば同一エンジン回転速度NEで比較すると、最適燃費曲線により近い無段変速走行の場合がより大きくなる。すなわち、一律に無段エンジン出力Pecvt>有段エンジン出力Peuとなる。また、駆動輪38で得られる駆動輪出力Pw はエンジン出力Pe の駆動輪38への伝達効率ηおよび変速機構10のシステム効率ηsysを考慮すると一般的には 駆動輪出力Pw =エンジン出力Pe ×伝達効率η×システム効率ηsys で表され、無段変速走行で得られる駆動輪出力Pwcvtと有段変速走行で得られる駆動輪出力Pwuとを比較すると伝達効率η×システム効率ηsys(以下、伝達効率η×システム効率ηsysを走行効率ηt とする)が同じであれば一律に無段駆動輪出力Pwcvt>有段駆動輪出力Pwuとなる。よって車両としての燃費を 燃料消費率fs =燃料消費量F/駆動輪出力Pw とすれば同一の車両状態すなわち同一車速V、同一燃料消費量Fでの比較では常に無段変速走行が有段変速走行より燃費が良いことになる。   From the fuel consumption map described above, for example, the engine output Pecvt obtained by continuously variable transmission that is a vehicle traveling in a continuously variable transmission state and the engine output Peu obtained by continuously variable transmission that is a vehicle traveling in a continuously variable transmission state are the same, for example. When compared with the engine speed NE, the case of continuously variable speed running closer to the optimum fuel consumption curve becomes larger. That is, the continuously variable engine output Pecvt> the stepped engine output Peu. The driving wheel output Pw obtained by the driving wheel 38 is generally determined by considering the transmission efficiency η of the engine output Pe to the driving wheel 38 and the system efficiency ηsys of the transmission mechanism 10 as follows: driving wheel output Pw = engine output Pe × transmission The drive wheel output Pwcvt obtained by continuously variable speed travel and the drive wheel output Pwu obtained by continuously variable speed travel are compared with each other when the transmission efficiency η × system efficiency ηsys (hereinafter referred to as the transfer efficiency ηsys). If the system efficiency ηsys is set to the traveling efficiency ηt), the stepless drive wheel output Pwcvt> the stepped drive wheel output Pwu is uniformly satisfied. Therefore, if the fuel consumption rate of the vehicle is expressed as follows: fuel consumption rate fs = fuel consumption F / drive wheel output Pw Fuel consumption is better than driving.

しかしながら、実際には上記伝達効率ηは電気的な無段変速状態に比較して専ら機械的な伝達経路が構成される有段変速状態の場合の方が高くなるので、無段エンジン出力Pecvtと有段エンジン出力Peuとの差、電気的な無段変速状態の伝達効率ηcvt とシステム効率ηsysc、および有段変速状態の伝達効率ηu とシステム効率ηsysuによっては無段駆動輪出力Pwcvt(=無段エンジン出力Pecvt×無段伝達効率ηcvt ×無段システム効率ηsysc)が有段駆動輪出力Pwu(=有段エンジン出力Peu×有段伝達効率ηu ×有段システム効率ηsysu)より必ずしも大きくなるとは限らない。従って、車両としての燃費は無段変速走行が有段変速走行より必ずしも燃費が良いとは限らない。見方を換えれば、伝達効率ηの高い有段変速走行の方が燃費上有利であるが、エンジン単体で見れば特に中低速で燃費の良い領域を使うことができる無段変速走行の方が燃費上有利となる。よって、本実施例では無段伝達効率ηcvt ×無段システム効率ηsyscおよび有段伝達効率ηu ×有段システム効率ηsysuを算出し、それら走行効率ηt 主に伝達効率ηを考慮してすなわち走行効率ηt の違いによる燃費に与える影響を加味して無段エンジン出力Pecvtおよび有段エンジン出力Peuから無段駆動輪出力Pwcvtおよび有段駆動輪出力Pwuを算出して無段変速状走行と有段変速走行との燃費を比較する。   However, in practice, the transmission efficiency η is higher in the stepped speed change state in which the mechanical transmission path is exclusively configured compared to the electric stepless speed change state. Depending on the difference from the stepped engine output Peu, the transmission efficiency ηcvt and the system efficiency ηsysc in the electric continuously variable transmission state, and the transmission efficiency ηu and the system efficiency ηsysc in the stepless transmission state, the continuously variable driving wheel output Pwcvt (= the continuously variable The engine output Pecvt × the continuously variable transmission efficiency ηcvt × the continuously variable system efficiency ηsysc) is not necessarily larger than the stepped drive wheel output Pwu (= the stepped engine output Peu × the stepped transmission efficiency ηu × the stepped system efficiency ηsysu). . Therefore, the fuel consumption as a vehicle is not always better in continuously variable speed travel than in stepped speed travel. In other words, stepped speed shifting with a high transmission efficiency η is more advantageous in terms of fuel efficiency, but if you look at the engine alone, continuously variable speed driving that can use a region with good fuel efficiency at medium to low speeds is more fuel efficient. This is advantageous. Therefore, in this embodiment, the stepless transmission efficiency ηcvt × the stepless system efficiency ηsysc and the stepped transmission efficiency ηu × the stepped system efficiency ηsysu are calculated, and the traveling efficiency ηt mainly considering the transmission efficiency ηt, that is, the traveling efficiency ηt In consideration of the effect on fuel efficiency due to the difference in the output, the continuously variable driving wheel output Pwcvt and the continuously variable driving wheel output Pwu are calculated from the continuously variable engine output Pecvt and the stepped engine output Peu, thereby continuously variable speed traveling and continuously variable speed traveling. Compare the fuel efficiency.

上記無段システム効率ηsyscは変速機構10を電気的な無段変速機とした場合での蓄電装置60の充放電効率、電線の効率、インバータ58の消費電力等の電気系の効率と、オイルポンプによる損失や補機の消費エネルギ等で求められ、また、有段システム効率ηsysuはオイルポンプの損失や補機の消費エネルギ等で求められるが、本実施例では無段システム効率ηsyscおよび有段システム効率ηsysuは予め実験等で求められて記憶されている一定値が用いられる。   The stepless system efficiency ηsysc is the electric system efficiency such as the charge / discharge efficiency of the power storage device 60, the efficiency of the electric wire, the power consumption of the inverter 58 when the transmission mechanism 10 is an electric continuously variable transmission, the oil pump In this embodiment, the stepless system efficiency ηsysc and the stepped system are determined by the loss of the oil pump and the energy consumption of the accessory. As the efficiency ηsysu, a constant value obtained and stored in advance by an experiment or the like is used.

燃費曲線選択手段80は、上述した燃費曲線記憶手段82に予め記憶されている前記無段変速走行および前記有段変速走行におけるエンジン8の燃費マップをそれぞれ選択すること加え、それら燃費マップ例えば上記図6に示す燃費マップから現在の車両状態すなわち車速Vでの無段エンジン出力Pecvtおよび有段エンジン出力Peuを読み込む。言い換えれば、燃費マップからエンジン出力Pが求められることでエンジン8の燃料消費率fe に基づいて車両の燃料消費率fs が算出されることになる。   The fuel consumption curve selecting means 80 selects the fuel consumption maps of the engine 8 in the continuously variable speed travel and the stepped speed variable travel stored in advance in the fuel efficiency curve storage means 82, respectively. The continuously variable engine output Pecvt and the stepped engine output Peu at the current vehicle state, that is, the vehicle speed V, are read from the fuel consumption map shown in FIG. In other words, by obtaining the engine output P from the fuel consumption map, the fuel consumption rate fs of the vehicle is calculated based on the fuel consumption rate fe of the engine 8.

伝達効率算出手段84は、変速機構10の無段変速状態および有段変速状態での車両の燃料消費率fs を算出するために無段変速状態および有段変速状態でのエンジン8から駆動輪38への無段走行効率ηtcvt(=無段伝達効率ηcvt ×無段システム効率ηsysc)および有段走行効率ηtu(=有段伝達効率ηu ×有段システム効率ηsysu)とを算出する。   The transmission efficiency calculating means 84 calculates the fuel consumption rate fs of the vehicle in the continuously variable speed state and the stepped speed change state of the transmission mechanism 10 from the engine 8 in the continuously variable speed state and the stepped speed variable state. Stepless running efficiency ηtcvt (= stepless transmission efficiency ηcvt × stepless system efficiency ηsysc) and stepped running efficiency ηtu (= stepped transmission efficiency ηu × stepped system efficiency ηsysu) are calculated.

図7は車速Vや車両の駆動力に関連する駆動力関連値をパラメータとして伝達効率ηが設定される予め記憶された関係(マップ)であり、車速Vの変化に応じて変化するすなわち車速Vが高車速となる程高くなる無段伝達効率ηcvt を破線Aに、有段伝達効率ηu を実線Aに示した一例である。また、それぞれの線Aに対して前記駆動力関連値例えば出力トルクがTout が高くなる場合での伝達効率ηを線Bに示した。図7において伝達効率ηは出力トルクTout の変化に応じて変化するすなわち高トルク時程高くなることがわかる。高車速、高トルク時程伝達効率ηが高くなるのは大きくなる駆動輪出力Pwに対して伝達損失が相対的に低くなる為である。よって、例えば伝達効率算出手段84は、上記予め記憶された関係から実際の車両状態例えば車速Vや前記駆動力関連値に基づいて無段伝達効率ηcvt および有段伝達効率ηu を定めることになる。一般的には、無段伝達効率ηcvt は第1電動機M1および第2電動機M2の効率を含み主に電気パスによる損失を考慮した電気的な無段変速機としての伝達効率例えば0.8程度、有段伝達効率ηu は機械的な伝達経路が構成される有段変速機としての伝達効率例えば0.92程度とされるが、本実施例では車両状態によって変化するすなわち車両状態に基づいて変化する関数として予め記憶されている。   FIG. 7 shows a previously stored relationship (map) in which the transmission efficiency η is set using the vehicle speed V or a driving force related value related to the driving force of the vehicle as a parameter. Is an example in which the stepless transmission efficiency ηcvt, which increases as the vehicle speed increases, is shown by a broken line A, and the stepped transmission efficiency ηu is shown by a solid line A. Also, for each line A, the driving efficiency related value, for example, the transmission efficiency η when the output torque Tout becomes high is shown in line B. In FIG. 7, it can be seen that the transmission efficiency η changes according to the change of the output torque Tout, that is, increases as the torque increases. The reason why the transmission efficiency η increases as the vehicle speed increases and the torque increases is because the transmission loss relatively decreases with respect to the driving wheel output Pw that increases. Therefore, for example, the transmission efficiency calculating means 84 determines the stepless transmission efficiency ηcvt and the stepped transmission efficiency ηu based on the actual vehicle state, for example, the vehicle speed V and the driving force related value from the previously stored relationship. Generally, the continuously variable transmission efficiency ηcvt includes the efficiency of the first electric motor M1 and the second electric motor M2, and the transmission efficiency as an electric continuously variable transmission mainly considering the loss due to the electric path, for example, about 0.8, The stepped transmission efficiency ηu is set to a transmission efficiency of, for example, about 0.92 as a stepped transmission in which a mechanical transmission path is configured. It is stored in advance as a function.

前記駆動力関連値とは、車両の駆動力に1対1に対応するパラメータであって、駆動輪38での駆動トルク或いは駆動力のみならず、例えば自動変速部20の出力トルクTout 、エンジントルクTe 、車両加速度や、例えばアクセル開度或いはスロットル開度(或いは吸入空気量、空燃比、燃料噴射量)とエンジン回転速度NEとによって算出されるエンジントルクTe などの実際値や、運転者のアクセルペダル操作量或いはスロットル開度に基づいて算出される要求駆動力等の推定値であってもよい。また、上記駆動トルクは出力トルクTout 等からデフ比、駆動輪38の半径等を考慮して算出されてもよいし、例えばトルクセンサ等によって直接検出されてもよい。上記他の各トルク等も同様である。   The driving force-related value is a parameter corresponding to the driving force of the vehicle on a one-to-one basis, and includes not only the driving torque or driving force at the driving wheels 38, but also the output torque Tout of the automatic transmission unit 20, the engine torque, for example. Te, vehicle acceleration, actual value such as the engine torque Te calculated from the accelerator opening or throttle opening (or intake air amount, air-fuel ratio, fuel injection amount) and engine speed NE, for example, the driver's accelerator It may be an estimated value such as a required driving force calculated based on the pedal operation amount or the throttle opening. The drive torque may be calculated from the output torque Tout or the like in consideration of the differential ratio, the radius of the drive wheel 38, or may be directly detected by a torque sensor or the like, for example. The same applies to the other torques described above.

よって前記図7に示す高トルク時は出力トルクTout が高くなる場合以外にアクセル開度、スロットル開度等の前記駆動力関連値が高くなるときである。また、燃料噴射量、吸入空気量、負圧等も高トルク時に関連するパラメータである。さらに、登坂路走行のように車両の走行抵抗が大きくなる場合も高トルク時に相当する。この車両の走行抵抗は他にころがり抵抗、空気抵抗、加速抵抗等であり、ころがり抵抗や空気抵抗は車速に関連し、加速抵抗は前記駆動力関連値に関連しているので、車両の走行抵抗は前記駆動力関連値であるとも言える。   Therefore, the high torque shown in FIG. 7 is a time when the driving force related values such as the accelerator opening and the throttle opening become high, except when the output torque Tout becomes high. Further, the fuel injection amount, the intake air amount, the negative pressure, and the like are parameters related to high torque. Furthermore, the case where the running resistance of the vehicle becomes large, such as traveling on an uphill road, corresponds to a high torque time. The running resistance of the vehicle is rolling resistance, air resistance, acceleration resistance, etc., and the rolling resistance and air resistance are related to the vehicle speed, and the acceleration resistance is related to the driving force related value. Can be said to be the driving force-related value.

燃料消費率算出手段86は、無段変速走行および有段変速走行でのそれぞれの車両の燃料消費率fs を逐次算出する。例えば、燃料消費率算出手段86は最適燃費曲線選択手段80により読み込まれた無段エンジン出力Pecvtおよび有段エンジン出力Peuと、伝達効率算出手段84により算出された無段走行効率ηtcvtおよび有段走行効率ηtuと、燃料消費量センサ90によって検出された燃料消費量Fとに基づいて、無段変速走行の車両の燃料消費率fscvt{=燃料消費量F/(無段エンジン出力Pecvt×無段走行効率ηtcvt)}および有段変速走行の車両の燃料消費率fsu{=燃料消費量F/(有段エンジン出力Peu×有段走行効率ηtu)}を算出する。結果として、この燃料消費率算出手段86は、車両状態例えば車速V、前記駆動力関連値等に基づいて車両の燃料消費率fs を算出することになる。   The fuel consumption rate calculation means 86 sequentially calculates the fuel consumption rate fs of each vehicle in continuously variable speed travel and stepped speed variable travel. For example, the fuel consumption rate calculating means 86 includes the continuously variable engine output Pecvt and the stepped engine output Peu read by the optimum fuel consumption curve selecting means 80, the continuously variable running efficiency ηtcvt and the continuously variable travel calculated by the transmission efficiency calculating means 84. Based on the efficiency ηtu and the fuel consumption F detected by the fuel consumption sensor 90, the fuel consumption rate fscvt {= fuel consumption F / (continuously engine output Pecvt × continuously running) Efficiency ηtcvt)} and the fuel consumption rate fsu {= fuel consumption F / (stepped engine output Peu × stepped travel efficiency ηtu)} of the stepped vehicle. As a result, the fuel consumption rate calculation means 86 calculates the fuel consumption rate fs of the vehicle based on the vehicle state, for example, the vehicle speed V, the driving force related value, and the like.

上述した無段変速走行と有段変速走行との車両の燃料消費率fsの算出において同一の車両状態において実行されるすなわち燃料消費量センサ90によって検出される燃料消費量Fは同じであるので、車両の燃料消費率fs の比較の上では燃料消費率算出手段86は燃料消費量Fを一定値すなわち予め記憶された定数とし車両の燃料消費率fs を算出してもよい。この場合には、車両の燃料消費率fs は必ずしも正確なものではなく「燃料消費率関連値」とも言うべきものであり、燃料消費量センサ90は燃料消費量Fを検出する必要はないか或いは車両に備えられる必要はない利点がある。   Since the fuel consumption rate Fs that is executed in the same vehicle state in the calculation of the fuel consumption rate fs of the vehicle for the continuously variable speed travel and the stepped speed variable travel described above, that is, the fuel consumption amount F detected by the fuel consumption sensor 90 is the same. In comparison with the fuel consumption rate fs of the vehicle, the fuel consumption rate calculation means 86 may calculate the fuel consumption rate fs of the vehicle with the fuel consumption F as a constant value, that is, a constant stored in advance. In this case, the fuel consumption rate fs of the vehicle is not necessarily accurate and should be referred to as a “fuel consumption rate related value”, and the fuel consumption sensor 90 does not need to detect the fuel consumption F, or There is an advantage that the vehicle does not need to be provided.

切換制御手段50は、前記無段変速状態および前記有段変速状態の何れの走行での燃料消費率が良いかを逐次判断し、それに基づいて変速機構10を無段変速状態と有段変速状態とのいずれかに選択的に切り換える。また、切換制御手段50は変速状態燃費判定手段88を備え、変速状態燃費判定手段88により逐次出力される判定結果に基づいて変速機構10を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える。その変速状態燃費判定手段88は、無段変速走行および有段変速走行の何れが燃料消費率すなわち燃費が良いかを、たとえば燃料消費率算出手段86により算出された無段変速走行の車両の燃料消費率fscvtおよび有段変速走行の車両の燃料消費率fsuを逐次比較して判断する。   The switching control means 50 sequentially determines whether the fuel consumption rate is good in the continuously variable speed state or the stepped speed variable state, and based on that, the transmission mechanism 10 is made to be in a continuously variable speed state or a stepped speed variable state. And selectively switch to either Further, the switching control means 50 is provided with a shift state fuel consumption determination means 88, and based on the determination results sequentially output by the shift state fuel consumption determination means 88, the switching mechanism 10 is switched between the continuously variable transmission state and the stepped transmission state. Switch selectively. The shift state fuel consumption determining means 88 determines which of the continuously variable speed travel and the stepped speed variable speed travel is the fuel consumption rate, that is, the fuel efficiency is good, for example, the fuel of the continuously variable speed travel vehicle calculated by the fuel consumption rate calculation means 86. Judgment is made by successively comparing the consumption rate fscvt and the fuel consumption rate fsu of the stepped vehicle.

上述した無段変速走行と有段変速走行との車両の燃料消費率fs の比較において燃料消費率算出手段86により車両の燃料消費率fs が燃料消費量Fを一定値として算出される場合には、変速状態燃費判定手段88は無段駆動輪出力Pwcvtと有段駆動輪出力Pwuとを比較して大きい方を燃費が良いと判断してもよい。この場合には、燃料消費率算出手段86により車両の燃料消費率fs に関連する値として無段駆動輪出力Pwcvtおよび有段駆動輪出力Pwuが算出されるだけでよい。   When the fuel consumption rate fs of the vehicle is calculated by the fuel consumption rate calculation means 86 with the fuel consumption amount F as a constant value in the comparison of the vehicle fuel consumption rate fs between the continuously variable speed travel and the stepped speed variable travel described above. The shift state fuel consumption determination means 88 may compare the continuously variable drive wheel output Pwcvt and the stepped drive wheel output Pwu to determine that the larger one is the better fuel efficiency. In this case, the continuously variable drive wheel output Pwcvt and the stepped drive wheel output Pwu need only be calculated by the fuel consumption rate calculation means 86 as values related to the fuel consumption rate fs of the vehicle.

増速側ギヤ段判定手段68は、変速機構10を有段変速状態とする際に切換クラッチC0および切換ブレーキB0のいずれを係合させるかを判定するために、例えば車両状態に基づいて変速線図記憶手段56に予め記憶された例えば図11に示す変速線図に従って変速機構10の変速されるべき変速段が増速側ギヤ段例えば第5速ギヤ段であるか否かを判定する。これは、変速機構10全体が有段式自動変速機として機能させられる場合に、第1速乃至第4速では切換クラッチC0が係合させられ、或いは第5速では切換ブレーキB0が係合させられるようにするためである。   The speed-increasing-side gear stage determining means 68 is used to determine which of the switching clutch C0 and the switching brake B0 is engaged when the transmission mechanism 10 is in the stepped shift state, for example, based on the vehicle state. It is determined whether or not the gear position to be shifted of the speed change mechanism 10 is the speed increasing side gear stage, for example, the fifth speed gear stage, according to the shift diagram shown in FIG. This is because when the entire speed change mechanism 10 is caused to function as a stepped automatic transmission, the switching clutch C0 is engaged at the first to fourth speeds, or the switching brake B0 is engaged at the fifth speed. This is to make it possible.

切換制御手段50は、変速機構10を有段変速状態に切り換える場合にはハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可すなわち禁止とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速制御を許可する。このときの有段変速制御手段54は、例えば変速線図記憶手段56に予め記憶された図11に示す変速線図から車速Vおよび出力トルクTout で示される車両状態に基づいて自動変速部20の変速すべき変速段を判断して自動変速部20の自動変速制御を実行する。図2は、このときの変速制御において選択される油圧式摩擦係合装置すなわちC0、C1、C2、B0、B1、B2、B3の作動の組み合わせを示している。すなわち、変速機構10全体すなわち切換型変速部11および自動変速部20が所謂有段式自動変速機として機能し、図2に示す係合表に従って変速段が達成される。   The switching control means 50 outputs a signal for disabling or prohibiting the hybrid control or the continuously variable transmission control to the hybrid control means 52 when the transmission mechanism 10 is switched to the stepped transmission state. For the means 54, a shift control at the time of a stepped shift set in advance is permitted. The stepped shift control means 54 at this time is based on the vehicle state indicated by the vehicle speed V and the output torque Tout from the shift diagram shown in FIG. The automatic shift control of the automatic transmission unit 20 is executed by determining the gear position to be shifted. FIG. 2 shows a combination of operations of the hydraulic friction engagement devices selected in the speed change control, that is, C0, C1, C2, B0, B1, B2, and B3. That is, the entire speed change mechanism 10, that is, the switching type transmission unit 11 and the automatic transmission unit 20 function as a so-called stepped automatic transmission, and the gear stage is achieved according to the engagement table shown in FIG.

例えば、増速側ギヤ段判定手段68により第5速ギヤ段が判定される場合には、変速機構10全体として変速比が1.0より小さな増速側ギヤ段所謂オーバードライブギヤ段が得られるために切換制御手段50は切換型変速部11が固定の変速比γ0例えば変速比γ0が0.7の副変速機として機能させられるように切換クラッチC0を解放させ且つ切換ブレーキB0を係合させる指令を油圧制御回路42へ出力する。また、増速側ギヤ段判定手段68により第5速ギヤ段でないと判定される場合には、変速機構10全体として変速比が1.0以上の減速側ギヤ段が得られるために切換制御手段50は切換型変速部11が固定の変速比γ0例えば変速比γ0が1の副変速機として機能させられるように切換クラッチC0を係合させ且つ切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。このように、切換制御手段50によって変速機構10が有段変速状態に切り換えられるとともに、その有段変速状態における2種類の変速段のいずれかとなるように選択的に切り換えられて、切換型変速部11が副変速機として機能させられ、それに直列の自動変速部20が有段変速機として機能することにより、変速機構10全体が所謂有段式自動変速機として機能させられる。   For example, when the fifth gear stage is determined by the acceleration-side gear stage determination unit 68, the so-called overdrive gear stage in which the transmission gear ratio is smaller than 1.0 is obtained for the entire transmission mechanism 10. Therefore, the switching control means 50 releases the switching clutch C0 and engages the switching brake B0 so that the switching-type transmission unit 11 can function as a sub-transmission having a fixed transmission ratio γ0, for example, a transmission ratio γ0 of 0.7. The command is output to the hydraulic control circuit 42. Further, when it is determined by the acceleration side gear stage determination means 68 that the gear ratio is not the fifth speed gear stage, the speed change gear 10 as a whole can obtain a reduction side gear stage having a gear ratio of 1.0 or more, so that the switching control means. 50 indicates to the hydraulic control circuit 42 a command to engage the switching clutch C0 and release the switching brake B0 so that the switching-type transmission unit 11 can function as a sub-transmission with a fixed transmission ratio γ0, for example, a transmission ratio γ0 of 1. Output. In this way, the transmission mechanism 10 is switched to the stepped speed change state by the switching control means 50, and is selectively switched to be one of the two types of speed steps in the stepped speed change state. 11 is caused to function as a sub-transmission, and the automatic transmission unit 20 in series functions as a stepped transmission, whereby the entire transmission mechanism 10 is caused to function as a so-called stepped automatic transmission.

また、他の考え方として、ユーザは、例えば図8に示すような有段自動変速走行におけるアップシフトに伴うエンジン回転速度NEの変化すなわち変速に伴うリズミカルなエンジン回転速度NEの変化が楽しめる。   As another way of thinking, the user can enjoy a change in engine rotational speed NE accompanying an upshift in a stepped automatic transmission as shown in FIG. 8, that is, a rhythmic change in engine rotational speed NE accompanying a shift.

一方、切換制御手段50は、変速機構10を無段変速状態に切り換える場合には変速機構10全体として無段変速状態が得られるために前記切換型変速部11を無段変速状態として無段変速可能とするように切換クラッチC0および切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。同時に、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号を出力するとともに、有段変速制御手段54には、予め設定された無段変速時の変速段に固定する信号を出力するか、或いは変速線図記憶手段56に予め記憶された例えば図11に示す変速線図に従って自動変速部20を自動変速することを許可する信号を出力する。この場合、有段変速制御手段54により、図2の係合表内において切換クラッチC0および切換ブレーキB0の係合を除いた作動により自動変速が行われる。このように、切換制御手段50により無段変速状態に切り換えられた切換型変速部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構10全体として無段変速状態となりトータル変速比γTが無段階に得られるようになる。   On the other hand, when the transmission mechanism 10 is switched to the continuously variable transmission state, the switching control means 50 obtains the continuously variable transmission state as the entire transmission mechanism 10, so that the switching type transmission unit 11 is set to the continuously variable transmission state. A command for releasing the switching clutch C0 and the switching brake B0 is output to the hydraulic pressure control circuit 42 so as to enable it. At the same time, a signal for permitting hybrid control is output to the hybrid control means 52, and a signal for fixing to a preset gear position at the time of continuously variable transmission is output to the stepped shift control means 54, or For example, a signal that permits automatic shifting of the automatic transmission unit 20 according to the shift diagram shown in FIG. In this case, the automatic transmission is performed by the stepped shift control means 54 by the operation excluding the engagement of the switching clutch C0 and the switching brake B0 in the engagement table of FIG. Thus, the switching type transmission unit 11 switched to the continuously variable transmission state by the switching control means 50 functions as a continuously variable transmission, and the automatic transmission unit 20 in series with it functions as a stepped transmission. At the same time, the rotational speed input to the automatic transmission unit 20 for each of the first, second, third, and fourth gears of the automatic transmission unit 20, that is, The rotational speed of the transmission member 18 is changed steplessly, so that each gear stage has a stepless speed ratio width. Therefore, the gear ratio between the gear stages can be continuously changed continuously and the transmission mechanism 10 as a whole is in a continuously variable transmission state, and the total gear ratio γT can be obtained continuously.

上記ハイブリッド制御手段52は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第1電動機M1および/または第2電動機M2との駆動力の配分を最適になるように変化させて切換型変速部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速において、アクセルペダル操作量や車速から運転者の要求出力を算出し、運転者の要求出力と充電要求値から必要な駆動力を算出し、エンジンの回転速度とトータル出力とを算出し、そのトータル出力とエンジン回転速度NEとに基づいて、エンジン出力を得るようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。ハイブリッド制御手段52は、その制御を自動変速部20の変速段を考慮して実行したり、或いは燃費向上などのために自動変速部20に変速指令を行う。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度NEと車速および自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、切換型変速部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段52は無段変速走行の時に運転性と燃費性とを両立した予め記憶された最適燃費率曲線に沿ってエンジン8が作動させられるように変速機構10のトータル変速比γTの目標値を定め、その目標値が得られるように切換型変速部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内例えば13〜0.5の範囲内で制御することになる。   The hybrid control means 52 operates the engine 8 in an efficient operating range, and changes the distribution of the driving force between the engine 8 and the first electric motor M1 and / or the second electric motor M2 to be optimal. A gear ratio γ0 as an electrical continuously variable transmission of the switching transmission 11 is controlled. For example, at the current traveling vehicle speed, the driver's required output is calculated from the accelerator pedal operation amount and vehicle speed, the required driving force is calculated from the driver's required output and the required charging value, and the engine speed and total output are calculated. Based on the total output and the engine rotational speed NE, the engine 8 is controlled so as to obtain the engine output, and the power generation amount of the first electric motor M1 is controlled. The hybrid control means 52 executes the control in consideration of the gear position of the automatic transmission unit 20, or issues a shift command to the automatic transmission unit 20 to improve fuel consumption. In such hybrid control, in order to match the engine speed NE determined in order to operate the engine 8 in an efficient operating range and the rotation speed of the transmission member 18 determined by the vehicle speed and the gear position of the automatic transmission unit 20, The switching-type transmission unit 11 is caused to function as an electrical continuously variable transmission. That is, the hybrid control means 52 sets the total gear ratio γT of the speed change mechanism 10 so that the engine 8 is operated along a pre-stored optimum fuel efficiency rate curve that achieves both drivability and fuel efficiency during continuously variable speed travel. A target value is determined, and the gear ratio γ0 of the switching transmission 11 is controlled so that the target value is obtained, and the total gear ratio γT is controlled within a changeable range of the gear, for example, 13 to 0.5. It will be.

このとき、ハイブリッド制御手段52は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通して電気エネルギが第2電動機M2或いは第1電動機M1へ供給され、その第2電動機M2或いは第1電動機M1から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。また、ハイブリッド制御手段52は、エンジン8の停止又はアイドル状態に拘わらず、切換型変速部11の電気的CVT機能によってモータ走行させることができる。   At this time, the hybrid control means 52 supplies the electric energy generated by the first electric motor M1 to the power storage device 60 and the second electric motor M2 through the inverter 58, so that the main part of the power of the engine 8 is mechanically transmitted to the transmission member 18. However, a part of the motive power of the engine 8 is consumed for power generation of the first electric motor M1 and converted there to electric energy, and the electric energy is supplied to the second electric motor M2 or the first electric motor M1 through the inverter 58. Then, it is transmitted from the second electric motor M2 or the first electric motor M1 to the transmission member 18. An electric path from conversion of a part of the power of the engine 8 into electric energy and conversion of the electric energy into mechanical energy by a device related from the generation of the electric energy to consumption by the second electric motor M2 Composed. Further, the hybrid control means 52 can drive the motor by the electric CVT function of the switchable transmission 11 regardless of whether the engine 8 is stopped or in an idle state.

図9は、電子制御装置40の制御作動の要部すなわち車両の燃費に基づく変速機構10の変速状態の切換制御作動を示すフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。   FIG. 9 is a flowchart showing the main part of the control operation of the electronic control unit 40, that is, the switching control operation of the shift state of the transmission mechanism 10 based on the fuel consumption of the vehicle, and for example, with a very short cycle time of about several milliseconds to several tens of milliseconds It is executed repeatedly.

先ず、最適燃費曲線選択手段80に対応するステップ(以下、ステップを省略する)S1において、燃費曲線記憶手段82に予め記憶されているエンジン8の燃費マップが選択され、その燃費マップから車両状態すなわち車速Vに基づく無段エンジン出力Pecvtおよび有段エンジン出力Peuが読み込まれる。この燃費マップはエンジン水温、エンジン作動油温、或いは燃焼状態すなわちリーンやストイキで示される空燃比等のエンジン8の内外的要因で変化させられる。   First, in a step (hereinafter, step is omitted) S1 corresponding to the optimum fuel consumption curve selection means 80, a fuel consumption map of the engine 8 stored in advance in the fuel consumption curve storage means 82 is selected, and the vehicle state, that is, The continuously variable engine output Pecvt and the stepped engine output Peu based on the vehicle speed V are read. This fuel efficiency map is changed by internal and external factors of the engine 8 such as engine water temperature, engine hydraulic oil temperature, or combustion state, that is, an air-fuel ratio indicated by lean or stoichiometric.

続く、伝達効率算出手段84に対応するS2において、変速機構10の無段変速状態での無段伝達効率ηcvt が例えば図7に示す予め記憶された関係から車両状態例えば実際の車速Vや駆動力関連値に基づいて求められる。好適には、その無段伝達効率ηcvt と一定値として記憶されている無段システム効率ηsyscとで無段走行効率ηtcvt(=無段伝達効率ηcvt ×無段システム効率ηsysc)が算出される。そして、燃料消費率算出手段86に対応するS3において、上記S1で読み込まれた無段エンジン出力Pecvtと上記S2で求められた無段走行効率ηtcvtから無段変速走行での車両の燃料消費率fscvt{=燃料消費量F/(無段エンジン出力Pecvt×無段走行効率ηtcvt)}が算出される。   Subsequently, in S2 corresponding to the transmission efficiency calculating means 84, the continuously variable transmission efficiency ηcvt in the continuously variable transmission state of the transmission mechanism 10 is determined from the vehicle state such as the actual vehicle speed V and the driving force from the relationship stored in advance as shown in FIG. It is determined based on the related value. Preferably, the continuously variable traveling efficiency ηtcvt (= the continuously variable transmission efficiency ηcvt × the continuously variable system efficiency ηsysc) is calculated from the continuously variable transmission efficiency ηcvt and the continuously variable system efficiency ηsysc stored as a constant value. Then, in S3 corresponding to the fuel consumption rate calculation means 86, the fuel consumption rate fscvt of the vehicle in continuously variable speed traveling from the continuously variable engine output Pecvt read in S1 and the continuously variable traveling efficiency ηtcvt determined in S2 above. {= Fuel consumption F / (Stepless engine output Pecvt × Stepless running efficiency ηtcvt)} is calculated.

続いて、伝達効率算出手段84に対応するS4において、変速機構10の有段変速状態での有段伝達効率ηu が例えば図7に示す予め記憶された関係から車両状態例えば実際の車速Vや駆動力関連値に基づいて求められる。好適には、その有段伝達効率ηu と一定値として記憶されている有段システム効率ηsysuとで有段走行効率ηtu(=有段伝達効率ηu ×有段システム効率ηsysu)が算出される。そして、燃料消費率算出手段86に対応するS5において、上記S1で読み込まれた有段エンジン出力Peuと上記S4で求められた有段走行効率ηtuから有段変速走行での車両の燃料消費率fsu{=燃料消費量F/(有段エンジン出力Peu×有段走行効率ηtu)}が算出される。   Subsequently, in step S4 corresponding to the transmission efficiency calculation means 84, the stepped transmission efficiency ηu in the stepped transmission state of the transmission mechanism 10 is determined from the vehicle state such as the actual vehicle speed V and the drive from the relationship stored in advance as shown in FIG. Calculated based on force-related values. Preferably, the stepped traveling efficiency ηtu (= stepped transmission efficiency ηu × stepped system efficiency ηsysu) is calculated from the stepped transmission efficiency ηu and the stepped system efficiency ηsysu stored as a constant value. Then, in S5 corresponding to the fuel consumption rate calculating means 86, the fuel consumption rate fsu of the vehicle in the stepped variable speed traveling from the stepped engine output Peu read in S1 and the stepped traveling efficiency ηtu obtained in S4. {= Fuel consumption F / (Stepped engine output Peu × Stepped running efficiency ηtu)} is calculated.

さらに、変速状態燃費判定手段88に対応するS6において、無段変速走行および有段変速走行の何れが車両の燃料消費率fs すなわち燃費が良いかが、例えば上記S3およびS5において算出された無段変速走行の車両の燃料消費率fscvtおよび有段変速走行の車両の燃料消費率fsuを比較して判断される。好適には、このS6において有段変速走行での燃費が良いか否かすなわち変速機構10の変速状態を有段変速状態に切り換える方が燃費上有利であるか否かが判定される。   Further, in step S6 corresponding to the shift state fuel consumption determination means 88, the stepless variable travel or the stepped variable speed travel determines whether the fuel consumption rate fs of the vehicle, that is, the fuel consumption is good. Determination is made by comparing the fuel consumption rate fscvt of the vehicle traveling at variable speed and the fuel consumption rate fsu of the vehicle traveling at variable speed. Preferably, in S6, it is determined whether or not the fuel consumption in the step-variable running is good, that is, whether or not it is advantageous in terms of fuel consumption to switch the shift state of the transmission mechanism 10 to the stepped shift state.

このS6の判断が否定される言い換えればS6において無段変速走行での燃費が良いと判断される場合は切換制御手段50に対応するS7において、変速機構10が無段変速状態とされるように切換クラッチC0および切換ブレーキB0を解放させる指令が油圧制御回路42へ出力される。同時に、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号が出力されるとともに、有段変速制御手段54には、予め設定された無段変速時の変速段に固定する信号が出力されるか、或いは変速線図記憶手段56に予め記憶された例えば図11に示す変速線図における自動変速部20の変速判断の基となる変速線に従って自動変速することを許可する信号が出力される。したがって、この無段変速走行では、切換型変速部11が無段変速機として機能させられ、それに直列の自動変速部20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構10全体としてのトータル変速比γTが無段階に得られるようになる。   In other words, if the determination in S6 is negative, in other words, if it is determined in S6 that the fuel efficiency in the continuously variable speed driving is good, in S7 corresponding to the switching control means 50, the speed change mechanism 10 is set to the continuously variable transmission state. A command to release the switching clutch C0 and the switching brake B0 is output to the hydraulic control circuit 42. At the same time, a signal for permitting hybrid control is output to the hybrid control means 52, and a signal for fixing to a preset gear position at the time of continuously variable transmission is output to the stepped shift control means 54. Alternatively, for example, a signal that permits automatic shifting according to a shift line that is stored in advance in the shift diagram storage unit 56 and that serves as a basis for shift determination of the automatic transmission unit 20 in the shift diagram shown in FIG. Therefore, in this continuously variable transmission, the switching transmission 11 is made to function as a continuously variable transmission, and the automatic transmission 20 in series with the continuously variable transmission 20 functions as a stepped transmission. At the same time, the rotational speed input to the automatic transmission 20 for each of the first speed, second speed, third speed, and fourth speed of the automatic transmission 20, that is, the rotational speed of the transmission member 18 is obtained. The gear ratio is changed steplessly to obtain a stepless speed ratio range. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio γT of the transmission mechanism 10 as a whole can be obtained continuously.

このS6の判断が肯定される言い換えればS6において有段変速走行での燃費が良いと判断される場合は切換制御手段50に対応するS8において、変速機構10が有段変速状態とされるようにハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可(禁止)とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速制御を許可する。このときの有段変速制御手段54は、変速線図記憶手段56に予め記憶された例えば図11に示す変速線図に従って自動変速制御を実行する。図2は、このときの変速制御において選択される油圧式摩擦係合装置すなわちC0、C1、C2、B0、B1、B2、B3の作動の組み合わせを示している。この有段自動変速制御モードの第1速乃至第4速では、切換クラッチC0が係合させられることにより切換型変速部11が固定の変速比γ0が1の副変速機として機能しているが、第5速では、その切換クラッチC0の係合に替えて切換ブレーキB0が係合させられることにより切換型変速部11が固定の変速比γ0が0.7の副変速機として機能している。すなわち、この有段自動変速走行では、副変速機として機能する切換型変速部11と自動変速部20とを含む変速機構10全体が所謂有段式自動変速機として機能している。   In other words, if the determination in S6 is affirmative, in other words, if it is determined in S6 that the fuel efficiency in the step-variable shifting is good, the transmission mechanism 10 is set to the step-variable shifting state in S8 corresponding to the switching control means 50. A signal for disabling (inhibiting) hybrid control or continuously variable transmission control is output to the hybrid control means 52, and to the stepped transmission control means 54, shift control at the time of preset stepped shift is performed. Allow. The stepped shift control means 54 at this time executes automatic shift control according to the shift diagram shown in FIG. FIG. 2 shows a combination of operations of the hydraulic friction engagement devices selected in the speed change control, that is, C0, C1, C2, B0, B1, B2, and B3. In the first to fourth speeds in the stepped automatic transmission control mode, the switching clutch 11 is functioning as an auxiliary transmission having a fixed gear ratio γ0 of 1 when the switching clutch C0 is engaged. In the fifth speed, the switching brake B0 is engaged instead of the engagement of the switching clutch C0, so that the switching transmission 11 functions as an auxiliary transmission having a fixed gear ratio γ0 of 0.7. . That is, in this stepped automatic transmission, the entire transmission mechanism 10 including the switching transmission 11 and the automatic transmission 20 that function as a sub-transmission functions as a so-called stepped automatic transmission.

この結果、一般的に燃費が良いとされる電気的な無段変速機が構成される変速機構10が車両の燃費上有利な走行となる変速状態に切り替えられるので、一層燃費が向上する。   As a result, the speed change mechanism 10, which is an electric continuously variable transmission that is generally considered to have good fuel efficiency, is switched to a speed change state that is advantageous in terms of fuel efficiency of the vehicle, so that the fuel efficiency is further improved.

上述のように、本実施例によれば、電気的な無段変速機として作動可能な無段変速状態と有段の変速機として作動可能な有段変速状態とに切り換え可能な変速状態切換型変速機構10が、前記無段変速状態および前記有段変速状態の何れの走行での車両の燃料消費率fが良いかに基づいて切換制御手段50(S6、S7、S8)により無段変速状態と有段変速状態とのいずれかに選択的に切り換えられることから、一層燃費が向上する適切な走行が得られる。   As described above, according to the present embodiment, a shift state switching type capable of switching between a continuously variable transmission state operable as an electric continuously variable transmission and a stepped transmission state operable as a stepped transmission. The speed change mechanism 10 is in a continuously variable transmission state by the switching control means 50 (S6, S7, S8) based on whether the fuel consumption rate f of the vehicle in the continuously variable transmission state or the stepped transmission state is good. Therefore, it is possible to selectively switch between the stepped state and the stepped speed change state, so that it is possible to obtain an appropriate traveling with further improved fuel efficiency.

また、本実施例によれば、燃料消費率算出手段86(S3、S5)により前記燃料消費率fが車両状態例えば車速Vや前記駆動力関連値から逐次算出されるので、リアルタイムで前記無段変速状態および前記有段変速状態での燃料消費率fが算出されて変速機構10の変速状態が燃費の良い走行状態とされる。   In addition, according to the present embodiment, the fuel consumption rate f is sequentially calculated from the vehicle state, for example, the vehicle speed V and the driving force related value by the fuel consumption rate calculating means 86 (S3, S5). The fuel consumption rate f in the speed change state and the stepped speed change state is calculated, and the speed change state of the speed change mechanism 10 is set to a travel state with good fuel consumption.

また、本実施例によれば、前記燃料消費率fは、例えば図6に示す予め記憶された関係から求められるエンジンの燃料消費率fe に基づいて算出されるので、燃料消費率算出手段86により車両の燃料消費率fs が適切に算出される。   Further, according to the present embodiment, the fuel consumption rate f is calculated based on the fuel consumption rate fe of the engine obtained from, for example, the relationship stored in advance shown in FIG. The fuel consumption rate fs of the vehicle is appropriately calculated.

また、本実施例によれば、前記車両状態から算出される燃料消費率fは、伝達効率算出手段84(S2、S4)により算出されたエンジンから駆動輪38への伝達効率ηが考慮されるので、燃料消費率算出手段86により燃料消費率fが適切に算出される。   Further, according to the present embodiment, the fuel consumption rate f calculated from the vehicle state takes into account the transmission efficiency η from the engine to the drive wheels 38 calculated by the transmission efficiency calculation means 84 (S2, S4). Therefore, the fuel consumption rate calculation means 86 appropriately calculates the fuel consumption rate f.

また、本実施例によれば、前記伝達効率ηは車両の走行抵抗例えば登坂路走行等の高トルク走行によって変化するものであり、その伝達効率ηに基づいて燃料消費率算出手段86により燃料消費率fが適切に算出される。   Further, according to the present embodiment, the transmission efficiency η changes due to high torque traveling such as traveling resistance of the vehicle, such as traveling on an uphill road, and the fuel consumption rate calculating means 86 performs fuel consumption based on the transmission efficiency η. The rate f is calculated appropriately.

また、本実施例によれば、前記伝達効率ηは車速Vによって変化するものであり、その伝達効率ηに基づいて燃料消費率算出手段86により燃料消費率fが適切に算出される。   Further, according to the present embodiment, the transmission efficiency η varies with the vehicle speed V, and the fuel consumption rate f is appropriately calculated by the fuel consumption rate calculation means 86 based on the transmission efficiency η.

また、本実施例によれば、前記伝達効率ηは前記車両の駆動力関連値によって変化するものであり、その伝達効率ηに基づいて燃料消費率算出手段86により燃料消費率fが適切に算出される。   Further, according to this embodiment, the transmission efficiency η varies depending on the driving force-related value of the vehicle, and the fuel consumption rate f is appropriately calculated by the fuel consumption rate calculation means 86 based on the transmission efficiency η. Is done.

また、本実施例によれば、動力分配機構16が、第1キャリヤCA1、第1サンギヤS1、第1リングギヤR1を3要素とするシングルピニオン型の第1遊星歯車装置24によって簡単に且つ動力分配機構16の軸方向寸法が小さく構成される利点がある。さらに、動力分配機構16には油圧式摩擦係合装置すなわち第1サンギヤS1と第1キャリヤCA1とを相互に連結する切換クラッチC0および第1サンギヤS1をトランスミッションケース12に連結する切換ブレーキB0が設けられているので、切換制御手段50により変速機構10の無段変速状態と有段変速状態とが簡単に制御される。   In addition, according to the present embodiment, the power distribution mechanism 16 is simply and power-distributed by the single pinion type first planetary gear device 24 having the first carrier CA1, the first sun gear S1, and the first ring gear R1 as three elements. There is an advantage that the axial dimension of the mechanism 16 is small. Further, the power distribution mechanism 16 is provided with a hydraulic friction engagement device, that is, a switching clutch C0 that connects the first sun gear S1 and the first carrier CA1 and a switching brake B0 that connects the first sun gear S1 to the transmission case 12. Therefore, the switching control means 50 can easily control the stepless speed change state and the stepped speed change state of the speed change mechanism 10.

また、本実施例によれば、動力分配機構16と駆動輪38との間に自動変速部20が直列に介装されており、その動力分配機構16の変速比すなわち切換型変速部11の変速比とその自動変速部20の変速比とに基づいて変速機構10の総合変速比が形成されることから、その自動変速部20の変速比を利用することによって駆動力が幅広く得られるようになるので、切換型変速部11における無段変速制御すなわちハイブリッド制御の効率が一層高められる。   Further, according to the present embodiment, the automatic transmission unit 20 is interposed in series between the power distribution mechanism 16 and the drive wheel 38, and the gear ratio of the power distribution mechanism 16, that is, the shift of the switching transmission unit 11 is changed. Since the overall transmission ratio of the transmission mechanism 10 is formed based on the ratio and the transmission ratio of the automatic transmission unit 20, a wide driving force can be obtained by using the transmission ratio of the automatic transmission unit 20. Therefore, the efficiency of the continuously variable transmission control, that is, the hybrid control in the switching transmission 11 is further enhanced.

また、本実施例によれば、変速機構10が有段変速状態とされるとき、切換型変速部11が自動変速部20の一部であるかの如く機能して変速比が1より小さいオーバドライブギヤ段である第5速が得られる利点がある。   Further, according to this embodiment, when the speed change mechanism 10 is set to the stepped speed change state, the switching type speed change portion 11 functions as if it is a part of the automatic speed change portion 20 and the speed ratio is less than 1. There is an advantage that the fifth speed which is the drive gear stage can be obtained.

また、本実施例によれば、第2電動機M2が自動変速部20の入力回転部材である伝達部材18に連結されていることから、その自動変速部20の出力軸22に対して低トルクの出力でよくなるので、第2電動機M2が一層小型化される利点がある。   Further, according to the present embodiment, since the second electric motor M2 is connected to the transmission member 18 that is an input rotation member of the automatic transmission unit 20, a low torque is applied to the output shaft 22 of the automatic transmission unit 20. Since the output is improved, there is an advantage that the second electric motor M2 is further downsized.

次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。   Next, another embodiment of the present invention will be described. In the following description, parts common to those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

図10は、電子制御装置40による制御機能の要部を説明する機能ブロック線図であって、図5の別の実施例である。   FIG. 10 is a functional block diagram illustrating the main part of the control function of the electronic control unit 40, which is another embodiment of FIG.

図11は、自動変速部20の変速判断の基となる変速線図記憶手段56に予め記憶された変速線図(変速マップ或いは関係)であり、車速Vと駆動力関連値である出力トルクTout とをパラメータとする二次元座標で構成された変速線図の一例である。図11の実線はアップシフト線であり一点鎖線はダウンシフト線である。   FIG. 11 is a shift diagram (shift map or relationship) stored in advance in the shift diagram storage means 56 that is a basis for the shift determination of the automatic transmission unit 20, and the output torque Tout that is a vehicle speed V and a driving force related value. Is an example of a shift diagram composed of two-dimensional coordinates with and as parameters. The solid line in FIG. 11 is an upshift line, and the alternate long and short dash line is a downshift line.

また、図11は車速Vと駆動力関連値例えば出力トルクTout とをパラメータとして前記無段変速状態および前記有段変速状態の何れでの走行が車両の燃料消費率fs が良いかによって変速機構10を前記無段変速状態とするための無段制御領域と前記有段変速状態とするための有段制御領域が設定された予め記憶された切換線図(切換マップ或いは関係)の一例でもある。例えば、それらの領域の設定すなわち図11の破線およびその破線に対してヒステリシスが設けられている二点鎖線に示す無段制御領域と有段制御領域との境界線は、変速機構10が前記無段変速状態および前記有段変速状態の何れでの走行が車両の燃料消費率fs が良いかに基づいて予め実験等で求められたものである。すなわち、この図11は変速マップと切換マップとが同一の二次元座標で構成された場合の関係を示す図でもあり、この切換マップは変速マップとともに変速線図記憶手段56に予め記憶されていることになる。なお、変速マップと切換マップとが異なる二次元座標で構成されるのはもちろんのこと、その切換マップが変速線図記憶手段56以外の別の記憶手段例えば図示しない切換線図記憶手段に予め記憶されてもいてもよい。   FIG. 11 shows the speed change mechanism 10 depending on whether the vehicle speed V and the driving force-related value, for example, the output torque Tout, are used as the parameters, and whether the traveling in the stepless speed change state or the stepped speed change state has a good fuel consumption rate fs of the vehicle. Is a pre-stored switching diagram (switching map or relationship) in which a stepless control region for setting the continuously variable transmission state and a stepped control region for setting the stepped transmission state are set. For example, the setting of these regions, that is, the boundary line between the stepless control region and the stepped control region indicated by the broken line in FIG. This is obtained in advance through experiments or the like based on whether the vehicle travels in the step shifting state or the stepped shifting state has a good fuel consumption rate fs. That is, FIG. 11 is also a diagram showing the relationship when the shift map and the switching map are configured with the same two-dimensional coordinates, and this switching map is stored in advance in the shift diagram storage means 56 together with the shift map. It will be. Of course, the shift map and the switching map are composed of different two-dimensional coordinates, and the switching map is stored in advance in another storage means other than the shift diagram storage means 56, for example, a switching diagram storage means (not shown). It may be done.

切換制御手段50は、前述の実施例での車両の燃料消費率fに基づいく変速機構10の変速状態の切換えに替えて、例えば図11に示すような変速線図記憶手段56に予め記憶された切換マップから現在の車両状態すなわち実際の車速Vと出力トルクTout とに基づいて変速機構10を前記無段変速状態および前記有段変速状態の何れかに選択的に切り換える。   The switching control means 50 is stored in advance in a shift diagram storage means 56 as shown in FIG. 11, for example, instead of switching the shift state of the transmission mechanism 10 based on the vehicle fuel consumption rate f in the above-described embodiment. Based on the current vehicle state, that is, the actual vehicle speed V and the output torque Tout, the transmission mechanism 10 is selectively switched between the continuously variable transmission state and the stepped transmission state.

この結果、一般的に燃費が良いとされる電気的な無段変速機が構成される変速機構10が車両の燃費上有利な走行となる変速状態に切り替えられるので、一層燃費が向上する。また、前述の実施例のように燃料消費率fが逐次算出される場合に比較して制御が簡単で電子制御装置40の計算負荷も少なくて済むことになる。   As a result, the speed change mechanism 10, which is an electric continuously variable transmission that is generally considered to have good fuel efficiency, is switched to a speed change state that is advantageous in terms of fuel efficiency of the vehicle, so that the fuel efficiency is further improved. Further, as compared with the case where the fuel consumption rate f is sequentially calculated as in the above-described embodiment, the control is simple and the calculation load of the electronic control device 40 is reduced.

上述のように、本実施例によれば、前記無段変速状態および前記有段変速状態の何れでの走行が燃料消費率fが良いかによりその無段変速状態或いはその有段変速状態とするための領域が設定された例えば図11に示す予め記憶された関係から車両状態例えば実際の車速Vと出力トルクTout に基づいて変速機構10が前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換えられるので、変速機構10の変速状態が簡単に燃費の良い走行状態に切り替えられて一層燃費が向上する。   As described above, according to the present embodiment, the stepless speed change state or the stepped speed change state is set according to whether the fuel consumption rate f is good in the stepless speed change state or the stepped speed change state. For example, based on the prestored relationship shown in FIG. 11, the transmission mechanism 10 is in either the continuously variable transmission state or the stepped transmission state based on the vehicle state, for example, the actual vehicle speed V and the output torque Tout. Therefore, the shift state of the speed change mechanism 10 can be easily switched to a driving state with good fuel consumption, and the fuel consumption is further improved.

図12は、電子制御装置40による制御機能の要部を説明する機能ブロック線図であって、図5の別の実施例である。   FIG. 12 is a functional block diagram illustrating the main part of the control function of the electronic control unit 40, which is another embodiment of FIG.

図12において、切換制御手段50は、高車速判定手段62、高出力走行判定手段64、および電気パス機能判定手段66をさらに備えており、車両の所定条件に基づいて変速機構10の変速状態の切換えが前述の実施例での車両の燃料消費率fに基づくことなく変速機構10を前記有段変速状態に切り換える。   In FIG. 12, the switching control means 50 further includes a high vehicle speed determination means 62, a high output travel determination means 64, and an electrical path function determination means 66. The shift mechanism 10 is switched to the stepped shift state without switching based on the fuel consumption rate f of the vehicle in the above-described embodiment.

高車速判定手段62は、ハイブリッド車両の実際の車速Vが高速走行を判定するための予め設定された高速走行判定値である判定車速V1以上の高車速となったか否かを判定する。高出力走行判定手段64は、ハイブリッド車両の駆動力に関連する駆動力関連値例えば自動変速部20の出力トルクTout が高出力走行を判定するための予め設定された高出力走行判定値である判定出力トルクT1以上の高トルク(高駆動力)走行となったか否かを判定する。つまり、高出力走行判定手段64では車両の駆動力を直接或いは間接的に示す駆動力関連パラメータに基づいて車両の高出力走行が判定される。電気パス機能判定手段66は、変速機構10を無段変速状態とするための制御機器の機能低下が判定される故障判定条件の判定を、例えば第1電動機M1における電気エネルギの発生からその電気エネルギが機械的エネルギに変換されるまでの電気パスに関連する機器の機能低下すなわち第1電動機M1、第2電動機M2、インバータ58、蓄電装置60、それらを接続する伝送路などの故障や、故障(フェイル)とか低温による機能低下或いは機能不全の発生に基づいて判定する。   The high vehicle speed determination means 62 determines whether or not the actual vehicle speed V of the hybrid vehicle has reached a high vehicle speed equal to or higher than a determination vehicle speed V1 that is a preset high-speed travel determination value for determining high-speed travel. The high output travel determination means 64 determines that the driving force related value related to the driving force of the hybrid vehicle, for example, the output torque Tout of the automatic transmission unit 20 is a preset high output travel determination value for determining high output travel. It is determined whether or not a high torque (high driving force) traveling that is equal to or greater than the output torque T1 has occurred. That is, the high output travel determination means 64 determines the high output travel of the vehicle based on the driving force related parameter that directly or indirectly indicates the driving force of the vehicle. The electric path function determination means 66 determines a failure determination condition for determining a decrease in the function of the control device for setting the transmission mechanism 10 to the continuously variable transmission state, for example, from the generation of electric energy in the first electric motor M1. Degradation of equipment related to the electrical path until the energy is converted into mechanical energy, that is, failure of the first electric motor M1, the second electric motor M2, the inverter 58, the power storage device 60, the transmission line connecting them, (Fail) or based on the occurrence of functional deterioration or malfunction due to low temperature.

例えば、判定車速V1は、高速走行において変速機構10が無段変速状態とされるとかえって燃費が悪化するのを抑制するように、変速機構10の変速状態の切換えが前述の実施例での車両の燃料消費率fに基づくことなく変速機構10を有段変速状態に切り換える方が明らかに燃費上有利となる車両の高速走行を判定するために予め実験等で求められて記憶された値である。   For example, the determination vehicle speed V1 is such that the change of the shift state of the transmission mechanism 10 is the vehicle in the above-described embodiment so that the fuel consumption is prevented from deteriorating when the transmission mechanism 10 is in a continuously variable transmission state at high speed. This is a value obtained and stored in advance through experiments or the like to determine high-speed driving of a vehicle that is clearly advantageous in terms of fuel efficiency when the speed change mechanism 10 is switched to the stepped speed change state without being based on the fuel consumption rate f. .

また、例えば、判定トルクT1は、車両の高出力走行において第1電動機M1の反力トルクをエンジンの高出力域まで対応させないで第1電動機M1を小型化するために、例えば第1電動機M1からの電気エネルギの最大出力を小さくして配設可能とされた第1電動機M1の特性に応じて設定されることになる。つまり、判定トルクT1は、変速機構10の変速状態の切換えが前述の実施例での車両の燃料消費率fに基づくことなく変速機構10を有段変速状態に切り換える必要がある車両の高出力走行すなわち変速機構10を電気的な無段変速機として作動させられない電動機の定格出力に基づいて定められたエンジン出力の制限値を越えるような車両の高出力走行を判定するために予め記憶された値である。   Further, for example, the determination torque T1 is obtained from, for example, the first electric motor M1 in order to reduce the size of the first electric motor M1 without causing the reaction torque of the first electric motor M1 to correspond to the high output range of the engine in the high output traveling of the vehicle. Is set in accordance with the characteristics of the first electric motor M1 that can be arranged with a smaller maximum output of electrical energy. In other words, the determination torque T1 is a high output traveling of the vehicle that requires the transmission mechanism 10 to be switched to the stepped transmission state without switching the transmission state of the transmission mechanism 10 based on the fuel consumption rate f of the vehicle in the above-described embodiment. In other words, the speed change mechanism 10 is stored in advance in order to determine the high output travel of the vehicle that exceeds the engine output limit value determined based on the rated output of the electric motor that cannot be operated as an electric continuously variable transmission. Value.

切換制御手段50は、所定条件としての上記高車速判定手段62による高車速判定、高出力走行判定手段64による高出力走行判定すなわち高トルク判定、電気パス機能判定手段66による電気パス機能不全の判定の少なくとも1つが発生した場合は、変速機構10を有段変速状態に切り換える有段変速制御領域であると判定して、前述の実施例と同様にハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可すなわち禁止とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速制御を許可する。このように、切換制御手段50によって所定条件に基づいて変速機構10が有段変速状態に切り換えられるとともに、その有段変速状態における2種類の変速段のいずれかとなるように選択的に切り換えられて、切換型変速部11が副変速機として機能させられ、それに直列の自動変速部20が有段変速機として機能することにより、変速機構10全体が所謂有段式自動変速機として機能させられる。   The switching control unit 50 determines the high vehicle speed by the high vehicle speed determination unit 62 as a predetermined condition, the high output travel determination by the high output travel determination unit 64, that is, the high torque determination, and the electric path function determination unit 66 by the electric path function determination unit 66. When at least one of the above occurs, it is determined that the transmission mechanism 10 is in the stepped shift control region for switching to the stepped shift state, and the hybrid control means 52 is controlled to perform hybrid control or continuously variable as in the above-described embodiment. A signal for disabling or prohibiting the shift control is output, and the stepped shift control means 54 is permitted to perform a shift control at a preset stepped shift. As described above, the transmission control mechanism 50 switches the transmission mechanism 10 to the stepped shift state based on the predetermined condition, and selectively switches to one of the two types of shift steps in the stepped shift state. The switching transmission unit 11 is caused to function as a sub-transmission, and the automatic transmission unit 20 in series with the switching-type transmission unit 11 functions as a stepped transmission, whereby the entire transmission mechanism 10 is caused to function as a so-called stepped automatic transmission.

また、切換制御手段50は切換クラッチC0および切換ブレーキB0のいずれを係合させるかを、例えば高出力走行判定手段64による高出力走行判定により切換クラッチC0の係合が、或いは高車速判定手段62による高速走行判定により切換ブレーキB0の係合を判断してもよい。但し、高出力走行時であっても第5速ギヤ段が選択された場合には切換ブレーキB0の係合が判断される。   Further, the switching control means 50 determines which of the switching clutch C0 and the switching brake B0 is to be engaged, for example, the engagement of the switching clutch C0 by the high output traveling determination by the high output traveling determining means 64 or the high vehicle speed determining means 62. The engagement of the switching brake B0 may be determined by the high-speed traveling determination by However, the engagement of the switching brake B0 is determined when the fifth gear is selected even during high-power traveling.

図13はエンジン回転速度NEおよびエンジントルクTEをパラメータとする変速線図記憶手段56に予め記憶された無段制御領域と有段制御領域との境界線としてのエンジン出力線を有する切換マップである。切換制御手段50は、前述した車両の所定条件に基づく変速機構10の前記有段変速状態への切換えに替えて、この図13の切換マップから実際のエンジン回転速度NEとエンジントルクTEとに基づいて、それらのエンジン回転速度NEとエンジントルクTEとで表される車両状態が有段制御領域内すなわち燃費判定に拘わらず強制的に有段変速状態に切り換えるべき領域内であるかを判定して変速機構10を前記有段変速状態に切り換える場合もある。   FIG. 13 is a switching map having an engine output line as a boundary line between the continuously variable control region and the stepped control region stored in advance in the shift diagram storage means 56 using the engine speed NE and the engine torque TE as parameters. . The switching control means 50 is based on the actual engine speed NE and the engine torque TE from the switching map of FIG. 13 instead of switching the transmission mechanism 10 to the stepped shift state based on the predetermined vehicle condition described above. Thus, it is determined whether the vehicle state represented by the engine rotational speed NE and the engine torque TE is within a stepped control region, that is, a region where the vehicle state is to be forcibly switched to the stepped shift state regardless of fuel consumption determination. The transmission mechanism 10 may be switched to the stepped transmission state.

つまり図13の関係は、判定車速V1および判定トルクT1以上となる領域に相当するエンジントルクTEが予め設定された所定値TE1以上の高トルク領域、エンジン回転速度NEが予め設定された所定値NE1以上の高回転領域、或いはそれらエンジントルクTEおよびエンジン回転速度NEから算出されるエンジン出力が所定以上の高出力領域、すなわち前述の実施例での車両の燃料消費率fに基づくことなく変速機構10を明らかに有段変速状態とする必要がある領域が予め実験等により求められて記憶されていることになる。   That is, the relationship of FIG. 13 is that a high torque region where the engine torque TE corresponding to a region where the determination vehicle speed V1 and the determination torque T1 are equal to or higher than a predetermined value TE1 which is set in advance, and a predetermined value NE1 where the engine speed NE is set in advance. The speed change mechanism 10 is based on the above-mentioned high-speed region, or the high-power region where the engine output calculated from the engine torque TE and the engine speed NE is higher than a predetermined value, that is, the fuel consumption rate f of the vehicle in the above-described embodiment. Is clearly obtained through experiments or the like and stored in advance.

上述のように、本実施例によれば、切換制御手段10は、実際の車速が予め設定された判定車速V1を越えたときに変速機構10を前記有段変速状態とするものであるので、例えば実際の車速Vが変速機構10を有段変速状態に切り換える方が明らかに燃費上有利となる車両の高速走行を判定するための判定車速V1を越えると、専ら機械的な動力伝達経路でエンジンの出力が駆動輪へ伝達されて、電気的な無段変速機として作動させる場合に発生する動力と電気との間の変換損失が抑制されるので燃費が向上させられる。   As described above, according to the present embodiment, the switching control means 10 sets the speed change mechanism 10 to the stepped speed change state when the actual vehicle speed exceeds the preset determination vehicle speed V1. For example, if the actual vehicle speed V exceeds the vehicle speed V1 for determining high-speed traveling of the vehicle, which is clearly advantageous in terms of fuel efficiency when the transmission mechanism 10 is switched to the stepped transmission state, the engine is exclusively transmitted through a mechanical power transmission path. The output loss is transmitted to the drive wheels and the conversion loss between the power and electricity generated when operating as an electric continuously variable transmission is suppressed, so that the fuel efficiency is improved.

また、本実施例によれば、切換制御手段50は実際の出力トルクTout が予め設定された判定出力トルクT1を越えたときに変速機構10を有段変速状態とするものであるので、例えば実際の出力トルクTout が変速機構10を電気的な無段変速機として作動させられない第1電動機M1の定格出力に基づいて定められたエンジン出力の制限値を越えるような車両の高出力走行を判定するための判定出力トルクT1を越えるような高出力走行となると、専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて変速機構10が電気的な無段変速機として作動させられる場合は専ら低中出力走行となるので、第1電動機M1が発生すべき電気的エネルギの最大値を小さくできてすなわち第1電動機M1の保障すべき出力容量を小さくできてその第1電動機M1や第2電動機M2、或いはそれを含む車両の駆動装置が一層小型化される。   Further, according to this embodiment, the switching control means 50 sets the speed change mechanism 10 to the stepped speed change state when the actual output torque Tout exceeds the preset judgment output torque T1, so that, for example, the actual The high output running of the vehicle is determined such that the output torque Tout exceeds the engine output limit value determined based on the rated output of the first electric motor M1, which cannot operate the transmission mechanism 10 as an electric continuously variable transmission. When the high-speed traveling exceeding the judgment output torque T1 for transmission is performed, the output of the engine 8 is transmitted to the drive wheels 38 exclusively through a mechanical power transmission path, and the transmission mechanism 10 operates as an electric continuously variable transmission. When it is allowed to run, it is a low-medium power traveling, so that the maximum value of the electrical energy that should be generated by the first electric motor M1 can be reduced, that is, the output capacity that should be ensured by the first electric motor M1 can be reduced. A first electric motor M1 and the second electric motor M2, so the vehicular drive system including the same is even more compact made.

また、本実施例によれば、切換制御手段50は変速機構10を電気的な無段変速状態とするための制御機器の機能低下を判定する故障判定条件が成立した場合に変速機構10を有段変速状態とするものであるので、変速機構10が無段変速状態とされない場合でも有段変速状態とされることで、有段走行ではあるが無段走行と略同様の車両走行が確保される。   In addition, according to the present embodiment, the switching control means 50 has the transmission mechanism 10 when a failure determination condition for determining the functional degradation of the control device for setting the transmission mechanism 10 to the electrical continuously variable transmission state is satisfied. Since the stepped speed change state is set, even when the speed change mechanism 10 is not set to the stepless speed change state, the stepped speed change state is set, so that the vehicle travel that is substantially the same as the stepless travel is ensured although it is stepped. The

図14は本発明の他の実施例における変速機構70の構成を説明する骨子図、図15はその変速機構70の変速段と油圧式摩擦係合装置の係合の組み合わせとの関係を示す係合表、図16はその変速機構70の変速作動を説明する共線図である。   FIG. 14 is a skeleton diagram illustrating the configuration of the speed change mechanism 70 according to another embodiment of the present invention, and FIG. 15 is a view showing the relationship between the gear position of the speed change mechanism 70 and the engagement combination of the hydraulic friction engagement device. FIG. 16 is a collinear diagram illustrating the speed change operation of the speed change mechanism 70.

変速機構70は、前述の実施例と同様に第1電動機M1、動力分配機構16、および第2電動機M2を備えている切換型変速部11と、その切換型変速部11と出力軸22との間で伝達部材18を介して直列に連結されている前進3段の自動変速部72とを備えている。動力分配機構16は、例えば「0.418」程度の所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24と切換クラッチC0および切換ブレーキB0とを有している。自動変速部72は、例えば「0.532」程度の所定のギヤ比ρ2を有するシングルピニオン型の第2遊星歯車装置26と例えば「0.418」程度の所定のギヤ比ρ3を有するシングルピニオン型の第3遊星歯車装置28とを備えている。第2遊星歯車装置26の第2サンギヤS2と第3遊星歯車装置28の第3サンギヤS3とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第2遊星歯車装置26の第2キャリヤCA2と第3遊星歯車装置28の第3 リングギヤR3とが一体的に連結されて出力軸22に連結され、第2リングギヤR2は第1クラッチC1を介して伝達部材18に選択的に連結され、第3キャリヤCA3は第2ブレーキB2を介してケース12に選択的に連結されている。   As in the above-described embodiment, the transmission mechanism 70 includes a switching transmission 11 having the first electric motor M1, the power distribution mechanism 16, and the second electric motor M2, and the switching transmission 11 and the output shaft 22. And a forward three-stage automatic transmission portion 72 connected in series via the transmission member 18 therebetween. The power distribution mechanism 16 includes, for example, a single pinion type first planetary gear device 24 having a predetermined gear ratio ρ1 of about “0.418”, a switching clutch C0, and a switching brake B0. The automatic transmission unit 72 includes a single pinion type second planetary gear device 26 having a predetermined gear ratio ρ2 of about “0.532”, for example, and a single pinion type having a predetermined gear ratio ρ3 of about “0.418”, for example. The third planetary gear device 28 is provided. The second sun gear S2 of the second planetary gear unit 26 and the third sun gear S3 of the third planetary gear unit 28 are integrally connected and selectively connected to the transmission member 18 via the second clutch C2. The second carrier CA2 of the second planetary gear device 26 and the third ring gear R3 of the third planetary gear device 28 are integrally connected to the output shaft 22 by being selectively connected to the case 12 via one brake B1. The second ring gear R2 is selectively connected to the transmission member 18 via the first clutch C1, and the third carrier CA3 is selectively connected to the case 12 via the second brake B2.

以上のように構成された変速機構70では、例えば、図15の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、および第2ブレーキB2が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第4速ギヤ段(第4変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力歯車回転速度NOUT )が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、切換型変速部11は前述した無段変速機として作動可能な無段変速状態に加え、変速比が一定の変速機として作動可能な定変速状態を構成することが可能とされている。したがって、変速機構70では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた切換型変速部11と自動変速部72とで有段変速機として作動可能な有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた切換型変速部11と自動変速部72とで電気的な無段変速機として作動可能な無段変速状態が構成される。言い換えれば、変速機構70は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。   In the speed change mechanism 70 configured as described above, for example, as shown in the engagement operation table of FIG. 15, the switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, and the first brake B1. , And the second brake B2 is selectively engaged, so that one of the first gear (first gear) to the fourth gear (fourth gear) or the reverse gear (reverse) Gear ratio) or neutral is selectively established, and a gear ratio γ (= input shaft rotational speed NIN / output gear rotational speed NOUT) that changes substantially in an equal ratio is obtained for each gear stage. . In particular, in this embodiment, the power distribution mechanism 16 is provided with a switching clutch C0 and a switching brake B0, and the switching transmission 11 is operated by engaging either the switching clutch C0 or the switching brake B0. In addition to the continuously variable transmission state operable as a continuously variable transmission, it is possible to constitute a constant transmission state operable as a transmission having a constant gear ratio. Therefore, the speed change mechanism 70 can operate as a stepped transmission by the switching type transmission unit 11 and the automatic transmission unit 72 that are brought into the constant speed changing state by engaging and operating either the switching clutch C0 or the switching brake B0. The stepless transmission state is constituted by the switching type transmission unit 11 and the automatic transmission unit 72 which are in a stepless transmission state by engaging and operating neither the switching clutch C0 nor the switching brake B0. The continuously variable transmission state that can be operated as is configured. In other words, the speed change mechanism 70 is switched to the stepped speed change state by engaging one of the switching clutch C0 and the switching brake B0, and is not operated by engaging neither the switching clutch C0 nor the switching brake B0. It is switched to the step shifting state.

例えば、変速機構70が有段変速機として機能する場合には、図15に示すように、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ1が最大値例えば「2.804」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「1.531」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.000」程度である第3速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「0.705」程度である第4速ギヤ段が成立させられる。また、第2クラッチC2および第2ブレーキB2の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「2.393」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば切換クラッチC0のみが係合される。   For example, when the speed change mechanism 70 functions as a stepped transmission, as shown in FIG. 15, the gear ratio γ1 is set to a maximum value, for example, “ A first gear that is approximately 2.804 "is established, and the gear ratio γ2 is smaller than that of the first gear by engaging the switching clutch C0, the first clutch C1, and the first brake B1, for example,“ The second speed gear stage of about 1.531 "is established, and the gear ratio γ3 is smaller than the second speed gear stage by engagement of the switching clutch C0, the first clutch C1, and the second clutch C2, for example," For example, the third speed gear stage of about 1.000 "is established, and the gear ratio γ4 is smaller than that of the third speed gear stage due to the engagement of the first clutch C1, the second clutch C2, and the switching brake B0. Fourth gear is approximately "0.705", is established. Further, by the engagement of the second clutch C2 and the second brake B2, a reverse gear stage in which the speed ratio γR is a value between the first speed gear stage and the second speed gear stage, for example, about “2.393” is established. Be made. When the neutral “N” state is set, for example, only the switching clutch C0 is engaged.

しかし、変速機構70が無段変速機として機能する場合には、図15に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、切換型変速部11が無段変速機として機能し、それに直列の自動変速部72が有段変速機として機能することにより、自動変速部72の第1速、第2速、第3速の各ギヤ段に対しその自動変速部72に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構70全体としてのトータル変速比γTが無段階に得られるようになる。   However, when transmission mechanism 70 functions as a continuously variable transmission, both switching clutch C0 and switching brake B0 in the engagement table shown in FIG. 15 are released. Thereby, the switching-type transmission unit 11 functions as a continuously variable transmission, and the automatic transmission unit 72 in series functions as a stepped transmission, whereby the first speed, the second speed, and the third speed of the automatic transmission unit 72. The rotational speed input to the automatic transmission unit 72, that is, the rotational speed of the transmission member 18 is changed steplessly with respect to each gear stage at a high speed, and each gear stage has a continuously variable transmission ratio width. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total speed ratio γT of the transmission mechanism 70 as a whole can be obtained continuously.

図16は、無段変速部或いは第1変速部として機能する切換型変速部11と有段変速部或いは第2変速部として機能する自動変速部72から構成される変速機構70において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。切換クラッチC0および切換ブレーキB0が解放される場合、および切換クラッチC0または切換ブレーキB0が係合させられる場合の動力分配機構16の各要素の回転速度は前述の場合と同様である。   FIG. 16 is a diagram illustrating a transmission mechanism 70 including a switching transmission 11 that functions as a continuously variable transmission or a first transmission, and an automatic transmission 72 that functions as a stepped transmission or a second transmission. The collinear chart which can represent on a straight line the relative relationship of the rotational speed of each rotation element from which a connection state differs is shown. When the switching clutch C0 and the switching brake B0 are released and when the switching clutch C0 or the switching brake B0 is engaged, the rotational speeds of the elements of the power distribution mechanism 16 are the same as those described above.

自動変速部72では、図16に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第7回転要素RE7(R2)の回転速度を示す縦線Y7と横線X2との交点と第5回転要素RE5(CA3)の回転速度を示す縦線Y5と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第6回転要素RE6(CA2,R3)の回転速度を示す縦線Y6との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第3速の出力軸22の回転速度が示される。上記第1速乃至第3速では、切換クラッチC0が係合させられている結果、エンジン回転速度NEと同じ回転速度で第7回転要素RE7に切換型変速部11からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、切換型変速部11からの動力がエンジン回転速度NEよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L4と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第4速の出力軸22の回転速度が示される。   In the automatic transmission unit 72, as shown in FIG. 16, when the first clutch C1 and the second brake B2 are engaged, the vertical line Y7 and the horizontal line X2 indicating the rotational speed of the seventh rotating element RE7 (R2). And an oblique straight line L1 passing through the intersection of the vertical line Y5 and the horizontal line X1 indicating the rotational speed of the fifth rotational element RE5 (CA3), and a sixth rotational element RE6 (CA2, CA2, coupled to the output shaft 22). The rotational speed of the output shaft 22 of the first speed is indicated by the intersection with the vertical line Y6 indicating the rotational speed of R3). Similarly, at an intersection of an oblique straight line L2 determined by engaging the first clutch C1 and the first brake B1, and a vertical line Y6 indicating the rotational speed of the sixth rotating element RE6 connected to the output shaft 22. The rotation speed of the output shaft 22 at the second speed is shown, and the horizontal straight line L3 determined by engaging the first clutch C1 and the second clutch C2 and the sixth rotation element RE6 connected to the output shaft 22 The rotation speed of the third-speed output shaft 22 is shown at the intersection with the vertical line Y6 indicating the rotation speed. In the first to third speeds, as a result of the switching clutch C0 being engaged, the power from the switching transmission 11 is input to the seventh rotating element RE7 at the same rotational speed as the engine rotational speed NE. However, when the switching brake B0 is engaged instead of the switching clutch C0, the power from the switching transmission 11 is input at a higher rotational speed than the engine rotational speed NE, so the first clutch C1, the second clutch The output shaft of the fourth speed at the intersection of the horizontal straight line L4 determined by engaging the clutch C2 and the switching brake B0 and the vertical line Y6 indicating the rotational speed of the sixth rotating element RE6 connected to the output shaft 22 A rotational speed of 22 is indicated.

本実施例の変速機構70においても、無段変速部或いは第1変速部として機能する切換型変速部11と、有段変速部或いは第2変速部として機能する自動変速部72とから構成されるので、前述の実施例と同様の効果が得られる。   The speed change mechanism 70 of the present embodiment also includes a switching type speed change part 11 that functions as a continuously variable speed change part or a first speed change part, and an automatic speed change part 72 that functions as a stepped speed change part or a second speed change part. Therefore, the same effect as the above-described embodiment can be obtained.

図17は、手動操作によって変速機構10の変速状態を切り換えるための変速状態手動選択装置としてのシーソー型スイッチ44である。例えば、ユーザは無段変速機のフィーリングや燃費改善効果が得られる走行を所望すれば変速機構10が無段変速状態とされるように手動操作により選択すればよいし、また有段変速機の変速に伴うエンジン回転速度の変化によるフィーリング向上を所望すれば変速機構10が有段変速状態とされるように手動操作により選択すればよい。また、スイッチ44に無段変速走行或いは有段変速走行の何れも選択されない状態である中立位置が設けられる場合には、スイッチ44がその中立位置の状態であるときすなわちユーザによって所望する変速状態が選択されていないときや所望する変速状態が自動切換のときには、前述の実施例と同様に切換制御手段50は変速機構10を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える。すなわち切換制御手段50により前記無段変速状態と前記有段変速状態とが手動操作による切換えでなく自動で切り換えられる。これによって、一層燃費が向上する適切な走行が得られる。   FIG. 17 shows a seesaw type switch 44 as a shift state manual selection device for switching the shift state of the transmission mechanism 10 by manual operation. For example, if the user desires a travel that can achieve the feeling of the continuously variable transmission and the effect of improving the fuel efficiency, the user may select the transmission mechanism 10 by a manual operation so that the continuously variable transmission is brought into the continuously variable transmission state. If it is desired to improve the feeling due to the change in the engine rotation speed associated with the speed change, the speed change mechanism 10 may be selected manually so as to be in the stepped speed change state. In addition, when the switch 44 is provided with a neutral position in which neither continuously variable speed traveling nor stepped speed variable traveling is selected, when the switch 44 is in the neutral position, that is, the speed change state desired by the user is determined. When not selected or when the desired shift state is automatic switching, the switching control means 50 selects the transmission mechanism 10 to be either the continuously variable transmission state or the stepped transmission state as in the above-described embodiment. Switch to. That is, the switching control means 50 automatically switches between the continuously variable transmission state and the stepped transmission state instead of switching by manual operation. As a result, it is possible to obtain an appropriate traveling with further improved fuel efficiency.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

例えば、前述の実施例の無段システム効率ηsyscおよび有段システム効率ηsysuは予め実験等で求められて、記憶されている一定値であったが、車両状態例えば車速Vや自動変速部20の作動油温等によって逐次変化させられる関数であってもよい。或いは、無段システム効率ηsyscおよび有段システム効率ηsysuはなくてもよい。この場合には、車両の燃料消費率fs は必ずしも正確なものではないがおおよその燃費の比較は可能である。   For example, the continuously variable system efficiency ηsysc and the stepped system efficiency ηsysu of the above-described embodiment are constant values that are obtained in advance through experiments or the like and stored, but the vehicle state such as the vehicle speed V or the operation of the automatic transmission unit 20 It may be a function that is sequentially changed according to the oil temperature or the like. Alternatively, the stepless system efficiency ηsysc and the stepped system efficiency ηsysu may be omitted. In this case, the fuel consumption rate fs of the vehicle is not necessarily accurate, but an approximate comparison of fuel consumption is possible.

また、前述の実施例の動力分配機構16では、第1キャリヤCA1がエンジン8に連結され、第1サンギヤS1が第1電動機M1に連結され、第1リングギヤR1が伝達部材18に連結されたいたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、第1遊星歯車装置24の3要素CA1、S1、R1のうちのいずれと連結されていても差し支えない。   In the power distribution mechanism 16 of the above-described embodiment, the first carrier CA1 is connected to the engine 8, the first sun gear S1 is connected to the first electric motor M1, and the first ring gear R1 is connected to the transmission member 18. However, the connection relationship is not necessarily limited thereto, and the engine 8, the first electric motor M1, and the transmission member 18 are connected to any of the three elements CA1, S1, and R1 of the first planetary gear device 24. It can be done.

また、前述の動力分配機構16には切換クラッチC0および切換ブレーキB0が備えられていたが、切換クラッチC0および切換ブレーキB0は必ずしも両方備えられる必要はなく、切換クラッチC0および切換ブレーキB0の一方のみが備えられていてもよい。また、上記切換クラッチC0は、サンギヤS1とキャリヤCA1とを選択的に連結するものであったが、サンギヤS1とリングギヤR1との間や、キャリヤCA1とリングギヤR1との間を選択的に連結するものであってもよい。要するに、第1遊星歯車装置24の3要素のうちのいずれか2つを相互に連結するものであればよい。   The power distribution mechanism 16 includes the switching clutch C0 and the switching brake B0. However, both the switching clutch C0 and the switching brake B0 are not necessarily provided, and only one of the switching clutch C0 and the switching brake B0 is provided. May be provided. The switching clutch C0 selectively connects the sun gear S1 and the carrier CA1, but selectively connects the sun gear S1 and the ring gear R1 or between the carrier CA1 and the ring gear R1. It may be a thing. In short, what is necessary is just to connect any two of the three elements of the first planetary gear unit 24 to each other.

また、前述の実施例では、切換クラッチC0および切換ブレーキB0などの油圧式摩擦係合装置は、パウダー(磁粉)クラッチ、電磁クラッチ、噛み合い型のドグクラッチなどの磁粉式、電磁式、機械式係合装置から構成されていてもよい。   In the above-described embodiment, the hydraulic friction engagement devices such as the switching clutch C0 and the switching brake B0 are magnetic powder type, electromagnetic type, mechanical type engagement such as a powder (magnetic powder) clutch, an electromagnetic clutch, and a meshing type dog clutch. You may be comprised from the apparatus.

また、前述の実施例では、第2電動機M2が伝達部材18に連結されていたが、出力軸22に連結されていてもよいし、自動変速部20、72内の回転部材に連結されていてもよい。   In the above-described embodiment, the second electric motor M2 is connected to the transmission member 18; Also good.

また、前述の実施例では、切換型変速部11すなわち動力分配機構16の出力部材である伝達部材18と駆動輪38との間の動力伝達経路に、自動変速部20、72が介装されていたが、例えば自動変速機の一種である無段変速機(CVT)等の他の形式の動力伝達装置が設けられていてもよいし、必ずしも設けられていなくてもよい。その無段変速機(CVT)の場合には、動力分配機構16が定変速状態とされることで全体として有段変速状態とされる。有段変速状態とは、電気パスを用いないで専ら機械的伝達経路で動力伝達することである。   In the above-described embodiment, the automatic transmission units 20 and 72 are interposed in the power transmission path between the transmission member 18 that is the output member of the switching type transmission unit 11, that is, the power distribution mechanism 16, and the drive wheels 38. However, another type of power transmission device such as a continuously variable transmission (CVT), which is a kind of automatic transmission, may be provided, or may not be necessarily provided. In the case of the continuously variable transmission (CVT), the power distribution mechanism 16 is brought into a constant speed change state, whereby the stepped speed change state is made as a whole. The stepped speed change state means that power is transmitted exclusively through a mechanical transmission path without using an electric path.

また、前述の実施例では、変速機構10、70はエンジン8以外に第1電動機M1或いは第2電動機M2のトルクによって駆動輪38が駆動されるハイブリッド車両用の駆動装置であったが、例えば変速機構10、70を構成する切換型変速部11すなわち動力分配機構16がハイブリッド制御されない電気的CVTと称される無段変速機としての機能のみを有するような車両用の駆動装置であっても本発明は適用され得る。   In the above-described embodiment, the speed change mechanisms 10 and 70 are drive devices for hybrid vehicles in which the drive wheels 38 are driven by the torque of the first electric motor M1 or the second electric motor M2 in addition to the engine 8. Even in the case of a vehicular drive apparatus that has only a function as a continuously variable transmission called an electric CVT in which the switching transmission 11 constituting the mechanisms 10, 70, that is, the power distribution mechanism 16, is not hybrid-controlled. The invention can be applied.

また、前述の実施例の動力分配機構16は、例えばエンジンによって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1および第2電動機M2に接続された差動歯車装置であってもよい。   The power distribution mechanism 16 of the above-described embodiment is a differential gear device in which, for example, a pinion rotated by an engine and a pair of bevel gears meshing with the pinion are connected to the first electric motor M1 and the second electric motor M2. There may be.

また、前述の実施例の動力分配機構16は、1組の遊星歯車装置から構成されていたが、2以上の遊星歯車装置から構成されて、定変速状態では3段以上の変速機として機能するものであってもよい。   Further, the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear devices, but is composed of two or more planetary gear devices, and functions as a transmission of three or more stages in a constant speed state. It may be a thing.

また、前述の実施例のスイッチ44はシーソー型のスイッチであったが、例えば押しボタン式のスイッチ、択一的にのみ押した状態が保持可能な2つの押しボタン式のスイッチ、レバー式スイッチ、スライド式スイッチ等の少なくとも無段変速走行と有段変速走行とが択一的に切り換えられるスイッチであればよい。   In addition, the switch 44 of the above-described embodiment is a seesaw type switch. Any switch that can selectively switch between at least continuously variable speed travel and stepped speed variable travel, such as a slide switch, may be used.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

本発明の一実施例であるハイブリッド車両の駆動装置の構成を説明する骨子図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a skeleton diagram illustrating a configuration of a hybrid vehicle drive device according to an embodiment of the present invention. 図1の実施例のハイブリッド車両の駆動装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。2 is an operation chart for explaining a relationship between a speed change operation and a combination of operations of a hydraulic friction engagement device used in the case where the drive device of the hybrid vehicle of the embodiment of FIG. 図1の実施例のハイブリッド車両の駆動装置が有段変速作動させられる場合における各ギヤ段の相対的回転速度を説明する共線図である。FIG. 6 is a collinear diagram illustrating the relative rotational speed of each gear when the drive device for the hybrid vehicle of the embodiment of FIG. 図1の実施例の駆動装置に設けられた電子制御装置の入出力信号を説明する図である。It is a figure explaining the input-output signal of the electronic controller provided in the drive device of the Example of FIG. 図4の電子制御装置の制御作動の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control action of the electronic controller of FIG. 燃料消費率の算出に用いられる燃費マップの一例である。It is an example of the fuel consumption map used for calculation of a fuel consumption rate. 車速に対して変化する無段変速状態および有段変速状態のそれぞれの伝達効率を示した一例である。It is an example which showed each transmission efficiency of the continuously variable transmission state and stepped transmission state which change with respect to a vehicle speed. 有段式変速機におけるアップシフトに伴うエンジン回転速度の変化の一例である。It is an example of the change of the engine speed accompanying the upshift in a stepped transmission. 本発明の実施例における電子制御装置の制御作動の要部を説明するフローチャートである。It is a flowchart explaining the principal part of the control action of the electronic controller in the Example of this invention. 図4の電子制御装置の制御作動の要部を説明する機能ブロック線図であって、図5の実施例の別の実施例である。FIG. 6 is a functional block diagram for explaining a main part of the control operation of the electronic control device of FIG. 4, which is another embodiment of the embodiment of FIG. 5. 自動変速部の変速判断の基となる予め記憶された変速線図であって、変速機構を無段変速状態或いは有段変速状態とするための領域が設定された切換線図でもある。FIG. 5 is a shift diagram stored in advance as a basis for shift determination of the automatic transmission unit, and is a switching diagram in which an area for setting the transmission mechanism to a continuously variable transmission state or a stepped transmission state is set. 図4の電子制御装置の制御作動の要部を説明する機能ブロック線図であって、図5の実施例の別の実施例である。FIG. 6 is a functional block diagram for explaining a main part of the control operation of the electronic control device of FIG. 4, which is another embodiment of the embodiment of FIG. 5. 無段制御領域と有段制御領域との境界線を有する予め記憶された関係を示す図である。It is a figure which shows the relationship memorize | stored previously which has the boundary line of a stepless control area | region and a stepped control area | region. 本発明の他の実施例におけるハイブリッド車両の駆動装置の構成を説明する骨子図であって、図1に相当する図である。FIG. 4 is a skeleton diagram illustrating a configuration of a drive device for a hybrid vehicle according to another embodiment of the present invention, corresponding to FIG. 1. 図14の実施例のハイブリッド車両の駆動装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表であって、図2に相当する図である。FIG. 15 is an operation chart for explaining the relationship between the speed change operation and the operation of the hydraulic friction engagement device used therefor when the drive device of the hybrid vehicle of the embodiment of FIG. FIG. 3 is a diagram corresponding to FIG. 2. 図14の実施例のハイブリッド車両の駆動装置が有段変速作動させられる場合における各ギヤ段の相対的回転速度を説明する共線図であって、図3に相当する図である。FIG. 15 is a collinear diagram illustrating the relative rotational speeds of the respective gear stages when the hybrid vehicle drive device of the embodiment of FIG. 切換装置としてのシーソー型スイッチであって変速状態を選択するためにユーザによって操作される変速状態手動選択装置の一例である。It is an example of a shift state manual selection device that is a seesaw type switch as a switching device and is operated by a user to select a shift state.

符号の説明Explanation of symbols

8:エンジン
10、70:変速状態切換型変速機構(駆動装置)
12:トランスミッションケース(非回転部材)
16:動力分配機構
18:伝達部材
20、72:自動変速部(有段式自動変速機)
24:第1遊星歯車装置(シングルピニオン型遊星歯車装置)
38:駆動輪
50:切換制御手段
M1:第1電動機
M2:第2電動機
C0:切換クラッチ(作動状態切換装置)
B0:切換ブレーキ(作動状態切換装置)
8: Engine 10, 70: Shift state switching type transmission mechanism (drive device)
12: Transmission case (non-rotating member)
16: Power distribution mechanism 18: Transmission member 20, 72: Automatic transmission (stepped automatic transmission)
24: First planetary gear unit (single pinion type planetary gear unit)
38: Drive wheel 50: Switching control means M1: First electric motor M2: Second electric motor C0: Switching clutch (operating state switching device)
B0: Switching brake (operating state switching device)

Claims (19)

エンジンの出力を駆動輪へ伝達する車両用駆動装置の制御装置であって、
電気的な無段変速機として作動可能な無段変速状態と有段の変速機として作動可能な有段変速状態とに切り換え可能な変速状態切換型変速機構と、
前記無段変速状態および前記有段変速状態の何れの走行での車両の燃料消費率が良いかに基づいて前記変速状態切換型変速機構を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える切換制御手段と
を、含むことを特徴とする車両用駆動装置の制御装置。
A control device for a vehicle drive device that transmits engine output to drive wheels,
A transmission state switching type transmission mechanism capable of switching between a continuously variable transmission state operable as an electric continuously variable transmission and a stepped transmission state operable as a stepped transmission;
Based on whether the fuel consumption rate of the vehicle in the continuously variable transmission state or the stepped transmission state is good, the transmission state switching type transmission mechanism is changed between the continuously variable transmission state and the stepped transmission state. And a switching control means for selectively switching to the vehicle.
前記燃料消費率は車両状態から逐次算出されるものである請求項1の車両用駆動装置の制御装置。 2. The control device for a vehicle drive device according to claim 1, wherein the fuel consumption rate is sequentially calculated from a vehicle state. 前記車両状態から逐次算出される燃料消費率は、予め記憶された関係から求められるエンジンの燃料消費率に基づいて算出されるものである請求項2の車両用駆動装置の制御装置。 3. The control device for a vehicle drive device according to claim 2, wherein the fuel consumption rate sequentially calculated from the vehicle state is calculated based on a fuel consumption rate of the engine obtained from a relationship stored in advance. 前記車両状態から逐次算出される燃料消費率は、エンジンから駆動輪への伝達効率が考慮されるものである請求項2または3の車両用駆動装置の制御装置。 4. The control device for a vehicle drive device according to claim 2, wherein the fuel consumption rate calculated sequentially from the vehicle state takes into account the transmission efficiency from the engine to the drive wheels. 前記伝達効率は車両の走行抵抗によって変化するものである請求項4の車両用駆動装置の制御装置。 5. The control device for a vehicle drive device according to claim 4, wherein the transmission efficiency varies depending on a running resistance of the vehicle. 前記伝達効率は車速によって変化するものである請求項4または5の車両用駆動装置の制御装置。 6. The control device for a vehicle drive device according to claim 4, wherein the transmission efficiency varies depending on a vehicle speed. 前記伝達効率は車両の駆動力関連値によって変化するものである請求項4乃至6のいずれかの車両用駆動装置の制御装置。 The control device for a vehicle drive device according to any one of claims 4 to 6, wherein the transmission efficiency varies depending on a value related to a driving force of the vehicle. 前記無段変速状態および前記有段変速状態の何れでの走行が燃料消費率が良いかにより該無段変速状態或いは該有段変速状態とするための領域が設定された予め記憶された関係から現在の車両状態に基づいて前記変速状態切換型変速機構が前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換えられるものである請求項1の車両用駆動装置の制御装置。 Based on a previously stored relationship in which a region for setting the continuously variable transmission state or the stepped transmission state is set depending on whether the fuel consumption rate is high in the stepless transmission state or the stepped transmission state. 2. The control device for a vehicle drive device according to claim 1, wherein the shift state switching type transmission mechanism is selectively switched between the continuously variable shift state and the stepped shift state based on a current vehicle state. . 前記切換制御手段は、実際の車速が予め設定された高速走行判定値を越えたときに前記変速状態切換型変速機構を前記有段変速状態とするものである請求項1乃至8のいずれかの車両用駆動装置の制御装置。 9. The switching control means according to claim 1, wherein when the actual vehicle speed exceeds a preset high-speed traveling determination value, the shift state switching type transmission mechanism is set to the stepped shift state. A control device for a vehicle drive device. 前記切換制御手段は、車両の駆動力関連値が予め設定された高出力走行判定値を越えたときに前記変速状態切換型変速機構を前記有段変速状態とするものである請求項1乃至9のいずれかの車両用駆動装置の制御装置。 10. The switching control means sets the shift state switching type transmission mechanism to the stepped shift state when a driving force related value of a vehicle exceeds a preset high output travel determination value. A control device for a vehicle drive device. 前記切換制御手段は、前記変速状態切換型変速機構を前記電気的な無段変速状態とするための制御機器の機能低下を判定する故障判定条件が成立した場合に前記変速状態切換型変速機構を前記有段変速状態とするものである請求項1乃至10のいずれかの車両用駆動装置の制御装置。 The switching control means is configured to switch the transmission state switching type transmission mechanism when a failure determination condition for determining a functional deterioration of a control device for setting the transmission state switching type transmission mechanism to the electric continuously variable transmission state is satisfied. The control device for a vehicle drive device according to any one of claims 1 to 10, wherein the stepped gear shift state is set. 前記変速状態切換型変速機構は、前記エンジンに連結された第1要素と、第1電動機に連結された第2要素と、第2電動機および伝達部材に連結された第3要素とを有する動力分配機構を備え、
該動力分配機構は、前記変速状態切換型変速機構を前記無段変速状態および前記有段変速状態のいずれかの状態に切換可能とするための作動状態切換装置を有し、
前記切換制御手段は、該作動状態切換装置を制御することで前記無段変速状態と前記有段変速状態とを選択的に切り換えるものである請求項1乃至11のいずれかの車両用駆動装置の制御装置。
The shift state change-type transmission mechanism includes a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the second electric motor and the transmission member. Equipped with a mechanism
The power distribution mechanism includes an operation state switching device for enabling the shift state switching type transmission mechanism to be switched between the continuously variable transmission state and the stepped transmission state.
The vehicle drive device according to any one of claims 1 to 11, wherein the switching control means selectively switches between the continuously variable transmission state and the stepped transmission state by controlling the operation state switching device. Control device.
前記作動状態切換装置は、前記第1要素乃至第3要素のうちのいずれか2つを相互におよび/または該第2要素を非回転部材に連結する係合装置であり、
前記切換制御手段は、前記係合装置を解放して該第1要素、第2要素、および第3要素を相互に相対回転可能とすることにより前記無段変速状態とし、前記係合装置を係合して該第1要素、第2要素、および第3要素のうちの少なくとも2つを相互に連結するか或いは該第2要素を非回転状態とすることにより前記有段変速状態とするものである請求項12の車両用駆動装置の制御装置。
The operating state switching device is an engagement device that connects any two of the first to third elements to each other and / or the second element to a non-rotating member,
The switching control means releases the engagement device to allow the first element, the second element, and the third element to rotate relative to each other, thereby setting the continuously variable transmission state. In combination, at least two of the first element, the second element, and the third element are connected to each other, or the second element is brought into a non-rotating state so that the stepped speed change state is achieved. The control device for a vehicle drive device according to claim 12.
前記動力分配機構は遊星歯車装置であり、
前記第1要素は該遊星歯車装置のキャリヤであり、
前記第2要素は該遊星歯車装置のサンギヤであり、
前記第3要素は該遊星歯車装置のリングギヤであり、
前記係合装置は、前記キャリヤ、サンギヤ、リングギヤのうちのいずれか2つを相互に連結するクラッチおよび/または該サンギヤを非回転部材に連結するブレーキを備えたものである請求項13の車両用駆動装置の制御装置。
The power distribution mechanism is a planetary gear unit;
The first element is a carrier of the planetary gear set;
The second element is a sun gear of the planetary gear set;
The third element is a ring gear of the planetary gear set;
14. The vehicle according to claim 13, wherein the engagement device includes a clutch that connects any two of the carrier, the sun gear, and the ring gear to each other and / or a brake that connects the sun gear to a non-rotating member. Control device for driving device.
前記遊星歯車装置はシングルピニオン型遊星歯車装置である請求項14の車両用駆動装置の制御装置。 15. The control device for a vehicle drive device according to claim 14, wherein the planetary gear device is a single pinion type planetary gear device. 前記切換制御手段は、前記シングルピニオン型遊星歯車装置を変速比が1である変速機とするために前記キャリヤとサンギヤを相互に連結するか、或いは前記シングルピニオン型遊星歯車装置を変速比が1より小さい増速変速機とするために前記サンギヤを非回転状態とするように前記係合装置を制御するものである請求項15の車両用駆動装置の制御装置。 The switching control means connects the carrier and the sun gear to each other so that the single pinion planetary gear device is a transmission having a gear ratio of 1, or the single pinion planetary gear device has a gear ratio of 1. The vehicle drive device control device according to claim 15, wherein the engagement device is controlled so that the sun gear is in a non-rotating state in order to obtain a smaller speed increasing transmission. 前記変速状態切換型変速機構は、前記伝達部材と前記駆動輪との間において前記動力分配機構と直列に設けられた自動変速機を含み、
該自動変速機の変速比に基づいて前記変速状態切換型変速機構の変速比が形成されるものである請求項12乃至16のいずれかの車両用駆動装置の制御装置。
The transmission state switching type transmission mechanism includes an automatic transmission provided in series with the power distribution mechanism between the transmission member and the drive wheel,
The vehicle drive device control device according to any one of claims 12 to 16, wherein a gear ratio of the shift state change-type transmission mechanism is formed based on a gear ratio of the automatic transmission.
前記動力分配機構の変速比と前記自動変速機の変速比とに基づいて前記変速状態切換型変速機構の総合変速比が形成されるものである請求項17の車両用駆動装置の制御装置。 18. The control device for a vehicle drive device according to claim 17, wherein an overall transmission ratio of the transmission state switching type transmission mechanism is formed based on a transmission ratio of the power distribution mechanism and a transmission ratio of the automatic transmission. 前記自動変速機は有段式自動変速機であり、該有段式自動変速機の変速は、予め記憶された変速線図に基づいて実行されるものである請求項17または18の車両用駆動装置の制御装置。 The vehicle drive according to claim 17 or 18, wherein the automatic transmission is a stepped automatic transmission, and the shift of the stepped automatic transmission is executed based on a previously stored shift diagram. Control device for the device.
JP2004052211A 2003-12-26 2004-02-26 Control device for vehicle drive device Expired - Lifetime JP4026604B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
JP2004052211A JP4026604B2 (en) 2004-02-26 2004-02-26 Control device for vehicle drive device
US11/019,337 US7822524B2 (en) 2003-12-26 2004-12-23 Vehicular drive system
KR1020077025341A KR100863173B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle
CN2011100791521A CN102166946B (en) 2003-12-26 2004-12-24 Drive system for vehicle, method of controlling the system, and device for controlling the system
CN2004800421005A CN1926356B (en) 2003-12-26 2004-12-24 Drive system for vehicle
KR1020077025342A KR100882176B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle
KR1020077025345A KR20070112430A (en) 2003-12-26 2004-12-24 Drive device for vehicle, method of controlling the device, and device for controlling the device
EP04808093A EP1701061B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle, method of controlling the device, and device for controlling the device
KR1020077025340A KR100863172B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle
KR1020077025343A KR100882177B1 (en) 2003-12-26 2004-12-24 Device for controlling drive device for vehicle
PCT/JP2004/019743 WO2005064199A1 (en) 2003-12-26 2004-12-24 Drive device for vehicle, method of controlling the device, and device for controlling the device
KR1020067015144A KR100887204B1 (en) 2003-12-26 2004-12-24 Drive device for vehicle and method of controlling the device
CN201110079155.5A CN102166950B (en) 2003-12-26 2004-12-24 Drive system for vehicle, and method and device for controlling the syste
KR1020077025344A KR20070112304A (en) 2003-12-26 2004-12-24 Drive device for vehicle, method of controlling the device, and device for controlling the device
EP11002541.8A EP2375103B1 (en) 2003-12-26 2004-12-24 Vehicular drive system
US12/269,633 US7941259B2 (en) 2003-12-26 2008-11-12 Vehicular drive system
US12/269,659 US7848858B2 (en) 2003-12-26 2008-11-12 Vehicular drive system
US12/269,591 US20090075774A1 (en) 2003-12-26 2008-11-12 Vehicular drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052211A JP4026604B2 (en) 2004-02-26 2004-02-26 Control device for vehicle drive device

Publications (3)

Publication Number Publication Date
JP2005240917A true JP2005240917A (en) 2005-09-08
JP2005240917A5 JP2005240917A5 (en) 2007-03-22
JP4026604B2 JP4026604B2 (en) 2007-12-26

Family

ID=35022864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052211A Expired - Lifetime JP4026604B2 (en) 2003-12-26 2004-02-26 Control device for vehicle drive device

Country Status (1)

Country Link
JP (1) JP4026604B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049686A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Engine start control device
WO2007049685A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Shift control device for automatic transmission
JP2007112290A (en) * 2005-10-20 2007-05-10 Toyota Motor Corp Power output device, vehicle loading it and control method for power output device
JP2007118720A (en) * 2005-10-26 2007-05-17 Toyota Motor Corp Controller for drive unit for vehicle
JP2008273245A (en) * 2007-04-25 2008-11-13 Toyota Motor Corp Control device of power transmission device for vehicle
JP2010036708A (en) * 2008-08-04 2010-02-18 Toyota Motor Corp Controller for vehicular drive unit
JP2010052689A (en) * 2008-08-29 2010-03-11 Toyota Motor Corp Control device for power transmission device for vehicle
JP2010052497A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Device for controlling vehicle driving device
WO2014118950A1 (en) * 2013-01-31 2014-08-07 トヨタ自動車株式会社 Control device for hybrid vehicle
US8874290B2 (en) 2009-05-19 2014-10-28 Toyota Jidosha Kabushiki Kaisha Control device for vehicle power transmission device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112290A (en) * 2005-10-20 2007-05-10 Toyota Motor Corp Power output device, vehicle loading it and control method for power output device
WO2007049686A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Engine start control device
WO2007049685A1 (en) * 2005-10-26 2007-05-03 Toyota Jidosha Kabushiki Kaisha Shift control device for automatic transmission
JP2007118720A (en) * 2005-10-26 2007-05-17 Toyota Motor Corp Controller for drive unit for vehicle
US8496560B2 (en) 2005-10-26 2013-07-30 Toyota Jidosha Kabushiki Kaisha Starting control system for engines
US8012060B2 (en) 2005-10-26 2011-09-06 Toyota Jidosha Kabushiki Kaisha Speed change control system for automatic transmission
JP4600421B2 (en) * 2007-04-25 2010-12-15 トヨタ自動車株式会社 Control device for vehicle power transmission device
US8126622B2 (en) 2007-04-25 2012-02-28 Toyota Jidosha Kabushiki Kaisha Control device for vehicular power transmitting apparatus
JP2008273245A (en) * 2007-04-25 2008-11-13 Toyota Motor Corp Control device of power transmission device for vehicle
JP2010036708A (en) * 2008-08-04 2010-02-18 Toyota Motor Corp Controller for vehicular drive unit
JP2010052497A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Device for controlling vehicle driving device
JP2010052689A (en) * 2008-08-29 2010-03-11 Toyota Motor Corp Control device for power transmission device for vehicle
JP4600549B2 (en) * 2008-08-29 2010-12-15 トヨタ自動車株式会社 Control device for vehicle power transmission device
US8342274B2 (en) 2008-08-29 2013-01-01 Toyota Jidosha Kabushiki Kaisha Control device for power transmission device for vehicle
US8874290B2 (en) 2009-05-19 2014-10-28 Toyota Jidosha Kabushiki Kaisha Control device for vehicle power transmission device
WO2014118950A1 (en) * 2013-01-31 2014-08-07 トヨタ自動車株式会社 Control device for hybrid vehicle
JPWO2014118950A1 (en) * 2013-01-31 2017-01-26 トヨタ自動車株式会社 Control device for hybrid vehicle

Also Published As

Publication number Publication date
JP4026604B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4155230B2 (en) Control device for vehicle drive device
JP4192814B2 (en) Control device for vehicle drive device
JP4207920B2 (en) Vehicle drive device
JP4046103B2 (en) Control device for vehicle drive device
JP2007001390A (en) Controller for drive unit for vehicle
JP4134954B2 (en) Control device for vehicle drive device
JP2006070979A (en) Control device for vehicle driving device
JP4228942B2 (en) Control device for vehicle drive device
JP4114643B2 (en) Control device for vehicle drive device
JP4168954B2 (en) Control device for vehicle drive device
JP4144561B2 (en) Control device for vehicle drive device
JP4069903B2 (en) Control device for vehicle drive device
JP4026604B2 (en) Control device for vehicle drive device
JP4410655B2 (en) Control device for vehicle drive device
JP4151614B2 (en) Control device for vehicle drive device
JP4151735B2 (en) Control device for vehicle drive device
JP4214963B2 (en) Control device for vehicle drive device
JP2006046487A (en) Controller of drive device for vehicle
JP2009227096A (en) Control device for power transmission device for vehicle
JP4483892B2 (en) Control device for drive device for hybrid vehicle
JP4289242B2 (en) Control device for vehicle drive device
JP5024361B2 (en) Control device for vehicle drive device
JP4039384B2 (en) Control device for vehicle drive device
JP4293070B2 (en) Control device for vehicle drive device
JP4131246B2 (en) Control device for vehicle drive device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4026604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6