JP2005227233A - Measuring system of ground density - Google Patents

Measuring system of ground density Download PDF

Info

Publication number
JP2005227233A
JP2005227233A JP2004038703A JP2004038703A JP2005227233A JP 2005227233 A JP2005227233 A JP 2005227233A JP 2004038703 A JP2004038703 A JP 2004038703A JP 2004038703 A JP2004038703 A JP 2004038703A JP 2005227233 A JP2005227233 A JP 2005227233A
Authority
JP
Japan
Prior art keywords
ground
density
measuring
measurement
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004038703A
Other languages
Japanese (ja)
Inventor
Narifumi Fujiwara
藤原斉郁
Yukio Shiba
志波由紀夫
Shunsuke Kawai
川井俊介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2004038703A priority Critical patent/JP2005227233A/en
Publication of JP2005227233A publication Critical patent/JP2005227233A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring system of a ground density having a short measuring time of the ground density, and capable of avoiding waste of construction by enabling measurement approximately in parallel with a construction work. <P>SOLUTION: This measuring system of the ground density is equipped with an excavating device 20 for excavating the compacted ground, a measuring device 30 for measuring the volume of an excavated hole by a noncontact method, a measuring device for measuring the weight of an excavated soil, and a density calculation device for calculating the ground density from the measured volume of the excavated hole and the measured weight of the excavated soil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地盤密度の測定システムに関するものであり、特に転圧などの施工作業と並行して密度測定を行うことができ、再施工の判断を即座に行えるものである。   The present invention relates to a ground density measurement system, and in particular, density measurement can be performed in parallel with construction work such as rolling, and re-construction can be immediately determined.

盛土工事においては、完成時に要求される地盤の強度や荷重による変形・残留沈下等に関する機能特性を満足させるため、締め固めた地盤の密度を測定し、その締固め度を管理しながら工事を行っている。その際、地盤密度を測定する方法として、従来から砂置換法や水置換法などが多く用いられている。これらの方法は、地盤に小径の孔を掘り、その掘り起こした土の重量と、重量と体積との関係が既知である砂若しくは水をその孔に充填して求めた孔の体積とより、締め固めた地盤の密度を測定する方法である。   In the embankment work, in order to satisfy the functional characteristics related to ground strength, deformation and residual settlement due to load required at the time of completion, the density of the compacted ground is measured and the work is performed while controlling the compaction degree. ing. At that time, as a method for measuring the ground density, a sand replacement method, a water replacement method, and the like are conventionally used. These methods involve digging a small-diameter hole in the ground, and then tightening it based on the volume of the soil that has been dug and the volume of the hole obtained by filling the hole with sand or water whose relationship between the weight and the volume is known. It is a method to measure the density of the hardened ground.

また掘削孔の体積を求めるその他の方法として、レーザー測距器を用いた方法も出願されている(たとえば、特許文献1)。
特開2001−108592号公報
As another method for obtaining the volume of a borehole, a method using a laser range finder has been filed (for example, Patent Document 1).
JP 2001-108592 A

前記した従来の地盤密度の測定システムにあっては、次のような問題点がある。
<1>置換法によって測定を行うと、地盤の掘削、掘削面の仕上げ、置換材の投入、掘削土の重量測定など複数の作業が必要であるため、密度を求めるのに長い時間がかかってしまい効率が悪い。特に、盛土の締め固め度を広範囲に亘って測定する場合には、膨大な時間が必要となってしまい施工上、不経済である。
<2>砂置換法で使用する砂は、再利用が難しいため、測定コストが高くついてしまう。また、水置換法では、漏水を防ぐためにシートの敷設が必要となり、手間がかかる。
The conventional ground density measuring system described above has the following problems.
<1> When measurement is performed by the replacement method, it takes a long time to obtain the density because multiple operations such as excavation of the ground, finishing of the excavation surface, input of replacement material, and weight measurement of the excavated soil are necessary. The efficiency is poor. In particular, when the degree of compaction of the embankment is measured over a wide range, a huge amount of time is required, which is uneconomical in construction.
<2> Sand used in the sand replacement method is difficult to reuse, and therefore the measurement cost is high. In addition, in the water replacement method, it is necessary to lay a sheet to prevent water leakage, which is troublesome.

上記のような課題を解決するために、本発明の地盤密度の測定システムは、締め固めた地盤を掘削する掘削装置と、掘削孔の体積を、非接触法により測定する測定装置と、掘削土の重量を計測する計測装置と、を具備しており、前記掘削孔の体積と前記掘削土の重量とから地盤密度を算出する密度算出装置と、を具備したものである。   In order to solve the above-described problems, a ground density measuring system according to the present invention includes a drilling device for excavating compacted ground, a measuring device for measuring the volume of a drilling hole by a non-contact method, and excavated soil. And a density calculating device for calculating ground density from the volume of the excavation hole and the weight of the excavated soil.

また、本発明の地盤密度の測定システムは、全装置を移動車輌に搭載して、移動可能としたことを特徴とする。
The ground density measuring system of the present invention is characterized in that all devices are mounted on a moving vehicle to be movable.

本発明の地盤密度の測定システムは、上記した課題を解決するための手段により、次のような効果の少なくとも一つを得ることができる。
<1>本発明の地盤密度の測定システムは、掘削、孔の体積測定、掘削土の重量計測、密度の算出を一連の作業として行えるので、短時間で測定することができる。これによって施工後はもちろんのこと、転圧などの施工作業とほぼ並行に密度測定が行えるから、再施工の判断をその場で行うことで、無駄な施工作業を省くことができる。また作業は全て機械によって行えるので、測定に関わる作業員も少なくて済む。またかかる測定システムなら、広範囲に亘って複数箇所で測定を行っても、経済的負担は小さく、安価で地盤の品質を管理できる。
<2>本発明は、砂置換法のように体積と重量の関係が既知である高価な砂を必要としないため、ランニングコストが少なくてすみ経済的である。
<3>掘削孔の体積は非接触法により測定するため、地盤の土質を選ばずに密度測定を行うことができる。
The ground density measurement system of the present invention can obtain at least one of the following effects by means for solving the above-described problems.
<1> The ground density measurement system according to the present invention can perform excavation, hole volume measurement, excavation soil weight measurement, and density calculation as a series of operations, and thus can be measured in a short time. As a result, the density measurement can be performed almost in parallel with the construction work such as rolling, as well as after the construction. Therefore, the wasteful construction work can be omitted by performing the re-construction judgment on the spot. In addition, since all work can be performed by a machine, fewer workers are involved in the measurement. Also, with such a measurement system, even if measurements are made at a plurality of locations over a wide range, the economic burden is small and the quality of the ground can be managed at a low cost.
<2> Since the present invention does not require expensive sand whose volume and weight are known as in the sand replacement method, the running cost is low and it is economical.
<3> Since the volume of the excavation hole is measured by a non-contact method, the density can be measured without selecting the soil quality of the ground.

以下、図面を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<1>全体の構成
本発明に係る地盤密度の測定システムは、図1に示すように、全装置を移動車輌10に備えて移動可能に構成したもので、掘削装置20と、掘削孔の体積を測定する測定装置30と、掘削土の重量を計測する図外の計測装置と、地盤密度を算出する図外の密度算出装置と、から構成している。
本例では移動車輌10に、地盤の転圧手段11を備える転圧専用車輌を使用する。
以下、本発明を構成する各部について説明する。
<1> Overall Configuration As shown in FIG. 1, the ground density measurement system according to the present invention comprises all the devices provided in the mobile vehicle 10 so as to be movable. The measuring device 30 is configured to measure the weight of the excavated soil, and the unillustrated density calculating device is used to calculate the ground density.
In this example, a rolling-dedicated vehicle provided with ground rolling means 11 is used as the moving vehicle 10.
Hereinafter, each part which comprises this invention is demonstrated.

<2>掘削装置
掘削装置20は、地盤を掘削して掘削孔を形成する装置である。掘削装置20は、地盤に形成する掘削孔にスキャニングの死角をつくらないような構成とする。たとえば、掘削装置20は、クラムシェルのように、測定箇所を刃付きバケット21、21で両側から圧入して掘削するタイプ(図1)や、刃付きバケット21を測定箇所の片側から半円上に圧入して掘削するタイプ(図示せず)などが採用できる。バケット21の形状は、掘削孔にスキャニングの死角をつくらなければ、特に限定されるものではなく、バケット21刃の断面形状を、矩形、円弧形、V字形などに形成しても良い。掘削装置20は、掘削時の地盤反力に耐え得るように、移動車輌10などに支持する。
<2> Excavator The excavator 20 is an apparatus that excavates the ground to form an excavation hole. The excavator 20 is configured so as not to create a scanning blind spot in the excavation hole formed in the ground. For example, the excavator 20 is a type in which a measurement point is press-fitted from both sides with buckets 21 and 21 with a blade, such as a clam shell (FIG. 1), or the blade 21 with a blade is semicircularly from one side of the measurement point For example, a type (not shown) that is press-fitted into an excavation can be employed. The shape of the bucket 21 is not particularly limited as long as a blind spot for scanning is not formed in the excavation hole, and the cross-sectional shape of the bucket 21 blade may be formed in a rectangular shape, an arc shape, a V shape, or the like. The excavator 20 is supported by the mobile vehicle 10 or the like so as to withstand the ground reaction force during excavation.

また、掘削装置20のその他の形態として、図2に示すように、測定箇所4を覆うカバー22と、カバー22の内部を自在に移動して測定箇所4を掘削する回転ビット等の掘削部23と、からなるものを採用することもできる。この形態では、比較的強固な地盤でも掘削して測定できるという利点がある。掘削した土砂は、たとえばカバー22上に設けた開口部24から吸い込み、採取する。
また掘削装置20には、採取した掘削土を後述する計測装置に搬送する機能を備えても良い。これによって、掘削から掘削土の測定までを機械的に行うことができる。
As another form of the excavator 20, as shown in FIG. 2, a cover 22 that covers the measurement point 4 and a drilling unit 23 such as a rotating bit that freely moves inside the cover 22 to excavate the measurement point 4. It is also possible to adopt what consists of. This form has the advantage of being able to excavate and measure even on relatively strong ground. The excavated earth and sand is sucked and collected from an opening 24 provided on the cover 22, for example.
Further, the excavator 20 may have a function of conveying the collected excavated soil to a measuring device described later. Thereby, it is possible to perform mechanically from excavation to excavation soil measurement.

<3>測定装置
測定装置30は、掘削孔の体積を測定する装置である。測定方法は、地盤に接触しない非接触法により掘削面の形状を三次元で捉えて、掘削前の地盤の形状との比較から掘削孔の体積を算出する方法で、三次元データから体積を算出するアルゴリズムは公知の方法を使用することができる。
<3> Measuring Device The measuring device 30 is a device that measures the volume of the excavation hole. The measurement method uses a non-contact method that does not contact the ground to capture the shape of the excavation surface in three dimensions, and calculates the volume of the excavation hole based on comparison with the shape of the ground before excavation. The volume is calculated from the three-dimensional data. A known method can be used as the algorithm to perform.

掘削面を把握する方法には、たとえばレーザー光による測距技術を応用した方法(図1、図3)や、ステレオカメラ32、32など画像処理技術を応用した方法(図4)などが採用できる。
測距技術を応用したより詳細な方法としては、たとえば測定箇所の上方に光源31を位置させ、下向きのレーザー光を回転させながら照射して三次元座標を求める方法(図1)や、或いは下向きのレーザー光源33を測定箇所4の上方に平行移動させることにより三次元座標を求める方法(図3)などが採用できる。レーザー光を用いて測定する場合には、掘削孔の内壁は白くするのが好ましい。これによって、光源31、32から地盤面(掘削面)までの距離を正確に測定できるようになり、測定精度を向上させることができる。塗色は、スプレーなどで行うと良い。
As a method for grasping the excavation surface, for example, a method using a laser beam ranging technique (FIGS. 1 and 3), a method using an image processing technique such as stereo cameras 32 and 32 (FIG. 4), or the like can be adopted. .
As a more detailed method applying the distance measuring technique, for example, a method of obtaining the three-dimensional coordinates by positioning the light source 31 above the measurement location and rotating the laser beam downward (FIG. 1), or downward A method of obtaining the three-dimensional coordinates by moving the laser light source 33 in parallel above the measurement location 4 (FIG. 3) can be employed. When measuring using laser light, the inner wall of the borehole is preferably white. As a result, the distance from the light sources 31 and 32 to the ground surface (excavation surface) can be accurately measured, and the measurement accuracy can be improved. The paint color may be sprayed.

また、この測定装置30は、掘削孔の形状をスキャニングするのみならず、掘削孔を掘削する前の地盤形状を読み取るのにも使用できる。そしてこのデータを初期データとし、掘削孔の形状データと組み併せれば、掘削孔の体積を求めることができる。
なお、測定装置30は掘削孔の体積を測定するものであれば、上記形態に限定されるものではない。
The measuring device 30 can be used not only for scanning the shape of the excavation hole but also for reading the ground shape before excavating the excavation hole. If this data is used as initial data and combined with the shape data of the excavation hole, the volume of the excavation hole can be obtained.
The measuring device 30 is not limited to the above embodiment as long as it measures the volume of the excavation hole.

<4>計測装置
計測装置は、採取した土砂の重量を計測する装置である。この計測装置には、公知のものが使用できる。
また、計測装置には、重量のほかに土砂の水分を測定する機能を併用させても良い。含有水分を測定すれば、各測定ポイント毎に条件を補正しながら、土砂密度を求めることができるので、測定条件が異なる場合でも条件に左右されることなく、リアルタイムで正確な測定が可能となる。
<4> Measuring device The measuring device is a device for measuring the weight of the collected earth and sand. A well-known thing can be used for this measuring apparatus.
In addition to the weight, the measuring device may be used in combination with a function of measuring the moisture of the earth and sand. If the moisture content is measured, the sediment density can be obtained while correcting the conditions at each measurement point, so even if the measurement conditions are different, accurate measurement is possible in real time without being influenced by the conditions. .

<5>密度算出装置
密度算出装置は、掘削孔の体積と掘削土の重量とから、地盤密度を算出するもので、この密度算出装置には公知の装置が使用できる。
<5> Density Calculation Device The density calculation device calculates the ground density from the volume of the excavation hole and the weight of the excavation soil, and a known device can be used as the density calculation device.

以下、図1の実施例と図5の作業フローを参照にしながら、地盤密度の測定システムの実施例について説明する。   Hereinafter, an embodiment of the ground density measurement system will be described with reference to the embodiment of FIG. 1 and the work flow of FIG.

<1>地表面の整形
盛土の上に移動車輌10を走行させ、転圧手段11により締め固めを行う。ある程度の硬さまで転圧を行った後、移動車輌10を任意の測定地点で停止させる。
<1> Shaping the ground surface The moving vehicle 10 is run on the embankment and compacted by the rolling means 11. After rolling to a certain degree of hardness, the mobile vehicle 10 is stopped at an arbitrary measurement point.

移動車輌10には、本例のようなロードローラーのほか、転圧機能を兼ね備えたタンピングローラーやタイヤローラーなどを用いることもできる。この転圧専用車輌に、車体の内部から盛土面に向けて掘削装置20と測定装置30を伸縮できるように配置し、採取した掘削土を計測装置へ搬送して、車内で土砂の密度測定を行えるようにセットする(図1)。
In addition to the road roller as in this example, a tamping roller or a tire roller having a rolling function can also be used for the moving vehicle 10. In this rolling compacting vehicle, the excavator 20 and the measuring device 30 are arranged so as to be able to expand and contract from the inside of the vehicle body to the embankment surface, and the excavated soil collected is conveyed to the measuring device to measure the density of the sediment in the vehicle. Set so that it can be done (FIG. 1).

<2>掘削土の採取
移動車輌10から盛土面に向けて掘削装置20を伸長し、先端に懸垂するバケット21、21で地盤を掘削する。この掘削装置20は、掘削時に地盤面を押圧して、盛土の締め固め具合に影響を与えない構成とする。
掘削土はバケット21、21で掴んだまま、車輌10内に取り込む。
こうして、盛土面には掘削装置20により形成された掘削孔ができる。
<2> Collection of excavated soil The excavator 20 is extended from the moving vehicle 10 toward the embankment surface, and the ground is excavated with buckets 21 and 21 suspended from the tip. The excavator 20 is configured to press the ground surface during excavation and not affect the filling compaction.
The excavated soil is taken into the vehicle 10 while being held by the buckets 21 and 21.
Thus, the excavation hole formed by the excavator 20 is formed on the embankment surface.

<3>掘削孔のスキャニング
次に、掘削孔の形状を求める。本例では、レーザー光源31が回転する測距技術を用いて行う。
移動車輌10から掘削孔に向けて光源31を伸長し、掘削孔の開口部近傍で停止させる。光源31を回転させながら、掘削孔に向けてレーザー光を照射し、光源31の照射角度と回転速度、および掘削面までの距離から掘削面の形状を三次元で割り出す。そして、この三次元データと、掘削前にあらかじめ測定した地盤面のデータとを比較して、掘削孔の体積を求める。
測定が終了したら、光源31は移動車輌10内にしまい込む。
<3> Scanning of excavation hole Next, the shape of the excavation hole is obtained. In this example, the distance measurement technique in which the laser light source 31 rotates is used.
The light source 31 is extended from the moving vehicle 10 toward the excavation hole and stopped near the opening of the excavation hole. While rotating the light source 31, the laser beam is irradiated toward the excavation hole, and the shape of the excavation surface is determined in three dimensions from the irradiation angle and rotation speed of the light source 31 and the distance to the excavation surface. Then, the volume of the excavation hole is obtained by comparing the three-dimensional data with the ground surface data measured in advance before excavation.
When the measurement is finished, the light source 31 is stowed in the moving vehicle 10.

<4>掘削土の重量測定
先の工程で採取した掘削土の重量を、計測装置を用いて測定する。密度の算出には、掘削土の重量が必須要素となるので、掘削孔の中には掘削土が残らないようにする。そのため、万が一掘削孔の中に、掘削土の一部を取りこぼした場合には、バキューム若しくはその他の機械的な機構等を用いて、残土を強制的に回収するのが好ましい。
<4> Weight measurement of excavated soil The weight of excavated soil collected in the previous step is measured using a measuring device. Since the weight of the excavated soil is an essential element for calculating the density, no excavated soil remains in the excavation hole. Therefore, if a part of the excavated soil is missed in the excavation hole, it is preferable to forcibly collect the remaining soil using a vacuum or other mechanical mechanism.

なお、この重量の計測工程は、掘削孔の体積測定の後に行っても、或いは体積測定の前に行うこともできるが、より測定時間を節約するためには、体積測定と並行して行うのが好ましい(図5)。
This weight measurement step can be performed after the volume measurement of the excavation hole or before the volume measurement, but in order to save the measurement time, it is performed in parallel with the volume measurement. Is preferred (FIG. 5).

<5>密度測定
次に、地盤密度を算出する。
掘削土の含有水分を測定する場合には、移動車輌10に予め搭載した水分計を用いて行う。また、必要に応じて乾燥炉による方法、フライパン法などを用いて測定しても良い。この水分測定は重量の測定と同時に行っても良い。
測定ポイント毎の含有水分を比較し、全体で含水比を調整する。
<5> Density measurement Next, the ground density is calculated.
When the moisture content of the excavated soil is measured, a moisture meter previously installed in the mobile vehicle 10 is used. Moreover, you may measure using the method by a drying furnace, the frying pan method, etc. as needed. This moisture measurement may be performed simultaneously with the weight measurement.
Compare the water content at each measurement point and adjust the water content ratio as a whole.

以上の作業が終了した後、測定した掘削孔の体積値、掘削土の重量値および含水比から、地盤密度の算出を行う。
測定が終了した後、移動車輌10を別の測定ポイントに移動して、同様の方法にて地盤密度の測定を行う。
なお、密度の算出は、計測した各データを車外に出力して、算出する形態としても良い。
After the above work is completed, the ground density is calculated from the measured volume value of the excavated hole, the weight value of the excavated soil, and the water content ratio.
After the measurement is completed, the mobile vehicle 10 is moved to another measurement point, and the ground density is measured by the same method.
The density may be calculated by outputting each measured data outside the vehicle.

以上のように、本発明は孔の掘削作業、体積測定、掘削土の重量測定等を一連のシステムとして機械的に行うことができるので、測定時間を大幅に短縮することができる。このため、転圧などの施工作業をほぼ並行に測定を行いながら、再転圧の判断を即座に行うことができる。これによって、無駄な施工を省くことができる。
以上は、一台の移動車輌10で密度測定を行う実施例について説明したが、数台の移動車輌10にて測定を実施できることはもちろんである。
As described above, according to the present invention, the excavation work of the hole, the volume measurement, the weight measurement of the excavated soil, and the like can be mechanically performed as a series of systems. For this reason, it is possible to immediately determine the re-rolling pressure while measuring the construction work such as the rolling pressure almost in parallel. Thereby, useless construction can be omitted.
The embodiment in which density measurement is performed with one mobile vehicle 10 has been described above, but it goes without saying that measurement can be performed with several mobile vehicles 10.

なお、以上は各装置を転圧専用車輌10に搭載して、転圧から密度測定までを一連のシステムとして行える形態としたが、バックホウなど転圧手段11を備えないショベル系掘削機、ブルドーザーなどの運搬系車輌に全装置を搭載しても良く、また移動車輌10を用いずに各装置を一纏めにした携帯形式とすることもできる。
In the above, each device is mounted on the rolling compaction vehicle 10 so that a series of systems from rolling compaction to density measurement can be performed, but excavator excavators, bulldozers and the like that do not include the compacting means 11 such as a backhoe. All the devices may be mounted on the transportation system vehicle, or the mobile vehicle 10 may be used without bringing the mobile vehicle 10 into a portable form.

本発明の地盤密度の測定システムの実施例の説明図。Explanatory drawing of the Example of the measurement system of the ground density of this invention. 掘削装置のその他の形態。Other forms of drilling equipment. 他の形態の測定装置を示した図。The figure which showed the measuring apparatus of the other form. 他の形態の測定装置を示した図。The figure which showed the measuring apparatus of the other form. 地盤密度の測定システムの工程図。The process drawing of a ground density measurement system.

符号の説明Explanation of symbols

10・・移動車輌
11・・転圧手段
20・・掘削装置
30・・測定装置
10. Mobile vehicle 11 Rolling means 20 Drilling device 30 Measuring device

Claims (2)

締め固めた地盤を掘削する掘削装置と、
掘削孔の体積を、非接触法により測定する測定装置と、
掘削土の重量を計測する計測装置と、
測定した前記掘削孔の体積と前記掘削土の重量とから地盤密度を算出する密度算出装置と、を具備した、
地盤密度の測定システム。
A drilling device for drilling compacted ground;
A measuring device for measuring the volume of a borehole by a non-contact method;
A measuring device for measuring the weight of the excavated soil;
A density calculating device for calculating a ground density from the measured volume of the excavation hole and the weight of the excavated soil,
Ground density measurement system.
全装置を移動車輌に搭載して、移動可能としたことを特徴とする、
請求項1に記載の地盤密度の測定システム。
All devices are mounted on a moving vehicle and are movable.
The ground density measuring system according to claim 1.
JP2004038703A 2004-02-16 2004-02-16 Measuring system of ground density Pending JP2005227233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038703A JP2005227233A (en) 2004-02-16 2004-02-16 Measuring system of ground density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038703A JP2005227233A (en) 2004-02-16 2004-02-16 Measuring system of ground density

Publications (1)

Publication Number Publication Date
JP2005227233A true JP2005227233A (en) 2005-08-25

Family

ID=35002048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038703A Pending JP2005227233A (en) 2004-02-16 2004-02-16 Measuring system of ground density

Country Status (1)

Country Link
JP (1) JP2005227233A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241300A (en) * 2007-03-26 2008-10-09 Komatsu Ltd Method and device for measuring work amount of hydraulic excavator
JP2013536667A (en) * 2010-08-19 2013-09-19 ハインドル、エドゥアルト A system for storing potential energy and a method for manufacturing the system.
CN105547914A (en) * 2015-12-31 2016-05-04 天津市瑞英泰科技发展有限公司 Train coal density measurement system
KR101917207B1 (en) 2017-03-14 2018-11-12 한국도로공사 Field Density Test Method
CN110398439A (en) * 2019-08-20 2019-11-01 中国电建集团成都勘测设计研究院有限公司 It is a kind of soil density fill sand test method and fill sand device
WO2020026521A1 (en) * 2018-07-31 2020-02-06 株式会社小松製作所 Work machine
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
JP2021195844A (en) * 2020-06-18 2021-12-27 東急建設株式会社 Soil density testing method
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
CN114720327A (en) * 2022-03-08 2022-07-08 山东高速济青中线公路有限公司 Evaluation method for evaluating detection reliability of stone-containing roadbed sand-filling method
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241300A (en) * 2007-03-26 2008-10-09 Komatsu Ltd Method and device for measuring work amount of hydraulic excavator
JP2013536667A (en) * 2010-08-19 2013-09-19 ハインドル、エドゥアルト A system for storing potential energy and a method for manufacturing the system.
CN105547914A (en) * 2015-12-31 2016-05-04 天津市瑞英泰科技发展有限公司 Train coal density measurement system
KR101917207B1 (en) 2017-03-14 2018-11-12 한국도로공사 Field Density Test Method
US11933017B2 (en) 2018-07-31 2024-03-19 Komatsu Ltd. Work machine
CN111771030B (en) * 2018-07-31 2022-04-22 株式会社小松制作所 Working machine
JP2020020154A (en) * 2018-07-31 2020-02-06 株式会社小松製作所 Work machine
CN111771030A (en) * 2018-07-31 2020-10-13 株式会社小松制作所 Working machine
JP7236826B2 (en) 2018-07-31 2023-03-10 株式会社小松製作所 working machine
WO2020026521A1 (en) * 2018-07-31 2020-02-06 株式会社小松製作所 Work machine
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
CN110398439A (en) * 2019-08-20 2019-11-01 中国电建集团成都勘测设计研究院有限公司 It is a kind of soil density fill sand test method and fill sand device
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
JP7323492B2 (en) 2020-06-18 2023-08-08 東急建設株式会社 soil density test method
JP2021195844A (en) * 2020-06-18 2021-12-27 東急建設株式会社 Soil density testing method
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
CN114720327A (en) * 2022-03-08 2022-07-08 山东高速济青中线公路有限公司 Evaluation method for evaluating detection reliability of stone-containing roadbed sand-filling method
CN114720327B (en) * 2022-03-08 2023-08-29 山东高速济青中线公路有限公司 Evaluation method for evaluating detection reliability of stone-containing roadbed sand filling method

Similar Documents

Publication Publication Date Title
JP2005227233A (en) Measuring system of ground density
JP6567440B2 (en) Ground compaction state measuring device, compaction state measuring method, and compaction machine
CN100545359C (en) Construction target instructing device
CN103900497B (en) Based on the contactless digger operating device attitude measurement method of vision measurement
US10738441B2 (en) Measuring equipment for determining the result of earthmoving work
KR102459914B1 (en) Method and electronic control unit for vertical positioning
CN109072587A (en) construction system and construction method
JP4545818B2 (en) Excavation support apparatus and excavation support method
JP4642288B2 (en) Underground excavation system
CN107780938A (en) A kind of method for realizing opencut excavating equipment control ore mine grade
CN115667636A (en) Excavation plan creation device, work machine, and excavation plan creation method
JP6894326B2 (en) Caisson aperture ratio calculation system, aperture ratio calculation method and aperture ratio calculation program
JP2005226412A (en) Sediment gathering device and ground density measuring method
WO2017061512A1 (en) Work-performing method, control system for work machine, and work machine
US20220056669A1 (en) Construction machine management system, construction machine management program, construction machine management method, construction machine, and external management device for construction machine
JP2006144388A (en) Dredging work supporting system
FI123605B (en) Method and apparatus for forming a structural layer of a traffic lane
JP2001348906A (en) Trench excavator, method of displaying trench wall shape in trench excavator and method of correcting trench wall shape
CN108797609A (en) Environmentally protective steel pipe steel plate combination construction method for supporting
JP6915181B1 (en) Blade edge judgment system and program
JP6788990B2 (en) Scraping management device
JP3483438B2 (en) Underground propulsion device initial angle detection method and horizontal position continuous detection method
CN102866080A (en) Dike dam riprap density measuring method based on image analysis
KR20130082880A (en) Reclaimed land subsidence analysis system in time progressing usind 3d laser scanner
JP2010185280A (en) Excavation support apparatus and excavation support method