JP2005224045A - Non-contact power feeding device and wire-less system provided with it - Google Patents

Non-contact power feeding device and wire-less system provided with it Download PDF

Info

Publication number
JP2005224045A
JP2005224045A JP2004030487A JP2004030487A JP2005224045A JP 2005224045 A JP2005224045 A JP 2005224045A JP 2004030487 A JP2004030487 A JP 2004030487A JP 2004030487 A JP2004030487 A JP 2004030487A JP 2005224045 A JP2005224045 A JP 2005224045A
Authority
JP
Japan
Prior art keywords
power
core
secondary coil
primary
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004030487A
Other languages
Japanese (ja)
Inventor
Katsuaki Morita
克明 森田
Masahiro Yamaguchi
正博 山口
Hiroshi Yamashita
博 山下
Hiroyuki Kono
浩幸 河野
Masamochi Fukuba
眞望 福場
Akio Yasuhara
陽生 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004030487A priority Critical patent/JP2005224045A/en
Publication of JP2005224045A publication Critical patent/JP2005224045A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce weight, to downsize dimensions, and to improve power feeding efficiency, with regard to a non-contact power feeding device that feed electric power to a motor-driven moving body by a non-contact method and a wire-less system provided with the device. <P>SOLUTION: A power feeder is provided with a primary core 7 made up of a roughly annular core body 8 in a portion of which openings are formed, and movable cores 9a, 9b that open or connect the openings; primary coils 10a, 10b wound on the primary core 7; and a charging power source 5 that feeds high-frequency electric power to the primary coils 10a, 10b. A power receiving terminal is provided with a secondary coil 11 and an electricity storing device 13 connected to the secondary coil 11. When power is fed from the charging power source 5 to the electricity-storing device 13, the movable cores 9a, 9b enter the hollow portion of the secondary coil 11 to connect the openings of a core body 8 crossing the secondary coil 11. When power is not fed, the movable cores 9a, 9b leave the hollow portion of the secondary coil 11 to open the openings of the core body 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電動式の移動体に非接触で給電を行なう非接触給電装置および非接触給電装置を備えた架線レスシステムに関するものである。   The present invention relates to a non-contact power feeding device that feeds power to a motor-driven movable body in a non-contact manner and an overhead wire-less system including the non-contact power feeding device.

従来より、電動式の移動体に非接触で給電を行なう非接触給電装置が種々開発されている。例えば特許文献1には図11に示すような非接触給電装置が開示されている。この特許文献1の技術では、1次伝導体としての絶縁皮膜された2本の交流給電線50a,50bを移動体(図示省略)の軌道に沿って延設するとともに、2次伝導体51a,51bを環状に巻きつけた鉄心52を移動体側に固設している。鉄心52は、開閉自在な上側環部分53aと下側環部分53bとから形成され、上側環部分53aと下側環部分53bとは共通部分54を共有しており、2次伝導体51a,51bはこれら上側環部分53a及び下側環部分53bのそれぞれに巻きけられている。そして、交流給電線50a,50bが鉄心52の上側環部分53a及び下側環部分53bに交差するように鉄心52を移動体に設置し、交流給電線50a,50bに発生する磁力により鉄心52の2次伝導体51a,51bに誘導起電力を発生させることで、交流給電線50a,50bの電力を移動体に非接触で供給している。   2. Description of the Related Art Conventionally, various non-contact power feeding apparatuses that perform power feeding in a non-contact manner to an electric mobile body have been developed. For example, Patent Document 1 discloses a non-contact power feeding device as shown in FIG. In the technique of this Patent Document 1, two AC power supply lines 50a and 50b with insulating coatings as primary conductors are extended along the trajectory of a moving body (not shown), and the secondary conductors 51a, An iron core 52 having an annular shape 51b is fixed on the moving body side. The iron core 52 is formed of an upper ring portion 53a and a lower ring portion 53b that can be freely opened and closed. The upper ring portion 53a and the lower ring portion 53b share a common portion 54, and secondary conductors 51a and 51b. Is wound around each of the upper ring portion 53a and the lower ring portion 53b. Then, the iron core 52 is installed on the moving body so that the AC power supply lines 50a and 50b intersect the upper ring portion 53a and the lower ring portion 53b of the iron core 52, and the magnetic force generated in the AC power supply lines 50a and 50b By generating an induced electromotive force in the secondary conductors 51a and 51b, the power of the AC power supply lines 50a and 50b is supplied to the moving body in a non-contact manner.

また、通常、このように交流給電線50a,50bから移動体へ電力を供給するタイプでは、交流給電線50a,50bを支持するための支持部材55a,55bが軌道方向の複数箇所に設置されているが、特許文献1の技術では、移動体が支持部材55a,55bを通過するときは、鉄心52が支持部材55a,55bに干渉しないように上側環部分53a及び下側環部分53bの支持部材55a,55bに対応した部分が適宜開閉するようになっている。   In general, in the type in which power is supplied from the AC power supply lines 50a and 50b to the moving body as described above, support members 55a and 55b for supporting the AC power supply lines 50a and 50b are installed at a plurality of locations in the track direction. However, in the technique disclosed in Patent Document 1, when the moving body passes through the support members 55a and 55b, the support members of the upper ring portion 53a and the lower ring portion 53b so that the iron core 52 does not interfere with the support members 55a and 55b. The portions corresponding to 55a and 55b are appropriately opened and closed.

具体的には、上側支持部材55aの上面に交流給電線50aと平行に掛け渡され且つ両端部が下方へ傾斜した上側永久磁石56aと、下側支持部材55bの下面に交流給電線50bと平行に掛け渡され且つ両端部が上方へ傾斜した下側永久磁石56bと、上側永久磁石56aと同極で且つ上側環部分53aにおける支持部材55aに対応した部分に取付具57aを介して取り付けられた第1永久磁石58aと、下側永久磁石56bと同極で且つ下側環部分53bにおける支持部材55bに対応した部分に取付具57bを介して取り付けられた第2永久磁石58bとをそなえ、移動体が軌道を走行しているときに上側支持部材55a及び下側支持部材55bに近づくにつれて上側環部分53a及び下側環部分53bが開き、移動体が上側支持部材55a及び下側支持部材55bから離れるにつれて上側環部分53a及び下側環部分53bが閉じるようになっている。   Specifically, the upper permanent magnet 56a spans the upper surface of the upper support member 55a in parallel with the AC power supply line 50a and both end portions are inclined downward, and the lower surface of the lower support member 55b is parallel to the AC power supply line 50b. The upper permanent magnet 56a is attached to a portion corresponding to the support member 55a in the upper ring portion 53a via a fixture 57a. A first permanent magnet 58a and a second permanent magnet 58b having the same polarity as the lower permanent magnet 56b and attached to a portion corresponding to the support member 55b in the lower ring portion 53b via a fixture 57b When the body is traveling on the track, the upper ring portion 53a and the lower ring portion 53b are opened as the upper support member 55a and the lower support member 55b are approached, and the movable body is the upper support portion. So that the closing upper ring portion 53a and a lower ring portion 53b moves away from 55a and the lower support member 55b.

また、非特許文献1には、エレベータかご側に2次電池を搭載し、エレベータかごが給電ポイントである特定階に到着した時のみ非接触で給電を行なう非接触給電装置が開示されている。具体的には図12に示すように、I形状のコア60aに1次コイル61aを巻きつけた1次側トランス61と、1次側トランス61に電力を供給する充電電源63とを建物の特定階(図示省略)に設けるとともに、C形状のコア60bに2次コイル62a,62bを巻きつけた2次側トランス62と、2次側トランス62からの交流電力を直流電力に変換する整流装置64と、整流装置64により変換した直流電力を蓄電する蓄電装置65とをエレベータかご(図示省略)に設け、エレベータかごが特定階に到着した時に充電電源63により1次側トランス61に電力を供給して1次コイル61aにより磁束を発生させることで、2次側トランス62の2次コイル62a,62bに誘導起電力を発生させ、この起電力を整流装置64により整流したのち蓄電装置65に蓄電している。なお、図12中、符号M10は磁束を示している。 Further, Non-Patent Document 1 discloses a non-contact power feeding device in which a secondary battery is mounted on the elevator car side and power is fed in a non-contact manner only when the elevator car arrives at a specific floor as a power feeding point. Specifically, as shown in FIG. 12, a primary transformer 61 in which a primary coil 61a is wound around an I-shaped core 60a and a charging power supply 63 that supplies power to the primary transformer 61 are specified for the building. Provided on the floor (not shown), a secondary transformer 62 in which secondary coils 62a and 62b are wound around a C-shaped core 60b, and a rectifier 64 that converts AC power from the secondary transformer 62 into DC power. And a power storage device 65 for storing DC power converted by the rectifier 64 is provided in an elevator car (not shown), and when the elevator car arrives at a specific floor, the charging power source 63 supplies power to the primary transformer 61. By generating magnetic flux with the primary coil 61a, induced electromotive force is generated in the secondary coils 62a and 62b of the secondary transformer 62, and this electromotive force is adjusted by the rectifier 64. It is power storage device 65 After. In FIG. 12, reference numeral M 10 indicates a magnetic flux.

接触給電においては摩擦が生じるため粉塵が発生したり摩耗したりするが、上述したような特許文献1及び非特許文献1に開示された非接触給電においては摩擦が生じないため、接触給電に比べてメンテナンスが容易である。
特開2001−119805号公報 綾野 秀樹、外2名、“高効率非接触給電装置の検討”、IEEE Trans.IA,Vol.123,No3,2003
Since friction occurs in contact power supply, dust is generated or worn. However, in non-contact power supply disclosed in Patent Document 1 and Non-Patent Document 1 as described above, friction does not occur, so compared with contact power supply. Maintenance is easy.
JP 2001-111985 A Hideki Ayano and two others, “Examination of high-efficiency non-contact power feeder”, IEEE Trans. IA, Vol. 123, No3, 2003

しかしながら、特許文献1の技術では、移動体の軌道に沿って交流給電線50a,50bを延設したり、交流給電線50a,50bを支持するための支持部材55a,55bを設置したりする必要があるため、設備コストが高くなる。また、移動体側に鉄心52を設けるため、移動体の重量が増加して移動体を移動させるための必要電力が増大したり、装置が大型化したりする。さらに、移動体は常に交流給電線50a,50bからの電力を受けているが、支持部材55a,55bを通過する際に鉄心52にエアギャップが形成されるので、給電効率や磁束発生効率(インダクタンス)が低下する。このため、このエアギャップが形成される時の給電効率や磁束発生効率も考慮して装置を設計する(例えば鉄心の断面積を大きく設計する)必要があるので、装置が複雑化及び大型化してしまう。   However, in the technique of Patent Document 1, it is necessary to extend the AC power supply lines 50a and 50b along the trajectory of the moving body, or to install support members 55a and 55b for supporting the AC power supply lines 50a and 50b. This increases the equipment cost. In addition, since the iron core 52 is provided on the moving body side, the weight of the moving body increases and the power required to move the moving body increases or the apparatus becomes large. Furthermore, although the moving body always receives power from the AC power supply lines 50a and 50b, an air gap is formed in the iron core 52 when passing through the support members 55a and 55b. ) Decreases. For this reason, it is necessary to design the apparatus in consideration of the power feeding efficiency and the magnetic flux generation efficiency when the air gap is formed (for example, designing the cross-sectional area of the iron core to be large). End up.

一方、非特許文献1の技術では、特許文献1のような交流給電線50a,50bや支持部材55a,55bを設置する必要がないため特許文献1の技術に比べて設備コストを低減することが可能であると考えられるが、移動体側にC形コア60bを設けるため、特許文献1の課題と同様に移動体の重量が増加して移動体を移動させるための必要電力が増大したり、装置が大型化したりする。なお、建物側にC形コアを用い、移動体側にC形コアよりも小型のI形コアを用いた場合でも、移動体側にI形コアを設ける必要があるため、上記課題は解消されない。また、移動体の移動中に1次側トランス61と2次側トランス62とが互いに干渉するのを防ぐため1次側トランス61と2次側トランス62との間に隙間を形成しておく必要があるが、給電時にはこの隙間がエアギャップとなるため、給電効率をさらに向上させたり、磁束発生効率をさらに向上させ装置を小型化したりするには限界がある。   On the other hand, in the technique of Non-Patent Document 1, there is no need to install AC power supply lines 50a and 50b and support members 55a and 55b as in Patent Document 1, so that the equipment cost can be reduced compared to the technique of Patent Document 1. Although it is considered possible, since the C-shaped core 60b is provided on the moving body side, the weight of the moving body increases as in the problem of Patent Document 1, and the power required to move the moving body increases, or the device Becomes larger. Even when a C-shaped core is used on the building side and an I-shaped core smaller than the C-shaped core is used on the moving body side, the above problem cannot be solved because the I-shaped core needs to be provided on the moving body side. In addition, it is necessary to form a gap between the primary transformer 61 and the secondary transformer 62 in order to prevent the primary transformer 61 and the secondary transformer 62 from interfering with each other during the movement of the moving body. However, since this gap becomes an air gap during power feeding, there is a limit to further improving power feeding efficiency and further improving magnetic flux generation efficiency and downsizing the apparatus.

本発明は、このような課題に鑑み創案されたもので、軽量化及びコンパクト化を可能にするとともに給電効率を向上できるようにした、非接触給電装置および非接触給電装置を備えた架線レスシステムを提供することを目的とする。   The present invention was devised in view of such a problem, and can be reduced in weight and size, and can improve power feeding efficiency, and can be improved in power feeding efficiency. The purpose is to provide.

このため、請求項1記載の本発明の非接触給電装置は、給電側に設けられた給電部から受電側に設けられた受電部に非接触で給電を行なう非接触給電装置であって、上記給電部が、一部に開放部が形成された略環状のコア本体と上記開放部を開放又は連結する可動コアとをそなえて構成された1次コアと、上記1次コアに巻装された1次コイルと、上記1次コイルに高周波電力を供給する充電電源とをそなえるとともに、上記受電部が、2次コイルと、上記2次コイルに接続された蓄電装置とをそなえ、上記充電電源から上記蓄電装置への給電時には上記可動コアが上記2次コイルの中空部に進入して上記2次コイルと交差した状態で上記コア本体の開放部を連結し、非給電時には上記可動コアが上記2次コイルの中空部から離脱して上記コア本体の開放部を開放するように構成されていることを特徴としている。   Therefore, the non-contact power feeding device according to the first aspect of the present invention is a non-contact power feeding device that feeds power in a non-contact manner from a power feeding unit provided on the power feeding side to a power receiving unit provided on the power receiving side. A power feeding unit is wound around the primary core, which is configured to include a substantially annular core body in which an open part is partially formed and a movable core that opens or connects the open part. A primary coil and a charging power source that supplies high-frequency power to the primary coil are provided, and the power receiving unit includes a secondary coil and a power storage device connected to the secondary coil. When the power is supplied to the power storage device, the movable core enters the hollow portion of the secondary coil and connects the open portion of the core body in a state of crossing the secondary coil. Remove from the hollow part of the next coil and It is characterized by being configured to open the opening portion of the main body.

請求項2記載の本発明の非接触給電装置は、請求項1記載の装置において、上記受電部が所定の軌道を走行する移動体に設けられるとともに、上記給電部が上記軌道上に設けられ、上記移動体が上記蓄電装置からの電力供給により上記軌道を走行するように構成されていることを特徴としている。
請求項3記載の本発明の非接触給電装置は、請求項2記載の装置において、上記移動体は電車であり、上記給電部は少なくとも上記電車が停車する駅に設けられていることを特徴としている。
According to a second aspect of the present invention, there is provided the non-contact power feeding device according to the first aspect, wherein the power receiving unit is provided on a moving body traveling on a predetermined track, and the power feeding unit is provided on the track. The moving body is configured to travel on the track by supplying power from the power storage device.
According to a third aspect of the present invention, there is provided the non-contact power feeding device according to the second aspect, wherein the moving body is a train, and the power feeding unit is provided at least at a station where the train stops. Yes.

請求項4記載の本発明の非接触給電装置は、請求項1〜3の何れか1項に記載の装置において、上記可動コアが、上記1次コイルにより発生する磁力により上記コア本体の開放部を開放又は連結するように構成されていることを特徴としている。
請求項5記載の本発明の非接触給電装置は、請求項1〜3の何れか1項に記載の装置において、上記可動コアを、上記コア本体の開放部を開放する位置と連結する位置との間で移動させる駆動機構をそなえていることを特徴としている。
The contactless power feeding device according to a fourth aspect of the present invention is the device according to any one of the first to third aspects, wherein the movable core is opened by the magnetic force generated by the primary coil. Is configured to open or connect.
A contactless power feeding device according to a fifth aspect of the present invention is the device according to any one of the first to third aspects, wherein the movable core is connected to a position where the open portion of the core body is opened. It is characterized by having a drive mechanism that moves between the two.

請求項6記載の本発明の非接触給電装置は、請求項1〜5の何れか1項に記載の装置において、上記1次コア及び上記1次コイル及び上記2次コイルの表面が絶縁体で被覆されていることを特徴としている。
請求項7記載の本発明の非接触給電装置は、請求項2〜6の何れか1項に記載の装置において、上記1次コア及び上記1次コイルを上記軌道に沿って移動させる駆動装置がそなえられていることを特徴としている。
A contactless power feeding device according to a sixth aspect of the present invention is the device according to any one of the first to fifth aspects, wherein the surfaces of the primary core, the primary coil, and the secondary coil are insulators. It is characterized by being covered.
The contactless power feeding device according to a seventh aspect of the present invention is the device according to any one of the second to sixth aspects, wherein the driving device that moves the primary core and the primary coil along the track. It is characterized by being provided.

請求項8記載の本発明の非接触給電装置は、請求項7記載の装置において、上記充電電源からの高周波電力を蓄積する給電側蓄電装置をそなえ、上記駆動装置は、上記給電側蓄電装置からの電力を得て上記1次コア及び上記1次コイルを上記軌道に沿って移動させることを特徴としている。
請求項9記載の本発明の非接触給電装置は、請求項2〜8の何れか1項に記載の装置において、上記1次コアの上記軌道幅方向断面がU字形に形成されるとともに、上記可動コアが上記コア本体の開放部に載置された2つの可動コア部材から構成され、上記充電電源から上記蓄電装置への給電時には上記2つの可動コア部材が互いに上記軌道幅方向中心に向かって接近することにより上記2次コイルの中空部に進入して上記2次コイルと交差した状態で上記コア本体の開放部を連結し、非給電時には上記2つの可動コア部材が互いに上記軌道幅方向中心から離隔することにより上記2次コイルの中空部から離脱して上記コア本体の開放部を開放することを特徴としている。
According to an eighth aspect of the present invention, there is provided a non-contact power feeding device according to the present invention, further comprising a power feeding side power storage device that accumulates high-frequency power from the charging power source, and the driving device from the power feeding side power storage device. And the primary core and the primary coil are moved along the track.
The contactless power feeding device according to a ninth aspect of the present invention is the device according to any one of the second to eighth aspects, wherein the orbit width direction cross section of the primary core is formed in a U shape, and The movable core is composed of two movable core members placed on the open portion of the core body, and the two movable core members are directed toward the center in the track width direction when feeding power from the charging power source to the power storage device. By approaching, the open part of the core main body is connected in a state of entering the hollow part of the secondary coil and intersecting the secondary coil, and the two movable core members are mutually centered in the orbit width direction when no power is supplied. By separating from the hollow portion of the secondary coil, the open portion of the core body is opened.

請求項10記載の本発明の非接触給電装置を備えた架線レスシステムは、駅舎側に設けられた給電部から移動体側に設けられた受電部に非接触で給電を行なう非接触給電装置を備えた架線レスシステムであって、上記駅舎には、一部に開放部が形成された略環状のコア本体と上記開放部を開放又は連結する可動コアとをそなえて構成された1次コアと、上記1次コアに巻装された1次コイルと、上記1次コイルに電力を供給する充電電源とがそなえられるとともに、上記移動体には、2次コイルと、上記2次コイルに接続された蓄電装置とがそなえられ、上記充電電源から上記蓄電装置への給電時には上記可動コアが上記2次コイルの中空部に進入して上記2次コイルと交差した状態で上記コア本体の開放部を連結して上記移動体に給電するとともに、非給電時には上記可動コアが上記2次コイルの中空部から離脱して上記コア本体の開放部を開放して上記移動体を走行可能にするように構成されていることを特徴としている。   An overhead line-less system comprising the non-contact power feeding device of the present invention according to claim 10 comprises a non-contact power feeding device that feeds power in a non-contact manner from a power feeding unit provided on a station building side to a power receiving unit provided on a moving body side. An overhead line-less system, wherein the station building includes a primary core having a substantially annular core body in which an open portion is formed in part and a movable core that opens or connects the open portion; A primary coil wound around the primary core and a charging power source for supplying power to the primary coil are provided, and the mobile body is connected to the secondary coil and the secondary coil. A power storage device, and when the power is supplied from the charging power source to the power storage device, the movable core enters the hollow portion of the secondary coil and connects the open portion of the core body in a state of crossing the secondary coil. To power the moving body Both during unpowered is characterized in that the movable core is configured to open the opening portion of the core body disengaged from the hollow portion of the secondary coil to allow travel of the moving objects.

請求項1記載の本発明の非接触給電装置によれば、給電時には可動コアが2次コイルの中空部に進入して2次コイルと交差した状態でコア本体の開放部を連結し、非給電時には可動コアが2次コイルの中空部から離脱してコア本体の開放部を開放するように構成されているので、給電中は常に1次コアのエアギャップをなくして給電効率を向上させることができる。また、受電側にはコアを設ける必要がないので、受電側の軽量化及びコンパクト化が可能である。さらに、給電中は常に1次コアのエアギャップをなくして磁束発生効率を向上させることができるため、給電側の軽量化及びコンパクト化も可能である。   According to the contactless power supply device of the present invention, the movable core enters the hollow portion of the secondary coil and connects the open portion of the core body in a state of crossing the secondary coil at the time of power supply. Since the movable core is sometimes separated from the hollow portion of the secondary coil to open the open portion of the core body, it is always possible to improve the power supply efficiency by eliminating the air gap of the primary core during power supply. it can. Further, since it is not necessary to provide a core on the power receiving side, the power receiving side can be reduced in weight and size. Further, since the air gap of the primary core can always be eliminated during power feeding and the magnetic flux generation efficiency can be improved, the power feeding side can be reduced in weight and size.

請求項2記載の本発明の非接触給電装置によれば、所定の軌道を走行する移動体に高効率で給電を行なうことができる。また、移動体にはコアを設ける必要がないので、移動体の軽量化及びコンパクト化が可能である。さらに、軌道上に設けられた給電部の軽量化及びコンパクト化も可能である。
請求項3記載の本発明の非接触給電装置によれば、停車駅において電車に高効率で給電を行なうことができる。また、電車にはコアを設ける必要がないので、電車の軽量化及びコンパクト化が可能である。さらに、停車駅に設けられた給電部の軽量化及びコンパクト化も可能である。
According to the non-contact power feeding device of the present invention as set forth in claim 2, power can be fed with high efficiency to a moving body traveling on a predetermined track. Moreover, since it is not necessary to provide a core in a moving body, the moving body can be reduced in weight and size. Furthermore, the power feeding unit provided on the track can be reduced in weight and size.
According to the non-contact power feeding device of the present invention as set forth in claim 3, power can be fed to the train with high efficiency at the stop station. In addition, since it is not necessary to provide a core for the train, the train can be reduced in weight and size. Furthermore, the power feeding unit provided at the stop station can be reduced in weight and size.

請求項4記載の本発明の非接触給電装置によれば、充電電源からの給電状態に応じてコア本体の開放部を開放又は連結することができる。
請求項5記載の本発明の非接触給電装置によれば、駆動機構によりコア本体の開放部を開放又は連結することができる。
請求項6記載の本発明の非接触給電装置によれば、万が一、1次コア及び1次コイル及び2次コイルの何れかに触れてしまった場合でも感電を防止することができる。
According to the non-contact power supply device of the present invention as set forth in claim 4, the open portion of the core body can be opened or connected in accordance with the power supply state from the charging power source.
According to the non-contact power feeding device of the present invention described in claim 5, the open portion of the core body can be opened or connected by the drive mechanism.
According to the non-contact power feeding device of the present invention, it is possible to prevent an electric shock even if the primary core, the primary coil, and the secondary coil are touched.

請求項7記載の本発明の非接触給電装置によれば、移動体が軌道上の何れの位置に停止した場合でも確実に給電を行なうことができる。
請求項8記載の本発明の非接触給電装置によれば、移動体が軌道上の何れの位置に停止した場合でも確実に給電を行なうことができる。
請求項9記載の本発明の非接触給電装置によれば、給電中は常に1次コアのエアギャップをなくして給電効率を向上させることができる。また、受電側にはコアを設ける必要がないので、受電側の軽量化及びコンパクト化が可能である。さらに、給電中は常に1次コアのエアギャップをなくして磁束発生効率を向上させることができるため、給電側の軽量化及びコンパクト化も可能である。
According to the non-contact power feeding device of the present invention described in claim 7, power can be reliably fed even when the moving body stops at any position on the track.
According to the non-contact power feeding device of the present invention described in claim 8, power can be reliably fed even when the moving body stops at any position on the track.
According to the non-contact power feeding device of the present invention described in claim 9, it is possible to always improve the power feeding efficiency by eliminating the air gap of the primary core during power feeding. Further, since it is not necessary to provide a core on the power receiving side, the power receiving side can be reduced in weight and size. Further, since the air gap of the primary core can always be eliminated during power feeding and the magnetic flux generation efficiency can be improved, the power feeding side can be reduced in weight and size.

請求項10記載の本発明の非接触給電装置を備えた架線レスシステムによれば、給電時には可動コアが2次コイルの中空部に進入して2次コイルと交差した状態でコア本体の開放部を連結し、非給電時には可動コアが2次コイルの中空部から離脱してコア本体の開放部を開放するように構成されているので、給電中は常に1次コアのエアギャップをなくして給電効率を向上させることができる。また、受電側にはコアを設ける必要がないので、受電側の軽量化及びコンパクト化が可能である。さらに、給電中は常に1次コアのエアギャップをなくして磁束発生効率を向上させることができるため、給電側の軽量化及びコンパクト化も可能である。   According to the overhead wireless system having the non-contact power feeding device of the present invention as set forth in claim 10, the open portion of the core body is in a state where the movable core enters the hollow portion of the secondary coil and intersects the secondary coil during power feeding. Since the movable core is separated from the hollow part of the secondary coil to open the open part of the core body when no power is supplied, the air gap in the primary core is always removed during power supply. Efficiency can be improved. Further, since it is not necessary to provide a core on the power receiving side, the power receiving side can be reduced in weight and size. Further, since the air gap of the primary core can always be eliminated during power feeding and the magnetic flux generation efficiency can be improved, the power feeding side can be reduced in weight and size.

以下、図面を参照しながら本発明の実施の形態について説明する。
(A)第1実施形態
図1〜図5は、本発明の第1実施形態としての非接触給電装置を説明するためのもので、図1は電車の架線レスシステムを模式的に示す平面図、図2は給電中の動作を説明するための図、図3は給電開始前又は給電終了後の動作を説明するための図、図4は電車の力行走行時の動作を説明するための図、図5は電車の回生走行時の動作を説明するための図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(A) 1st Embodiment FIGS. 1-5 is for demonstrating the non-contact electric power feeder as 1st Embodiment of this invention, and FIG. 1 is a top view which shows typically the overhead wireless system of a train 2 is a diagram for explaining the operation during power feeding, FIG. 3 is a diagram for explaining the operation before or after the end of power feeding, and FIG. 4 is a diagram for explaining the operation during power running of the train. FIG. 5 is a diagram for explaining the operation during regenerative running of the train.

本実施形態に係る非接触給電装置は、電動式の移動体に非接触で給電を行なうもので、例えば図1に示すような電車〔高架の軌道を走行するAGT(Automated Guideway Transit)や、地上の軌道を走行するLRT(Light Rail Transit)などの新交通システムを含む〕の架線レスシステムに適用することができる。以下では、一例として本非接触給電装置を電車の架線レスシステムに適用した場合について説明する。   The non-contact power supply device according to the present embodiment supplies power to an electric mobile body in a non-contact manner. For example, a train as shown in FIG. 1 [AGT (Automated Guideline Transit) traveling on an elevated track, (Including a new traffic system such as LRT (Light Rail Transit)) traveling on the track of the above]. Below, the case where this non-contact electric power feeding apparatus is applied to the system without a train overhead wire as an example is demonstrated.

図1に示すように、本実施形態に係る電車の架線レスシステムでは、電車1は所定の軌道3上を走行するようになっており、軌道3のそばには駅舎(プラットホーム)4が設置されている。また、電車1には蓄電装置2が装備されている。さらに、軌道3上の駅舎4がある位置には、電車1の蓄電装置2に電力を供給するための充電器6が設置されているとともに、駅舎4には充電器6に高周波電力を供給する充電電源5が設置されている。これにより、電車1が駅舎4に停車しているときに充電器6から蓄電装置2へ給電が行なわれ、電車1はこの蓄電装置2の電力を利用して走行する。なお、充電電源5を駅舎4から離れた位置に設置するようにしてもよい。   As shown in FIG. 1, in the train overhead line system according to the present embodiment, the train 1 travels on a predetermined track 3, and a station building (platform) 4 is installed near the track 3. ing. The train 1 is equipped with a power storage device 2. Further, a charger 6 for supplying power to the power storage device 2 of the train 1 is installed at a position where the station building 4 is on the track 3, and high-frequency power is supplied to the charger 6 in the station building 4. A charging power source 5 is installed. Thus, when the train 1 is stopped at the station building 4, power is supplied from the charger 6 to the power storage device 2, and the train 1 travels using the power of the power storage device 2. The charging power source 5 may be installed at a position away from the station building 4.

次に、本非接触給電装置の構成及び動作をより具体的に説明する。図2に示すように、軌道3には、軌道方向(紙面に垂直な方向)に延びる凹部19が形成されており、この凹部19に充電器6が設置されている。充電器6は、軌道幅方向の断面が環状(図2に示す矩形状も含む)に形成された1次コア7と、この1次コア7に巻装された1次コイル10a,10bとをそなえて構成されている。   Next, the configuration and operation of the contactless power supply device will be described more specifically. As shown in FIG. 2, the track 3 has a recess 19 extending in the track direction (a direction perpendicular to the paper surface), and the charger 6 is installed in the recess 19. The charger 6 includes a primary core 7 having a circular cross section (including a rectangular shape shown in FIG. 2) in the orbit width direction, and primary coils 10 a and 10 b wound around the primary core 7. It is composed.

また、本実施形態では、1次コア7は、凹部19の底部に固定されて一部に開放部(開口部)が形成された略環状のコア本体8と、このコア本体8の開放部に軌道幅方向に並んで載置された2つの可動コア部材(以下、単に可動コアという)9a,9bとから構成されている。図2では、コア本体8は軌道幅方向断面がU字形に形成され上面が開放しており、可動コア9a,9bは軌道幅方向断面がI字形に形成されている。また、コア本体8及び可動コア9a,9bは共に強磁性体で形成されている。さらに、コア本体8及び可動コア9a,9bは、ここでは、軌道方向に所定の厚みをもって形成されており、コア本体8及び可動コア9a,9bを一体物として見ると筒形状となっている。そして、1次コイル10aは可動コア9aに、可動コア9aの軌道方向にわたって巻装されており、1次コイル10bは可動コア9bに、可動コア9bの軌道方向にわたって巻装されている。   In the present embodiment, the primary core 7 is fixed to the bottom of the recess 19 and has a substantially annular core body 8 partially formed with an opening (opening), and an opening of the core body 8. It is composed of two movable core members (hereinafter simply referred to as movable cores) 9a and 9b mounted side by side in the track width direction. In FIG. 2, the core body 8 has a U-shaped cross section in the track width direction and an open top surface, and the movable cores 9a and 9b have an I-shaped cross section in the track width direction. The core body 8 and the movable cores 9a and 9b are both made of a ferromagnetic material. Further, here, the core body 8 and the movable cores 9a and 9b are formed with a predetermined thickness in the track direction, and have a cylindrical shape when the core body 8 and the movable cores 9a and 9b are viewed as one body. The primary coil 10a is wound around the movable core 9a along the track direction of the movable core 9a, and the primary coil 10b is wound around the movable core 9b along the track direction of the movable core 9b.

また、可動コア9aには、可動コア9bから離れる方向(図2では右方向)へ力を付与する駆動機構20aが備えられている。駆動機構20aは、凹部19の車輪18aがある側の壁面(図2では右側壁面)に固設されたベース部材21aと、ベース部材21a及び可動コア9aを接続するばね部材22aとをそなえて構成されている。図2に示すばね部材22aは伸びた状態を示しており、通常状態のばね部材22aは図3に示すように縮んだ形状をしている。さらに、可動コア9bには、可動コア9aから離れる方向(図2では左方向)へ力を付与する駆動機構20bが備えられている。駆動機構20bは、凹部19の車輪18bがある側の壁面(図2では左側壁面)に固設されたベース部材21bと、ベース部材21b及び可動コア9bを接続するばね部材22bとをそなえて構成されている。図2に示すばね部材22bは伸びた状態を示しており、通常状態のばね部材22bは図3に示すように縮んだ形状をしている。   The movable core 9a is provided with a drive mechanism 20a that applies a force in a direction away from the movable core 9b (right direction in FIG. 2). The drive mechanism 20a includes a base member 21a fixed to the wall surface (the right wall surface in FIG. 2) where the wheel 18a of the recess 19 is provided, and a spring member 22a that connects the base member 21a and the movable core 9a. Has been. The spring member 22a shown in FIG. 2 shows an extended state, and the spring member 22a in a normal state has a contracted shape as shown in FIG. Furthermore, the movable core 9b is provided with a drive mechanism 20b that applies force in a direction away from the movable core 9a (leftward in FIG. 2). The drive mechanism 20b includes a base member 21b fixed to the wall surface (the left wall surface in FIG. 2) where the wheel 18b of the recess 19 is provided, and a spring member 22b that connects the base member 21b and the movable core 9b. Has been. The spring member 22b shown in FIG. 2 shows an extended state, and the spring member 22b in the normal state has a contracted shape as shown in FIG.

そして、給電時、充電電源5から1次コイル10a,10bに高周波電力が供給されると、1次コイル10a,10bにより発生する磁力により可動コア9a,9bは互いに接近する方向に動いて接触し、コア本体8の開放部が連結され、図2に示すような高周波磁束M0が発生する。なお、給電する際、急に大きな高周波電力を供給するのではなく、しだいに電流値が高くなるように充電電源5からの高周波電力を制御することが好ましい。このように電流値を制御しながら高周波電力を1次コイル10a,10bに供給することで、可動コア9a,9bが対向面接触するときの衝撃を和らげることができ、可動コア9a,9bの損傷を防止できる。また、充電電源5からの高周波電力の供給を断つと、ばね部材22a,22bが縮んで可動コア9a,9bは互いに離隔する方向に動いてコア本体8の開放部が開放される。このように、1次コイル10a,10bにより発生する磁力によりコア本体8の開放部を開放又は連結することで、給電開始に連動させて1次コア7のエアギャップをなくすことができる。 When high-frequency power is supplied from the charging power source 5 to the primary coils 10a and 10b during power feeding, the movable cores 9a and 9b move and come into contact with each other due to the magnetic force generated by the primary coils 10a and 10b. The open portion of the core body 8 is connected, and a high frequency magnetic flux M 0 as shown in FIG. 2 is generated. It is preferable to control the high-frequency power from the charging power source 5 so that the current value gradually increases rather than suddenly supplying a large high-frequency power when supplying power. By supplying high-frequency power to the primary coils 10a and 10b while controlling the current value in this way, the impact when the movable cores 9a and 9b come into contact with the opposing surface can be reduced, and the movable cores 9a and 9b are damaged. Can be prevented. When the supply of the high frequency power from the charging power source 5 is cut off, the spring members 22a and 22b are contracted, and the movable cores 9a and 9b are moved away from each other, and the open part of the core body 8 is opened. Thus, by opening or connecting the open portion of the core body 8 by the magnetic force generated by the primary coils 10a and 10b, the air gap of the primary core 7 can be eliminated in conjunction with the start of power feeding.

一方、電車1には、2次コイル11、整流装置12、蓄電装置13、インバータ/コンバータ14、SIV(Static Inveter)15、補機16、モータ17、車輪(ここではゴムタイヤ)18a,18bが備えられている。2次コイル11は、電車1の下部に突出して、且つ、1次コイル10aと1次コイル10bとの間の空間に位置するように固定されている。また、2次コイル11は、可動コア9a,9bの軌道方向にわたって巻装されるように形成されている。つまり、2次コイル11は軌道幅方向にわたって孔(中空部)が形成された形状となっており、給電時には、可動コア9a,9bが2次コイル11の中空部に進入して2次コイル11と交差した状態でコア本体8の開放部を連結し、非給電時には可動コア9a,9bが2次コイル11の中空部から離脱してコア本体8の開放部を開放するようになっている。これにより、給電時には、1次コア7に発生する高周波磁束M0により2次コイル11に交流電力(誘導起電力)が発生する。 On the other hand, the train 1 includes a secondary coil 11, a rectifier 12, a power storage device 13, an inverter / converter 14, an SIV (Static Inverter) 15, an auxiliary device 16, a motor 17, and wheels (here rubber tires) 18a and 18b. It has been. The secondary coil 11 is fixed so as to protrude from the lower part of the train 1 and to be positioned in a space between the primary coil 10a and the primary coil 10b. Moreover, the secondary coil 11 is formed so that it may be wound over the track | orbit direction of movable core 9a, 9b. That is, the secondary coil 11 has a shape in which a hole (hollow part) is formed in the track width direction, and the movable cores 9a and 9b enter the hollow part of the secondary coil 11 and feed the secondary coil 11 during power feeding. The open portion of the core main body 8 is connected in a state of crossing, and the movable cores 9a and 9b are detached from the hollow portion of the secondary coil 11 when the power is not supplied to open the open portion of the core main body 8. Thereby, AC power (inductive electromotive force) is generated in the secondary coil 11 by the high-frequency magnetic flux M 0 generated in the primary core 7 during power feeding.

整流装置12は、2次コイル11に発生した交流電力を直流電力に変換するようになっており、この整流装置12により変換された直流電力は蓄電装置13に蓄積される。蓄電装置13としては、例えば公知の2次電池,電気2重層キャパシタ,フライホイールなどを単体又は組み合わせて使用することができる。この中でも特に2次電池は大容量のエネルギーを蓄積できるので好ましい。インバータ/コンバータ14は、直流電力を交流電力に変換するインバータの機能と、交流電力を直流電力に変換するコンバータの機能との両方を兼ね備えており、適宜選択して使用される。モータ17は交流モータであり、このモータ17が駆動することで車輪18a,18bが回転するようになっている。SIV15は直流電力を交流電力に変換するもので、このSIV15により変換された交流電力は、車内照明やエアコンなどの補機16に供給されるようになっている。   The rectifier 12 converts AC power generated in the secondary coil 11 into DC power, and the DC power converted by the rectifier 12 is stored in the power storage device 13. As the power storage device 13, for example, a known secondary battery, an electric double layer capacitor, a flywheel, or the like can be used alone or in combination. Among these, the secondary battery is particularly preferable because it can store a large amount of energy. The inverter / converter 14 has both the function of an inverter that converts DC power into AC power and the function of a converter that converts AC power into DC power, and is appropriately selected and used. The motor 17 is an AC motor, and when the motor 17 is driven, the wheels 18a and 18b are rotated. The SIV 15 converts DC power into AC power, and the AC power converted by the SIV 15 is supplied to an auxiliary device 16 such as an interior lighting or an air conditioner.

また、1次コア(即ち、コア本体8及び可動コア9a,9b)7と1次コイル10a,10bと2次コイル11との表面は例えば樹脂系の絶縁体で被覆されており、万が一、これらの何れかに触れてしまった場合でも感電を防止できるようになっている。なお、駆動機構20a,20bの表面にも同様の絶縁処理を施しておいてもよい。   The surfaces of the primary core (that is, the core body 8 and the movable cores 9a and 9b) 7, the primary coils 10a and 10b, and the secondary coil 11 are covered with, for example, a resin-based insulator. Even if one of them is touched, an electric shock can be prevented. Note that the same insulation treatment may be applied to the surfaces of the drive mechanisms 20a and 20b.

本発明の第1実施形態としての非接触給電装置は、上述のごとく構成されているので、給電時には、図2に示すように、充電電源5から1次コイル10a,10bに高周波電力が供給され、1次コイル10a,10bにより発生する磁力により可動コア9a,9bには吸引力が働いて可動コア9a,9bが互いに2次コイル11の中空部に進入して接触するとともに1次コア7に高周波磁束M0が発生し、2次コイル11には交流電力が発生する。そして、2次コイル11に発生した交流電力は整流装置12により直流電力に変換されたのち蓄電装置13に蓄積される。なお、給電中は基本的に電車1は停止しているので、蓄電装置13に蓄積された電力は車輪18a,18bの回転駆動には利用されず、補機16に利用される。 Since the contactless power supply device as the first embodiment of the present invention is configured as described above, at the time of power supply, high-frequency power is supplied from the charging power source 5 to the primary coils 10a and 10b as shown in FIG. The magnetic forces generated by the primary coils 10a and 10b apply an attractive force to the movable cores 9a and 9b so that the movable cores 9a and 9b enter and contact each other into the hollow portion of the secondary coil 11 and contact the primary core 7. A high frequency magnetic flux M 0 is generated, and AC power is generated in the secondary coil 11. The AC power generated in the secondary coil 11 is converted into DC power by the rectifier 12 and then stored in the power storage device 13. Since the train 1 is basically stopped during power feeding, the electric power stored in the power storage device 13 is not used for rotating the wheels 18a and 18b but is used for the auxiliary machine 16.

給電が完了すると、図3に示すように、充電電源5からの高周波電力の供給が断たれ、これと同時に可動コア9a,9bが2次コイル11の中空部から離脱して、蓄電装置13への電力供給が停止する。
そして、電車1の力行走行時には、図4に示すように、蓄電装置13に蓄積された直流電力がインバータ14により交流電力に変換された後モータ17に流れ、車輪18a,18bを回転駆動する。
When the power supply is completed, as shown in FIG. 3, the supply of the high-frequency power from the charging power source 5 is cut off, and at the same time, the movable cores 9 a and 9 b are detached from the hollow portion of the secondary coil 11 to the power storage device 13. The power supply of is stopped.
Then, during power running of the train 1, as shown in FIG. 4, the DC power stored in the power storage device 13 is converted into AC power by the inverter 14 and then flows to the motor 17 to drive the wheels 18 a and 18 b to rotate.

また、電車1の回生走行(ブレーキ制動)時には、図5に示すように、モータ17は車輪18a,18bの回転動力を得て発電し、このようにして得られた交流電力がコンバータ14により直流電力に変換されたのち蓄電装置13に蓄積される。
なお、蓄電装置13から補機16への電力供給は必要に応じて行なわれる。
上述したように、給電中は常に可動コア9a,9bが接触して1次コア7が閉じたロの字形状になり、漏れ磁束を増大させる実質上の要因であるエアギャップが全くなくなるため、漏れ磁束を低減でき1次コイル10a,10bと2次コイル11の結合率が向上し、高効率で給電を行なうことができる。また、電車1にはコアを設ける必要がないので、電車1の軽量化及びコンパクト化が可能となる。さらに、上述したように、給電中は常に可動コア9a,9bが接触して1次コア7が閉じたロの字形状になり、磁束発生効率を低減させる実質上の要因であるエアギャップが全くなくなるため、磁束発生効率が向上する。磁束発生効率が向上すると、1次コア7の断面積や1次コイル10a,10bの電流容量を低減することができ、充電器6や充電電源5の軽量化及びコンパクト化が可能となる。
Further, during regenerative travel (brake braking) of the train 1, as shown in FIG. 5, the motor 17 generates power by obtaining the rotational power of the wheels 18 a and 18 b, and the AC power obtained in this way is converted into DC by the converter 14. After being converted into electric power, it is stored in the power storage device 13.
The power supply from the power storage device 13 to the auxiliary machine 16 is performed as necessary.
As described above, since the movable cores 9a and 9b are always in contact with each other during power feeding and the primary core 7 is closed, the air gap, which is a substantial factor for increasing the leakage magnetic flux, is completely eliminated. Leakage magnetic flux can be reduced, the coupling ratio between the primary coils 10a and 10b and the secondary coil 11 can be improved, and power can be supplied with high efficiency. Moreover, since it is not necessary to provide a core in the train 1, the train 1 can be reduced in weight and size. Furthermore, as described above, the movable cores 9a and 9b are always in contact with each other during power feeding, and the primary core 7 is closed, so that the air gap, which is a substantial factor for reducing magnetic flux generation efficiency, is completely eliminated. Therefore, the magnetic flux generation efficiency is improved. When the magnetic flux generation efficiency is improved, the cross-sectional area of the primary core 7 and the current capacity of the primary coils 10a and 10b can be reduced, and the charger 6 and the charging power source 5 can be reduced in weight and size.

なお、本実施形態に係るベース部材20a,20b及びばね部材22a,22bからなる駆動機構20a,20bに代えて、図6に示すようなステッピングモータからなる駆動機構23a,23bを設ける構成にしてもよい。このような駆動機構23a,23bを用いれば可動コア9a,9bの位置決めを高精度で行なうことが可能であり、本実施形態と同様に、可動コア9a,9bの対向面接触による衝撃を和らげながら1次コア7のエアギャップをなくすことができる。   In addition, instead of the drive mechanisms 20a and 20b including the base members 20a and 20b and the spring members 22a and 22b according to the present embodiment, the drive mechanisms 23a and 23b including the stepping motor as illustrated in FIG. 6 may be provided. Good. By using such drive mechanisms 23a and 23b, it is possible to position the movable cores 9a and 9b with high accuracy, and as in the present embodiment, while mitigating the impact caused by the contact between the movable cores 9a and 9b. The air gap of the primary core 7 can be eliminated.

(B)第2実施形態
図7は本発明の第2実施形態としての非接触給電装置を模式的に示す構成図である。なお、図7において、前述した第1実施形態の非接触給電装置と同一の部位又は部材については同一の符号を用いて示しており、第1実施形態と重複する説明は省略する。
本実施形態に係る充電器6には、車輪25a,25bと、この車輪25a,25bを回転駆動するための駆動装置26とが備えられており、充電器6が凹部19を軌道方向に移動できるようになっている。また、充電器6が移動したときでも充電電源5から1次コイル10a,10b及び駆動装置26への電力供給が可能なように、充電電源5と1次コイル10a,10b及び駆動装置26とを接続する延長ケーブル24をそなえている。このケーブル24は自動巻取が可能なように構成されている。また、駆動機構20a,20bのベース部材21a,21bは充電器6に固定されている。
(B) Second Embodiment FIG. 7 is a block diagram schematically showing a non-contact power feeding device as a second embodiment of the present invention. In FIG. 7, the same parts or members as those of the above-described contactless power supply device of the first embodiment are denoted by the same reference numerals, and the description overlapping with the first embodiment is omitted.
The charger 6 according to the present embodiment is provided with wheels 25a and 25b and a drive device 26 for rotationally driving the wheels 25a and 25b, and the charger 6 can move the recess 19 in the track direction. It is like that. Further, the charging power source 5, the primary coils 10 a, 10 b, and the driving device 26 are connected so that power can be supplied from the charging power source 5 to the primary coils 10 a, 10 b and the driving device 26 even when the charger 6 moves. An extension cable 24 to be connected is provided. The cable 24 is configured to be capable of automatic winding. The base members 21 a and 21 b of the drive mechanisms 20 a and 20 b are fixed to the charger 6.

本発明の第2実施形態としての非接触給電装置は、上述のごとく構成されているので、電車1が軌道3上の何れの位置に停止した場合でも確実に給電を行なうことができる。例えば、通常、電車1の移動開始時(加速時)には大電力を必要とするが、電車1が移動開始してから所定時間だけ駆動装置26により充電器6を電車1とともに移動させながら給電を続けることで、移動開始時における電車1の蓄電装置13の大幅な電力消費を抑制することができ、より安定した加速を行なえるようになる。なお、電車1が移動開始してから所定時間経過した後、充電電源5からの給電を停止することで可動コア9a,9bが2次コイル11の中空部から離脱する。そして、駆動装置26により充電器6を元の場所まで移動させる。このときケーブル24は自動で巻き取られる。   Since the non-contact power feeding device as the second embodiment of the present invention is configured as described above, power can be reliably fed even when the train 1 stops at any position on the track 3. For example, normally, a large amount of electric power is required when the train 1 starts to move (acceleration), but power is supplied while the charger 6 is moved together with the train 1 by the driving device 26 for a predetermined time after the train 1 starts moving. By continuing the operation, it is possible to suppress a significant power consumption of the power storage device 13 of the train 1 at the start of movement, and to perform more stable acceleration. The movable cores 9a and 9b are detached from the hollow portion of the secondary coil 11 by stopping the power supply from the charging power source 5 after a predetermined time has elapsed since the train 1 started to move. Then, the charger 6 is moved to the original location by the driving device 26. At this time, the cable 24 is automatically wound.

また、電車1の駅舎4における停車位置がずれた場合や、電力不足により駅舎4,4間で電車1が停止した場合でも、電車1が停止している位置まで移動して確実に給電を行なうことが可能である。   Even when the stop position of the train 1 at the station building 4 is deviated or when the train 1 stops between the station buildings 4 and 4 due to insufficient power, the train 1 moves to the position where the train 1 is stopped and reliably supplies power. It is possible.

(C)第3実施形態
図8は本発明の第3実施形態としての非接触給電装置を模式的に示す構成図である。なお、図8において、前述した第1実施形態の非接触給電装置と同一の部位又は部材については同一の符号を用いて示しており、第1実施形態と重複する説明は省略する。
(C) Third Embodiment FIG. 8 is a configuration diagram schematically showing a non-contact power feeding device as a third embodiment of the present invention. In FIG. 8, the same parts or members as those of the above-described contactless power supply device of the first embodiment are denoted by the same reference numerals, and the description overlapping with the first embodiment is omitted.

本実施形態に係る充電器6には、車輪25a,25bと、この車輪25a,25bを回転駆動するための駆動装置26と、蓄電装置27とが備えられており、充電器6が凹部19を軌道方向に移動できるようになっている。また、充電器6の蓄電装置27は充電電源5からの高周波電力を直流電力に変換して蓄積できるようになっており、蓄電装置27が一度充電電源5により充電されると、充電器6は充電電源5とは接続を切って、蓄電装置27に蓄積された電力を駆動装置26に供給することで自走できるようになっている。この場合、1次コイル10a,10bへの電力供給も蓄電装置27に蓄積された直流電力を高周波電力に変換することによりまかなわれる。また、駆動機構20a,20bのベース部材21a,21bは充電器6に固定されている。   The charger 6 according to the present embodiment includes wheels 25 a and 25 b, a drive device 26 for rotating the wheels 25 a and 25 b, and a power storage device 27. It can move in the orbital direction. Further, the power storage device 27 of the charger 6 can store the high frequency power from the charging power source 5 by converting it into DC power, and once the power storage device 27 is charged by the charging power source 5, the charger 6 By disconnecting from the charging power source 5 and supplying the electric power stored in the power storage device 27 to the driving device 26, it can be self-propelled. In this case, power is supplied to the primary coils 10a and 10b by converting DC power stored in the power storage device 27 into high-frequency power. The base members 21 a and 21 b of the drive mechanisms 20 a and 20 b are fixed to the charger 6.

本発明の第3実施形態としての非接触給電装置は、上述のごとく構成されているので、電車1が軌道3上の何れの位置に停止した場合でも確実に給電を行なうことができる。例えば、電車1が駅舎4にて給電を行なうときは、通常通り充電電源5から1次コイル10a,10bに電力供給するが、このとき同時に充電器6の蓄電装置27にも電力供給しておく。これにより、例えば電車1が駅舎4,4間で電力不足により停止してしまったとしても、充電器6が蓄電装置27の電力を利用して電車1が停止している位置まで移動し、電車1に給電を行なう。電車1への必要な給電(例えば次の駅舎4まで走行するのに必要な電力の供給)が終了したら、充電器6は蓄電装置27の電力を利用して元の場所まで戻る。なお、上記では、駅舎4にて電車1に給電を行なっているときに同時に充電器6の蓄電装置27にも給電を行なっているが、充電器6の蓄電装置27への給電タイミングはこれに限定されず、例えば駅舎4において充電電源5から電車1への給電が終了した後であってもよい。また、駅舎4,4間で停止した電車1に給電を行なう際には、充電器6が元の場所まで戻ってくるのに必要な電力を蓄電装置27に残しておく。   Since the non-contact power feeding device as the third embodiment of the present invention is configured as described above, power can be reliably fed even when the train 1 stops at any position on the track 3. For example, when the train 1 supplies power at the station building 4, power is supplied from the charging power source 5 to the primary coils 10 a and 10 b as usual. At this time, power is also supplied to the power storage device 27 of the charger 6. . Thereby, for example, even if the train 1 is stopped between the station buildings 4 and 4 due to power shortage, the charger 6 uses the power of the power storage device 27 to move to the position where the train 1 is stopped. 1 is fed. When the necessary power supply to the train 1 (for example, the supply of power necessary to travel to the next station building 4) is completed, the charger 6 returns to the original location using the power of the power storage device 27. In the above description, when power is supplied to the train 1 at the station 4, power is supplied to the power storage device 27 of the charger 6 at the same time. For example, it may be after power supply from the charging power source 5 to the train 1 is completed in the station building 4. Further, when power is supplied to the train 1 stopped between the station buildings 4 and 4, the electric power necessary for the charger 6 to return to the original location is left in the power storage device 27.

また、電車1の駅舎4における停車位置がずれた場合でも電車1が停止している位置まで移動して確実に給電を行なうことができるとともに、前述した第2実施形態と同様に充電器6を電車1とともに移動させながら給電を行なうことももちろん可能である。   Further, even when the stop position of the train 1 at the station building 4 is shifted, it is possible to move to the position where the train 1 is stopped and to reliably supply power, and to connect the charger 6 as in the second embodiment described above. It is of course possible to supply power while moving with the train 1.

(D)第4実施形態
図9は、本発明の第4実施形態としての非接触給電装置を模式的に示す構成図である。なお、図9において、前述した第1実施形態の非接触給電装置と同一の部位又は部材については同一の符号を用いて示しており、第1実施形態と重複する説明は省略する。
(D) 4th Embodiment FIG. 9: is a block diagram which shows typically the non-contact electric power feeder as 4th Embodiment of this invention. In FIG. 9, the same parts or members as those of the above-described contactless power supply device of the first embodiment are denoted by the same reference numerals, and the description overlapping with the first embodiment is omitted.

図9に示すように、本実施形態では、可動コア9a,9bの接触の仕方が第1実施形態と異なる。すなわち、本実施形態では、給電時、可動コア9aの下面と可動コア9bの上面とが接触するように可動コア9a,9bが構成されている。
図10(a)に示すように、例えば第1実施形態において、可動コア9a,9bが対向面接触した際に可動コア9a,9b間に位置ずれが生じた場合、接触面における磁束M1の通路の断面積が小さくなり磁束密度が大きくなる。このように磁束密度が大きくなると可動コア9a,9bが局所的に発熱するおそれや局所的に磁気飽和してしまうおそれがあるため、位置ずれの影響を考慮して可動コア9a,9bの断面積を設定しておく必要がある場合がある。また、可動コア9a,9b同士の対向面接触による衝撃が大きくならないよう制御する必要もある。
As shown in FIG. 9, in this embodiment, the way of contact of the movable cores 9a and 9b is different from that of the first embodiment. That is, in the present embodiment, the movable cores 9a and 9b are configured so that the lower surface of the movable core 9a and the upper surface of the movable core 9b are in contact with each other during power feeding.
As shown in FIG. 10 (a), for example in the first embodiment, the movable core 9a, 9b is the case where the movable core 9a upon contact facing surface, misalignment between 9b occurs, the magnetic flux M 1 in the contact surface The cross-sectional area of the passage is reduced and the magnetic flux density is increased. If the magnetic flux density is increased in this way, the movable cores 9a and 9b may locally generate heat or may be locally magnetically saturated. Therefore, the cross-sectional area of the movable cores 9a and 9b is considered in consideration of the effect of displacement. May need to be set. In addition, it is necessary to control so that the impact caused by the contact between the movable cores 9a and 9b is not increased.

これに対して、本実施形態では、図10(b)に示すように、可動コア9a,9bを上下にラップさせて互いに十分に交差させるので、可動コア9a,9b同士の接触断面積が第1実施形態の接触断面積に比べて十分に広くすることが可能になる。これにより、可動コア9a,9bに発生する磁束M2が、可動コア9a,9b内部の密度よりも接触面の密度の方が低くなるため、接触面における磁束密度が大きくなるおそれがなくなる。また、本実施形態においては可動コア9a,9bが上下に交差するため、第1実施形態のような対向面接触による衝撃は起こりにくい。 On the other hand, in this embodiment, as shown in FIG. 10 (b), the movable cores 9a and 9b are vertically wrapped so as to sufficiently cross each other, so that the contact cross-sectional area between the movable cores 9a and 9b is first. The contact cross-sectional area of one embodiment can be made sufficiently wide. As a result, the magnetic flux M 2 generated in the movable cores 9a and 9b has a lower density on the contact surface than the density inside the movable cores 9a and 9b. Further, in the present embodiment, since the movable cores 9a and 9b intersect with each other in the vertical direction, the impact due to the contact with the opposing surface as in the first embodiment hardly occurs.

このように、本実施形態の非接触給電装置によれば、可動コア9a,9bが発熱したり磁気飽和してしまうことを抑制できるとともに、可動コア9a,9bが接触するときの衝撃を抑制することができる。   Thus, according to the non-contact power feeding device of the present embodiment, the movable cores 9a and 9b can be prevented from generating heat and being magnetically saturated, and the impact when the movable cores 9a and 9b are in contact is suppressed. be able to.

(E)その他
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、上記の実施形態では、本非接触給電装置を電車の架線レスシステムに適用した場合について説明したが、本非接触給電装置はこれに限定適用されるものではなく、例えばエレベータ,搬送台車,クレーンなどの電動式移動体に非接触で給電を行なうものに広く適用することができる。また、第1〜第3実施形態に係る可動コア9a,9bを、第4実施形態に係る可動コア9a,9bに代えてもよい。
(E) Others Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the case where the non-contact power feeding apparatus is applied to a train overhead line-less system has been described. However, the non-contact power feeding apparatus is not limited to this, for example, an elevator, a carriage, The present invention can be widely applied to an apparatus that supplies power to an electric mobile body such as a crane without contact. Moreover, you may replace the movable cores 9a and 9b which concern on 1st-3rd embodiment with the movable cores 9a and 9b which concern on 4th Embodiment.

本発明の第1実施形態に係る電車の架線レスシステムを模式的に示す平面図である。1 is a plan view schematically showing a train overhead line-less system according to a first embodiment of the present invention. 本発明の第1実施形態としての非接触給電装置を模式的に示す構成図であって、給電中の動作を説明するための図である。It is a block diagram which shows typically the non-contact electric power supply as 1st Embodiment of this invention, Comprising: It is a figure for demonstrating the operation | movement during electric power feeding. 本発明の第1実施形態としての非接触給電装置を模式的に示す構成図であって、給電開始前又は給電終了後の動作を説明するための図である。It is a block diagram which shows typically the non-contact electric power supply as 1st Embodiment of this invention, Comprising: It is a figure for demonstrating the operation | movement before electric power supply start or after completion | finish of electric power supply. 本発明の第1実施形態としての非接触給電装置を模式的に示す構成図であって、電車の力行走行時の動作を説明するための図である。It is a block diagram which shows typically the non-contact electric power feeder as 1st Embodiment of this invention, Comprising: It is a figure for demonstrating the operation | movement at the time of power running of a train. 本発明の第1実施形態としての非接触給電装置を模式的に示す構成図であって、電車の回生走行時の動作を説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows typically the non-contact electric power feeder as 1st Embodiment of this invention, Comprising: It is a figure for demonstrating the operation | movement at the time of the regeneration driving | running | working of a train. 本発明の第1実施形態の変形例を模式的に示す構成図である。It is a block diagram which shows typically the modification of 1st Embodiment of this invention. 本発明の第2実施形態としての非接触給電装置を模式的に示す構成図である。It is a block diagram which shows typically the non-contact electric power feeder as 2nd Embodiment of this invention. 本発明の第3実施形態としての非接触給電装置を模式的に示す構成図である。It is a block diagram which shows typically the non-contact electric power feeder as 3rd Embodiment of this invention. 本発明の第4実施形態としての非接触給電装置を模式的に示す構成図である。It is a block diagram which shows typically the non-contact electric power feeder as 4th Embodiment of this invention. (a)は第1実施形態に係る可動コアの磁束分布を示す図、(b)は第4実施形態に係る可動コアの磁束分布を示す図である。(A) is a figure which shows magnetic flux distribution of the movable core which concerns on 1st Embodiment, (b) is a figure which shows magnetic flux distribution of the movable core which concerns on 4th Embodiment. 従来の非接触給電装置を模式的に示す図である。It is a figure which shows the conventional non-contact electric power feeder typically. 従来の非接触給電装置を模式的に示す図である。It is a figure which shows the conventional non-contact electric power feeder typically.

符号の説明Explanation of symbols

1 電車(移動体)
2 蓄電装置
3 軌道
4 駅舎
5 充電電源
6 充電器
7 1次コア
8 コア本体
9a,9b 可動コア部材(可動コア)
10a,10b 1次コイル
11 2次コイル
12 整流装置
13 蓄電装置
14 インバータ/コンバータ
15 SIV
16 補機
17 モータ
18a,18b 電車の車輪
19 凹部
20a,20b 駆動機構
21a,21b ベース部材
22a,22b ばね部材
24 ケーブル
25a,25b 充電器の車輪
26 充電器の駆動装置
27 充電器の蓄電装置(給電側蓄電装置)
1 Train (moving body)
2 Power storage device 3 Track 4 Station building 5 Charging power supply 6 Charger 7 Primary core 8 Core body 9a, 9b Movable core member (movable core)
10a, 10b Primary coil 11 Secondary coil 12 Rectifier 13 Power storage device 14 Inverter / converter 15 SIV
16 Auxiliary machine 17 Motor 18a, 18b Train wheel 19 Recess 20a, 20b Drive mechanism 21a, 21b Base member 22a, 22b Spring member 24 Cable 25a, 25b Charger wheel 26 Charger drive device 27 Charger storage device ( Power storage device)

Claims (10)

給電側に設けられた給電部から受電側に設けられた受電部に非接触で給電を行なう非接触給電装置であって、
上記給電部が、
一部に開放部が形成された略環状のコア本体と上記開放部を開放又は連結する可動コアとをそなえて構成された1次コアと、
上記1次コアに巻装された1次コイルと、
上記1次コイルに高周波電力を供給する充電電源とをそなえるとともに、
上記受電部が、
2次コイルと、
上記2次コイルに接続された蓄電装置とをそなえ、
上記充電電源から上記蓄電装置への給電時には上記可動コアが上記2次コイルの中空部に進入して上記2次コイルと交差した状態で上記コア本体の開放部を連結し、非給電時には上記可動コアが上記2次コイルの中空部から離脱して上記コア本体の開放部を開放するように構成されている
ことを特徴とする、非接触給電装置。
A non-contact power feeding device that feeds power in a non-contact manner from a power feeding unit provided on a power feeding side to a power receiving unit provided on a power receiving side,
The power feeding part is
A primary core comprising a substantially annular core body with an open portion formed in part and a movable core that opens or connects the open portion;
A primary coil wound around the primary core;
A charging power source for supplying high-frequency power to the primary coil is provided.
The power receiving unit
A secondary coil;
A power storage device connected to the secondary coil,
When the power is supplied from the charging power source to the power storage device, the movable core enters the hollow portion of the secondary coil and connects the open portion of the core body in a state of crossing the secondary coil. A contactless power feeding device, wherein the core is configured to be detached from the hollow portion of the secondary coil to open the open portion of the core body.
上記受電部が所定の軌道を走行する移動体に設けられるとともに、上記給電部が上記軌道上に設けられ、上記移動体が上記蓄電装置からの電力供給により上記軌道を走行するように構成されている
ことを特徴とする、請求項1記載の非接触給電装置。
The power receiving unit is provided on a moving body that travels on a predetermined track, the power feeding unit is provided on the track, and the mobile body is configured to travel on the track by supplying power from the power storage device. The contactless power feeding device according to claim 1, wherein
上記移動体は電車であり、上記給電部は少なくとも上記電車が停車する駅に設けられている
ことを特徴とする、請求項2記載の非接触給電装置。
The non-contact power feeding apparatus according to claim 2, wherein the moving body is a train, and the power feeding unit is provided at least at a station where the train stops.
上記可動コアが、上記1次コイルにより発生する磁力により上記コア本体の開放部を開放又は連結するように構成されている
ことを特徴とする、請求項1〜3の何れか1項に記載の非接触給電装置。
The said movable core is comprised so that the open part of the said core main body may be open | released or connected with the magnetic force which the said primary coil generate | occur | produces, The any one of Claims 1-3 characterized by the above-mentioned. Non-contact power feeding device.
上記可動コアを、上記コア本体の開放部を開放する位置と連結する位置との間で移動させる駆動機構をそなえている
ことを特徴とする、請求項1〜3の何れか1項に記載の非接触給電装置。
The drive mechanism which moves the said movable core between the position which opens the open part of the said core main body, and the position connected is provided, The any one of Claims 1-3 characterized by the above-mentioned. Non-contact power feeding device.
上記1次コア及び上記1次コイル及び上記2次コイルの表面が絶縁体で被覆されている
ことを特徴とする、請求項1〜5の何れか1項に記載の非接触給電装置。
The contactless power supply device according to any one of claims 1 to 5, wherein surfaces of the primary core, the primary coil, and the secondary coil are covered with an insulator.
上記1次コア及び上記1次コイルを上記軌道に沿って移動させる駆動装置がそなえられている
ことを特徴とする、請求項2〜6の何れか1項に記載の非接触給電装置。
The contactless power supply device according to any one of claims 2 to 6, further comprising a drive device that moves the primary core and the primary coil along the track.
上記充電電源からの電力を蓄積する給電側蓄電装置をそなえ、
上記駆動装置は、上記給電側蓄電装置からの電力を得て上記1次コア及び上記1次コイルを上記軌道に沿って移動させる
ことを特徴とする、請求項7記載の非接触給電装置。
A power supply side power storage device for storing power from the charging power source is provided,
8. The non-contact power feeding device according to claim 7, wherein the driving device obtains electric power from the power feeding side power storage device and moves the primary core and the primary coil along the track.
上記1次コアの上記軌道幅方向断面がU字形に形成されるとともに、
上記可動コアが上記コア本体の開放部に載置された2つの可動コア部材から構成され、
上記充電電源から上記蓄電装置への給電時には上記2つの可動コア部材が互いに上記軌道幅方向中心に向かって接近することにより上記2次コイルの中空部に進入して上記2次コイルと交差した状態で上記コア本体の開放部を連結し、非給電時には上記2つの可動コア部材が互いに上記軌道幅方向中心から離隔することにより上記2次コイルの中空部から離脱して上記コア本体の開放部を開放する
ことを特徴とする、請求項2〜8の何れか1項に記載の非接触給電装置。
The cross-section in the orbit width direction of the primary core is formed in a U shape,
The movable core is composed of two movable core members placed on the open part of the core body,
When the power supply from the charging power source to the power storage device, the two movable core members approach each other toward the center in the track width direction and enter the hollow portion of the secondary coil and intersect the secondary coil. To connect the open portion of the core body, and when the power is not supplied, the two movable core members are separated from the center of the orbital width direction so as to be separated from the hollow portion of the secondary coil, thereby opening the open portion of the core body. The contactless power supply device according to claim 2, wherein the contactless power supply device is opened.
駅舎側に設けられた給電部から移動体側に設けられた受電部に非接触で給電を行なう非接触給電装置を備えた架線レスシステムであって、
上記駅舎には、一部に開放部が形成された略環状のコア本体と上記開放部を開放又は連結する可動コアとをそなえて構成された1次コアと、上記1次コアに巻装された1次コイルと、上記1次コイルに電力を供給する充電電源とがそなえられるとともに、
上記移動体には、2次コイルと、上記2次コイルに接続された蓄電装置とがそなえられ、
上記充電電源から上記蓄電装置への給電時には上記可動コアが上記2次コイルの中空部に進入して上記2次コイルと交差した状態で上記コア本体の開放部を連結して上記移動体に給電するとともに、非給電時には上記可動コアが上記2次コイルの中空部から離脱して上記コア本体の開放部を開放して上記移動体を走行可能にするように構成されている
ことを特徴とする、非接触給電装置を備えた架線レスシステム。
An overhead line-less system including a non-contact power feeding device that feeds power in a non-contact manner from a power feeding unit provided on a station building side to a power receiving unit provided on a moving body side,
The station building is wound around the primary core, which includes a substantially annular core body having an opening portion formed in part and a movable core that opens or connects the opening portion. And a charging power source for supplying power to the primary coil,
The mobile body includes a secondary coil and a power storage device connected to the secondary coil.
When power is supplied from the charging power source to the power storage device, the movable core enters the hollow portion of the secondary coil and crosses the secondary coil to connect the open portion of the core body to supply power to the moving body. In addition, the movable core is configured to be detached from the hollow portion of the secondary coil and open the open portion of the core body so that the moving body can run when no power is supplied. An overhead wireless system equipped with a non-contact power feeding device.
JP2004030487A 2004-02-06 2004-02-06 Non-contact power feeding device and wire-less system provided with it Withdrawn JP2005224045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030487A JP2005224045A (en) 2004-02-06 2004-02-06 Non-contact power feeding device and wire-less system provided with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030487A JP2005224045A (en) 2004-02-06 2004-02-06 Non-contact power feeding device and wire-less system provided with it

Publications (1)

Publication Number Publication Date
JP2005224045A true JP2005224045A (en) 2005-08-18

Family

ID=34999252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030487A Withdrawn JP2005224045A (en) 2004-02-06 2004-02-06 Non-contact power feeding device and wire-less system provided with it

Country Status (1)

Country Link
JP (1) JP2005224045A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119965A (en) * 2007-11-13 2009-06-04 Asyst Technologies Japan Inc Electric power supply system
US7804272B2 (en) 2006-11-10 2010-09-28 Mitsubishi Heavy Industries, Ltd. Non-contact type power feeder system for mobile object and protecting apparatus thereof
JP2010273473A (en) * 2009-05-22 2010-12-02 Canon Inc Power supply device
JP2012055103A (en) * 2010-09-02 2012-03-15 Murata Machinery Ltd Running vehicle system
JP2012517793A (en) * 2009-02-10 2012-08-02 クアルコム,インコーポレイテッド Power transmission system, apparatus and method in public facilities
KR101269224B1 (en) 2011-03-22 2013-05-30 한국과학기술원 Module type of non-touch power supply
WO2013128554A1 (en) * 2012-02-27 2013-09-06 株式会社日立エンジニアリング・アンド・サービス Wireless power supply apparatus
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
CN105189869A (en) * 2013-03-21 2015-12-23 东亚道路工业株式会社 Paved structure and construction method for paved structure
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
WO2016190456A1 (en) * 2015-05-22 2016-12-01 한국과학기술원 Mold type s-shaped power transfer module for on-line electric vehicle
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
JP2017216875A (en) * 2012-11-20 2017-12-07 株式会社東芝 Power reception device, power transmission device, and electric automobile
US9855847B2 (en) 2013-03-21 2018-01-02 Toa Road Corporation Trough, paved structure, and construction method for paved structure
KR101829211B1 (en) 2016-04-11 2018-03-29 이진국 The charging device of the electric vehicle provided with a lane departure prevention

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804272B2 (en) 2006-11-10 2010-09-28 Mitsubishi Heavy Industries, Ltd. Non-contact type power feeder system for mobile object and protecting apparatus thereof
JP2009119965A (en) * 2007-11-13 2009-06-04 Asyst Technologies Japan Inc Electric power supply system
US9130407B2 (en) 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
JP2012517793A (en) * 2009-02-10 2012-08-02 クアルコム,インコーポレイテッド Power transmission system, apparatus and method in public facilities
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
JP2010273473A (en) * 2009-05-22 2010-12-02 Canon Inc Power supply device
JP2012055103A (en) * 2010-09-02 2012-03-15 Murata Machinery Ltd Running vehicle system
KR101269224B1 (en) 2011-03-22 2013-05-30 한국과학기술원 Module type of non-touch power supply
WO2013128554A1 (en) * 2012-02-27 2013-09-06 株式会社日立エンジニアリング・アンド・サービス Wireless power supply apparatus
JPWO2013128554A1 (en) * 2012-02-27 2015-07-30 株式会社日立パワーソリューションズ Wireless power feeder
US9577464B2 (en) 2012-02-27 2017-02-21 Hitachi Power Solutions Co., Ltd. Wireless charging system
JP2017216875A (en) * 2012-11-20 2017-12-07 株式会社東芝 Power reception device, power transmission device, and electric automobile
CN105189869A (en) * 2013-03-21 2015-12-23 东亚道路工业株式会社 Paved structure and construction method for paved structure
US9873333B2 (en) 2013-03-21 2018-01-23 Toa Road Corporation Paved structure and construction method for paved structure
US9855847B2 (en) 2013-03-21 2018-01-02 Toa Road Corporation Trough, paved structure, and construction method for paved structure
WO2016190456A1 (en) * 2015-05-22 2016-12-01 한국과학기술원 Mold type s-shaped power transfer module for on-line electric vehicle
KR101829211B1 (en) 2016-04-11 2018-03-29 이진국 The charging device of the electric vehicle provided with a lane departure prevention

Similar Documents

Publication Publication Date Title
JP2005224045A (en) Non-contact power feeding device and wire-less system provided with it
EP2999652B1 (en) Self-propelled elevator with wireless power supply
Lee et al. On-line electric vehicle using inductive power transfer system
KR101930601B1 (en) Arrangement, system and a method for a vehicle with electric energy
CN106477435B (en) Elevator car power supply
US8505463B2 (en) Wheel-type ultra high speed railway system
US8508186B2 (en) Charging system for transportation system without contact wire
US20230406115A1 (en) Electromagnetic levitation train-track system and levitation electromagnet
JP2010022183A (en) Electric vehicle and inductive power-transmission device suitable therefor
JP2008211939A (en) Traffic system with no overhead wire and its charge method
JP2011162287A (en) Power feeding device and tire type gantry crane including the same
WO2012048664A1 (en) Permanent magnet motor with outer spiral rotor and wheel-rail vehicle road system with permanent magnet suspension
JP2010173503A (en) Non-contact power supply device
JP2000083302A (en) Power accumulation type motor, power accumulation method using this motor, transportation system using motor-driven vehicle and transportation method in this system
JP2000116035A (en) Transportation facility
JP3432530B2 (en) Contactless power supply equipment for mobile objects
JP2006335289A (en) Electricity feeding method and device to electric drive vehicle
KR20200143678A (en) Linear generator
JP2001139242A (en) Power supply device for elevator car
JP2013172558A (en) Non-contact electric power supply system, ground non-contact electric power supply equipment, and on-vehicle non-contact electric power reception equipment
JP2000116036A (en) Transportation facility
JP4573395B2 (en) Elevator power feeder
JPH06153305A (en) Feeder holder
KR100925344B1 (en) Amorphous Induced Sudden Charging System of Rail Car for Reducing Leakage Flux
KR101230535B1 (en) Railway vehicles for adapting space maintaining apparatus of parallel linear induction motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501