JP2005204661A - Detecting apparatus for molecule derived from organism, dioxins and endocrine disrupter, and method for detection using the same - Google Patents

Detecting apparatus for molecule derived from organism, dioxins and endocrine disrupter, and method for detection using the same Download PDF

Info

Publication number
JP2005204661A
JP2005204661A JP2004375985A JP2004375985A JP2005204661A JP 2005204661 A JP2005204661 A JP 2005204661A JP 2004375985 A JP2004375985 A JP 2004375985A JP 2004375985 A JP2004375985 A JP 2004375985A JP 2005204661 A JP2005204661 A JP 2005204661A
Authority
JP
Japan
Prior art keywords
tank
dioxins
sample
detection
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004375985A
Other languages
Japanese (ja)
Other versions
JP4750412B2 (en
Inventor
Takehiko Ueda
岳彦 上田
Masato Tsurugasaki
正人 鶴ケ崎
Hiroshi Ueno
弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUCHIGAMI MICRO KK
Fuchigami Micro Co Ltd
Original Assignee
FUCHIGAMI MICRO KK
Fuchigami Micro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUCHIGAMI MICRO KK, Fuchigami Micro Co Ltd filed Critical FUCHIGAMI MICRO KK
Priority to JP2004375985A priority Critical patent/JP4750412B2/en
Publication of JP2005204661A publication Critical patent/JP2005204661A/en
Application granted granted Critical
Publication of JP4750412B2 publication Critical patent/JP4750412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detecting apparatus for a molecule derived from an organism, dioxins, and an endocrine disrupter capable of easily realizing detection of the molecule derived from the organism, dioxins, and the endocrine disrupter by a rapid and stepwise operation of the detecting apparatus, and to provide a configuration of the method for the detection. <P>SOLUTION: This invention relates to the detecting apparatus for the molecule derived from the organism, the dioxins and the endocrine disrupter, which carries out the detection after subjecting these samples to a pretreatment, wherein the apparatus is provided with a chip having in its inside at least one treating vessel for performing the pretreatment and a detecting vessel (17) installed downstream of the treating vessel to detect a prescribed molecule derived from the organism, the dioxins and the endocrine disrupter, and at least a melting/softening valve (11) installed on the boundary of the detecting vessel (17) and the treating vessel to make the molecule derived from the organism, the dioxins and the endocrine disrupter melt or soften and pass by heating or irradiating with an ultrasonic wave. The method for detecting them by using the apparatus is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、DNA、RNAなどの核酸、ペプチドなどの蛋白質構成単位や糖鎖などによる生体由来分子及びダイオキシン類や内分泌撹乱物質(環境ホルモン、環境エストロゲン等)等の産業活動を通じて人工的に生成された身体有害物質を検出するための検出装置に関するものである。   The present invention is artificially generated through industrial activities such as biological molecules derived from nucleic acid such as DNA and RNA, protein structural units such as peptides and sugar chains, and dioxins and endocrine disrupting substances (environmental hormones, environmental estrogens, etc.). The present invention relates to a detection device for detecting a harmful substance.

昨今、牛海綿状脳症(BSE)や重症急性呼吸器症候群(SARS)などといった感染症により深刻な被害が発生している。ウィルスの蔓延防止策として、感染の疑いのある家畜などから生体由来分子に関する試料を採取しその試料をPCR法などによって反応させたうえで、電気泳動法などで処理して分析及びウィルスの検出を行うなどの調査が行われている。   Recently, serious damage has been caused by infectious diseases such as bovine spongiform encephalopathy (BSE) and severe acute respiratory syndrome (SARS). As a measure to prevent the spread of viruses, samples related to biological molecules are collected from livestock suspected of being infected, and the samples are reacted by the PCR method, then processed by electrophoresis, etc. for analysis and detection of viruses. Surveys are being conducted.

既に、DNAの検出の分野においては、DNAを微量で高速分離を行う装置や、検出精度を安定させたマイクロ流路などによる装置が開発されている。   In the field of DNA detection, devices that perform high-speed separation of DNA in a very small amount and devices using a micro-channel that stabilizes detection accuracy have already been developed.

例えば、特許文献1には、試料をキャピラリーゲル電気泳動法を用いて、DNA等の分析を行う技術が記載されている。   For example, Patent Document 1 describes a technique for analyzing DNA or the like using a sample by capillary gel electrophoresis.

また、特許文献2には、マイクロ流路内を効率良く作動流体を通過させる技術が記載されている。   Patent Document 2 describes a technique for efficiently passing a working fluid through a microchannel.

更に、特許文献3には、ワックス弁を用いた、流体を通過させる技術が記載されている。   Further, Patent Document 3 describes a technique for passing a fluid using a wax valve.

また、特許文献4には、マイクロ流路内に弁を設け、空気圧により弁を開閉し、作動流体を通過させる技術が記載されている。
特開平6−74936号公報。 特開2001−252896号公報。 特開2003−270252公報。 特開2004−33919公報。
Patent Document 4 describes a technique in which a valve is provided in a micro flow path, the valve is opened and closed by air pressure, and a working fluid is allowed to pass through.
JP-A-6-74936. JP 2001-252896 A. JP2003-270252A. JP 2004-33919 A.

しかしながら、従前のこれらの調査又は検査においては、設備や環境が整った研究室で専門の人によって行われているので、結果が判るまでに時間がかかり、更に費用も嵩むという傾向を免れることが不可能であった。   However, these previous surveys or inspections are conducted by specialists in laboratories equipped with facilities and environments, so that it is possible to avoid the tendency of taking time to understand the results and increasing the cost. It was impossible.

また、これらはDNA等の生体由来分子及びダイオキシン類更には内分泌撹乱物質などの人工的に生成された身体有害物質(以下前記生体由来分子及び前記身体有害物質を総称して「検出対象物」という。)の分離及び検出を連続して速やかに行うことが困難であり、しかも装置として運搬が不可能に近いが故に、装置を作動させるために特別な場所が必要であるなどという諸問題が生じている。   In addition, these are biologically derived molecules such as DNA, and dioxins, and further artificially generated harmful substances such as endocrine disrupting substances (hereinafter, the biologically derived molecules and the harmful substances are collectively referred to as “detection objects”). )), It is difficult to carry out the separation and detection in a continuous manner, and since it is almost impossible to transport as a device, there are problems that a special place is required to operate the device. ing.

このような状況を原因として、前記各装置の場合には、検出対象物を含む試料(以下「試料」という。)の採取及び検出を即座に行ったうえで、検査結果を得るには、極めて不十分であるという評価を免れることができない。   Due to this situation, in the case of each of the above-mentioned devices, in order to obtain a test result after immediately collecting and detecting a sample including a detection target (hereinafter referred to as “sample”), We cannot escape the evaluation that it is insufficient.

このような状況下において、試料を採取し、しかも速やかに調査又は検査が可能であり、しかも即座に結果が得られる安価な分析機器や分析チップなどが必要とされている。   Under such circumstances, there is a need for an inexpensive analytical instrument or analysis chip that can collect a sample, and can promptly investigate or inspect it, and can obtain a result immediately.

本発明は、検出対象物の検出を、1個の検出装置において簡単な操作によって迅速に検出することを可能とする検出対象物の検出装置及び当該装置を使用した検出対象物の検出方法に関する構成を提供することを課題としている。   The present invention relates to a detection target object detection device capable of quickly detecting a detection target object by a simple operation in one detection device, and a configuration related to a detection target detection method using the device. It is an issue to provide.

上記課題を解決するため、本発明の基本構成は、
(1)試料に前処理を施した後、該試料から検出対象物を検出する装置であって、
チップ内に、前記試料に前処理を行う少なくとも1つ以上の処理槽と、この処理槽の下流に設けられて、前記検出対象物を検出する検出槽とを備え、
少なくとも前記検出槽と処理槽との境界部に、融解又は軟化することによって、検出対象物を含む試料中に溶解し、検出対象物を含む試料を通過させることができる融解軟化可能弁を設けたことに基づく検出対象物を検出する装置、
(2)試料に前処理を施した後、該試料から検出対象物を検出する方法であって、
試料に前処理を行う操作を処理槽で行った後、この試料に含まれている検出対象物を検出する操作を検出槽で行っており、
前記検出槽と処理槽との境界部において、加熱又は超音波をかけることを原因として融解又は軟化する融解軟化可能弁を設けておき、
前記処理槽での操作が終了した後、試料又は試料の入った処理槽に外力を作用させるとともに、前記融解軟化可能弁を加熱すること、又は超音波をかけることによって開放し、検出対象物を含む試料を検出槽に移動させることを特徴とする検出対象物を検出する方法、
からなる。
In order to solve the above problems, the basic configuration of the present invention is as follows.
(1) An apparatus for detecting a detection object from a sample after pre-processing the sample,
In the chip, provided with at least one or more processing tanks for pre-processing the sample, and a detection tank provided downstream of the processing tank for detecting the detection object,
At least at the boundary between the detection tank and the processing tank, a melt-softening valve that can be dissolved in the sample containing the detection target and allowed to pass the sample containing the detection target by melting or softening was provided. A device for detecting a detection object based on
(2) A method of detecting a detection object from a sample after pre-processing the sample,
After performing an operation for pre-processing the sample in the processing tank, an operation for detecting the detection target contained in the sample is performed in the detection tank,
At the boundary between the detection tank and the processing tank, a melt-softening valve that melts or softens due to heating or applying ultrasonic waves is provided,
After the operation in the processing tank is completed, an external force is applied to the sample or the processing tank containing the sample, and the melting / softening valve is heated or ultrasonically applied to open the detection target. A method for detecting an object to be detected, the method comprising: moving a containing sample to a detection tank;
Consists of.

前記(2)の方法の構成は、(1)の装置の構成に立脚しており、融解軟化可能弁に対し、加熱又は超音波をかけることによって、融解又は軟化させる点に特徴を有している。   The configuration of the method (2) is based on the configuration of the device (1), and is characterized by melting or softening the melt-softening valve by heating or applying ultrasonic waves. Yes.

前記(1)、(2)の構成における処理槽とは、例えば不溶性高分子を低分子から分離する処理を行う槽、不溶性夾雑物を除去する処理を行う槽、DNAを増幅する等の反応をさせる処理を行う槽等の化学的・生化学的反応操作を行う槽のことである。   The treatment tanks in the constitutions (1) and (2) are, for example, a tank that performs a process for separating insoluble polymers from low molecules, a tank that performs a process for removing insoluble impurities, and a reaction such as amplification of DNA. It is a tank that performs chemical and biochemical reaction operations such as a tank that performs the treatment.

前記(1)、(2)の構成においては、チップ内に、試料に前処理を行う、少なくとも1つ以上の処理槽と、この処理槽の下流に設けられて、前記検出対象物を検出する検出槽とを備え、少なくとも前記検出槽と処理槽の境界部に融解又は軟化することによって試料を通過させることができる弁が設けられているので、当該弁を開放状態にして、試料を次の処理槽へ移動させることと、当該弁を閉鎖状態にして試料を処理槽に留め置くことができる。   In the configurations of (1) and (2), at least one processing tank that pre-processes the sample is provided in the chip, and is provided downstream of the processing tank to detect the detection target. A detection tank, and at least a boundary between the detection tank and the processing tank is provided with a valve through which the sample can be passed by melting or softening. The sample can be retained in the processing tank by moving it to the processing tank and closing the valve.

また、従来の機械式の弁と違い、槽内を完全に密閉し、弁で仕切られた各処理槽を化学的・生化学的に隔離独立させることが可能となる。   Further, unlike the conventional mechanical valve, the inside of the tank is completely sealed, and each processing tank partitioned by the valve can be separated chemically and biochemically.

更に、融解した弁は試料中に溶解し、その成分は希釈されるため、再び硬化し、その後に続く流路や弁を閉塞する原因とはなり得ない。   Furthermore, since the melted valve dissolves in the sample and its components are diluted, it cannot harden again and block the subsequent flow path or valve.

本発明においては、各処理槽間の弁を開閉することにより、各々の処理槽での処理をカスケード式に行えるため、個々の反応条件(例えば、温度・時間等)を精密に制御することが出来る。   In the present invention, by opening and closing the valve between the treatment tanks, the treatment in each treatment tank can be performed in a cascade manner, so that individual reaction conditions (for example, temperature, time, etc.) can be precisely controlled. I can do it.

また、試料を移動させる手段として遠心力を採用する場合、チップ以外のサポート機器は電源と卓上遠心器のみで済む。   In addition, when a centrifugal force is employed as a means for moving the sample, only a power supply and a table centrifuge are sufficient as support devices other than the chip.

よって、本発明においては、採取した試料から検出対象物を迅速に検出することが可能であり、しかも当該検出装置の構成が簡便であるため、その操作も極めて容易であって、従前の分析装置に比し、経済コストも安価であるという利点を得ることができる。   Therefore, in the present invention, it is possible to quickly detect the detection target from the collected sample, and since the configuration of the detection apparatus is simple, its operation is extremely easy, and the conventional analysis apparatus Compared to the above, it is possible to obtain an advantage that the economic cost is low.

前記(1)の装置に関する実施形態としては、
(a)試料と該試料中に溶解した弁が上流の処理槽から隣接する下流の処理槽又は検出槽に移動する際、当該隣接する下流の処理槽又は検出槽中の排除する空気を逃がす機構を設けたことを特徴とする構成
(b)処理槽の少なくとも1つが不溶性夾雑物を取り除くための不溶物フィルター槽であることを特徴とする構成、
(c)不溶物フィルター槽と検出槽との間に処理槽の1つである反応槽を設けるとともに、この反応槽と検出槽との境界部にも、前記弁を設けたことを特徴とする構成、
(d)不溶物フィルター槽を複数段に設定し、各段階毎の境界の全て又は一部にも、前記弁を設けたことを特徴とする構成、
(e)反応槽を複数段に設定し、各段階毎の境界の全て又は一部にも、前記弁を設けたことを特徴とする構成、
(f)検出槽において、電気泳動法、光検出法、エバネセンス法、NMR法の何れかを採用したことを特徴とする構成、
(g)検出槽において、電気泳動法を採用したうえで、検出槽の周囲に緩衝液保持槽を設け、かつ緩衝液保持槽と検出槽との間に融解又は軟化することによって、緩衝液を前記緩衝液保持槽と検出槽との間で移動させることができる弁を設けたことを特徴とする構成、
(h)加熱を原因として融解又は軟化する弁を設けたことを特徴とする構成、
(i)弁に対する加熱機構として、これら弁の近傍に加熱用電極を設置したことを特徴とする構成、
(j)弁の素材として、アガロース、キトサン、ジェランガム、プルラン、カラギーナン、キシログルカン、デキストラン、デキストリン、セルロースガム、アミロース、アミロペプチンなどの多糖類又は、それらの組み合わせによる多糖類の混合物を採用したことを特徴とする構成、
(k)超音波をかけることを原因として融解又は軟化する弁を設けたことを特徴とする構成、
を採用することができる。
As embodiment regarding the apparatus of said (1),
(A) A mechanism for releasing the air to be excluded in the adjacent downstream processing tank or detection tank when the sample and the valve dissolved in the sample move from the upstream processing tank to the adjacent downstream processing tank or detection tank (B) A configuration characterized in that at least one of the treatment tanks is an insoluble matter filter tank for removing insoluble contaminants,
(C) A reaction tank which is one of the treatment tanks is provided between the insoluble matter filter tank and the detection tank, and the valve is provided at the boundary between the reaction tank and the detection tank. Constitution,
(D) The insoluble matter filter tank is set in a plurality of stages, and the valve is provided on all or part of the boundary for each stage,
(E) a configuration in which the reaction tank is set in a plurality of stages, and the valve is provided on all or part of the boundary of each stage;
(F) In the detection tank, any one of the electrophoresis method, the light detection method, the evanescence method, and the NMR method is adopted,
(G) In the detection tank, after adopting the electrophoresis method, a buffer solution holding tank is provided around the detection tank, and the buffer solution is melted or softened between the buffer solution holding tank and the detection tank. A configuration provided with a valve that can be moved between the buffer solution holding tank and the detection tank;
(H) A configuration characterized by providing a valve that melts or softens due to heating,
(I) A structure characterized in that a heating electrode is installed in the vicinity of these valves as a heating mechanism for the valves;
(J) Adopting a mixture of polysaccharides such as agarose, chitosan, gellan gum, pullulan, carrageenan, xyloglucan, dextran, dextrin, cellulose gum, amylose, amylopeptine, etc. Features configuration,
(K) A configuration characterized by providing a valve that melts or softens due to application of ultrasonic waves,
Can be adopted.

前記(2)の方法の構成においても、前記(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)、(j)、(k)に対応した方法の実施形態を採用することができる(但し、これらの実施形態を記載することは、前記(a)〜(k)の再現に過ぎないので、当該記載は省略することにする。)。   Also in the configuration of the method (2), the (a), (b), (c), (d), (e), (f), (g), (h), (i), (j ) And (k) can be employed (however, the description of these embodiments is only a reproduction of the above (a) to (k), and the description is omitted). I will do it.)

以下、図面に即して、具体的に説明する。   Hereinafter, specific description will be given with reference to the drawings.

図1は、本発明に係る検出対象物検出装置の実施形態を示す。   FIG. 1 shows an embodiment of a detection object detection apparatus according to the present invention.

融解軟化可能弁(11)は、周囲に位置している電極(図1においては図示されていないが、図2の32、及び図3の52によって示されている)から電流が導通されている各伝導部(21)における電熱によって融解又は軟化し、検出対象物の分析に際し、支障が生じない状態と化すことができるような素材を採用している。   The melt-softenable valve (11) is conducting current from surrounding electrodes (not shown in FIG. 1 but shown by 32 in FIG. 2 and 52 in FIG. 3). A material that is melted or softened by electric heat in each conductive portion (21) and can be made into a state that does not cause any trouble in the analysis of the detection target is adopted.

図1に示す実施形態では、前記加熱は、各伝導部(21)において発生している電熱を利用しているが、融解軟化可能弁(11)に対する加熱は、導電による手法だけではなく、例えば針状の発熱体素子を融解軟化可能弁(11)の近傍に接近させ、局所的な発熱を行う手法も存在する。
但し、安定した加熱を行うためには、電極からの電流の導通に基づく前記各伝導部(21)における加熱の方が便利である。
In the embodiment shown in FIG. 1, the heating uses electric heat generated in each conduction part (21). However, the heating to the melt-softening valve (11) is not limited to the method using conduction, for example, There is also a technique in which a needle-like heating element is brought close to the melt-softening valve (11) to generate heat locally.
However, in order to perform stable heating, it is more convenient to heat the conductive portions (21) based on conduction of current from the electrodes.

図1に示す実施形態においては、不溶物フィルター槽(12)は、試料注入窓(13)を有すると共に、不溶性夾雑物を最初に除去するための2段に設置された不溶物除去フィルター(14)、微細な不溶性夾雑物が除去できるミクロフィルター(15)を具備するという3段階の構成を採用している。   In the embodiment shown in FIG. 1, the insoluble matter filter tank (12) has a sample injection window (13) and an insoluble matter removing filter (14) installed in two stages for first removing insoluble impurities. ), A three-stage configuration is adopted in which a microfilter (15) capable of removing fine insoluble impurities is provided.

このような3段階の構成によって、不溶性夾雑物のフィルター除去効率を上昇させ、試料中の検出対象物の純度を上昇させることが可能となるが、不溶物フィルター槽(12)の段階数を4段以上設定することもまた、必要において、当然採用可能である。   With such a three-stage configuration, it is possible to increase the filter removal efficiency of insoluble contaminants and increase the purity of the detection target in the sample, but the number of stages of the insoluble filter tank (12) is four. It is of course possible to set more than one stage if necessary.

ゲルろ過槽(18)は不溶性高分子を低分子から分離する目的で設置される。
また、このゲルろ過槽(18)は更に微細な不溶性夾雑物を除去するための第二ミクロフィルター(19)を具備する。
The gel filtration tank (18) is installed for the purpose of separating the insoluble polymer from the low molecule.
The gel filtration tank (18) further includes a second microfilter (19) for removing fine insoluble impurities.

反応槽(16)は、不溶物フィルター槽(12)と電気泳動法を採用した検出槽(17)との間に介在しており、かつ検出槽(17)との間には、融解軟化可能弁(11)が設けられている。   The reaction tank (16) is interposed between the insoluble matter filter tank (12) and the detection tank (17) employing the electrophoresis method, and can be melted and softened between the detection tank (17). A valve (11) is provided.

反応槽(16)においては、例えばDNA検出において採用されているDNAの増幅を行うためのPCR反応、更には細胞の増殖反応などを行わせることができる。   In the reaction tank (16), for example, a PCR reaction for amplifying DNA employed in DNA detection, a cell proliferation reaction, and the like can be performed.

検出槽(17)は、上記融解軟化可能弁(11)を介して、反応槽(16)と接続されており、図1による実施形態の場合には、電気泳動法による検出を行っていることとの関係上、周囲に緩衝液保持槽(22)を設けており、しかも反応槽(16)と緩衝液保持槽(22)との間においても、融解軟化可能弁(11)が設けられている。   The detection tank (17) is connected to the reaction tank (16) via the melt-softening valve (11), and in the case of the embodiment according to FIG. 1, detection is performed by electrophoresis. Therefore, a buffer solution holding tank (22) is provided in the periphery, and a melt-softening valve (11) is also provided between the reaction tank (16) and the buffer solution holding tank (22). Yes.

緩衝液保持槽(22)は電気泳動用の緩衝液を電気泳動を行うときまで保持しておくための槽である。   The buffer solution holding tank (22) is a tank for holding a buffer solution for electrophoresis until the time of electrophoresis.

検出槽(17)において電気泳動方式を採用している場合には、電気泳動用電極及び伝導部(23)を設けることが不可欠である。   When the electrophoresis method is adopted in the detection tank (17), it is indispensable to provide the electrode for electrophoresis and the conduction part (23).

検出槽(17)は、前記のように、電気泳動法方式だけではなく、例えば光検出法方式、エバネセンス法方式、NMR法方式なども採用可能であり、その場合には、緩衝液保持槽(22)は、必ずしも必要という訳ではない。   As described above, the detection tank (17) can adopt not only the electrophoresis method but also, for example, a light detection method, an evanescence method, an NMR method, etc. In this case, a buffer solution holding tank ( 22) is not always necessary.

図2は、本検出装置において、加熱を原因とする融解又は軟化によって開放することができる弁のテストパターンに関連する実施形態の斜視図であり、図3は断面図であり、図4は流体移動を遠心力で行う基板のテストパターンを示した斜視図である。   FIG. 2 is a perspective view of an embodiment relating to a test pattern of a valve that can be opened by melting or softening due to heating in the present detection device, FIG. 3 is a cross-sectional view, and FIG. It is the perspective view which showed the test pattern of the board | substrate which performs a movement with a centrifugal force.

図5は本基板作製方法の一例を示す断面図である。   FIG. 5 is a cross-sectional view showing an example of the substrate manufacturing method.

本検出装置を作成する場合には、図5に示すように、最初にベースとなる基材(71)を準備する。基材(71)は、脆性の無い物、例えば、シリコン樹脂(ポリジメチルシロキサン(PDMS)等)、アクリル樹脂、塩化ビニール、PTFE、ポリカーボネート樹脂、ポリエチレンテレフタレート(PET)、等のプラスチック、金属、ガラス、セラミック等又は、それらの組み合わせによる混合物を素材として採用することができる。   When producing this detection apparatus, as shown in FIG. 5, the base material (71) used as a base is prepared first. The base material (71) is a material having no brittleness, for example, a plastic such as silicon resin (polydimethylsiloxane (PDMS), acrylic resin, vinyl chloride, PTFE, polycarbonate resin, polyethylene terephthalate (PET), metal, glass, etc. A mixture of ceramic, etc., or a combination thereof can be used as the material.

基材(71)に、マイクロ流路形成部(72)を貼り付け形成する。当該マイクロ流路の形成は、エッチング技術による成形、金型を使用した熱プレスによる成形でも良い。また、他にはレーザー加工による成形、マイクロマシーンニングプロセスを使用した成形等の何れをも採用することができる。   A microchannel forming part (72) is pasted and formed on the substrate (71). The micro-channel may be formed by etching technique or hot press using a mold. In addition, any of molding by laser processing, molding using a micromachining process, and the like can be employed.

次に、マイクロ流路形成部(72)内の不溶物フィルター槽(12)を形成する領域に、不溶物除去フィルター(14)及びミクロフィルター(15)を形成し、更には第二ミクロフィルター(19)を形成する。   Next, an insoluble matter removing filter (14) and a microfilter (15) are formed in a region where the insoluble matter filter tank (12) is formed in the microchannel forming portion (72), and further, a second microfilter ( 19).

フィルターの材質はドライフィルム、樹脂、金属、ガラス、セラミック等を典型例として使用することができるが、これらに限定されず、試料に溶解せずに、濾過機能を有している物で、かつ遠心力等に耐え得る物であれば良い。   The material of the filter can be typically used as a dry film, resin, metal, glass, ceramic, etc., but is not limited thereto, and is not dissolved in the sample and has a filtration function, and Any material that can withstand centrifugal force and the like may be used.

加工方法としては、例えばドライフィルムの場合はレーザー加工、エッチング加工等、樹脂の場合はエッチング加工、レーザー加工、プレス加工、マイクロマシーンニングプロセス等、金属の場合は鍍金加工、エッチング加工、レーザー加工、プレス加工、マイクロマシーンニングプロセス等、ガラス、セラミックの場合はエッチング加工、レーザー加工、プレス加工、マイクロマシーンニングプロセス等が挙げられる。   Examples of processing methods include laser processing and etching processing in the case of dry film, etching processing in the case of resin, laser processing, press processing, micromachining process, etc., in the case of metal, plating processing, etching processing, laser processing, In the case of glass, ceramic, etc., an etching process, a laser process, a press process, a micromachine process, etc. are mentioned, such as a press process and a micromachining process.

フィルター形状は例えば図1に示すようなスリット状、基材(べース)(71)と蓋(73)?の間に複数列の柱を交互にずらして配置した形状等を採用しているが、要するに、不溶性夾雑物を濾過し得る形状であることを必要とする。   The filter shape is, for example, a slit shape as shown in FIG. 1, base material (base) (71) and lid (73)? A shape in which a plurality of columns are alternately shifted between the two is employed, but in short, it is necessary to have a shape that can filter insoluble impurities.

マイクロ流路形成部(72)を貼り付けた後には、図2、図3に示すように、当該マイクロ流路形成部(72)内の弁が加熱を原因として融解又は軟化することが出来る箇所(以下、「弁融解箇所」と略称する。)31、51に、熱を加えるための電極32、52を形成する。   After attaching the microchannel forming part (72), as shown in FIGS. 2 and 3, the valve in the microchannel forming part (72) can be melted or softened due to heating. (Hereinafter, abbreviated as “valve melting point”.) 31 and 51 are formed with electrodes 32 and 52 for applying heat.

電極形成方法としては、導電性テープ、金属箔の貼り付け、所定箇所における金属片の設置、金属鍍金、金属蒸着、スパッタリング等の何れも採用することができる。
尚、用いる金属は何れの場合にも、銅などの導電性金属である。
As an electrode forming method, any of a conductive tape, a metal foil, a metal piece at a predetermined location, metal plating, metal vapor deposition, sputtering, and the like can be employed.
In any case, the metal used is a conductive metal such as copper.

マイクロ流路形成部(72)を形成したマイクロ流路において融解軟化可能弁(11)を設置した場合に、当該弁融解箇所(31、51)に、高温によって融解又は軟化した状態にある融解軟化可能弁(11)の素材を注入し、放冷により硬化させて弁を形成することができる(尚、前記注入は、通常マイクロシリンジによって行われることが多い。)。   When the melt-softening valve (11) is installed in the micro-channel forming the micro-channel forming part (72), the melt-softening in the melted or softened state at a high temperature at the valve melting point (31, 51). The valve can be formed by injecting the material of the possible valve (11) and curing by allowing to cool (the injection is usually performed by a microsyringe in many cases).

弁融解個所(31、51)はマイクロ流路形成時にマイクロ流路と同様の方法で形成させる。   The valve melting points (31, 51) are formed by the same method as that for the microchannel when the microchannel is formed.

また、マイクロ流路内の弁融解個所(31、51)の形状は図2に示すテストパターンでは長方形となっているが、これに限ることは無く、融解又は軟化前であってゲル状となっている弁素材を保持出来かつ、融解又は軟化しているか又は、融解又は軟化過程のゾル状である弁素材が通過出来る形状であれば良く、例えば図6の(a)〜(h)に示すような、正方形、円形、菱形、六角形、ホームベース形、三角形、楕円形、長円形等であっても良い。   In addition, the shape of the valve melting point (31, 51) in the microchannel is rectangular in the test pattern shown in FIG. 2, but is not limited to this, and is in a gel form before melting or softening. The valve material can be retained and can be melted or softened, or can be passed through the valve material that is in the form of a sol in the melting or softening process. For example, as shown in FIGS. Such a square, circle, rhombus, hexagon, home base, triangle, ellipse, oval, etc.

弁に使用する素材の典型例は、アガロースゲルであるが、当該素材は、アガロースゲルに限定されるものではなく、ゲル化剤を含み、かつ体積が1マイクロリットル以下である水溶液ゲル(ナノゲル)であって、ゾル−ゲル転移に伴って、融解又は軟化し、当該融解又は軟化に基づいて開口するような素材であれば良く、例えばキトサンゲル、ジェランガムゲル、プルランゲル、カラギーナンゲル、キシログルカンゲル、デキストランゲル、デキストリンゲル、セルロースガムゲル、アミロースゲル、アミロペクチンゲルなどの多糖類又はそれらの組み合わせによる多糖類の混合物もまた、検出対象物の検出に影響を与えないことから、十分採用可能である。   A typical example of the material used for the valve is an agarose gel, but the material is not limited to an agarose gel, and an aqueous gel (nanogel) containing a gelling agent and having a volume of 1 microliter or less. Any material that melts or softens in accordance with the sol-gel transition and opens based on the melting or softening, such as chitosan gel, gellan gum gel, pullulan gel, carrageenan gel, xyloglucan gel, A mixture of polysaccharides such as dextran gel, dextrin gel, cellulose gum gel, amylose gel, and amylopectin gel or a combination thereof can also be sufficiently employed because it does not affect the detection of the detection target.

ゲルの注入方法としては、マイクロシリンジ等の手動方式以外に、インクジェット、スポッター、マイクロポンプ等の自動方式をも採用することができる。   As a method for injecting the gel, in addition to a manual method such as a microsyringe, an automatic method such as an ink jet, a spotter, or a micropump can be employed.

基材(71)に対する蓋としては、シリコン樹脂(PDMS等)、アクリル樹脂、塩化ビニール、ポリカーボネイト樹脂、PET、PTFE等のプラスチック、金属、ガラス、セラミック等又はそれらの混合物等を接着剤にて貼り付けることによって形成することができるが、試料観察を行うためには、透明なほうが良い。
尚、マイクロ流路の形成は、他にはマイクロ流路形成部(72)を基材(71)に貼り付けることなく、基材(71)を直接加工し形成しても良い。この場合も前述と同様の加工方法を用いる。
As a lid for the base material (71), silicon resin (PDMS, etc.), acrylic resin, vinyl chloride, polycarbonate resin, plastic such as PET, PTFE, metal, glass, ceramic, etc., or a mixture thereof is pasted with an adhesive. Although it can be formed by attaching, it is better to be transparent in order to observe the sample.
Alternatively, the microchannel may be formed by directly processing the substrate (71) without attaching the microchannel forming portion (72) to the substrate (71). In this case, the same processing method as described above is used.

基材(71)の内、検出槽(17)を形成する領域においては、所定の試薬を注入するが、当該試薬注入方法としては、マイクロシリンジなどの手動方式、インクジェット、スポッター、マイクロポンプなどの自動方式を採用することが可能である。   A predetermined reagent is injected into a region of the base material (71) where the detection tank (17) is formed. As the reagent injection method, a manual method such as a microsyringe, an inkjet, a spotter, a micropump, or the like is used. It is possible to adopt the automatic method.

融解軟化可能弁(11)が試料の流れを妨げる機能を確認するためには、上流の処理槽において、試料を注入し、チップに加速度を加える操作を行い、チップに加速度を加えることにより、試料が慣性によって当該上流の槽から隣接する下流の処理槽へ移動すること、及び弁部で試料の流れが中止されることを確認すると良い。   In order to confirm the function of the melt softening valve (11) to block the flow of the sample, the sample is injected in the upstream processing tank, the acceleration is applied to the chip, and the acceleration is applied to the chip. It is good to confirm that the sample moves from the upstream tank to the adjacent downstream processing tank due to inertia, and that the flow of the sample is stopped at the valve section.

加熱を原因として、弁が融解又は軟化することを確認するためには、電極部に電圧をかけ弁部を加温することによって、弁を構成している素材が融解又は軟化した後、改めてチップに加速度を加える操作を行い(例えば、遠心力を加える機構を採用する場合には、回転によって遠心力を加え)、前記試料が融解又は軟化した弁を構成する素材とともに通過することを確認すると良い。   In order to confirm that the valve melts or softens due to heating, the tip of the valve is melted or softened by applying voltage to the electrode part and heating the valve part. (For example, when a mechanism for applying a centrifugal force is applied, a centrifugal force is applied by rotation), and it is good to confirm that the sample passes with the material constituting the melted or softened valve. .

不溶物フィルター槽(12)におけるフィルター機能を確認するためには、試料注入口を設けた樹脂(73)から不溶物フィルター槽(12)に対し、試料をエッペンドルフチューブにセットしたうえで、セットされたエッペンドルフチューブに対し加速度を加える操作を行い、不溶性夾雑物が除去できることを確認すると良い。
尚、前記試料を移動させる機構としては、試料の慣性を利用する機構、試料に対し圧力を加える機構などを採用することが可能であるが、通常、遠心力によりチップに加速度を加え、試料の慣性を利用する操作が、圧力、流速を制御する外部精密機構を必要とせず、低コストでかつ最も安定した状態にて、試料を移動させることができる。
In order to confirm the filter function in the insoluble matter filter tank (12), the sample is set in the Eppendorf tube from the resin (73) provided with the sample inlet to the insoluble substance filter tank (12). It is better to confirm that the insoluble contaminants can be removed by applying acceleration to the Eppendorf tube.
As the mechanism for moving the sample, a mechanism that uses the inertia of the sample or a mechanism that applies pressure to the sample can be employed. The operation using inertia does not require an external precision mechanism for controlling pressure and flow velocity, and the sample can be moved at a low cost and in the most stable state.

また、試料の慣性を利用する機構としては、他にリニアフィーダーの上にチップを固定し、チップを振動させる機構等を用いても良い。   In addition, as a mechanism that uses the inertia of the sample, a mechanism that fixes the chip on the linear feeder and vibrates the chip may be used.

また、試料に対し、圧力を加える機構としては、ピストンとシリンダ等を用い、試料を、試料と混ざり合わない流体(例えば空気等)の圧力で押す操作等を採用することが出来る。   In addition, as a mechanism for applying pressure to the sample, an operation using a piston, a cylinder, or the like and pressing the sample with a pressure of a fluid (for example, air) that does not mix with the sample can be employed.

図7(a)においてゲル状の融解軟化可能弁(11a)は加熱又は超音波をかけることにより図7(b)の融解軟化可能弁(11b)に示すようにゾル化する。ゾル化した融解軟化可能弁(11b)は試料(83)中に溶解し、溶解した弁を含む試料(85)は、遠心力により、下流の処理槽(82)に存在している空気(84)を排除し、上流の処理槽(81)から下流の処理槽(82)へ移動する。またその際、排除された空気(84)は排除通路(10)を通って上流の処理槽(81)へと移動する。   In FIG. 7 (a), the gel-like melt-softening valve (11a) is solated as shown in the melt-softening valve (11b) of FIG. 7 (b) by applying heat or ultrasonic waves. The solubilized melt-softening valve (11b) is dissolved in the sample (83), and the sample (85) including the dissolved valve is air (84) present in the downstream processing tank (82) by centrifugal force. ) And move from the upstream processing tank (81) to the downstream processing tank (82). At that time, the excluded air (84) moves to the upstream processing tank (81) through the exclusion passage (10).

以下、検出対象物として、DNAを選択し、弁を構成する素材として、アガロースを採用し、試料を移動させる機構として、遠心力によりチップに加速度を加える機構を採用したうえで、実施例に即して説明する。   Hereinafter, DNA is selected as the detection target, agarose is adopted as the material constituting the valve, and a mechanism for applying acceleration to the chip by centrifugal force is adopted as the mechanism for moving the sample. To explain.

市販の3mm厚のアクリル樹脂を用意した。このアクリル樹脂を炭酸ガスレーザーを用い、出力25W、レーザー径70ミクロン、波長10.6ミクロンの条件下でドライエッチングを行い、流路深さ1mmのマイクロ流路を形成した。   A commercially available acrylic resin having a thickness of 3 mm was prepared. This acrylic resin was dry-etched using a carbon dioxide laser under the conditions of an output of 25 W, a laser diameter of 70 microns, and a wavelength of 10.6 microns to form a microchannel having a channel depth of 1 mm.

形成された流路をエタノールにて洗浄、乾燥した。   The formed channel was washed with ethanol and dried.

形成された流路の所定箇所に、市販の銅箔(0.018mm厚)を瞬間接着剤にて貼り付け、電極を形成した。   A commercially available copper foil (0.018 mm thickness) was attached to a predetermined portion of the formed flow path with an instantaneous adhesive to form an electrode.

基板にパウチフィルム(0.1mm厚)を熱圧着にて貼り付けテストパターンとした。   A pouch film (0.1 mm thick) was attached to the substrate by thermocompression bonding to form a test pattern.

マイクロ流路と同様の方法で形成された弁部に66℃に調製したアガロース2重量%水溶液をマイクロシリンジにて注入した。10分間の自然放冷の後、室温(24℃)に至ったことを確認して弁部の形成(アガロース2重量%水溶液のゲル化)を完了した。   A 2% by weight aqueous solution of agarose prepared at 66 ° C. was injected into a valve portion formed by the same method as that for the microchannel, using a microsyringe. After naturally cooling for 10 minutes, it was confirmed that the temperature reached room temperature (24 ° C.), and the formation of the valve portion (gelation of 2% by weight aqueous solution of agarose) was completed.

この基板をエッペンドルフチューブにはめ込んだ。基板入りのエッペンドルフチューブを9000rpmで5秒間、遠心分離操作を行った。   This substrate was fitted into an Eppendorf tube. The Eppendorf tube containing the substrate was centrifuged at 9000 rpm for 5 seconds.

遠心分離操作後にもゲル化したアガロースはそのまま保持された。この基板に試料をマイクロシリンジにて注入し、この基板をエッペンドルフチューブにはめ込んだ。   Even after centrifugation, the gelled agarose was retained. A sample was injected into this substrate with a microsyringe, and this substrate was fitted into an Eppendorf tube.

基板入りのエッペンドルフチューブを6000rpmで5秒間、遠心分離操作を行った。   The Eppendorf tube containing the substrate was centrifuged at 6000 rpm for 5 seconds.

遠心分離操作後を観察したところ、試料は流路を流れることが確認できた。また、アガロースゲル弁の手前で試料は保持されており、アガロースゲルが弁の役割を十分に果たすことが確認できた。   Observation after the centrifugation operation confirmed that the sample flowed through the flow path. Moreover, the sample was hold | maintained before the agarose gel valve, and it has confirmed that the agarose gel fully fulfill | performed the role of the valve.

基材をエッペンドルフチューブから取り出し、電極に1.7Aの電流を30秒間加えゲル部分を66℃に加温した。このときアガロースゲルが流体になっていることが確認できた。   The base material was taken out from the Eppendorf tube, and a current of 1.7 A was applied to the electrode for 30 seconds to warm the gel part to 66 ° C. At this time, it was confirmed that the agarose gel was a fluid.

加温後、再度エッペンドルフチューブにはめ込み、再度6000rpmで5秒間、遠心分離操作を行った。   After heating, the tube was fitted again into an Eppendorf tube, and centrifuged again at 6000 rpm for 5 seconds.

遠心分離操作後を観察したところ、試料とゾル化したアガロースゲルは混和し、弁部、流路を通過し、エッペンドルフチューブ底部に全て流れ落ちていることが確認できた。   After observing the centrifugation, it was confirmed that the sample and the solated agarose gel were mixed, passed through the valve portion and the flow path, and all flowed down to the bottom of the Eppendorf tube.

このことにより、アガロースゲルを弁として使用できることが確認できた。   This confirmed that an agarose gel can be used as a valve.

市販の1mm厚のアクリル樹脂基板を用意した。このアクリル樹脂を50℃の5%−アルカリ水溶液にて5分間脱脂洗浄を行い、純水洗浄後、5%−硫酸水溶液にて中和し、純水でさらに洗浄し乾燥した。   A commercially available acrylic resin substrate having a thickness of 1 mm was prepared. This acrylic resin was degreased and washed with a 5% aqueous alkali solution at 50 ° C. for 5 minutes, washed with pure water, neutralized with a 5% aqueous sulfuric acid solution, further washed with pure water, and dried.

このアクリル樹脂基板にアクリル系のドライフィルムレジスト(0.025mm厚)を熱圧着にてラミネートした後、ドライフィルムレジストを所定のフォトマスクパターンに従って露光し(60mJ/cm2)、さらに30℃の1%−アルカリ水溶液にて現像してパターニングし、流路回路を得た。   An acrylic dry film resist (0.025 mm thick) was laminated on the acrylic resin substrate by thermocompression bonding, and then the dry film resist was exposed according to a predetermined photomask pattern (60 mJ / cm 2), and further 1% at 30 ° C. -Development with an alkaline aqueous solution and patterning were performed to obtain a flow path circuit.

この基板を十分に純水洗浄後、乾燥した。この基板に試料注入口となる窓を設けたパウチフィルム(0.1mm厚)を熱圧着にて貼り付けテストパターンとした。   The substrate was sufficiently washed with pure water and then dried. A pouch film (thickness: 0.1 mm) provided with a window serving as a sample injection port was attached to the substrate by thermocompression bonding to form a test pattern.

この基板をエッペンドルフチューブ内径にあわせて切断した。切断後、試料注入口から試料を注入し、この基板をエッペンドルフチューブにはめ込んだ。   This substrate was cut according to the inner diameter of the Eppendorf tube. After cutting, a sample was injected from the sample injection port, and this substrate was fitted into an Eppendorf tube.

基板入りのエッペンドルフチューブを6000rpmで3秒間、遠心分離操作を行った。   The Eppendorf tube containing the substrate was centrifuged at 6000 rpm for 3 seconds.

遠心分離操作後を観察したところ、試料は流路を通過してエッペンドルフチューブ下部に到達した。   When the centrifugation operation was observed, the sample passed through the channel and reached the lower part of the Eppendorf tube.

この結果より、作製した基板は、十分に遠心力を利用しての流体移動が可能であることが確認できた。   From this result, it was confirmed that the produced substrate can sufficiently move the fluid using the centrifugal force.

市販の3mm厚のアクリル樹脂を用意した。このアクリル樹脂を炭酸ガスレーザーを用い、出力25W、レーザー径70ミクロン、波長10.6ミクロンの条件下でドライエッチングを行い、流路深さ1mmのマイクロ流路を形成した。   A commercially available acrylic resin having a thickness of 3 mm was prepared. This acrylic resin was dry-etched using a carbon dioxide laser under the conditions of an output of 25 W, a laser diameter of 70 microns, and a wavelength of 10.6 microns to form a microchannel having a channel depth of 1 mm.

形成された流路をエタノールにて洗浄、乾燥した。   The formed channel was washed with ethanol and dried.

この基板に試料注入口となる窓を設けたパウチフィルム(0.1mm厚)を熱圧着にて貼り付けテストパターンとした。   A pouch film (thickness: 0.1 mm) provided with a window serving as a sample injection port was attached to the substrate by thermocompression bonding to form a test pattern.

基板に試料をマイクロシリンジにて注入し、この基板をエッペンドルフチューブにはめ込んだ。   A sample was injected into the substrate with a microsyringe, and this substrate was fitted into an Eppendorf tube.

基板入りのエッペンドルフチューブを12000rpmで5秒間、遠心分離操作を行った。   The Eppendorf tube containing the substrate was centrifuged at 12000 rpm for 5 seconds.

遠心分離操作後を観察したところ、上記と同様、試料は流路を流れることが確認できた。   Observation after the centrifugation operation confirmed that the sample flowed through the flow path as described above.

以上のことより、マイクロ流路内の微量の試料は、遠心力を利用して移動できることが確認できた。   From the above, it was confirmed that a small amount of sample in the microchannel can be moved using centrifugal force.

市販の1mm厚のアクリル樹脂基板を用意した。このアクリル樹脂を50℃の5%−アルカリ水溶液にて5分間脱脂洗浄を行い、純水洗浄後、5%−硫酸水溶液にて中和し、純水でさらに洗浄し乾燥した。   A commercially available acrylic resin substrate having a thickness of 1 mm was prepared. This acrylic resin was degreased and washed with a 5% aqueous alkali solution at 50 ° C. for 5 minutes, washed with pure water, neutralized with a 5% aqueous sulfuric acid solution, further washed with pure water, and dried.

このアクリル樹脂基板にアクリル系のドライフィルムレジスト(0.075mm厚)を熱圧着にてラミネートした後、ドライフィルムレジストを0.04mmの間隔を持った所定のフォトマスクパターンに従って露光し(70mJ/cm2)、さらに30℃の1%−アルカリ水溶液にて現像してパターニングした。   After laminating an acrylic dry film resist (0.075 mm thickness) on the acrylic resin substrate by thermocompression bonding, the dry film resist was exposed according to a predetermined photomask pattern with a spacing of 0.04 mm (70 mJ / cm 2). Further, development was performed with a 1% -alkali aqueous solution at 30 ° C. and patterning was performed.

このときギャップ0.04mm、深さ0.03mmのすり鉢形状のパターンを得た。   At this time, a mortar-shaped pattern having a gap of 0.04 mm and a depth of 0.03 mm was obtained.

この基板を十分に純水洗浄、乾燥した後、再度この基板にアクリル系のドライフィルムレジスト(0.015mm厚)を熱圧着にてラミネートした。このドライフィルムレジストを前記フォトマスクにてアライメント露光し(60mJ/cm2)、さらに30℃の1%−アルカリ水溶液にて現像してパターニングした。このときギャップ0.04mm、深さ0.045mmのすり鉢状のパターンを得た。   The substrate was sufficiently washed with pure water and dried, and then an acrylic dry film resist (thickness: 0.015 mm) was laminated on the substrate again by thermocompression bonding. This dry film resist was alignment-exposed with the photomask (60 mJ / cm 2), and further developed with a 1% -alkaline aqueous solution at 30 ° C. and patterned. At this time, a mortar-shaped pattern having a gap of 0.04 mm and a depth of 0.045 mm was obtained.

この基板を十分に純水洗浄後、乾燥した。この基板に試料注入口となる窓を設けたパウチフィルム(0.1mm厚)を熱圧着にて貼り付けテストパターンとした。   The substrate was sufficiently washed with pure water and then dried. A pouch film (thickness: 0.1 mm) provided with a window serving as a sample injection port was attached to the substrate by thermocompression bonding to form a test pattern.

この基板をエッペンドルフチューブ内径にあわせて切断した。切断後、試料注入口から植物細胞抽出物(トマト果汁飲料)を注入し、この基板をエッペンドルフチューブにはめ込んだ。   This substrate was cut according to the inner diameter of the Eppendorf tube. After cutting, a plant cell extract (tomato juice drink) was injected from the sample injection port, and this substrate was fitted into an Eppendorf tube.

基板入りのエッペンドルフチューブを6000rpmで3秒間、遠心分離操作を行った。   The Eppendorf tube containing the substrate was centrifuged at 6000 rpm for 3 seconds.

一方、コントロールとして、マイクロ流路基板なしで、エッペンドルフチューブの内壁上部に同様の試料を付着させ、同様に6000rpmで3秒間、遠心分離操作を行った。   On the other hand, as a control, a similar sample was attached to the upper part of the inner wall of the Eppendorf tube without a microchannel substrate, and a centrifugal separation operation was similarly performed at 6000 rpm for 3 seconds.

遠心分離操作後を観察したところ、試料中の不溶性成分とマイクロ流路基板との非特異的結合によりそのほとんどが吸着したが、色の濃い可溶性成分のみが流路を通過してエッペンドルフチューブ下部に到達した。対してコントロール実験では全ての成分が下部に到達し、元と同じ色(濃い赤)が確認できた。   Observation after the centrifugation showed that most of the insoluble components in the sample were adsorbed due to non-specific binding between the microchannel substrate, but only the highly soluble components passed through the channel and passed through the bottom of the Eppendorf tube. Reached. In contrast, in the control experiment, all components reached the bottom, and the same color (dark red) as the original was confirmed.

この結果より、作製した基板は、十分にフィルター機能を満足できることが分かった。   From this result, it was found that the produced substrate can sufficiently satisfy the filter function.

〔比較例1〕
市販のDNAチップ用スライドガラスに、プローブDNAをスポッターにて貼り付けた。一方、検出対象物はPCR装置を使用して、遺伝子増幅し、増幅した検出対象物に蛍光物質(CY3)を加えた。この検出対象物を、調整されたDNAチップ上に滴下し、ハイブリダイゼーションを行った。ハイブリダイゼーション後、スキャンアレイライトでDNAを蛍光検出した。このように、従来技術によると、チップ上にDNAをスポットする装置、DNAを増幅する装置、ハイブリダイゼーション装置、チップの読み取り装置(スキャナー)等、多種の高価専門機器が必要であり、さらに各工程が非常に熟練度を要することが判明した。
[Comparative Example 1]
The probe DNA was attached to a commercially available slide glass for DNA chip with a spotter. On the other hand, the detection target was subjected to gene amplification using a PCR device, and a fluorescent substance (CY3) was added to the amplified detection target. This detection object was dropped on the adjusted DNA chip, and hybridization was performed. After hybridization, DNA was detected with a scan array light. As described above, according to the prior art, various expensive specialized equipments such as a device for spotting DNA on a chip, a device for amplifying DNA, a hybridization device, a chip reading device (scanner) are required, and each process is further performed. Turned out to be very skillful.

本発明による検出装置は、畜産分野、及び医療分野、更にはバイオロジーの研究分野、更には、これらの分野と関連する製造分野において利用することができる。   The detection device according to the present invention can be used in the livestock field, the medical field, the biology research field, and the manufacturing field related to these fields.

本発明における最良の実施形態を示す長手方向の断面図である。It is sectional drawing of the longitudinal direction which shows the best embodiment in this invention. 熱で弁が開く基板のテストパターンを示した斜視図である。It is the perspective view which showed the test pattern of the board | substrate which a valve opens with heat. 熱で弁が開く基板のテストパターンを示す長手方向と直交する方向の断面図である。It is sectional drawing of the direction orthogonal to the longitudinal direction which shows the test pattern of the board | substrate which a valve opens with heat. 流体移動を遠心力で行う基板のテストパターンを示した斜視図である。It is the perspective view which showed the test pattern of the board | substrate which performs a fluid movement with a centrifugal force. 基材を用意する過程、更には不溶物フィルター槽において、フィルターを行うためのマイクロ流路形成部を形成する過程、更には、試料注入口を設けた樹脂を貼り付けることを示す断面図である。FIG. 4 is a cross-sectional view showing a process of preparing a base material, a process of forming a micro flow path forming part for performing filtering in an insoluble matter filter tank, and further affixing a resin provided with a sample inlet. . 弁融解箇所における移動方向の断面図であり、(a)は円形の場合を示し、(b)は菱形の場合を示し、(c)は六角形の場合を示し、(d)はホームベース状の場合を示し、(e)は三角形の場合を示し、(f)は長円形の場合を示し、(g)は三角形の各頂角に大きくRをつけたような形の場合を示し、(h)は(c)の六角形を90°回転させた場合を示す。It is sectional drawing of the moving direction in a valve melting location, (a) shows the case of a circle, (b) shows the case of a rhombus, (c) shows the case of a hexagon, (d) shows a home base shape (E) shows the case of a triangle, (f) shows the case of an oval, (g) shows the case of a shape in which each apex angle of the triangle has a large R, ( h) shows a case where the hexagon of (c) is rotated by 90 °. 本発明において、試料が、上流の処理槽から隣接する下流の処理槽に移動するプロセスを示す、試料の移動方向の断面図であり、(a)は弁が軟化する前の状態を示し、(b)は弁が軟化した直後の状態を示し、(c)は軟化した弁が試料中に溶解した後、試料又は本検出装置に外力が作用し、溶解した弁を含む試料が上流の処理槽から隣接する下流の処理槽に移動する途中の状態を示し、(d)は溶解した弁を含む試料の上流の処理槽から隣接する下流の処理槽への移動が完了した状態を示す。In this invention, it is sectional drawing of the moving direction of a sample which shows the process in which a sample moves to the downstream downstream processing tank from an upstream processing tank, (a) shows the state before a valve softens, b) shows a state immediately after the valve is softened, and (c) shows that the softened valve is dissolved in the sample, and then an external force is applied to the sample or the detection device, and the sample containing the dissolved valve is in the upstream processing tank. (D) shows a state in which the movement of the sample including the dissolved valve from the upstream processing tank to the adjacent downstream processing tank has been completed.

符号の説明Explanation of symbols

10 排除通路
11 融解軟化可能弁
12 不溶物フィルター槽
13 試料注入窓
14 不溶物除去フィルター
15 ミクロフィルター
16 反応槽
17 検出槽
18 ゲルろ過(SEC)槽
19 第二ミクロフィルター
21 加熱用電極から電流が導通される伝導部
22 緩衝液保持槽
23 電気泳動用電極及び伝導部
31 弁融解箇所(但し、流路方向の上側視による。)
32 加熱用電極
41 試料注入口
51 弁融解箇所(但し、流路に垂直な方向の横側視による。)
52 加熱用電極
53 接着剤付きの樹脂
71 基材(ベース)
72 マイクロ流路形成部
73 蓋
81 上流の処理槽
82 下流の処理槽
83 検出対象物を含む試料
84 空気
85 溶解した弁及び検出対象物を含む試料
DESCRIPTION OF SYMBOLS 10 Exclusion passage 11 Melt softening possible valve 12 Insoluble matter filter tank 13 Sample injection window 14 Insoluble matter removal filter 15 Micro filter 16 Reaction tank 17 Detection tank 18 Gel filtration (SEC) tank 19 Second micro filter 21 Current flows from the heating electrode Conduction portion 22 to be conducted Buffer holding tank 23 Electrode for electrophoresis and conduction portion 31 Valve melting point (however, as viewed from above in the flow path direction)
32 Heating electrode 41 Sample inlet 51 Valve melting point (however, according to a side view perpendicular to the flow path)
52 Heating electrode 53 Resin 71 with adhesive 71 Base material (base)
72 Micro-channel forming part 73 Lid 81 Upstream processing tank 82 Downstream processing tank 83 Sample 84 containing detection object Air 85 Sample containing dissolved valve and detection object

Claims (15)

試料に前処理を施した後、該試料から生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置であって、
チップ内に、前記試料に前処理を行う少なくとも1つ以上の処理槽と、この処理槽の下流に設けられて、前記生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する検出槽とを備え、
少なくとも前記検出槽と処理槽との境界部に、融解又は軟化することによって、生体由来分子、ダイオキシン類、内分泌撹乱物質を含む試料中に溶解し、生体由来分子、ダイオキシン類、内分泌撹乱物質を含む試料を通過させることができる融解軟化可能弁を設けたことに基づく生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。
An apparatus for detecting biologically derived molecules, dioxins, endocrine disrupting substances from the sample after pre-processing the sample,
In the chip, comprising at least one or more treatment tanks for pretreatment of the sample, and a detection tank provided downstream of the treatment tank for detecting the biological molecules, dioxins, and endocrine disrupting substances,
At least at the boundary between the detection tank and the treatment tank, it is dissolved or dissolved in a sample containing biologically derived molecules, dioxins and endocrine disrupting substances, and contains biologically derived molecules, dioxins and endocrine disrupting substances. An apparatus for detecting biologically derived molecules, dioxins, and endocrine disrupting substances based on the provision of a melt-softening valve through which a sample can pass.
生体由来分子、ダイオキシン類、内分泌撹乱物質を含む試料と該試料中に溶解した融解軟化可能弁が上流の処理槽から該上流の処理槽と隣接する下流の処理槽又は検出槽に移動する際、該下流の処理槽又は検出槽中の排除する空気を逃がす機構を設けたことを特徴とする請求項1に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。   When a sample containing a biological molecule, dioxins, endocrine disrupting substance and a melt-softening valve dissolved in the sample move from an upstream processing tank to a downstream processing tank or detection tank adjacent to the upstream processing tank, 2. The apparatus for detecting biologically derived molecules, dioxins and endocrine disrupting substances according to claim 1, further comprising a mechanism for escaping air to be excluded from the downstream processing tank or detection tank. 処理槽の少なくとも1つが、不溶性夾雑物を取り除く為の不溶物フィルター槽であることを特徴とする請求項1又は2に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。   The apparatus for detecting biologically derived molecules, dioxins and endocrine disrupting substances according to claim 1 or 2, wherein at least one of the treatment tanks is an insoluble matter filter tank for removing insoluble contaminants. 不溶物フィルター槽と検出槽との間に処理槽の1つである反応槽を設けるとともに、この反応槽と検出槽との境界部にも、前記融解軟化可能弁を設けたことを特徴とする請求項3に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 A reaction tank which is one of the treatment tanks is provided between the insoluble matter filter tank and the detection tank, and the melt-softening valve is provided at the boundary between the reaction tank and the detection tank. The apparatus which detects the biological origin molecule | numerator, dioxins, and endocrine disrupting substance of Claim 3. 不溶物フィルター槽を複数段に設定し、各段階毎の境界部の全て又は一部にも前記融解軟化可能弁を設けたことを特徴とする請求項3又は4に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 The biologically derived molecule or dioxin according to claim 3 or 4, wherein the insoluble matter filter tank is set in a plurality of stages, and the melt-softening valve is provided in all or part of the boundary part of each stage. A device that detects endocrine disruptors. 反応槽を複数段に設定し、各段階毎の境界部の全て又は一部にも、前記融解軟化可能弁を設けたことを特徴とする請求項4に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 5. The bio-derived molecule, dioxins, and endocrine according to claim 4, wherein the reaction tank is set in a plurality of stages, and the melt-softening valve is provided in all or a part of the boundary for each stage. A device that detects disturbing substances. 不溶物フィルター槽を複数段に設定し、各段階毎の境界部の全て又は一部にも前記融解軟化可能弁を設けたことを特徴とする請求項6に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 The insoluble matter filter tank is set in a plurality of stages, and the melt-softening valve is provided in all or a part of the boundary part for each stage, biomolecules according to claim 6, dioxins, A device that detects endocrine disruptors. 検出槽において、電気泳動法、光検出法、エバネセンス法、NMR法の何れかを採用したことを特徴とする請求項1〜7のいずれか一項に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。   In the detection tank, any one of an electrophoresis method, a light detection method, an evanescence method, and an NMR method is adopted, The biological molecule, dioxins, and endocrine disruption according to any one of claims 1 to 7 A device that detects substances. 検出槽において、電気泳動法を採用したうえで、検出槽の周囲に緩衝液保持槽を設け、かつ緩衝液保持槽と検出槽との間に融解又は軟化することによって、緩衝液を前記緩衝液保持槽と検出槽との間で移動させることができる融解軟化可能弁を設けたことを特徴とする請求項1〜7のいずれか一項に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 In the detection tank, after employing the electrophoresis method, a buffer solution holding tank is provided around the detection tank, and the buffer solution is melted or softened between the buffer solution holding tank and the detection tank. The biomolecule, dioxins, and endocrine disrupting substances according to any one of claims 1 to 7, wherein a melt-softening valve that can be moved between the holding tank and the detection tank is provided. Device to detect. 加熱を原因として融解又は軟化する融解軟化可能弁を設けたことを特徴とする請求項1〜9のいずれか一項に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 An apparatus for detecting biomolecules, dioxins, and endocrine disrupting substances according to any one of claims 1 to 9, wherein a melt-softening valve that melts or softens due to heating is provided. 融解軟化可能弁に対する加熱機構として、これら融解軟化可能弁の近傍に加熱用電極を設置したことを特徴とする請求項10に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 11. The apparatus for detecting biologically derived molecules, dioxins and endocrine disrupting substances according to claim 10, wherein a heating electrode is provided in the vicinity of these melt softening valves as a heating mechanism for the melt softening valves. 融解軟化可能弁の素材として、アガロース、キトサン、ジェランガム、プルラン、カラギーナン、キシログルカン、デキストラン、デキストリン、セルロースガム、アミロース、アミロペクチンなどの多糖類又はそれらの組み合わせによる多糖類の混合物を採用したことを特徴とする請求項10又は11に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 As a material for the melt-softening valve, it is characterized by adopting a mixture of polysaccharides such as agarose, chitosan, gellan gum, pullulan, carrageenan, xyloglucan, dextran, dextrin, cellulose gum, amylose, amylopectin, or a combination thereof. The apparatus which detects the biological origin molecule | numerator, dioxins, and endocrine disrupting substance of Claim 10 or 11. 超音波をかけることを原因として融解又は軟化する融解軟化可能弁を設けたことを特徴とする請求項1〜9のいずれか一項に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 The biomolecule, dioxins, and endocrine disrupting substances according to any one of claims 1 to 9, wherein a melt-softening valve that melts or softens due to application of ultrasonic waves is provided. apparatus. 融解軟化可能弁の素材として、アガロース、キトサン、ジェランガム、プルラン、カラギーナン、キシログルカン、デキストラン、デキストリン、セルロースガム、アミロース、アミロペクチンなどの多糖類又はそれらの組み合わせによる多糖類の混合物を採用したことを特徴とする請求項13に記載の生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する装置。 As a material for the melt-softening valve, it is characterized by adopting a mixture of polysaccharides such as agarose, chitosan, gellan gum, pullulan, carrageenan, xyloglucan, dextran, dextrin, cellulose gum, amylose, amylopectin, or a combination thereof. The apparatus which detects the biological origin molecule | numerator, dioxins, and endocrine disrupting substance of Claim 13. 試料に前処理を施した後、該試料から生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する方法であって、
試料に前処理を行う操作を処理槽で行った後、この試料に含まれている生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する操作を検出槽で行っており、
前記検出槽と処理槽との境界部において、加熱又は超音波をかけることを原因として融解又は軟化する融解軟化可能弁を設けておき、
前記処理槽での操作が終了した後、試料又は試料の入った処理槽に外力を作用させるとともに、前記融解軟化可能弁を加熱すること、又は超音波をかけることによって開放し、生体由来分子、ダイオキシン類、内分泌撹乱物質を含む試料を検出槽に移動させることを特徴とする生体由来分子、ダイオキシン類、内分泌撹乱物質を検出する方法。

A method for detecting biologically derived molecules, dioxins, endocrine disrupting substances from the sample after pre-treatment of the sample,
After performing an operation for pretreatment of the sample in the treatment tank, an operation for detecting biologically derived molecules, dioxins, and endocrine disrupting substances contained in the sample is performed in the detection tank.
At the boundary between the detection tank and the processing tank, a melt-softening valve that melts or softens due to heating or applying ultrasonic waves is provided,
After the operation in the treatment tank is completed, an external force is applied to the sample or the treatment tank containing the sample, and the melt-softening valve is heated or opened by applying an ultrasonic wave, A method for detecting biologically derived molecules, dioxins, and endocrine disrupting substances, wherein a sample containing dioxins and endocrine disrupting substances is moved to a detection tank.

JP2004375985A 2003-12-25 2004-12-27 Biologically derived molecules, dioxins and endocrine disrupting substance detection apparatus and detection method using the apparatus Expired - Fee Related JP4750412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375985A JP4750412B2 (en) 2003-12-25 2004-12-27 Biologically derived molecules, dioxins and endocrine disrupting substance detection apparatus and detection method using the apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003428601 2003-12-25
JP2003428601 2003-12-25
JP2004375985A JP4750412B2 (en) 2003-12-25 2004-12-27 Biologically derived molecules, dioxins and endocrine disrupting substance detection apparatus and detection method using the apparatus

Publications (2)

Publication Number Publication Date
JP2005204661A true JP2005204661A (en) 2005-08-04
JP4750412B2 JP4750412B2 (en) 2011-08-17

Family

ID=34914056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375985A Expired - Fee Related JP4750412B2 (en) 2003-12-25 2004-12-27 Biologically derived molecules, dioxins and endocrine disrupting substance detection apparatus and detection method using the apparatus

Country Status (1)

Country Link
JP (1) JP4750412B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511059A (en) * 2005-10-11 2009-03-19 ハンディーラブ インコーポレイテッド Polynucleotide sample preparation device
US8323584B2 (en) 2001-09-12 2012-12-04 Handylab, Inc. Method of controlling a microfluidic device having a reduced number of input and output connections
US8440149B2 (en) 2001-02-14 2013-05-14 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US8470586B2 (en) 2004-05-03 2013-06-25 Handylab, Inc. Processing polynucleotide-containing samples
US8617905B2 (en) 1995-09-15 2013-12-31 The Regents Of The University Of Michigan Thermal microvalves
US8703069B2 (en) 2001-03-28 2014-04-22 Handylab, Inc. Moving microdroplets in a microfluidic device
US8710211B2 (en) 2007-07-13 2014-04-29 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US8768517B2 (en) 2001-03-28 2014-07-01 Handylab, Inc. Methods and systems for control of microfluidic devices
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
US8894947B2 (en) 2001-03-28 2014-11-25 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9040288B2 (en) 2006-03-24 2015-05-26 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US9080207B2 (en) 2006-03-24 2015-07-14 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
USD742027S1 (en) 2011-09-30 2015-10-27 Becton, Dickinson And Company Single piece reagent holder
US9222954B2 (en) 2011-09-30 2015-12-29 Becton, Dickinson And Company Unitized reagent strip
US9238223B2 (en) 2007-07-13 2016-01-19 Handylab, Inc. Microfluidic cartridge
US9259734B2 (en) 2007-07-13 2016-02-16 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
WO2023190803A1 (en) * 2022-03-30 2023-10-05 株式会社リガク Microchannel device
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
USD1029291S1 (en) 2020-12-14 2024-05-28 Becton, Dickinson And Company Single piece reagent holder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002043864A2 (en) * 2000-11-03 2002-06-06 Clinical Micro Sensors, Inc. Devices and methods for biochip multiplexing
JP2002536640A (en) * 1999-02-03 2002-10-29 アクララ バイオサイエンシーズ, インコーポレイテッド Multi-channel control for microfluidic introduction
JP2003240757A (en) * 2002-02-19 2003-08-27 Ngk Insulators Ltd Micro chemical chip
JP2003270252A (en) * 1997-05-23 2003-09-25 Gamera Bioscience Corp Device and method for using centripetal acceleration for driving flowing movement in micro-hydraulic engineering system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270252A (en) * 1997-05-23 2003-09-25 Gamera Bioscience Corp Device and method for using centripetal acceleration for driving flowing movement in micro-hydraulic engineering system
JP2002536640A (en) * 1999-02-03 2002-10-29 アクララ バイオサイエンシーズ, インコーポレイテッド Multi-channel control for microfluidic introduction
WO2002043864A2 (en) * 2000-11-03 2002-06-06 Clinical Micro Sensors, Inc. Devices and methods for biochip multiplexing
JP2003240757A (en) * 2002-02-19 2003-08-27 Ngk Insulators Ltd Micro chemical chip

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617905B2 (en) 1995-09-15 2013-12-31 The Regents Of The University Of Michigan Thermal microvalves
US8734733B2 (en) 2001-02-14 2014-05-27 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US9528142B2 (en) 2001-02-14 2016-12-27 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US8440149B2 (en) 2001-02-14 2013-05-14 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US9051604B2 (en) 2001-02-14 2015-06-09 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US9677121B2 (en) 2001-03-28 2017-06-13 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10351901B2 (en) 2001-03-28 2019-07-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US8768517B2 (en) 2001-03-28 2014-07-01 Handylab, Inc. Methods and systems for control of microfluidic devices
US8703069B2 (en) 2001-03-28 2014-04-22 Handylab, Inc. Moving microdroplets in a microfluidic device
US8894947B2 (en) 2001-03-28 2014-11-25 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US9259735B2 (en) 2001-03-28 2016-02-16 Handylab, Inc. Methods and systems for control of microfluidic devices
US9028773B2 (en) 2001-09-12 2015-05-12 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US8323584B2 (en) 2001-09-12 2012-12-04 Handylab, Inc. Method of controlling a microfluidic device having a reduced number of input and output connections
US8685341B2 (en) 2001-09-12 2014-04-01 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US10865437B2 (en) 2003-07-31 2020-12-15 Handylab, Inc. Processing particle-containing samples
US11078523B2 (en) 2003-07-31 2021-08-03 Handylab, Inc. Processing particle-containing samples
US9670528B2 (en) 2003-07-31 2017-06-06 Handylab, Inc. Processing particle-containing samples
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US10604788B2 (en) 2004-05-03 2020-03-31 Handylab, Inc. System for processing polynucleotide-containing samples
US11441171B2 (en) 2004-05-03 2022-09-13 Handylab, Inc. Method for processing polynucleotide-containing samples
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US10494663B1 (en) 2004-05-03 2019-12-03 Handylab, Inc. Method for processing polynucleotide-containing samples
US8470586B2 (en) 2004-05-03 2013-06-25 Handylab, Inc. Processing polynucleotide-containing samples
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
JP2009511059A (en) * 2005-10-11 2009-03-19 ハンディーラブ インコーポレイテッド Polynucleotide sample preparation device
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10913061B2 (en) 2006-03-24 2021-02-09 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US9802199B2 (en) 2006-03-24 2017-10-31 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11959126B2 (en) 2006-03-24 2024-04-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10857535B2 (en) 2006-03-24 2020-12-08 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10843188B2 (en) 2006-03-24 2020-11-24 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10821436B2 (en) 2006-03-24 2020-11-03 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10821446B1 (en) 2006-03-24 2020-11-03 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11085069B2 (en) 2006-03-24 2021-08-10 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9040288B2 (en) 2006-03-24 2015-05-26 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11141734B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11666903B2 (en) 2006-03-24 2023-06-06 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US9080207B2 (en) 2006-03-24 2015-07-14 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US9815057B2 (en) 2006-11-14 2017-11-14 Handylab, Inc. Microfluidic cartridge and method of making same
US9259734B2 (en) 2007-07-13 2016-02-16 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US10625261B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10632466B1 (en) 2007-07-13 2020-04-28 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10717085B2 (en) 2007-07-13 2020-07-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10139012B2 (en) 2007-07-13 2018-11-27 Handylab, Inc. Integrated heater and magnetic separator
US8710211B2 (en) 2007-07-13 2014-04-29 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11845081B2 (en) 2007-07-13 2023-12-19 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10100302B2 (en) 2007-07-13 2018-10-16 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US9217143B2 (en) 2007-07-13 2015-12-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10071376B2 (en) 2007-07-13 2018-09-11 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10065185B2 (en) 2007-07-13 2018-09-04 Handylab, Inc. Microfluidic cartridge
US11466263B2 (en) 2007-07-13 2022-10-11 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US10875022B2 (en) 2007-07-13 2020-12-29 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9701957B2 (en) 2007-07-13 2017-07-11 Handylab, Inc. Reagent holder, and kits containing same
US11254927B2 (en) 2007-07-13 2022-02-22 Handylab, Inc. Polynucleotide capture materials, and systems using same
US11060082B2 (en) 2007-07-13 2021-07-13 Handy Lab, Inc. Polynucleotide capture materials, and systems using same
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US9238223B2 (en) 2007-07-13 2016-01-19 Handylab, Inc. Microfluidic cartridge
US9347586B2 (en) 2007-07-13 2016-05-24 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
US11788127B2 (en) 2011-04-15 2023-10-17 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9765389B2 (en) 2011-04-15 2017-09-19 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US9222954B2 (en) 2011-09-30 2015-12-29 Becton, Dickinson And Company Unitized reagent strip
USD905269S1 (en) 2011-09-30 2020-12-15 Becton, Dickinson And Company Single piece reagent holder
US10076754B2 (en) 2011-09-30 2018-09-18 Becton, Dickinson And Company Unitized reagent strip
USD742027S1 (en) 2011-09-30 2015-10-27 Becton, Dickinson And Company Single piece reagent holder
USD831843S1 (en) 2011-09-30 2018-10-23 Becton, Dickinson And Company Single piece reagent holder
US9480983B2 (en) 2011-09-30 2016-11-01 Becton, Dickinson And Company Unitized reagent strip
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
USD1029291S1 (en) 2020-12-14 2024-05-28 Becton, Dickinson And Company Single piece reagent holder
WO2023190803A1 (en) * 2022-03-30 2023-10-05 株式会社リガク Microchannel device

Also Published As

Publication number Publication date
JP4750412B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4750412B2 (en) Biologically derived molecules, dioxins and endocrine disrupting substance detection apparatus and detection method using the apparatus
Patabadige et al. Micro total analysis systems: fundamental advances and applications
Li et al. Applications of acoustofluidics in bioanalytical chemistry
US6979424B2 (en) Integrated sample analysis device
EP3698872B1 (en) Microfluidic detection chip for multi-channel quick detecting
Tran et al. Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility
CA2324244C (en) Device for analyzing a sample
US20090269767A1 (en) Microfluidic chip devices and their use
CN101435807B (en) Unpowered micro-flow control chip for heavy metal ion on site detection and making and using method thereof
Jayamohan et al. Advances in microfluidics and lab-on-a-chip technologies
Volpe et al. A smart procedure for the femtosecond laser-based fabrication of a polymeric lab-on-a-chip for capturing tumor cell
CN108499619A (en) A kind of integrated micro-fluidic filtrating chip of film and its preparation method and application
Ríos et al. Sample preparation for micro total analytical systems (μ-TASs)
JP2017508956A (en) Microfluidic chip and real-time analyzer using the same
US20210252506A1 (en) Microfluidic Device, Method for Producing Same, and Use Thereof
JP2009128229A (en) Microchip
CN215906212U (en) Nucleic acid amplification reactor
JP4816906B2 (en) Particulate collection device
CN104911101A (en) Paper element micro-fluidic chip proteolysis reactor and preparation method thereof
AU764319B2 (en) Chemical processing device
CN103484353A (en) Biomacromolecule extracting device based on filter paper
Md Yunus et al. Fabrication of microfluidic device channel using a photopolymer for colloidal particle separation
CN101200694A (en) Closed loop polymerase chain reaction system and manufacturing method therefor
Zimina et al. Microsystems for express analysis
Nikfarjam et al. Label-free impedance-based detection of encapsulated single cells in droplets in low cost and transparent microfluidic chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees