JP2005203934A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2005203934A
JP2005203934A JP2004006562A JP2004006562A JP2005203934A JP 2005203934 A JP2005203934 A JP 2005203934A JP 2004006562 A JP2004006562 A JP 2004006562A JP 2004006562 A JP2004006562 A JP 2004006562A JP 2005203934 A JP2005203934 A JP 2005203934A
Authority
JP
Japan
Prior art keywords
gain
motion vector
divergence
vector
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004006562A
Other languages
Japanese (ja)
Other versions
JP2005203934A5 (en
JP4258383B2 (en
Inventor
Yasunori Kishi
靖典 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004006562A priority Critical patent/JP4258383B2/en
Publication of JP2005203934A publication Critical patent/JP2005203934A/en
Publication of JP2005203934A5 publication Critical patent/JP2005203934A5/ja
Application granted granted Critical
Publication of JP4258383B2 publication Critical patent/JP4258383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system with the lower limit value of a gain obtained from divergence set to a value greater than 0, unlike as in prior art where a camera-shake correction function is interrupted during an operation of optical zooming due to divergence processing of a motion vector, for an imaging apparatus having optical zooming function and the camera-shake correction function for detecting camera-shake information from a video signal. <P>SOLUTION: The imaging apparatus selects gain characteristics, wherein the gain is not set to zero when instability due to camera-shake is conspicuous at a comparatively low optical zooming speed in the processing of calculating the gain from the divergence and can obtain a stable image whose camera-shake is corrected, even during the operation of the optical zooming. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は映像信号から動きベクトルを検出し、この動きベクトルに応じて手ぶれ補正を行う光学ズーム付き撮像装置に関するものである。   The present invention relates to an image pickup apparatus with an optical zoom that detects a motion vector from a video signal and performs camera shake correction according to the motion vector.

近年、ビデオカメラやデジタルスチルカメラに代表される撮像装置において、小型化、高倍率化が進み、手ぶれによる画像の安定性が課題となってきており、手ぶれ補正機能を有するものが大半を占めている。   In recent years, imaging devices represented by video cameras and digital still cameras have become smaller and have higher magnification, and image stability due to camera shake has become an issue, and most have image stabilization functions. Yes.

また、更なる小型化、及び低コスト化を進める上で、手ぶれの動き情報を映像信号から得る方式も製品化されている。   Further, in order to further reduce the size and cost, a method for obtaining motion information of a camera shake from a video signal has been commercialized.

しかしながら、映像信号から動きベクトルを得る方式の場合、角速度センサーに代表されるセンサーからぶれ情報を得る方式と異なり、光学ズームが動作時においても、被写体が変化することで動きベクトルが発生し、誤動作の要因となる。   However, in the method of obtaining a motion vector from a video signal, unlike the method of obtaining blur information from a sensor typified by an angular velocity sensor, a motion vector is generated due to a change in the subject even when the optical zoom is in operation, resulting in malfunction. It becomes a factor of.

そこで、従来の第1例の撮像装置では、特開平11−177876号公報にて説明されているように、光学ズーム動作時は、動き検出回路の出力を無視するように制御され、誤動作を防止している。   Therefore, in the conventional image pickup apparatus of the first example, as described in Japanese Patent Application Laid-Open No. 11-177786, during the optical zoom operation, control is performed so as to ignore the output of the motion detection circuit, thereby preventing malfunction. is doing.

また、従来の第2例の撮像装置では、特許第2506469号公報にて説明されている動きベクトル検出装置を搭載した場合での動作について図7から図9を使用して説明する。   Further, in the conventional image pickup apparatus of the second example, the operation when the motion vector detection apparatus described in Japanese Patent No. 2506469 is mounted will be described with reference to FIGS.

図7において、1は光学ズーム機能を有するレンズ、2は前記レンズ1のズーム機能で広角動作、もしくは望遠動作の制御を行うズームスイッチ、3は前記ズームスイッチ2に掛かる圧力により光学ズームの速度を設定するズーム速度設定回路、4は前記レンズ1を通して入力された被写体情報を有する光学信号を、2次元固体撮像素子で電気信号に変換し、さらに電気信号に処理を施し映像信号として出力する撮像部、5は前記映像信号を複数の領域に分割し、夫々の領域で動きベクトルを検出する動きベクトル検出回路、6は夫々の領域で検出した動きベクトルが有効かどうかを判断する信頼性判定回路、7は前記信頼性判定回路6にて有効と判断された領域のベクトルから画面全体のベクトルを決定する差分ベクトル決定回路、8は前記信頼性判定回路6にて有効と判断された動きベクトルの中で分散の度合いを発散度というもので算出/数値化を行う発散度演算回路、19は前記発散度から利得を決定する利得決定回路、10は前記差分ベクトルに対し、前記利得を乗じる処理を行う利得制御回路である。   In FIG. 7, 1 is a lens having an optical zoom function, 2 is a zoom switch for controlling a wide-angle operation or a telephoto operation by the zoom function of the lens 1, and 3 is a speed of the optical zoom by a pressure applied to the zoom switch 2. A zoom speed setting circuit 4 for setting is an imaging unit that converts an optical signal having subject information input through the lens 1 into an electrical signal by a two-dimensional solid-state imaging device, further processes the electrical signal and outputs it as a video signal 5 is a motion vector detection circuit that divides the video signal into a plurality of regions and detects a motion vector in each region; 6 is a reliability determination circuit that determines whether the motion vector detected in each region is valid; 7 is a difference vector determining circuit for determining a vector of the entire screen from vectors of the area determined to be valid by the reliability determining circuit 6, and 8 is a previous one. A divergence calculation circuit that calculates / numerizes the degree of dispersion of the motion vectors determined to be effective by the reliability determination circuit 6 as a divergence, and 19 is a gain determination circuit that determines a gain from the divergence. Reference numeral 10 denotes a gain control circuit for performing processing for multiplying the difference vector by the gain.

以上の構成からなる従来の第2例の撮像装置の動作原理を図7から図9を用いて、説明する。   The operation principle of the second conventional imaging apparatus having the above configuration will be described with reference to FIGS.

まずは、レンズ1を通して得られる被写体の情報を有する光学信号を撮像部4で映像信号に変換する。そして、動きベクトル検出回路5にて、1画面を複数領域に分割し前記映像信号に含まれている撮像装置の手ぶれ情報を、夫々の領域で動きベクトルとして抽出する。   First, an optical signal having object information obtained through the lens 1 is converted into a video signal by the imaging unit 4. Then, the motion vector detection circuit 5 divides one screen into a plurality of areas and extracts camera shake information of the imaging device included in the video signal as a motion vector in each area.

なお、動きベクトル検出回路5の代表的な処理としては、現時間における映像信号と、1フィールド前、もしくは1フレーム前など2次元固体撮像素子から出力する単位時間前の映像信号とで相関演算を行うことで算出する。なお、具体的な処理方法については特開昭61−269475号公報や特開平2−241188号公報にて詳細に説明されているために、ここでは割愛する。   As a typical process of the motion vector detection circuit 5, a correlation operation is performed between the video signal at the current time and the video signal before unit time output from the two-dimensional solid-state imaging device such as one field before or one frame before. Calculate by doing. Since specific processing methods are described in detail in Japanese Patent Application Laid-Open Nos. 61-269475 and 2-241188, they are omitted here.

ここで、図8(a)、図8(b)に各領域で検出された動きベクトルの様子を示す。   Here, FIG. 8A and FIG. 8B show the state of motion vectors detected in each region.

図8では、領域を4分割とし、図8(a)ではぶれが右上の方向で検出された場合を或時刻の動きベクトルを示し、図8(b)では、被写体が画面の中でランダムに動いた場合の或時刻の動きベクトルを示す。   In FIG. 8, the area is divided into four, and FIG. 8A shows a motion vector at a certain time when a shake is detected in the upper right direction, and FIG. 8B shows a subject randomly in the screen. A motion vector at a certain time when moved is shown.

図8(a)の状態では、各領域でのベクトルが同一に近い方向、且つ大きさで発生しているために、4つの領域のどの動きベクトルを選択し補正を行っても、意図通りに手ぶれ補正が可能である。   In the state of FIG. 8 (a), the vectors in each region are generated in directions and magnitudes close to the same, so that any motion vector in the four regions can be selected and corrected as intended. Camera shake correction is possible.

しかし、図8(b)の場合、各領域での動きベクトルは、方向が一律でないために、誤った差分ベクトルを検出する可能性があり、誤動作を要因となっていた。
そこで、従来の第2例の撮像装置では、動きベクトル検出回路5にて、各領域から検出された動きベクトルから、信頼性判定回路6で有効であると判断された領域の動きベクトルを用いて、式(1)で示した算術処理を行い、発散度として、動きベクトルの分散度合いを数値化を行う。
However, in the case of FIG. 8B, since the motion vectors in each region are not uniform in direction, there is a possibility that an erroneous difference vector is detected, which causes a malfunction.
Therefore, in the conventional image pickup apparatus of the second example, the motion vector detection circuit 5 uses the motion vector of the region determined to be effective by the reliability determination circuit 6 from the motion vector detected from each region. The arithmetic processing shown by the equation (1) is performed, and the degree of dispersion of the motion vector is quantified as the divergence.

式(1)… 発散度={Σ|(各領域の動きベクトルの平均値)
−(各領域の動きベクトル)|}/(有効であると判断された領域数)
式(1)の分子で、「各領域の動きベクトル」とは、信頼性判定回路6にて有効であると判断された領域のベクトルである。
Formula (1) ... Divergence = {Σ | (average value of motion vectors in each region)
− (Motion vector of each region) |} / (number of regions determined to be valid)
In the numerator of Expression (1), “motion vector of each region” is a vector of a region determined to be effective by the reliability determination circuit 6.

そして、発散度に基づき利得決定回路19にて図9で示すような特性から利得を求め、利得制御回路10にて、差分ベクトルに前記利得を乗じて、手ぶれ補正を行うベクトルとする。   Based on the divergence, the gain determination circuit 19 obtains the gain from the characteristics as shown in FIG. 9, and the gain control circuit 10 multiplies the difference vector by the gain to obtain a vector for camera shake correction.

以上の制御を施すことにより、分散度が大きい、即ち発散度が大きい時は、0、もしくは0に近い値に利得を設定することで、差分ベクトルを抑圧し、誤動作を防止している。
特開平11−177876号公報 特許第2506469号公報
By performing the above control, when the degree of dispersion is large, that is, when the degree of divergence is large, the gain is set to 0 or a value close to 0, thereby suppressing the difference vector and preventing malfunction.
Japanese Patent Laid-Open No. 11-177876 Japanese Patent No. 2506469

しかしながら、従来の第1の撮像装置のような構成では、撮像装置の光学ズームを低速で動作させた時など、手ぶれが気になるような場合においても、手ぶれ補正が効かないという問題点を有していた。   However, the configuration of the conventional first imaging device has a problem that the camera shake correction does not work even when camera shake is a concern, such as when the optical zoom of the imaging device is operated at a low speed. Was.

また、従来の第2の撮像装置のような構成では、撮像装置の光学ズームを動作させた場合、光学ズームにより発散度が大きくなり、動きベクトルに乗算する利得が0となり手ぶれ補正が効かないという問題点を有していた。   Further, in the configuration like the conventional second image pickup device, when the optical zoom of the image pickup device is operated, the divergence increases due to the optical zoom, the gain multiplied by the motion vector becomes 0, and the camera shake correction does not work. Had problems.

本発明は上記問題点を鑑み、比較的低速ズーミング中で、ぶれによる不安定さが目立つ場合でも、手ぶれ補正が可能となり安定な画像を得ることができる撮像装置を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an imaging apparatus capable of correcting camera shake and obtaining a stable image even when instability due to blurring is noticeable during relatively slow zooming.

上記問題点を解決するために本発明の第1の撮像装置は、被写体の大きさを光学ズーム機能により変化することを可能にするレンズと、前記被写体の情報を有する光学信号を映像信号として出力する撮像部と、前記光学ズームの倍率を検出するズーム位置検出回路と、前記映像信号を複数の領域に分けて夫々の領域にて動きベクトルを検出する動きベクトル検出回路と、前記各領域でも動きベクトルの有効性を判断する信頼性判定回路と、前記信頼性判定回路で有効とした領域の中から画面全体の動きベクトルを差分ベクトルとして出力する差分ベクトル決定回路と、前記各領域の信頼性判定回路にて有効と判定された領域の動きベクトルから、画面全体の動きベクトルの分散度合いを示す発散度を演算する発散度演算回路と、前記発散度より0倍から1倍以下の範囲で利得を決定する利得決定回路と、前記利得決定回路で求めた利得を前記差分ベクトルに乗算する利得制御回路を有し、前記利得決定回路にて、光学ズームが動作していない時、又は光学ズーム速度が比較的高速で、ぶれによる不安定さが目立たない場合と、光学ズーム速度が比較的低速で、ぶれによる不安定さが目立つ場合とで、前記発散度から求める前記利得特性を切り替えることを特徴とする構成である。   In order to solve the above problems, a first imaging device of the present invention outputs a lens that enables the size of a subject to be changed by an optical zoom function, and an optical signal having information on the subject as a video signal. An image pickup unit, a zoom position detection circuit that detects the magnification of the optical zoom, a motion vector detection circuit that divides the video signal into a plurality of regions and detects a motion vector in each region, and a motion in each region A reliability determination circuit for determining the validity of a vector, a difference vector determination circuit for outputting a motion vector of the entire screen as a difference vector from the areas validated by the reliability determination circuit, and reliability determination for each area A divergence calculation circuit for calculating a divergence degree indicating a degree of dispersion of the motion vector of the entire screen from a motion vector of an area determined to be valid by the circuit; A gain determining circuit for determining a gain within a range of 0 to 1 times or less, and a gain control circuit for multiplying the difference vector by the gain determined by the gain determining circuit. The divergence degree when not operating, or when the optical zoom speed is relatively high and instability due to blurring is not noticeable, and when the optical zoom speed is relatively slow and instability due to blurring is noticeable The gain characteristics obtained from the above are switched.

また本発明の第2の撮像装置は、被写体の大きさを光学ズーム機能により変化することを可能にするレンズと、前記被写体の情報を有する光学信号を映像信号として出力する撮像部と、前記光学ズームの倍率を検出するズーム位置検出回路と、前記映像信号を複数の領域に分けて夫々の領域にて動きベクトルを検出する動きベクトル検出回路と、前記各領域でも動きベクトルの有効性を判断する信頼性判定回路と、前記信頼性判定回路で有効とした領域の中から画面全体の動きベクトルを差分ベクトルとして出力する差分ベクトル決定回路と、前記差分ベクトルを時間積分し、積分ベクトルとして出力する積分ベクトル算出回路と、前記各領域の信頼性判定回路にて有効と判定された領域の動きベクトルから、画面全体の動きベクトルの分散度合いを示す発散度を演算する発散度演算回路と、前記発散度より0倍から1倍以下の範囲で利得を決定する回路と、前記利得決定回路で求めた利得を前記積分ベクトルに乗算する利得制御回路を有し、前記利得決定回路にて、光学ズームが動作していない時、又は光学ズーム速度が比較的高速で、ぶれによる不安定さが目立たない場合と、光学ズーム速度が比較的低速で、ぶれによる不安定さが目立つ場合とで、前記発散度から求める前記利得特性を切り替えることを特徴とする構成である。   The second imaging device of the present invention includes a lens that enables the size of a subject to be changed by an optical zoom function, an imaging unit that outputs an optical signal having information on the subject as a video signal, and the optical A zoom position detection circuit for detecting a zoom magnification, a motion vector detection circuit for detecting a motion vector in each region by dividing the video signal into a plurality of regions, and determining the effectiveness of the motion vector in each region A reliability determination circuit; a difference vector determination circuit that outputs a motion vector of the entire screen as a difference vector from a region that has been validated by the reliability determination circuit; and an integration that time-integrates the difference vector and outputs the integration vector as an integration vector Dispersion of motion vectors of the entire screen from the motion vectors of the regions determined to be valid by the vector calculation circuit and the reliability determination circuit of each region A divergence calculating circuit for calculating a divergence indicating a match; a circuit for determining a gain within a range of 0 to 1 times or less than the divergence; and a gain for multiplying the integral vector by a gain obtained by the gain determining circuit A control circuit, and in the gain determination circuit, when the optical zoom is not operating, or when the optical zoom speed is relatively high and instability due to blurring is not noticeable, the optical zoom speed is relatively low Thus, the gain characteristic obtained from the divergence is switched when the instability due to the shake is conspicuous.

本発明の構成により、従来の構成では比較的低速ズーミング中で、ぶれによる不安定さが目立つ場合でも、手ぶれ補正が可能となり安定な画像を提供することが出来る。   According to the configuration of the present invention, it is possible to perform camera shake correction and provide a stable image even when instability due to blurring is noticeable during relatively slow zooming with the conventional configuration.

本発明の請求項1〜2に記載の発明は、被写体の大きさを光学的に変化させること可能にするレンズと、前記被写体の情報を有する光学信号を映像信号として出力する撮像手段と、前記光学ズームの倍率を検出するズーム位置検出手段と、前記映像信号を複数の領域に分けて夫々の領域にて動きベクトルを検出する動きベクトル検出手段と、前記各領域でも動きベクトルの有効性を判断する信頼性判定手段と、前記信頼性判定手段で有効とした領域の中から画面全体の動きベクトルを決定する差分ベクトル決定手段と、前記各領域の信頼性判定手段にて有効と判定された領域の動きベクトルから画面全体の動きベクトルの分散度合いを示す発散度を演算する発散度演算手段と、前記発散度演算手段からの発散度より0倍から1倍以下の範囲で利得を決定する利得決定手段と、前記利得決定手段で求めた利得を動きベクトルに乗算する利得制御手段とを有し、前記利得決定手段にて、光学ズームが動作していない時又は光学ズーム速度が比較的高速でぶれによる不安定さが目立たない場合と、光学ズーム速度が比較的低速でぶれによる不安定さが目立つ場合とで、前記発散度から求める前記利得特性を切り替えるものであり、これにより、発散度と利得の特性において複数の特性を有し、光学ズームが比較的低速である場合の特性として、利得の下限値を0にするのではなく、光学ズーム動作時の手ぶれ効果が認識出来る設定にすることで、低速ズーミング中でのぶれによる不安定さを低減し、安定な画像を提供することが可能となる。   The invention described in claims 1 to 2 of the present invention includes a lens that can optically change the size of a subject, an imaging unit that outputs an optical signal having information on the subject as a video signal, Zoom position detecting means for detecting the magnification of the optical zoom, motion vector detecting means for dividing the video signal into a plurality of areas and detecting a motion vector in each area, and determining the validity of the motion vector in each area Reliability determining means, difference vector determining means for determining a motion vector of the entire screen from the areas validated by the reliability judging means, and areas determined to be valid by the reliability judging means of each area A divergence degree calculating means for calculating a divergence degree indicating the degree of dispersion of the motion vector of the entire screen from the motion vector of the image, and a divergence degree from the divergence degree calculating means within a range of 0 to 1 times or less Gain determining means for determining the gain and gain control means for multiplying the motion vector by the gain determined by the gain determining means, and when the optical zoom is not operating in the gain determining means or the optical zoom speed The gain characteristic obtained from the divergence is switched between when the instability due to blur is not noticeable and when the optical zoom speed is relatively low and when instability due to blur is noticeable. As a characteristic when there are multiple characteristics of divergence and gain and the optical zoom is relatively slow, the lower limit of the gain is not set to 0, but the camera shake effect during the optical zoom operation is recognized. By setting it as possible, it is possible to reduce instability due to blur during low-speed zooming and provide a stable image.

(実施の形態1)
本発明の第1例の撮像装置について図1から図4を使用して説明する。
(Embodiment 1)
An image pickup apparatus according to a first example of the present invention will be described with reference to FIGS.

図1は、本発明の撮像装置のブロック図であり、図において1は光学ズーム機能を有するレンズ、2は前記レンズ1のズーム機能で広角動作もしくは望遠動作の制御を行うズームスイッチで、押釦式のスイッチやレバーで構成されていることが多い。3は前記ズームスイッチ2に掛かる圧力により光学ズームの速度を設定するズーム速度設定回路で、本実施の形態ではズームスイッチ2にかかる圧力により速度制御しているが、必ずしも圧力に限定されるものではない。4は前記レンズ1を通して入力された被写体情報を有する光学信号を2次元固体撮像素子で電気信号に変換しさらに電気信号に処理を施し映像信号として出力する撮像手段である撮像部で、一般にはCCDやCMOSセンサーが用いられる。5は撮像部4からの映像信号を複数の領域に分割し夫々の領域で動きベクトルを検出する動きベクトル検出手段である動きベクトル検出回路、6は動きベクトル検出回路5で夫々の領域で検出した動きベクトルが有効かどうかを判断する信頼性判定手段である信頼性判定回路、7は信頼性判定回路6にて「有効」と判断された領域のベクトルから画面全体のベクトルを決定する差分ベクトル決定手段である差分ベクトル決定回路、8は信頼性判定回路6にて「有効」と判断された動きベクトルの中で分散の度合いを「発散度」というもので算出/数値化を行う発散度演算手段である発散度演算回路、10は差分ベクトル決定回路7からの差分ベクトルに対し利得決定回路9(後述する)からの利得を乗じる処理を行う利得制御手段である利得制御回路、9は発散度演算回路8で算出された発散度から利得を決定する利得決定手段である利得決定回路、11はレンズ1における光学ズーム位置を検出するズーム位置検出回路であり、具体的にはズームレンズの光軸方向の位置を検出したり、既に数値化されたズーム位置情報に基づきズーム位置を検出する。   FIG. 1 is a block diagram of an image pickup apparatus according to the present invention. In the figure, 1 is a lens having an optical zoom function, 2 is a zoom switch for controlling wide-angle operation or telephoto operation by the zoom function of the lens 1, and is a push button type. Often consists of switches and levers. Reference numeral 3 denotes a zoom speed setting circuit that sets the speed of the optical zoom by the pressure applied to the zoom switch 2. In this embodiment, the speed is controlled by the pressure applied to the zoom switch 2, but the speed is not necessarily limited to the pressure. Absent. An image pickup unit 4 is an image pickup unit that converts an optical signal having subject information input through the lens 1 into an electric signal by a two-dimensional solid-state image pickup device, further processes the electric signal and outputs it as a video signal. Or a CMOS sensor is used. Reference numeral 5 denotes a motion vector detection circuit which is a motion vector detection means for dividing a video signal from the imaging unit 4 into a plurality of areas and detects a motion vector in each area. Reference numeral 6 denotes a motion vector detection circuit 5 which detects the motion vector in each area. A reliability determination circuit which is a reliability determination means for determining whether or not the motion vector is valid, and 7 is a difference vector determination for determining a vector for the entire screen from the vectors of the area determined as “valid” by the reliability determination circuit 6. A difference vector determining circuit 8 is a divergence degree calculating means for calculating / numerizing the degree of dispersion with a “divergence degree” among motion vectors determined as “valid” by the reliability judgment circuit 6. A divergence calculation circuit 10 is a gain control means for performing a process of multiplying a difference vector from the difference vector determination circuit 7 by a gain from a gain determination circuit 9 (described later). The control circuit, 9 is a gain determination circuit that is a gain determination means for determining the gain from the divergence calculated by the divergence calculation circuit 8, and 11 is a zoom position detection circuit that detects the optical zoom position in the lens 1. In this case, the position of the zoom lens in the optical axis direction is detected, or the zoom position is detected based on zoom position information already digitized.

以下、従来の第2例と異なる内容を中心に動作を説明する。従来第2例と同様にレンズ1、撮像部4、動きベクトル検出回路5、発散度演算回路8を経由して、差分ベクトルの分散度、すなわち発散度を算出し、利得決定回路9に入力する。   Hereinafter, the operation will be described focusing on the contents different from the conventional second example. Similar to the second example of the prior art, the variance of the difference vector, that is, the divergence is calculated via the lens 1, the imaging unit 4, the motion vector detection circuit 5, and the divergence calculation circuit 8, and is input to the gain determination circuit 9. .

この後、利得決定回路9にて利得を算出するが、発散度演算回路8からの発散度から利得を求める方法が、従来の第2例と異なる点である。   Thereafter, the gain is calculated by the gain determining circuit 9, but the method of obtaining the gain from the divergence from the divergence calculating circuit 8 is different from the conventional second example.

図2に利得決定回路9の内部ブロック図を示す。図2において、21及び22は発散度に対する利得の特性を保持する特性A保持部及び特性B保持部で、21は特性Aを保持し22は特性Bを保持している。図2で明確なように、従来は特性Aのみで利得を求めていたのに対し、本実施の形態1では特性Bが示すように、発散度が大きくなってもゲインを0より大きく、1倍より小さい値(ここれは“α”とする)でクリップが掛かるような特性で、利得を算出する制御を設ける。24は光学ズーム速度判定部、24は光学ズーム速度情報及び光学ズーム位置情報から光学ズーム速度を判断してセレクタ23を切り替えるよう制御する光学ズーム速度判定部、23は光学ズーム速度判定部24からの制御により特性A保持部21か特性B保持部22かを切り換えて利得を出力する選択手段であるセレクタである。   FIG. 2 shows an internal block diagram of the gain determination circuit 9. In FIG. 2, 21 and 22 are a characteristic A holding unit and a characteristic B holding unit that hold the gain characteristic with respect to the divergence, 21 holds the characteristic A, and 22 holds the characteristic B. As clearly shown in FIG. 2, the gain is obtained only by the characteristic A in the prior art, but in the first embodiment, the gain is larger than 0 even if the divergence increases, as indicated by the characteristic B. A control for calculating the gain is provided with such a characteristic that the clip is applied with a value smaller than double (here, “α”). Reference numeral 24 denotes an optical zoom speed determination unit, 24 denotes an optical zoom speed determination unit that controls the selector 23 by determining the optical zoom speed from the optical zoom speed information and the optical zoom position information, and 23 denotes an optical zoom speed determination unit 24. This selector is a selector that switches between the characteristic A holding unit 21 and the characteristic B holding unit 22 under control and outputs a gain.

具体的な制御手段としては、まずは、光学ズーム速度情報により、光学ズーム動作中において、ふれによる画像の不安定さが目立つような比較的遅いズーム速度か、そうでないかを判断し、前者の場合(低速ズーム)は特性Bを選択し、後者(高速ズーム)の場合は特性Aを選択する。   As a specific control means, first, based on the optical zoom speed information, during the optical zoom operation, it is determined whether the zoom speed is relatively slow so that the instability of the image due to shaking is noticeable or not. The characteristic B is selected for (low speed zoom), and the characteristic A is selected for the latter (high speed zoom).

ここで、ズーム位置情報を必要としている理由は、例えば前記光学ズーム速度情報として、図3、図4に示すように光学ズーム速度の制御をズームスイッチ2に掛かる圧力により制御している場合、ズームスイッチ2には圧力が掛かり、ズーム速度設定回路3からは或ズーム速度でもって光学ズーム動作の指令をレンズ1に出力した時、光学ズーム位置が望遠端もしくは広角端まで達した場合は、光学ズーム動作はしない。よって、この時は、本制御においては光学ズームがオフ状態と同じであるために、従来と同様に特性Aを選択する。   Here, the reason why the zoom position information is required is that, for example, when the optical zoom speed information is controlled by the pressure applied to the zoom switch 2 as shown in FIGS. When pressure is applied to the switch 2 and an optical zoom operation command is output from the zoom speed setting circuit 3 to the lens 1 at a certain zoom speed, if the optical zoom position reaches the telephoto end or the wide angle end, the optical zoom is Does not work. Therefore, at this time, since the optical zoom is the same as the OFF state in this control, the characteristic A is selected as in the conventional case.

以上のように本実施の形態によれば、光学ズーム速度が比較的低速で、手ぶれの不安定さが目立つ状況においても、従来では、ほぼ強制的に発散度から求める利得が0になり手ぶれ補正の効果が出なかったのに対し、本発明では、手ぶれ補正の効果が認められるように利得下限値(図2特性Bでのα)とすることで、良好な画像を提供することが可能となる。   As described above, according to the present embodiment, even in a situation where the optical zoom speed is relatively low and the instability of camera shake is conspicuous, conventionally, the gain obtained from the divergence is almost forcibly reduced to 0 and camera shake correction is performed. On the other hand, in the present invention, it is possible to provide a good image by setting the gain lower limit value (α in FIG. 2 characteristic B) so that the effect of camera shake correction is recognized. Become.

(実施の形態2)
本発明の第2実施の形態の撮像装置について図5を使用して説明する。
(Embodiment 2)
An imaging apparatus according to the second embodiment of the present invention will be described with reference to FIG.

図5は、本実施の形態の撮像装置のブロック図であり、レンズ1〜ズーム位置検出回路11は、本発明の実施の形態1と同一の機能を有するブロックである。   FIG. 5 is a block diagram of the imaging apparatus according to the present embodiment, and the lens 1 to zoom position detection circuit 11 are blocks having the same functions as those of the first embodiment of the present invention.

実施の形態1と異なる点は、実施の形態1は発散度から求めた利得を或単位時間の期間での動きベクトル、すなわち差分ベクトルに制御するのに対し、実施の形態2では、差分ベクトルを時間積分した積分ベクトルに制御する点である。よって、利得制御回路10は機能としては実施の形態1と同一であるが、入力信号が差分ベクトルから積分ベクトルに変わるという点は異なる。   The difference from the first embodiment is that the first embodiment controls the gain obtained from the divergence degree to a motion vector in a unit time period, that is, a difference vector, whereas in the second embodiment, the difference vector is This is the point to control to the integral vector that is time integrated. Therefore, the gain control circuit 10 has the same function as that of the first embodiment, but is different in that the input signal changes from the difference vector to the integration vector.

ここで、差分ベクトルと積分ベクトルについて、違いについて図6を使用して説明する。まず或基準時刻の画像の様子を図6(a)に示す。次に被写体である“A”が或単位時間の間に前記基準時刻から手ぶれによって右上の方向に動いた様子を示したのが図6(b)である。よって、差分ベクトルは右上の方向に発生する。   Here, the difference between the difference vector and the integral vector will be described with reference to FIG. First, the state of an image at a certain reference time is shown in FIG. Next, FIG. 6B shows a state in which the subject “A” has moved in the upper right direction from the reference time due to camera shake during a certain unit time. Therefore, the difference vector is generated in the upper right direction.

次に図6(b)の状態から、やや左下方向に、同じく或単位時間の期間に手ぶれにより動いた様子を示したのが図6(c)であり、図6(b)の状態からは、やや左下方向に差分ベクトルが発生する。以下、図6(d)は図6(c)の状態から左やや上方向に手ぶれした状態図である。   Next, FIG. 6C shows a state in which the camera moves due to camera shake in a certain unit time period in a slightly lower left direction from the state of FIG. 6B, and from the state of FIG. A difference vector is generated in the slightly lower left direction. Hereinafter, FIG. 6D is a state diagram in which the camera shakes slightly upward from the state of FIG. 6C.

以上のように、図6(a)から図6(b)、図6(b)から図6(c)、図6(c)から図6(d)と各単位時間での差分ベクトルを時間的に積分すると、図6(a)から図6(d)は左下方向に動いたことになり、これが積分ベクトルである。そしてこの積分ベクトルを使用して、メモリなどを利用して手ぶれ補正を行うのである。   As described above, FIG. 6A to FIG. 6B, FIG. 6B to FIG. 6C, and FIG. 6C to FIG. Therefore, when integrated, FIG. 6 (a) to FIG. 6 (d) move in the lower left direction, which is an integration vector. Then, using this integral vector, camera shake correction is performed using a memory or the like.

よって、実施の形態2の撮像装置のように積分ベクトルに対して利得制御を施すことは、実施の形態1で説明した差分ベクトルに施す制御と同様の効果が得られることになる。   Therefore, performing gain control on the integral vector as in the imaging apparatus of the second embodiment provides the same effect as the control performed on the difference vector described in the first embodiment.

なお、本発明における利得決定回路9の特性として、実施の形態1及び2ともに、2パターンの特性から選択する制御で説明したが、光学ズームの速度などの情報から、利得特性のパターン数を増やすことで、更なる性能向上が図ることが可能となる。   Note that, as the characteristics of the gain determination circuit 9 in the present invention, both the first and second embodiments have been described with the control selected from the characteristics of the two patterns, but the number of gain characteristics patterns is increased from information such as the speed of the optical zoom. Thus, further performance improvement can be achieved.

本発明の構成で説明した制御をビデオカメラなどのように動画を主眼においた機器に導入することにより、これらの機器を使用して、撮影者がある特定の被写体(人物や、花など)をターゲットとして、画角を調整しながら撮影する場合などに効果を発揮することが出来る。   By introducing the control described in the configuration of the present invention to a device that focuses on moving images such as a video camera, a photographer can select a specific subject (such as a person or a flower) using these devices. This can be effective when shooting while adjusting the angle of view as a target.

本発明の実施の形態1における基本構成を示すブロック図FIG. 1 is a block diagram showing a basic configuration according to Embodiment 1 of the present invention. 本発明の実施の形態1における利得決定回路9の内部ブロック図Internal block diagram of gain determination circuit 9 in Embodiment 1 of the present invention 本発明の実施の形態1における3つめの形態での光学ズームの速度制御にて、ズームスイッチに掛かる圧力とズーム速度の関係を示す第1の特性図First characteristic diagram showing the relationship between the pressure applied to the zoom switch and the zoom speed in the optical zoom speed control according to the third embodiment of the first embodiment of the present invention. 本発明の実施の形態1における3つめの形態での光学ズームの速度制御にて、ズームスイッチに掛かる圧力とズーム速度の関係を示す第2の特性図Second characteristic diagram showing the relationship between the pressure applied to the zoom switch and the zoom speed in the speed control of the optical zoom in the third embodiment in the first embodiment of the present invention. 本発明の実施の形態2における基本構成を示すブロック図The block diagram which shows the basic composition in Embodiment 2 of this invention. 同実施の形態における差分ベクトルと積分ベクトルを示した模式図Schematic diagram showing difference vector and integration vector in the same embodiment 従来における基本構成を示すブロック図Block diagram showing basic configuration in the past 従来の動きベクトルの分散度を示した模式図Schematic diagram showing the degree of dispersion of conventional motion vectors 従来における利得決定回路9での入出力特性図Input / output characteristic diagram of conventional gain determination circuit 9

符号の説明Explanation of symbols

1 レンズ
2 ズームスイッチ
3 ズーム速度設定回路
4 撮像部
5 動きベクトル検出回路
6 信頼性判定回路
7 差分ベクトル決定回路
8 発散度演算回路
9 利得決定回路
1 利得制御回路
11 ズーム位置検出回路
DESCRIPTION OF SYMBOLS 1 Lens 2 Zoom switch 3 Zoom speed setting circuit 4 Image pick-up part 5 Motion vector detection circuit 6 Reliability determination circuit 7 Difference vector determination circuit 8 Divergence calculation circuit 9 Gain determination circuit 1 Gain control circuit 11 Zoom position detection circuit

Claims (2)

被写体の大きさを光学的に変化させること可能にするレンズと、前記被写体の情報を有する光学信号を映像信号として出力する撮像手段と、前記光学ズームの倍率を検出するズーム位置検出手段と、前記映像信号を複数の領域に分けて夫々の領域にて動きベクトルを検出する動きベクトル検出手段と、前記各領域でも動きベクトルの有効性を判断する信頼性判定手段と、前記信頼性判定手段で有効とした領域の中から画面全体の動きベクトルを決定する差分ベクトル決定手段と、前記各領域の信頼性判定手段にて有効と判定された領域の動きベクトルから画面全体の動きベクトルの分散度合いを示す発散度を演算する発散度演算手段と、前記発散度演算手段からの発散度より0倍から1倍以下の範囲で利得を決定する利得決定手段と、前記利得決定手段で求めた利得を動きベクトルに乗算する利得制御手段とを有し、前記利得決定手段にて、光学ズームが動作していない時又は光学ズーム速度が比較的高速でぶれによる不安定さが目立たない場合と、光学ズーム速度が比較的低速でぶれによる不安定さが目立つ場合とで、前記発散度から求める前記利得特性を切り替えることを特徴とする撮像装置。 A lens capable of optically changing the size of the subject, an imaging means for outputting an optical signal having information on the subject as a video signal, a zoom position detecting means for detecting the magnification of the optical zoom, Effective in the motion vector detection means for detecting the motion vector in each area by dividing the video signal into a plurality of areas, the reliability judgment means for judging the validity of the motion vector in each area, and the reliability judgment means The difference vector determination means for determining the motion vector of the entire screen from the determined areas, and the degree of dispersion of the motion vector of the entire screen from the motion vectors of the areas determined to be valid by the reliability determination means of each area A divergence degree calculating means for calculating a divergence degree, a gain determining means for determining a gain in a range of 0 to 1 times or less than the divergence degree from the divergence degree calculating means; Gain control means for multiplying the motion vector by the gain determined by the determination means, and when the optical zoom is not operating in the gain determination means or the optical zoom speed is relatively high and the instability due to shaking is An image pickup apparatus, wherein the gain characteristic obtained from the divergence is switched between an inconspicuous case and a case where the optical zoom speed is relatively low and instability due to blurring is conspicuous. 被写体の大きさを光学ズームにより変化すること可能にするレンズと、前記被写体の情報を有する光学信号を映像信号として出力する撮像部と、前記光学ズームの倍率を検出するズーム位置検出回路と、前記映像信号を複数の領域に分けて夫々の領域にて動きベクトルを検出する動きベクトル検出回路と、前記各領域でも動きベクトルの有効性を判断する信頼性判定回路と、前記信頼性判定回路で有効とした領域の中から差分ベクトルを決定する差分ベクトル決定回路と、前記差分ベクトルを時間積分したベクトル(以下、積分ベクトル)として出力する積分ベクトル算出回路と、前記各領域の信頼性判定回路にて有効と判定された領域の動きベクトルから、画面全体の動きベクトルの分散度合いを示す発散度を演算する発散度演算回路と、前記発散度より0倍から1倍以下の範囲で利得を決定する回路と、前記利得決定回路で求めた利得を前記積分ベクトルに乗算する利得制御回路を有し、前記利得決定回路にて、光学ズームが動作していない時、又は光学ズーム速度が比較的高速で、ぶれによる不安定さが目立たない場合と、光学ズーム速度が比較的低速で、ぶれによる不安定さが目立つ場合とで、前記発散度から求める前記利得との特性を切り替えることを特徴とする撮像装置。 A lens capable of changing the size of a subject by optical zoom, an imaging unit that outputs an optical signal having information on the subject as a video signal, a zoom position detection circuit that detects a magnification of the optical zoom, and Effective in the motion vector detection circuit that detects the motion vector in each region by dividing the video signal into a plurality of regions, the reliability determination circuit that determines the validity of the motion vector in each region, and the reliability determination circuit A difference vector determination circuit that determines a difference vector from the regions defined as above, an integration vector calculation circuit that outputs the difference vector as a time-integrated vector (hereinafter referred to as an integration vector), and a reliability determination circuit for each region A divergence calculation circuit that calculates a divergence degree indicating the degree of dispersion of the motion vector of the entire screen from the motion vector of the area determined to be valid; A circuit for determining a gain within a range of 0 to 1 times or less than the divergence, and a gain control circuit for multiplying the integral vector by the gain determined by the gain determination circuit. When the zoom is not operating, or when the optical zoom speed is relatively high and instability due to blurring is not noticeable, and when the optical zoom speed is relatively slow and instability due to blurring is noticeable, An image pickup apparatus characterized by switching a characteristic with the gain obtained from a divergence degree.
JP2004006562A 2004-01-14 2004-01-14 Imaging device Expired - Fee Related JP4258383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006562A JP4258383B2 (en) 2004-01-14 2004-01-14 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006562A JP4258383B2 (en) 2004-01-14 2004-01-14 Imaging device

Publications (3)

Publication Number Publication Date
JP2005203934A true JP2005203934A (en) 2005-07-28
JP2005203934A5 JP2005203934A5 (en) 2007-02-08
JP4258383B2 JP4258383B2 (en) 2009-04-30

Family

ID=34820486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006562A Expired - Fee Related JP4258383B2 (en) 2004-01-14 2004-01-14 Imaging device

Country Status (1)

Country Link
JP (1) JP4258383B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068168A (en) * 2005-08-26 2007-03-15 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Method and system for determining motion of imaging apparatus
JP2007122232A (en) * 2005-10-26 2007-05-17 Casio Comput Co Ltd Image processor and program
JP2007316125A (en) * 2006-05-23 2007-12-06 Canon Inc Image blur correction device and imaging apparatus
JP2009147658A (en) * 2007-12-13 2009-07-02 Canon Inc Imaging apparatus, control method therefor, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068168A (en) * 2005-08-26 2007-03-15 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Method and system for determining motion of imaging apparatus
JP2007122232A (en) * 2005-10-26 2007-05-17 Casio Comput Co Ltd Image processor and program
JP2007316125A (en) * 2006-05-23 2007-12-06 Canon Inc Image blur correction device and imaging apparatus
JP2009147658A (en) * 2007-12-13 2009-07-02 Canon Inc Imaging apparatus, control method therefor, and program
US8319842B2 (en) 2007-12-13 2012-11-27 Canon Kabushiki Kaisha Image capturing apparatus to prevent image blurring and control method therefor

Also Published As

Publication number Publication date
JP4258383B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5003769B2 (en) Imaging apparatus and image shake correction method
JP4245185B2 (en) Imaging device
JP6530602B2 (en) Image pickup apparatus and control method thereof
JP5409342B2 (en) Imaging apparatus and control method thereof
WO2010004764A1 (en) Imaging device
WO2013021728A1 (en) Imaging device and imaging method
JP2015130612A (en) Imaging apparatus and control method of the same
JP4850692B2 (en) Optical apparatus and imaging system
JP2016080918A (en) Image shake correction device and control method therefor
JP6824710B2 (en) Zoom control device and zoom control method, imaging device
US8878947B2 (en) Image capturing apparatus and method of controlling image capturing apparatus
JP2007104198A (en) Imaging apparatus and program
JP2009055160A (en) Imaging apparatus and imaging method
JP5426952B2 (en) Image shake correction apparatus, control method therefor, optical apparatus, and imaging apparatus
JP2016050973A (en) Image-capturing device and control method thereof
JP4258383B2 (en) Imaging device
JP6584259B2 (en) Image blur correction apparatus, imaging apparatus, and control method
JP2002182260A (en) Imaging device
JP5455485B2 (en) Imaging device
JP2006203493A (en) Image movement correction device
JP6289070B2 (en) Imaging apparatus and control method thereof
JP7483390B2 (en) Imaging device and control method thereof
JP4311191B2 (en) Imaging device
JP7214424B2 (en) Imaging device and its control method
JPH11266390A (en) Image pickup device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4258383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees