JP2005197623A - Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation - Google Patents

Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation Download PDF

Info

Publication number
JP2005197623A
JP2005197623A JP2004027389A JP2004027389A JP2005197623A JP 2005197623 A JP2005197623 A JP 2005197623A JP 2004027389 A JP2004027389 A JP 2004027389A JP 2004027389 A JP2004027389 A JP 2004027389A JP 2005197623 A JP2005197623 A JP 2005197623A
Authority
JP
Japan
Prior art keywords
transformer
phase
power receiving
space
saving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004027389A
Other languages
Japanese (ja)
Inventor
Yuichi Hosokawa
優一 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004027389A priority Critical patent/JP2005197623A/en
Publication of JP2005197623A publication Critical patent/JP2005197623A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To resolve the problem wherein capacity and weight of a power receiving power transformer used for a high voltage power receiving installation are large, the transformer is too large and redundant and full load loss is enlarged, thus causing a cost rise. <P>SOLUTION: In the high voltage power receiving installation where in a three-phase AC transformer and a balancer are integrated or a single pole type high voltage power receiving installation, a voltage to ground is 115V, harmonics causing false report is restrained, secondary side wiring is reduced and ohmic loss is reduced. Consequently, a light and miniaturized space-saving power transformer is realized, an installation space such as a cubicle is cut, and cost reduction is realized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は高圧受電設備の電源トランスの小型化を目指し鋭意研究を重ねた結果、省スペース型受電用電源トランスと単柱式省スペース型高圧受電設備の発明に至る。As a result of intensive research aimed at miniaturization of the power transformer of the high-voltage power receiving equipment, the present invention leads to the invention of the space-saving power receiving power transformer and the single-column space-saving high-voltage power receiving equipment.

従来の技術では高圧受電設備技術指針等により、受変電所として室内外に高圧キュービクル等を設置していたがトランス本体が大きくスペースが問題と成っていた。
例 非特許文献1、2参照
1.トランス活用マニュアル オーム社 平成7年10月20日
2.東芝・日立・三菱 カタログ 平成15年8月
In the conventional technology, high-voltage power receiving equipment technical guidelines, etc. have installed high-voltage cubicles, etc. indoors and outdoors as receiving substations, but the transformer body is large and space is a problem.
Example See Non-Patent Documents 1 and 2. Transformer Utilization Manual OHM Co., Ltd. October 20, 1995 Toshiba, Hitachi, Mitsubishi Catalog August 2003

従来技術Conventional technology

高圧の三相交流は高圧需電設備に6000Vで供給されており、これを受電トランスによって三相200Vと単相200V又は100Vに変圧している。従って受電設備には三相200V用と単相200V又は100Vのトランスが用いられており、どちらも高圧一次コイルと低圧二次コイルから構成されている。
トランスは、目的により1台又は2台必要になるが受電設備の容積、面積、重量、油量が大きくなることは避けられなかった。高低圧混触事故時の感電事故防止のために、従来の三相交流トランスでは三個の二次側端子のどちらかを接地する事が基準により定められている。
The high-voltage three-phase alternating current is supplied to the high-voltage power supply facility at 6000 V, and this is transformed into a three-phase 200 V and a single-phase 200 V or 100 V by a power receiving transformer. Therefore, a three-phase 200V transformer and a single-phase 200V or 100V transformer are used for the power receiving equipment, both of which are composed of a high voltage primary coil and a low voltage secondary coil.
Although one or two transformers are required depending on the purpose, it is inevitable that the volume, area, weight, and oil amount of the power receiving equipment will increase. In order to prevent an electric shock accident at the time of high / low pressure contact accident, in the conventional three-phase AC transformer, it is determined by the standard that one of the three secondary terminals is grounded.

従来方式を図1.図2.図3.表1にて説明する。
同一の構造からなる一例として、負荷設備容量が三相動力負荷30KW、単相電灯負荷37KVA 計67KVAの場合、トランス容量の選定は表1の通りで、数種類ある。
The conventional method is shown in FIG. FIG. FIG. This will be described in Table 1.
As an example of the same structure, when the load facility capacity is a three-phase power load 30 KW and a single-phase lamp load 37 KVA, a total of 67 KVA, the transformer capacity is selected as shown in Table 1 , and there are several types.

一般的には三相動力トランス50KVAと単相トランス50KVAを用いる。
図−1に示す様に個別電源トランスの説明をする。
三相動力負荷には三相交流トランス、単相負荷には単相三線用トランスと個別に電力系統 又は目的別にトランスを設置していた。両トランス共負荷力率が100%なら定格容量では使用可能であるが、互いの融通性はない。
In general, a three-phase power transformer 50KVA and a single-phase transformer 50KVA are used.
The individual power transformer will be described as shown in FIG.
A three-phase AC transformer was used for the three-phase power load, and a single-phase three-wire transformer and a transformer for each power system or purpose were installed for the single-phase load. If both transformers have a load power factor of 100%, they can be used at the rated capacity, but they are not flexible.

図−2に示す様に動灯供用電源トランスの説明をする。
三相二次側の星型結線においての相順をR・S・Tとすると相間に巻線コイルがあり、R−S間の巻線は電灯用で単相三線巻線になっている、例えば、三相動力のトランスの一相分は10KVAでありその3倍が定格容量を30KVAとした場合の容量である又、R.S間に単相三線トランス30KVAを接続して電灯用としている、定格容量は動力分30KVA、電灯用30+10で40KVAとなり互に融通し合う。
As shown in Fig.-2, explanation will be given on the power transformer for moving lights.
When the phase sequence in the star connection on the three-phase secondary side is R, S, T, there are winding coils between the phases, and the winding between R and S is a single-phase three-wire winding for electric lamps. For example, one phase of a three-phase power transformer is 10 KVA, and three times that is the capacity when the rated capacity is 30 KVA. A single-phase three-wire transformer 30KVA is connected between S and is used for electric lamps. The rated capacity is 30KVA for power and 40KVA for 30 + 10 for electric lamps.

図−3に示す様にV形結線式電源トランスを説明する。
R.S間とS。T間に単相トランス2台を組合せ、V形に結線をすると動力、電灯供用型で使用出来便利であるが、R.S側が進み力率になり力率改善が必要となる。
A V-type wired power transformer will be described as shown in FIG.
R. Between S and S. Combining two single-phase transformers between T and connecting them to V type is convenient because it can be used with power and electric lamps. The S side advances and becomes a power factor, and power factor improvement is required.

対地電圧173Vあり、配線も4芯から6芯必要である、従来方式では何れも電源トランスは重くて大きくスペースも広く必要であった。In the conventional system, which has a ground voltage of 173 V and requires 4 to 6 wires, the power transformer is heavy and requires a large space.

従来から高圧受電設備には変電室や高圧キュービクル等を設置し、その内部に電源トランを設置、高圧の電気を低圧の電気に変換して使用していた、しかし、電気を安全に目的別、系統別にする為分割し、電源トランスの容量と数量が増加傾向にある、各電源トランスの安全の見地から過大、過剰、設計になり無負荷損等が増大している、又、設置スペースも広範囲に広く必要に成っている、対地電圧も200Vあり危険であった、高調波障害の誤報問題、キュービクル内部機器類過密に伴う点検者の危険度が高い、更に、動力用三相三線200V用三芯ケ−ブルと電灯用単相三線200V及び100V用三芯ケーブルが必要であり、配線コストも割高であった。Conventionally, a high-voltage power receiving facility has been installed with a substation room, high-pressure cubicle, etc., and a power transformer is installed inside it, converting high-voltage electricity into low-voltage electricity. Divided for each system, the capacity and quantity of power transformers are increasing. From the viewpoint of safety of each power transformer, it is excessive, excessive, and the design has increased no-load loss. Also, the installation space is wide. The ground voltage is 200V, which is widely required, and it is dangerous, the problem of false alarm of harmonic disturbance, the risk of the inspector due to overcrowding of the cubicle internal equipment is high, and the power three-phase three-wire 200V three The core cable and the single-phase three-wire 200V and 100V three-core cables for electric lamps were necessary, and the wiring cost was also expensive.

三相交流電源トランスと単巻トランスを一体化し、三相トランスの二次巻線の中性点を接地するとともに単巻トランスの異なる端子間に接続し、その両外線を単巻トランスの中点から取出した線から単相電源を取出し、単三電源とする事が出来る。A three-phase AC power transformer and a single-winding transformer are integrated, and the neutral point of the secondary winding of the three-phase transformer is grounded and connected between different terminals of the single-winding transformer. A single-phase power supply can be taken out from the wire taken out from AA to make an AA power supply.

三相交流トランスを中性点接地型にするとトランスを縮小可能であり、軽量で小さい省スペース型電源トランスにする事が可能、更に高調波を抑制し対地電圧115Vとなり、より安全を図れ、柱上式にすると省スペース型単柱式高圧受電設備に成りコスト削減に貢献出来る。If the three-phase AC transformer is a neutral point grounding type, the transformer can be reduced, and it can be reduced to a light and small space-saving power supply transformer. If the above formula is used, it becomes a space-saving single-column high-voltage power receiving facility, which can contribute to cost reduction.

発明を実施するための最良の形態.実施例BEST MODE FOR CARRYING OUT THE INVENTION Example

本発明は図4又は表1に示す様に高圧受電用電源トランスの小型化を目指して、鋭意研究を重ねた結果、(1)三相交流電源トランスと単巻トランスを一体化する。
(2)三相交流電源トランスの二次側巻線の異なる端子間を単巻トランス(以下バランサーと呼ぶ)で接続し、バランサーの中点から電圧が三相交流の半分である単相交流を取出す、
(3)図5で示す様にバランサーの電気容量を三相交流トランスの電気容量の10分の1から15ぶんの1とする上記の様に製造する事により従来型の電源トランスを大幅に小型化出来る事を見出して、省スペース型電源トランスの発明に至った物である。本発明トランスの一番の特長は小さく、軽く、収納設置スペースが少ない事である、変電室、キュービクル、柱上及び室内外共設置可能で、単巻トランスは供用分電盤内等収納でも良い、
(4)図6で示す様に省スペース型高圧受電設備を更にコンパクト化した柱上式高圧受電設備である、電柱1本で柱上にトランスを1台又は2台セットした設置場所を取らない省スペース型高圧受電設備である。従来、変圧器は負荷設備を元に需要率、負荷率、不等率、不平衡率、等を考慮して定格容量、構成、数量等を決めていたが最大需要電力による電力基本料金制度により安易に過大変圧器容量と成る事が顕在化している、これを適正容量にして省エネを図る事を可能とする。
As shown in FIG. 4 or Table 1, in the present invention, as a result of intensive research aimed at miniaturization of a high-voltage power receiving power transformer, (1) a three-phase AC power transformer and a single-winding transformer are integrated.
(2) Connect the different terminals of the secondary winding of the three-phase AC power transformer with a single-winding transformer (hereinafter referred to as a balancer). Take out,
(3) As shown in FIG. 5, the balance of the balancer is reduced to one-tenth to one-fifteenth that of the three-phase AC transformer. It has been found that it can be realized, and has led to the invention of a space-saving power transformer. The main feature of the transformer of the present invention is that it is small, light, and requires little storage and installation space. It can be installed in substations, cubicles, pillars, and indoors and outdoors. ,
(4) As shown in FIG. 6, a space-saving high-voltage power receiving facility is a more compact pole-mounted high-voltage power receiving facility, which does not take up an installation place where one or two transformers are set on the pole with one power pole. It is a space-saving high-voltage power receiving facility. Traditionally, transformers have been rated for rated capacity, configuration, quantity, etc. in consideration of demand rate, load rate, inequality rate, unbalance rate, etc. based on the load equipment. Easily becoming an excessive transformer capacity has become obvious, making it possible to save energy by making this an appropriate capacity.

本発明の4図5図に示す様に省スペース型三相電源トランス付高圧受電設備であるが、(以下、灯動供用電源配線システムと呼ぶ)を例として説明する、相順をR.S.Tとして、3相電源トランスの低圧2次側巻線コイルのR.S.T.の中性点を接地結線する、更にR.S.間に単巻トランス(以下バランサーと呼ぶ、巻数比1対1、主電源トランスの1/10〜1/15の容量)を結線、二次電圧三相200v、単相三線200v/100vが簡単に取る事が可能である。FIG. 4 of the present invention is a high-voltage power receiving facility with a space-saving three-phase power transformer as shown in FIG. 5, but the phase sequence will be described as an example (hereinafter referred to as a lighting power supply wiring system). S. T. R. of the low-voltage secondary winding coil of the three-phase power transformer. S. T. T. et al. Connect the neutral point of the cable to the ground. S. A single-winding transformer (hereinafter referred to as balancer, turns ratio 1: 1, 1/10 to 1/15 capacity of main power transformer) is connected, secondary voltage three-phase 200v, single-phase three-wire 200v / 100v easily It is possible to take.

従来の1線接地方式では対地電圧173vの所を対地電圧115Vと安全である、1線接地式従来方式では高調波を含む充電電流は(IAC+IBC)のベクトル和と成り接地線電流が倍増し絶縁監視装置等の誤報警報の発生頻度が多くなる。又、本発明の灯動供用配線システムでは対地静電容量による高調波を含む充電電流は90°進み電流のベクトル(LA+IB+IC=0)で打消され誤報の抑制を図る事が可能で有る。In the conventional one-wire grounding system, the ground voltage 173v is safe at a ground voltage of 115V. In the one-wire grounding conventional system, the charging current including harmonics is a vector sum of (IAC + IBC), and the grounding current is doubled and insulated. The frequency of false alarms such as monitoring devices increases. Further, in the lighting service wiring system of the present invention, the charging current including harmonics due to the ground capacitance can be canceled by 90 ° advance current vector (LA + IB + IC = 0) to suppress false alarms.

本発明の灯動供用配線システムの主幹4極開閉器(3極エレメントは中性点接地トランスの保護用、1極エレメントはバランサーの保護用)2種の過電流遮断エレメントで過負荷時4曲開閉器は遮断してトランスとバランサーを保護する、三相200vRS相間に設置したバランサーの中線と両外線から負荷バランスを見て100V×2回路(100Vコンセント用)取り出し供給、バランサーの設置場所はトランスの内外部或いはキュービクル内又は低圧供用分電盤内収納でも良い。The main 4-pole switch of the wiring system for lighting of the present invention (3-pole element is for protecting the neutral grounding transformer, 1-pole element is for protecting the balancer). The switch is cut off to protect the transformer and balancer. The balance between the balancer installed between the three-phase 200vRS phases is taken out from the middle and outer lines of the balancer, and 100V x 2 circuits (for 100V outlet) are taken out and supplied. It may be housed inside or outside the transformer or inside a cubicle or inside a low-voltage distribution board.

本発明の単柱上式高圧受電設備の供用配線システムを例にすると地上型キュービクル不要又は削減の省スペースで建設コスト抑制効果が有る。Taking the in-service wiring system of the single-post-type high-voltage power receiving facility of the present invention as an example, there is an effect of suppressing the construction cost with no space-based cubicle required or space saving.

本発明の主幹配線は3芯ケーブル1本だけで供用分電盤へ引込、3極開閉器は三相200v動力負荷用に,単相200vの2極開閉器は3相側から負荷バランス良く照明負荷用に取り、R。S側からバランサー電源を供給、そのバランサーの中点からの線とR.S側からの単相100vは2極開閉器から100Vコンセント専用に負荷バランスを見て供給する。The main wiring of the present invention is drawn into the distribution board with only one three-core cable, the three-pole switch is for three-phase 200v power load, and the single-phase 200v two-pole switch is illuminated with good load balance from the three-phase side Take for load, R. Supply the balancer power from the S side. The single-phase 100v from the S side is supplied from a two-pole switch dedicated to a 100V outlet with a view to the load balance.

高圧受電設備のトランスの組合せ構成は従来から単相、3相、同容量V 異容量V結線及びデルタ式スター式供用型と各種有る、全て図6に示す様に柱上式とする事が可能であり、従来型標準トランスでも高効率トップランナートランスでも良い。Conventionally, there are various combinations of transformers for high-voltage power receiving equipment, such as single-phase, three-phase, same-capacity V, different-capacity V-connections, and delta star-type service types. A conventional standard transformer or a high-efficiency top runner transformer may be used.

従来型標準オイルトランス使用の場合でもバランサーには高効率トップランナー変圧器の使用が良い、無負荷損1/4で電力損失が少ない。Even when using a conventional standard oil transformer, it is better to use a high-efficiency top runner transformer for the balancer, with no load loss 1/4 and low power loss.

本発明バランサーの平衡判定の方法は円板式単相電力量計の回転方向(電流値の多い方に回転する)と中線電流計で両外線の不平衡値が判断可能で有る。According to the balancer balance determination method of the present invention, the unbalanced value of both outer lines can be determined by the rotation direction of the disk-type single-phase watt-hour meter (rotating in the direction with a larger current value) and the middle line ammeter.

従来式三相三線動力用トランスと単相三線電灯用トランスの個別結線説明図。Individual connection explanatory drawing of a conventional three-phase three-wire power transformer and a single-phase three-wire lamp transformer. 従来式トランスを組合せた動、灯供用一体型としたトランスの結線説明図。Connection diagram of a transformer combined with a conventional transformer and integrated with a lamp. 従来式単相トランス2台のV結線で動、灯供用型としたトランスの結線説明図。Explanatory drawing of the connection of a transformer that is operated by a V connection of two conventional single-phase transformers and is in service. 本発明の中性点接地式省スペース型動灯供用電源トランスの結線説明図。The connection explanatory drawing of the neutral point grounding type space-saving type | mold power lamp service power transformer of this invention. 本発明のバランサーの結線説明図Connection diagram of balancer of the present invention 本発明の省スペース型単柱式高圧受電設備の外形説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view of a space-saving single-column high-voltage power receiving facility according to the present invention.

表1Table 1

従来式と本発明の比較表。Comparison table of conventional type and the present invention.

符号の説明Explanation of symbols

Figure 2005197623
Figure 2005197623

Claims (2)

(1)三相交流トランスと単相単巻トランスを一体化する事を特徴とする省スペース型受電用電源トランス。
(2)三相交流用トランスの二次側巻線の中性点を接地すると共に、二次側巻線の異なる端子間を単巻トランスで接続し、単巻トランスの中点から電圧が三相交流の半分である単相交流を取り出す事を特徴とする省スペース型受電用電源トランス。
(3)単巻トランスの電気容量が三相交流トランスの電気容量の10分の1から15分の1であることを特徴とする省スペース型受電用電源トランス。
(1) A space-saving power transformer for power reception characterized by integrating a three-phase AC transformer and a single-phase single-winding transformer.
(2) The neutral point of the secondary winding of the three-phase AC transformer is grounded, and different terminals of the secondary winding are connected by a single-winding transformer. A space-saving power transformer for receiving power, characterized by taking out single-phase alternating current, which is half of phase alternating current.
(3) A space-saving power receiving power transformer, wherein the electric capacity of the single-winding transformer is 1/10 to 1/15 of the electric capacity of the three-phase AC transformer.
請求項1の省スペース型受電用電源トランスを単柱式とし柱の上に設置した省スペース型高圧受電設備。A space-saving high-voltage power receiving facility in which the space-saving power receiving power transformer according to claim 1 is a single pillar type and installed on a pillar.
JP2004027389A 2004-01-01 2004-01-01 Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation Pending JP2005197623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027389A JP2005197623A (en) 2004-01-01 2004-01-01 Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027389A JP2005197623A (en) 2004-01-01 2004-01-01 Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation

Publications (1)

Publication Number Publication Date
JP2005197623A true JP2005197623A (en) 2005-07-21

Family

ID=34824032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027389A Pending JP2005197623A (en) 2004-01-01 2004-01-01 Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation

Country Status (1)

Country Link
JP (1) JP2005197623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882761A (en) * 2010-07-05 2010-11-10 江苏省电力公司张家港市供电公司 Pole mounting type power distribution station
CN102270533A (en) * 2010-06-04 2011-12-07 株式会社洛伦兹 Electric power receiving equipment
JP2013063010A (en) * 2011-08-20 2013-04-04 Yanagi Elec Co Ltd Power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270533A (en) * 2010-06-04 2011-12-07 株式会社洛伦兹 Electric power receiving equipment
JP2011254686A (en) * 2010-06-04 2011-12-15 Lorenz Co Ltd Power receiving facility
KR101137316B1 (en) * 2010-06-04 2012-04-19 노부야스 사토 Power receiving equipment
CN101882761A (en) * 2010-07-05 2010-11-10 江苏省电力公司张家港市供电公司 Pole mounting type power distribution station
JP2013063010A (en) * 2011-08-20 2013-04-04 Yanagi Elec Co Ltd Power supply device

Similar Documents

Publication Publication Date Title
US7193338B2 (en) Method for tapping a high voltage transmission line and substation using the same
Pansini Electrical transformers and power equipment
CN110544580A (en) Main transformer and boosting system of offshore wind power plant boosting station
US5218507A (en) Overhead three-phase power line eliminating fringing electric and magnetic fields
CN105958354A (en) 110kV/10kV and 110kV/35kV two pre-installed integrated intelligent substations
CN102226974B (en) Voltage transformer capable of eliminating ferromagnetic resonance
JP2005197623A (en) Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation
CN205428634U (en) Portable lighting portable lighter transformer
CN201408721Y (en) Built-in voltage transformer-type high-voltage AC demarcation circuit breaker
US8971083B1 (en) Recreational vehicle transformer
CN207251047U (en) A kind of box-type substation using metering ring main unit
CN106898465A (en) A kind of portable lighting transformer for hand lamp
CN101202157A (en) Flexible addition type transformer
CN205230796U (en) Voltage transformer
CN106486907B (en) A kind of power distribution station of integrative installation technology
JP7382106B1 (en) Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc.
CN203747286U (en) Permanent-magnet high-voltage switch measurement integrated device
CN220138085U (en) Three-phase double-winding transformer inlet wire arrangement structure
CN210517344U (en) Power distribution cabinet
CN208077776U (en) A kind of power supply mutual inductor
CN201838896U (en) Intelligent integrated power supply and distribution device
CN201732673U (en) Combined current transformer for branch and division circuit breakers
RU2026210C1 (en) Power supply device for ac railways and regional non-traction consumers
SU1737616A1 (en) Installation to supply dc power for railway roads from regional non-traction loads
RU2063344C1 (en) Power supply device for ac traction circuit