JP2005156330A - Distance measuring device and distance monitoring system - Google Patents

Distance measuring device and distance monitoring system Download PDF

Info

Publication number
JP2005156330A
JP2005156330A JP2003394650A JP2003394650A JP2005156330A JP 2005156330 A JP2005156330 A JP 2005156330A JP 2003394650 A JP2003394650 A JP 2003394650A JP 2003394650 A JP2003394650 A JP 2003394650A JP 2005156330 A JP2005156330 A JP 2005156330A
Authority
JP
Japan
Prior art keywords
light
reflected
light receiving
laser
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003394650A
Other languages
Japanese (ja)
Inventor
Yasushi Maeda
裕史 前田
Shinichiro Asari
晋一郎 浅利
Kazunari Yoshimura
一成 吉村
Tatsuya Honda
達也 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003394650A priority Critical patent/JP2005156330A/en
Publication of JP2005156330A publication Critical patent/JP2005156330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a distance to a measuring object with a simple constitution, even in the state where an obstacle such as a waterdrop or dust caused by rainfall or the like exists. <P>SOLUTION: This device has a laser diode 1 for irradiating laser light toward the measuring object D; a reflector 2 installed on the measuring object D for reflecting the laser light; a light receiving element 3 for receiving reflected light reflected by the reflector 2; and an operation processing part 10 for operating the distance to the measuring object D on the basis of the time difference between the point of time when the laser light is irradiated from the laser diode 1 and the point of time when the reflected light is received by the light receiving element 3. Since the sectional area of the laser light is enlarged to a sufficiently larger value than the maximum sectional area of a raindrop by utilizing expansion of the laser light emitted from the laser diode 1, the distance to the measuring object D can be measured even in the state where the obstacle such as the waterdrop or the dust exists. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レーザ光を利用して測定対象物までの距離を測定する距離測定装置、並びに距離測定装置で測定される距離を監視する距離監視システムに関するものである。   The present invention relates to a distance measuring device that measures a distance to a measurement object using a laser beam, and a distance monitoring system that monitors a distance measured by the distance measuring device.

従来より、レーザ光が測定対象物に反射して戻るまでの時間差を計測し、計測した時間差に基づいて測定対象物までの距離を測定する距離測定装置が種々提供されている。この種の距離測定装置は、例えば、自動車や電車などの車両に搭載されて他の車両等の障害物(測定対象物)までの距離を測定して障害物との衝突を未然に防ぐという用途や、地面に設置されたターゲット(測定対象物)までの距離を測定することで地形の変動を監視し、地震や土砂崩れなどの自然災害による被害を未然に防ぐという用途などに用いられている(例えば、特許文献1又は特許文献2参照)。   Conventionally, various distance measuring apparatuses for measuring a time difference until a laser beam is reflected back to a measurement object and measuring the distance to the measurement object based on the measured time difference are provided. This type of distance measuring device is mounted on a vehicle such as an automobile or a train, and measures the distance to an obstacle (measurement object) such as another vehicle to prevent a collision with the obstacle. It is also used for applications such as monitoring the change in topography by measuring the distance to the target (measurement object) installed on the ground and preventing damage from natural disasters such as earthquakes and landslides ( For example, see Patent Document 1 or Patent Document 2).

ところで、上述のような用途に用いられる場合には測定対象物が屋外にあるため、雨、雪、霧等の気象状態や土埃などの環境状態によって、距離測定装置と測定対象物の間のレーザ光の光路上に存在する水滴や埃などの障害物に邪魔されてレーザ光が測定対象物に届かなかったり、あるいは反射光が戻ってこないために正確な測定ができないことがあった。そのために従来装置においては、光路上の雨滴を検出する雨滴センサを設けるとともに雨滴センサで雨滴が検出されたときにレーザ光の強度を大きくしたり(特許文献1参照)、あるいはレーザ光の波長を雨滴の直径よりも十分に小さくする(特許文献2参照)ことが行われていた。
特開平6−308234号公報 特公平6−80436号公報
By the way, since the measurement object is outdoors when used in the above-described applications, the laser between the distance measurement device and the measurement object depends on weather conditions such as rain, snow, fog, and environmental conditions such as dust. There are cases where the laser beam does not reach the object to be measured due to obstructions such as water droplets or dust existing in the optical path of the light, or the reflected light does not return and accurate measurement may not be possible. Therefore, in the conventional apparatus, a raindrop sensor for detecting raindrops on the optical path is provided, and when the raindrop is detected by the raindrop sensor, the intensity of the laser beam is increased (see Patent Document 1), or the wavelength of the laser beam is increased. It has been practiced to make it sufficiently smaller than the diameter of raindrops (see Patent Document 2).
JP-A-6-308234 Japanese Patent Publication No. 6-80436

しかしながら、特許文献1に記載された従来装置では雨滴センサを搭載しているために構成が複雑になってコストも上昇し、さらには装置の外形寸法も大きくなってしまうという問題があった。また、特許文献2に記載された従来装置ではレーザ光の波長を適当に設定することで障害物(雨滴など)による散乱を抑えることはできるものの、レーザ光が障害物で遮られた場合には測定ができなくなる点に変わりはない。   However, the conventional device described in Patent Document 1 has a problem in that since the raindrop sensor is mounted, the configuration becomes complicated, the cost increases, and the external dimensions of the device also increase. In addition, in the conventional apparatus described in Patent Document 2, scattering by an obstacle (such as raindrops) can be suppressed by appropriately setting the wavelength of the laser light, but when the laser light is blocked by the obstacle, There is no change in the point where measurement is not possible.

本発明は上記事情に鑑みて為されたものであり、その目的は、降水などによる水滴や埃等の障害物が存在する状況においても測定対象物までの距離が簡単な構成で測定できる距離測定装置並びに距離監視システムを提供することにある。   The present invention has been made in view of the above circumstances, and the purpose thereof is distance measurement that can measure the distance to an object to be measured with a simple configuration even in the presence of obstacles such as water droplets and dust caused by precipitation. It is to provide an apparatus and a distance monitoring system.

請求項1の発明は、上記目的を達成するために、測定対象物に向けてレーザ光を照射する照射手段と、測定対象物に設置されて当該レーザ光を反射する反射手段と、反射手段で反射された反射光を受光する受光手段と、照射手段からレーザ光が照射された時点と受光手段により反射光が受光された時点との時間差に基づいて測定対象物までの距離を演算する演算手段とを備え、照射手段は、レーザ光を発する光源と、光源から発するレーザ光の断面積が測定対象物との間に存在する障害物の断面積よりも大きくなるようにレーザ光を拡大する手段とを有することを特徴とする。   In order to achieve the above object, the invention of claim 1 includes an irradiating unit that irradiates a measurement target with laser light, a reflecting unit that is installed on the measuring target and reflects the laser light, and a reflecting unit. Light receiving means for receiving the reflected light reflected, and calculation means for calculating the distance to the measurement object based on the time difference between the time when the laser light is irradiated from the irradiation means and the time when the reflected light is received by the light receiving means. And the irradiation means expands the laser light so that the cross-sectional area of the laser light emitted from the light source and the cross-sectional area of the obstacle existing between the object to be measured is larger than the cross-sectional area of the obstacle. It is characterized by having.

この発明によれば、降水などによる水滴や埃等の障害物の断面積よりも断面積が大きくなるようにレーザ光を拡大しているため、レーザ光が障害物によって遮断されることがなく、障害物が存在する状況においても測定対象物までの距離が測定できる。しかも、レーザ光を拡大する手段の追加のみで済むから、従来例に比較して構成が簡単であり、外形寸法が大型になることもない。   According to this invention, since the laser beam is expanded so that the cross-sectional area is larger than the cross-sectional area of obstacles such as water drops and dust due to precipitation, the laser light is not blocked by the obstacles, Even in the situation where an obstacle exists, the distance to the measurement object can be measured. In addition, since it is only necessary to add means for expanding the laser beam, the configuration is simpler than that of the conventional example, and the external dimensions are not increased.

請求項2の発明は、請求項1の発明において、照射手段は、測定対象物に照射するレーザ光の径を10mm以上に拡げる前記手段を有することを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the irradiating means has the means for expanding the diameter of the laser beam irradiated to the measurement object to 10 mm or more.

この発明によれば、雨や霧あるいは埃の粒子よりも十分に大きい径までレーザ光を拡大することにより、測定対象物までの距離をさらに正確に測定可能となる。   According to the present invention, it is possible to more accurately measure the distance to the measurement object by enlarging the laser beam to a diameter sufficiently larger than rain, fog, or dust particles.

請求項3の発明は、請求項2の発明において、受光手段は、光電変換機能を有する受光素子と、直径が10mm以上であって反射光を受光素子に集光するレンズとを有することを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the light receiving means includes a light receiving element having a photoelectric conversion function and a lens having a diameter of 10 mm or more and condensing reflected light on the light receiving element. And

この発明によれば、雨や霧あるいは埃の粒子よりも十分に大きい直径を有するレンズで反射光を受光素子に集光することにより、測定対象物までの距離をさらに正確に測定可能となる。   According to the present invention, the reflected light is condensed on the light receiving element by the lens having a diameter sufficiently larger than that of rain, fog, or dust particles, whereby the distance to the measurement object can be measured more accurately.

請求項4の発明は、請求項1又は2又は3の発明において、反射手段は、レーザ光を入射方向と略同一方向へ反射してなり、受光手段は、光電変換機能を有する受光素子と、反射光を受光素子に集光するレンズとを有し、照射手段は、レーザ光を拡大する前記レンズと、測定対象物に照射されるレーザ光と反射手段で反射された反射光の少なくとも何れか一方を曲折させるハーフミラーとを有することを特徴とする。   According to a fourth aspect of the present invention, in the first, second, or third aspect of the invention, the reflecting means reflects the laser light in substantially the same direction as the incident direction, the light receiving means includes a light receiving element having a photoelectric conversion function, A lens for condensing the reflected light on the light receiving element, and the irradiating means is at least one of the lens for enlarging the laser light, the laser light irradiated to the measurement object, and the reflected light reflected by the reflecting means It has the half mirror which bends one side, It is characterized by the above-mentioned.

この発明によれば、照射手段から照射されるレーザ光の光路と反射手段で反射された反射光の光路がほぼ一致することから反射光が効率良く集光できて測定精度並びに測定範囲が向上できる。   According to the present invention, since the optical path of the laser light emitted from the irradiating means and the optical path of the reflected light reflected by the reflecting means substantially coincide with each other, the reflected light can be collected efficiently and the measurement accuracy and the measurement range can be improved. .

請求項5の発明は、請求項1又は2又は3の発明において、反射手段は、レーザ光を入射方向と略同一方向へ反射してなり、受光手段は、光電変換機能を有する受光素子と、反射光を受光素子に集光するレンズとを有し、照射手段は、レーザ光を拡大する前記レンズと、測定対象物に照射されるレーザ光と反射手段で反射された反射光の少なくとも何れか一方を曲折させるプリズムとを有することを特徴とする。   According to a fifth aspect of the present invention, in the first, second, or third aspect of the invention, the reflecting means reflects the laser light in substantially the same direction as the incident direction, the light receiving means includes a light receiving element having a photoelectric conversion function, A lens for condensing the reflected light on the light receiving element, and the irradiating means is at least one of the lens for enlarging the laser light, the laser light irradiated to the measurement object, and the reflected light reflected by the reflecting means And a prism that bends one side.

この発明によれば、照射手段から照射されるレーザ光の光路と反射手段で反射された反射光の光路がほぼ一致することから反射光が効率良く集光できて測定精度並びに測定範囲が向上でき、しかも、請求項4の発明のようにハーフミラーを用いる場合に比較して光量の減少を抑えて測定精度および測定範囲がさらに向上できる。   According to the present invention, since the optical path of the laser light emitted from the irradiating means and the optical path of the reflected light reflected by the reflecting means substantially coincide with each other, the reflected light can be collected efficiently and the measurement accuracy and the measurement range can be improved. In addition, the measurement accuracy and the measurement range can be further improved by suppressing the decrease in the amount of light as compared with the case of using the half mirror as in the invention of claim 4.

請求項6の発明は、請求項1〜5の何れかの発明において、反射手段がキューブミラーからなることを特徴とする。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, the reflecting means comprises a cube mirror.

この発明によれば、反射手段(キューブミラー)へのレーザ光の入射角度が変化しても反射光が入射方向と略同一方向に反射されるため、測定対象物までの距離が測定不能となることがない。   According to this invention, even if the incident angle of the laser beam to the reflecting means (cube mirror) changes, the reflected light is reflected in substantially the same direction as the incident direction, so the distance to the measurement object cannot be measured. There is nothing.

請求項7の発明は、請求項1〜6の何れかの発明において、受光手段は、光電変換機能を有する受光素子と、反射光の光量が受光素子の許容範囲内に収まるように反射光の光量を調節する光量調節手段とを有することを特徴とする。   A seventh aspect of the present invention is the light-emitting device according to any one of the first to sixth aspects, wherein the light-receiving means includes a light-receiving element having a photoelectric conversion function, And a light amount adjusting means for adjusting the light amount.

この発明によれば、受光素子における光量の許容範囲を考慮せずに照射手段から照射されるレーザ光の光量を大きくすることができるから、障害物によって生じるS/N比の低下により測定対象物までの距離が測定不能となることがない。   According to the present invention, the amount of laser light emitted from the irradiation means can be increased without considering the allowable range of the amount of light in the light receiving element. The distance up to is not impossible to measure.

請求項8の発明は、請求項1〜7の何れかの発明において、照射手段並びに受光手段が収容されるハウジングと、該ハウジング並びに演算手段が収容される筐体と、該筐体内でハウジングを揺動自在に支持する支持手段とを備えたことを特徴とする。   The invention of claim 8 is the invention according to any one of claims 1 to 7, wherein a housing for accommodating the irradiation means and the light receiving means, a housing for accommodating the housing and the arithmetic means, and a housing in the casing. Supporting means for swingably supporting is provided.

この発明によれば、筐体が傾いても支持手段によって支持されたハウジングは傾かずにそのままの姿勢を保持することができるから、レーザ光の照射方向が変化することによって測定対象物までの距離が測定不能となるのを防ぐことができる。   According to the present invention, since the housing supported by the support means can be maintained as it is without being tilted even if the housing is tilted, the distance to the measurement object is changed by changing the irradiation direction of the laser beam. Can be prevented from becoming impossible to measure.

請求項9の発明は、請求項1〜3又は6〜8の何れかの発明において、照射手段は、光源の発するレーザ光を互いに向きの異なる複数のレーザ光に分岐するとともに各レーザ光を互いに異なる距離に存在する複数の測定対象物に照射してなり、受光手段は、各測定対象物に設置された複数の反射手段で各々反射された複数の反射光を受光してなり、演算手段は、受光手段で受光される複数の反射光の順序に応じて各測定対象物までの距離を演算することを特徴とする。   According to a ninth aspect of the invention, in any one of the first to third or sixth to eighth aspects of the invention, the irradiating means branches the laser light emitted from the light source into a plurality of laser lights having different directions, and the laser lights are mutually separated. A plurality of measurement objects existing at different distances are irradiated, and the light receiving means receives a plurality of reflected lights respectively reflected by a plurality of reflection means installed on each measurement object, and the calculation means is The distance to each measurement object is calculated according to the order of the plurality of reflected lights received by the light receiving means.

この発明によれば、複数の測定対象物までの距離を個別に測定することが可能であり、一つの測定対象物までの距離しか測定できない距離測定装置に比較して低コストおよびメンテナンスの省力化が図れる。   According to the present invention, the distance to a plurality of measurement objects can be individually measured, and the cost is low and the maintenance labor is reduced compared to a distance measurement apparatus that can measure only the distance to one measurement object. Can be planned.

請求項10の発明は、請求項1〜3又は6〜8の何れかの発明において、照射手段は、光源の発するレーザ光を互いに向きの異なる複数のレーザ光に分岐するとともに各レーザ光を複数の測定対象物に照射してなり、複数の測定対象物にそれぞれ設置される複数の反射手段は、各レーザ光を互いに偏光方向が異なる直線偏光の反射光としてなり、受光手段は、反射光の光路上に設置された偏光板を回転させて所望の偏光方向の反射光を択一的に受光してなることを特徴とする。   According to a tenth aspect of the present invention, in the invention according to any one of the first to third or sixth to eighth aspects, the irradiating means branches the laser light emitted from the light source into a plurality of laser lights having different directions and a plurality of each laser light. The plurality of reflecting means that are respectively irradiated to the measurement object and each of the plurality of measuring objects are linearly polarized reflected lights having different polarization directions, and the light receiving means A polarizing plate placed on the optical path is rotated to selectively receive reflected light in a desired polarization direction.

この発明によれば、複数の測定対象物までの距離を個別に測定することが可能であり、一つの測定対象物までの距離しか測定できない距離測定装置に比較して低コストおよびメンテナンスの省力化が図れる。しかも、請求項9の発明では互いに異なる距離に存在する測定対象物までの距離しか測定できないが、本発明ではほぼ同じ距離に存在する測定対象物までの距離でも測定可能であって使い勝手に優れる。   According to the present invention, the distance to a plurality of measurement objects can be individually measured, and the cost is low and the maintenance labor is reduced compared to a distance measurement apparatus that can measure only the distance to one measurement object. Can be planned. Moreover, in the invention of claim 9, only the distance to the measurement object existing at different distances can be measured, but in the present invention, it is possible to measure even the distance to the measurement object existing at substantially the same distance, which is excellent in usability.

請求項11の発明は、上記目的を達成するために、請求項1〜10の何れかに記載の距離測定装置と、距離測定装置の測定結果を通信回線を介して送信する通信装置と、通信回線を介して通信装置から受信した測定結果を保持する遠隔監視装置とを備えたことを特徴とする。   In order to achieve the above object, an eleventh aspect of the present invention is directed to the distance measuring device according to any one of the first to tenth aspects, a communication device that transmits a measurement result of the distance measuring device via a communication line, and communication. And a remote monitoring device for holding a measurement result received from a communication device via a line.

この発明によれば、例えば距離測定装置で測定する測定対象物までの距離を監視することで地形の変動を監視する場合、通信装置を使って距離測定装置の測定結果を遠隔監視装置に送信させて保持することにより、監視対象の場所から離れた遠隔地において地形変動を監視することができて監視作業の省力化が図れるとともに異常(地形の変動)が発生した場合に早期に対応することができる。   According to the present invention, for example, when monitoring the change in the terrain by monitoring the distance to the measurement object measured by the distance measuring device, the measurement result of the distance measuring device is transmitted to the remote monitoring device using the communication device. Can be used to monitor terrain fluctuations at remote locations away from the location being monitored, saving labor in monitoring work, and responding early to abnormalities (terrain fluctuations). it can.

本発明によれば、降水などによる水滴や埃等の障害物の断面積よりも断面積が大きくなるようにレーザ光を拡大しているため、レーザ光が障害物によって遮断されることがなく、障害物が存在する状況においても測定対象物までの距離が測定でき、しかも、レーザ光を拡大する手段の追加のみで済むから、従来例に比較して構成が簡単であり、外形寸法が大型になることもないという効果がある。   According to the present invention, since the laser beam is enlarged so that the cross-sectional area is larger than the cross-sectional area of obstacles such as water droplets and dust due to precipitation, the laser light is not blocked by the obstacles, Even in the presence of obstacles, the distance to the object to be measured can be measured, and it is only necessary to add a means for expanding the laser beam. Therefore, the configuration is simpler and the outer dimensions are larger than the conventional example. There is an effect that it never happens.

(実施形態1)
図1は本実施形態における距離測定装置Aの概略構成図、図2は後述する演算処理部10のブロック図、図3は本実施形態における距離監視システムのシステム構成図をそれぞれ示している。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a distance measuring apparatus A in the present embodiment, FIG. 2 is a block diagram of an arithmetic processing unit 10 described later, and FIG. 3 is a system configuration diagram of a distance monitoring system in the present embodiment.

本実施形態の距離監視システムは、例えば地震や土砂崩れなどの自然災害による被害を未然に防ぐことを目的として地形の変動を監視する用途に用いられるものであって、図3に示すように距離測定装置Aと、距離測定装置Aの測定結果を通信回線Lsを介して送信する通信装置Bと、通信回線Lsを介して通信装置Bから受信した測定結果を保持する遠隔監視装置Cとで構成される。通信装置Bは、公衆電話回線などの通信回線Lsを介してデータの送受信を行う従来周知のモデムからなり、汎用の通信インタフェース(RS−232Cなど)により距離測定装置Aと接続される。遠隔監視装置Cは、通信回線Lsを介してデータの送受信を行うモデムを内蔵した汎用のコンピュータ装置によって構成され、通信装置Bから受け取った測定結果を大容量の記憶装置(内蔵又は外付けのハードディスク装置など)に格納して保持し、オペレータの操作に応じて随時測定結果を参照することができ、さらに異常(例えば、地震や土砂崩れによる測定結果の変動)が発生した場合にオペレータに報知できるようになっている。このように遠隔から距離測定装置Aの測定結果を収集することができるため、監視作業の省力化が図れるとともに異常発生時の対応が早期に行えるという利点がある。なお、遠隔監視装置Cから通信装置Bを介して距離測定装置Aに制御コマンドを送信し、制御コマンドによって距離測定装置Aの動作を制御することも可能である。   The distance monitoring system of the present embodiment is used for the purpose of monitoring terrain fluctuations for the purpose of preventing damage caused by natural disasters such as earthquakes and landslides, and measures distances as shown in FIG. The apparatus A includes a communication apparatus B that transmits the measurement result of the distance measurement apparatus A via the communication line Ls, and a remote monitoring apparatus C that holds the measurement result received from the communication apparatus B via the communication line Ls. The The communication device B is a conventionally known modem that transmits and receives data via a communication line Ls such as a public telephone line, and is connected to the distance measuring device A by a general-purpose communication interface (such as RS-232C). The remote monitoring device C is constituted by a general-purpose computer device having a built-in modem that transmits and receives data via the communication line Ls, and the measurement result received from the communication device B is stored in a large-capacity storage device (built-in or external hard disk). It can be stored and held in a device, etc., and the measurement result can be referred to as needed according to the operation of the operator, and the operator can be notified when an abnormality (for example, fluctuation of the measurement result due to an earthquake or landslide) occurs. It has become. As described above, since the measurement results of the distance measuring device A can be collected from a remote location, there are advantages in that it is possible to save labor in monitoring work and to quickly cope with the occurrence of an abnormality. It is also possible to transmit a control command from the remote monitoring device C to the distance measuring device A via the communication device B, and to control the operation of the distance measuring device A by the control command.

一方、距離測定装置Aは、図3に示すように測定地点に設置される測定対象物Dまでの距離を測定するものであって、測定対象物Dに向けてレーザ光を照射するレーザダイオード1と、測定対象物Dに設置されてレーザ光を反射する反射体2と、反射体2で反射された反射光を受光する受光素子(フォトダイオード)3と、レーザダイオード1からレーザ光が照射された時点と受光素子3により反射光が受光された時点との時間差に基づいて測定対象物Dまでの距離を演算する演算処理部10と、レーザダイオード1、受光素子3、演算処理部10を収容する筐体20と、筐体20の前面に設けられた平凸レンズからなりレーザダイオード1から照射されるレーザ光を略平行光とする照射レンズ4と、同じく筐体20の前面に設けられた平凸レンズからなり反射光を受光素子3の受光面に集光する集光レンズ5とを備える。反射体2は板材の表面に白色塗料を塗布してなり、筐体20は合成樹脂若しくは金属部材により角筒状に形成され、軸方向の一端面(前面)に照射レンズ4並びに集光レンズ5が設けられ、側面には支持台21が突設されている(図3参照)。なお、照射レンズ4並びに集光レンズ5には平凸レンズ以外のレンズを用いても構わない。   On the other hand, the distance measuring apparatus A measures the distance to the measurement object D installed at the measurement point as shown in FIG. 3 and irradiates the measurement object D with laser light 1. And a reflector 2 that is installed on the measuring object D and reflects the laser light, a light receiving element (photodiode) 3 that receives the reflected light reflected by the reflector 2, and a laser beam from the laser diode 1. And an arithmetic processing unit 10 that calculates the distance to the measurement object D based on the time difference between the time when the reflected light is received by the light receiving element 3 and the laser diode 1, the light receiving element 3, and the arithmetic processing unit 10. A housing 20 to be formed, a plano-convex lens provided on the front surface of the housing 20, and an irradiation lens 4 that makes laser light emitted from the laser diode 1 substantially parallel light, and a flat surface that is also provided on the front surface of the housing 20. Convex And a condensing lens 5 for condensing the reflected light consists lens to the light receiving surface of the light receiving element 3. The reflector 2 is formed by applying a white paint on the surface of a plate material, the housing 20 is formed in a rectangular tube shape by a synthetic resin or a metal member, and the irradiation lens 4 and the condenser lens 5 are formed on one end surface (front surface) in the axial direction. Is provided, and a support base 21 protrudes from the side surface (see FIG. 3). Note that lenses other than plano-convex lenses may be used as the irradiation lens 4 and the condenser lens 5.

演算処理部10は、CPUとその周辺回路(メモリやクロック発振器など)からなる制御回路11と、制御回路11の制御の元でレーザダイオード1を駆動してレーザ光を照射させるLD駆動回路12と、受光素子3の出力信号に対して増幅、波形整形、ピークホールドなどの信号処理を行う信号処理回路13と、日付や時刻を管理するためのタイマ回路14と、通信装置Bとの間で測定結果などの授受を行うための汎用(RS−232Cなど)の通信インタフェース15と、商用電源や蓄電池を電源として上記各回路の動作電源を作成する電源回路16とを備える。而して、制御回路11では、LD駆動回路12を制御してレーザダイオード1からパルス状のレーザ光を照射させると同時に内部クロックのカウントを開始し、反射体2で反射されたパルス状の反射光が受光素子3で受光されて信号処理回路13で信号処理された後の受信信号が入力されると内部クロックのカウントを停止し、カウントしたクロック数からレーザダイオード1よりレーザ光が照射された時点と受光素子3により反射光が受光された時点との時間差を求め、その時間差に基づいて測定対象物Dまでの距離を演算する。そして、制御回路11が通信インタフェース15を介して測定対象物Dまでの距離の測定結果を通信装置Bに出力し、通信装置Bを通じて遠隔監視装置Cに送信する。   The arithmetic processing unit 10 includes a control circuit 11 including a CPU and its peripheral circuits (such as a memory and a clock oscillator), an LD driving circuit 12 that drives the laser diode 1 under the control of the control circuit 11 and emits laser light. Measurement is performed between the signal processing circuit 13 that performs signal processing such as amplification, waveform shaping, and peak hold on the output signal of the light receiving element 3, the timer circuit 14 for managing the date and time, and the communication device B. A general-purpose (RS-232C, etc.) communication interface 15 for sending and receiving results and the like, and a power supply circuit 16 for creating an operating power supply for each circuit using a commercial power supply or a storage battery as a power supply are provided. Thus, the control circuit 11 controls the LD drive circuit 12 to irradiate the pulsed laser light from the laser diode 1 and simultaneously starts counting the internal clock, and reflects the pulsed reflection reflected by the reflector 2. When a received signal after light is received by the light receiving element 3 and processed by the signal processing circuit 13 is input, counting of the internal clock is stopped, and laser light is emitted from the laser diode 1 from the counted number of clocks. A time difference between the time point and the time point when the reflected light is received by the light receiving element 3 is obtained, and the distance to the measurement object D is calculated based on the time difference. Then, the control circuit 11 outputs the measurement result of the distance to the measurement object D to the communication device B via the communication interface 15 and transmits it to the remote monitoring device C through the communication device B.

ところで、可視領域の赤色レーザ光を用いる場合、従来例におけるレーザ光の径は約2mm程度であったが、雨滴、霧、埃の粒子の直径がそれぞれ0.5mm〜5mm、0.01mm、1mm以下であるため、例えば雨天時には距離測定装置Aと測定対象物Dとの間のレーザ光の光路上にレーザ光の断面積よりも大きい断面積を有する障害物(雨滴)が存在することになり、レーザ光が雨滴に遮断されて測定が不能となる虞があった。   By the way, when using red laser light in the visible region, the diameter of the laser light in the conventional example is about 2 mm, but the diameters of raindrops, fog, and dust particles are 0.5 mm to 5 mm, 0.01 mm, and 1 mm, respectively. Therefore, an obstacle (raindrop) having a cross-sectional area larger than the cross-sectional area of the laser light exists on the optical path of the laser light between the distance measuring device A and the measurement object D when it is raining. The laser beam may be blocked by raindrops, making measurement impossible.

そこで本実施形態では、照射レンズ4の直径を雨滴の最大径よりも十分に大きい10mm以上に設定するとともにレーザダイオード1を照射レンズ4の焦点の位置に配置し、レーザダイオード1から発するレーザ光の拡がりを利用してレーザ光の断面積を雨滴の最大断面積よりも十分大きい値に拡大した後、照射レンズ4によって略平行光としている。このとき、レーザダイオード1から発するレーザ光の拡がり角度が小さいために照射レンズ4の焦点距離ではレーザ光の断面積が十分に拡大できない場合には、図4に示すようにレーザダイオード1と照射レンズ4の間に両凹レンズ6を配置してレーザ光の拡がり角度を大きくすればよい。   Therefore, in this embodiment, the diameter of the irradiation lens 4 is set to 10 mm or more, which is sufficiently larger than the maximum raindrop diameter, and the laser diode 1 is disposed at the focal point of the irradiation lens 4 so that the laser light emitted from the laser diode 1 is emitted. After expanding the cross-sectional area of the laser beam to a value sufficiently larger than the maximum cross-sectional area of the raindrop using the expansion, the irradiation lens 4 makes the light substantially parallel. At this time, if the laser light emitted from the laser diode 1 has a small divergence angle, and the cross-sectional area of the laser light cannot be sufficiently enlarged at the focal length of the irradiation lens 4, the laser diode 1 and the irradiation lens as shown in FIG. 4, the biconcave lens 6 may be arranged to increase the spread angle of the laser beam.

而して本実施形態では、上述のようにレーザダイオード1から照射されるレーザ光の断面積を拡大しているため、従来例のようにレーザ光が雨滴などの障害物によって遮断されることがなく、障害物が存在する状況においても測定対象物Dまでの距離が測定できるものである。しかも、レーザダイオード1から発するレーザ光の拡がりを利用してレーザ光を拡大しているから、特許文献1に記載された従来例に比較して構成が簡単であり、外形寸法が大型になることもない。また本実施形態では、照射レンズ4に合わせて集光レンズ5も直径を10mm以上に設定し、断面積が拡大されたレーザ光の反射光を効率よく受光素子3に集光して測定対象物Dまでの距離を正確に測定できるようにしている。なお、本実施形態の距離測定装置Aを降雪地帯に設置する場合、障害物である雪(霰や雹を含む)の直径が最大で150mmに達することもあるので、照射レンズ4および集光レンズ5の直径を300mm以上とすることが望ましい。   Thus, in this embodiment, since the cross-sectional area of the laser light emitted from the laser diode 1 is enlarged as described above, the laser light may be blocked by an obstacle such as raindrops as in the conventional example. In addition, the distance to the measuring object D can be measured even in a situation where an obstacle exists. In addition, since the laser beam is expanded by using the spread of the laser beam emitted from the laser diode 1, the configuration is simpler than the conventional example described in Patent Document 1, and the outer dimensions are large. Nor. In this embodiment, the diameter of the condensing lens 5 is set to 10 mm or more in accordance with the irradiation lens 4, and the reflected light of the laser beam having an enlarged cross-sectional area is efficiently condensed on the light receiving element 3 to be measured. The distance to D can be measured accurately. When the distance measuring device A of this embodiment is installed in a snowfall area, the diameter of snow (including hail and hail) that is an obstacle may reach 150 mm at the maximum, so the irradiation lens 4 and the condenser lens It is desirable that the diameter of 5 is 300 mm or more.

ところで、反射体2として高反射率材料であるアルミニウムなどを板材の表面に塗布したものや、さらにその表面を鏡面加工したものを用いれば、反射体2と障害物のレーザ光に対する反射率が異なることから、演算処理部10において受光素子3で受光する反射光の光量を監視することにより反射光が反射体2によるものか障害物によるものかを判定することができ、障害物による誤測定の防止が可能となる。なお、反射体2の反射面(表面)を、図5に示すように距離測定装置Aから測定対象物Dまでの距離Xに略等しい曲率半径を有する球面の一部となる形状に形成すれば、反射体2へのレーザ光の入射角度が変化しても反射光が入射方向と略同一方向に反射されるため、測定対象物Dまでの距離が測定不能となることがない。   By the way, if the reflector 2 is made by applying a high reflectivity material such as aluminum on the surface of the plate, or if the surface is mirror-finished, the reflectivity of the reflector 2 and the obstacle with respect to the laser light is different. Therefore, by monitoring the amount of reflected light received by the light receiving element 3 in the arithmetic processing unit 10, it is possible to determine whether the reflected light is due to the reflector 2 or due to an obstacle. Prevention becomes possible. If the reflecting surface (surface) of the reflector 2 is formed in a shape that becomes a part of a spherical surface having a radius of curvature substantially equal to the distance X from the distance measuring device A to the measuring object D as shown in FIG. Even if the incident angle of the laser beam on the reflector 2 changes, the reflected light is reflected in the substantially same direction as the incident direction, and therefore the distance to the measurement object D is not measured.

また、近隣の道路を通行する自動車による地面の揺れ、あるいは強風によって距離測定装置Aの筐体20が揺れて測定結果にばらつきが生じることがあるので、図6に示すようにレーザダイオード1、受光素子3、照射レンズ4並びに集光レンズ5を収容したハウジング22を防振機構23により筐体20に取り付ける構造とし、上記揺れを防振機構23で吸収して測定結果のばらつきを抑えることが望ましい。なお、防振機構23としては内部損失の高いゴムやスプリング、あるいはエア式又は油圧式のダンパを用いればよい。   Further, since the housing 20 of the distance measuring device A may be shaken by a ground shake by a car traveling on a nearby road or a strong wind, the measurement results may vary. It is desirable that the housing 22 housing the element 3, the irradiation lens 4 and the condenser lens 5 is attached to the housing 20 by the vibration isolating mechanism 23, and the vibration is absorbed by the vibration isolating mechanism 23 to suppress variation in measurement results. . As the vibration isolation mechanism 23, rubber or spring with high internal loss, or an air or hydraulic damper may be used.

ところで、距離測定装置Aは必ずしも常時距離測定を行う必要はなく、予め決められたスケジュールに従って定期的(例えば、数十分毎や数時間毎など)に行うようにしてもよいが、レーザダイオード1や受光素子3あるいは演算処理部10に常時電源を供給したままであると電力が無駄に消費されてしまうことになる。そこで、タイマ回路14に距離測定のスケジュールを登録しておき、距離測定を行う時刻になったらタイマ回路14が電源回路16から各回路への電源供給を開始させるとともに1回の距離測定が終了したら電源回路16から各回路への電源供給を停止するようにすれば、無駄な電力消費を抑えることができる。   By the way, the distance measuring apparatus A does not always need to perform distance measurement, and may be performed periodically (for example, every several tens of minutes or every several hours) according to a predetermined schedule. If the power is always supplied to the light receiving element 3 or the arithmetic processing unit 10, the power is wasted. Therefore, a distance measurement schedule is registered in the timer circuit 14, and when the time for distance measurement is reached, the timer circuit 14 starts power supply from the power supply circuit 16 to each circuit and completes one distance measurement. If power supply from the power supply circuit 16 to each circuit is stopped, wasteful power consumption can be suppressed.

(実施形態2)
本実施形態は、図7に示すように照射レンズ4と集光レンズ5を1枚の平凸レンズ(照射/集光レンズ)7で兼用し、レーザダイオード1から照射されるレーザ光(照射光)と反射体2に反射されて戻るレーザ光(反射光)をハーフミラー8で曲折させる構成とした点に特徴があり、これ以外の構成については実施形態1と共通である。よって、実施形態1と共通の構成要素には同一の符号を付して適宜図示並びに説明を省略する。
(Embodiment 2)
In this embodiment, as shown in FIG. 7, the irradiation lens 4 and the condensing lens 5 are used as one plano-convex lens (irradiation / condensing lens) 7, and laser light (irradiation light) emitted from the laser diode 1 is used. The laser beam (reflected light) reflected by the reflector 2 is bent by the half mirror 8, and the other configuration is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and illustration and description thereof are omitted as appropriate.

ハーフミラー8は入射角が45度の時に透過率および反射率が各々50%となる特性を有するとともに照射/集光レンズ7の集光範囲をカバーし得る寸法を有するものであって、レーザダイオード1の光軸H1と照射/集光レンズ7の光軸H2のなす角度が上記角度の倍、すなわち90度となるように配置される。このとき、受光素子3はその光軸H3が照射/集光レンズ7の光軸H2と一致する位置に配置される。なお、照射/集光レンズ7のレンズ中心とレーザダイオード1および受光素子3との光路上の距離は何れも照射/集光レンズ7の焦点距離に等しく設定されている。また、反射体2はレーザ光を入射方向と略同一方向へ反射するように構成されている。   The half mirror 8 has a characteristic that the transmittance and the reflectance are each 50% when the incident angle is 45 degrees, and has a dimension capable of covering the condensing range of the irradiation / condensing lens 7, and is a laser diode. The angle formed by one optical axis H1 and the optical axis H2 of the irradiating / condensing lens 7 is arranged to be twice the above angle, that is, 90 degrees. At this time, the light receiving element 3 is disposed at a position where the optical axis H3 coincides with the optical axis H2 of the irradiation / condensing lens 7. Note that the distance on the optical path between the center of the irradiation / condensing lens 7 and the laser diode 1 and the light receiving element 3 is set equal to the focal length of the irradiation / condensing lens 7. In addition, the reflector 2 is configured to reflect the laser light in substantially the same direction as the incident direction.

而して、本実施形態によれば、レーザダイオード1から照射される照射光の光路と反射体2で反射された反射光の光路がほぼ一致することから反射光が効率良く集光できて測定精度並びに測定範囲が向上できるという利点がある。   Thus, according to the present embodiment, since the optical path of the irradiation light irradiated from the laser diode 1 and the optical path of the reflected light reflected by the reflector 2 substantially coincide, the reflected light can be efficiently collected and measured. There is an advantage that accuracy and measurement range can be improved.

(実施形態3)
ところで、実施形態2の構成では照射光並びに反射光が何れも平行光でないため、ハーフミラー8に入射する場所によって透過率に違いが生じて安定した距離検出を行い難い場合がある。
(Embodiment 3)
By the way, in the structure of Embodiment 2, since neither irradiation light nor reflected light is parallel light, the transmittance | permeability differs depending on the place which injects into the half mirror 8, and it may be difficult to perform stable distance detection.

そこで本実施形態は、図8に示すようにレーザダイオード1とハーフミラー8の間に平凸レンズ30を配置してハーフミラー8に入射する照射光を平行光に変換し、さらにハーフミラー8と照射/集光レンズ7の間に配置した両凹レンズ31により照射光を拡大するとともに、受光素子3とハーフミラー8の間に平凸レンズ32を配置してハーフミラー8を透過した反射光を受光素子3の受光面に集光する構成としている。なお、これ以外の構成については実施形態1並びに2と共通であるから、共通の構成要素には同一の符号を付して適宜図示並びに説明を省略する。   Therefore, in the present embodiment, as shown in FIG. 8, a plano-convex lens 30 is arranged between the laser diode 1 and the half mirror 8 to convert the irradiation light incident on the half mirror 8 into parallel light, and further to the half mirror 8 and irradiation. The irradiation light is magnified by the biconcave lens 31 disposed between the condenser lenses 7 and the plano-convex lens 32 is disposed between the light receiving element 3 and the half mirror 8 so that the reflected light transmitted through the half mirror 8 is received by the light receiving element 3. The light is collected on the light receiving surface. In addition, since it is the same as that of Embodiment 1 and 2 about other structures, the same code | symbol is attached | subjected to a common component and illustration and description are abbreviate | omitted suitably.

而して、本実施形態ではハーフミラー8に入射する照射光および反射光を何れも平行光としているため、ハーフミラー8に入射する場所によって透過率に違いが生じることがなく、安定した距離検出を行うことができる。また、ハーフミラー8は照射/集光レンズ7の集光範囲をカバーし得る寸法とする必要がないから、ハーフミラー8の小型化によるコスト削減が図れるという利点がある。   Thus, in the present embodiment, since the irradiation light and the reflected light incident on the half mirror 8 are both parallel light, there is no difference in transmittance depending on the location incident on the half mirror 8, and stable distance detection is possible. It can be performed. Further, since the half mirror 8 does not need to have a size that can cover the condensing range of the irradiation / condensing lens 7, there is an advantage that cost reduction can be achieved by downsizing the half mirror 8.

(実施形態4)
本実施形態は、図9に示すようにレーザダイオード1から照射されるレーザ光(照射光)と反射体2に反射されて戻るレーザ光(反射光)を曲折させる手段としてハーフミラー8の変わりに偏光プリズム9を用いる点に特徴があり、これ以外の構成については実施形態1〜3と共通である。よって、実施形態1〜3と共通の構成要素には同一の符号を付して適宜図示並びに説明を省略する。
(Embodiment 4)
In this embodiment, as shown in FIG. 9, the laser light (irradiation light) emitted from the laser diode 1 and the laser light (reflected light) reflected by the reflector 2 are bent as means for bending the half mirror 8. The configuration is characterized in that the polarizing prism 9 is used, and the other configurations are the same as those in the first to third embodiments. Therefore, the same code | symbol is attached | subjected to the same component as Embodiment 1-3, and illustration and description are abbreviate | omitted suitably.

本実施形態では、図9に示すように実施形態3におけるハーフミラー8の位置に偏光プリズム9と4分の1波長板24を配置している。偏光プリズム9は互いに隣接する入射面9a並びに出射面9bと、入射面9aおよび出射面9bの双方に対向する入出射面9cとを有し、入射面9aと正対する位置にレーザダイオード1並びに平凸レンズ30を配置し、出射面9bと正対する位置に受光素子3並びに平凸レンズ31を配置するとともに、入出射面9cと正対する位置に4分の1波長板24を配置している。   In the present embodiment, as shown in FIG. 9, the polarizing prism 9 and the quarter-wave plate 24 are disposed at the position of the half mirror 8 in the third embodiment. The polarizing prism 9 has an entrance surface 9a and an exit surface 9b adjacent to each other, and an entrance / exit surface 9c opposite to both the entrance surface 9a and the exit surface 9b. The convex lens 30 is disposed, the light receiving element 3 and the plano-convex lens 31 are disposed at a position facing the exit surface 9b, and the quarter-wave plate 24 is disposed at a position facing the entrance / exit surface 9c.

而して、レーザダイオード1が発するレーザ光が直線偏光であって、図10(a)の矢印と平行な偏光面を有するものであるとすると、平凸レンズ30で平行光に変換された後に偏光プリズム9の入射面9aから入射して入出射面9cから出射する照射光は、4分の1波長板24を通過する際に、図10(b)に示すように偏光面が反時計回りに45度回転することになる。そして、反射体2で反射する際には偏光面の回転は生じないが(図10(c)参照)、反射光が4分の1波長板24を通過する際に、図10(d)に示すように偏光面が反時計回りに45度回転する。その結果、偏光プリズム9の入出射面9cから出射した照射光の偏光面(図10(a)参照)と、偏光プリズム9の入出射面9cに入射する反射光の偏光面(図10(d)との間には90度の角度差が生じる。   Thus, if the laser light emitted from the laser diode 1 is linearly polarized light and has a polarization plane parallel to the arrow in FIG. 10A, the polarized light is converted into parallel light by the plano-convex lens 30. Irradiation light incident from the incident surface 9a of the prism 9 and emitted from the incident / exit surface 9c passes through the quarter-wave plate 24, and the polarization plane is counterclockwise as shown in FIG. It will rotate 45 degrees. When the light is reflected by the reflector 2, the polarization plane does not rotate (see FIG. 10C), but when the reflected light passes through the quarter-wave plate 24, it is shown in FIG. As shown, the plane of polarization rotates 45 degrees counterclockwise. As a result, the polarization plane (see FIG. 10A) of the irradiation light emitted from the entrance / exit surface 9c of the polarization prism 9 and the polarization plane of the reflected light incident on the entrance / exit surface 9c of the polarization prism 9 (FIG. 10D). ) Is 90 degrees.

一方、偏光プリズム9は入射面9aから入射した照射光を屈折させずに入出射面9cから出射するが、入出射面9cから入射する反射光についてはその偏光面が照射光の偏光面に対して90度ずれているため、所定の角度だけ屈折させて出射面9bより出射させる。すなわち、4分の1波長板24で照射光と反射光の偏光面をずらすことにより、偏光プリズム9にて反射光を曲折させているのである。   On the other hand, the polarizing prism 9 emits the incident light incident from the incident surface 9a without being refracted, and is emitted from the incident / exit surface 9c. Therefore, the light is refracted by a predetermined angle and emitted from the emission surface 9b. That is, the polarized light is bent by the polarizing prism 9 by shifting the polarization planes of the irradiation light and the reflected light by the quarter wavelength plate 24.

上述のように本実施形態では偏光プリズム9を用いて反射光を曲折させているので、実施形態3のようにハーフミラー8で照射光を曲折させる場合に比較して光量の減少を抑えることができ、測定精度および測定範囲の向上が図れるという利点がある。   As described above, since the reflected light is bent using the polarizing prism 9 in the present embodiment, the decrease in the amount of light can be suppressed compared to the case where the irradiation light is bent using the half mirror 8 as in the third embodiment. There is an advantage that the measurement accuracy and the measurement range can be improved.

(実施形態5)
本実施形態は、反射手段としてキューブミラー25を用いる点に特徴があり、その他の構成は実施形態1と共通である。よって、実施形態1と共通の構成要素には同一の符号を付して適宜図示並びに説明は省略する。
(Embodiment 5)
The present embodiment is characterized in that a cube mirror 25 is used as the reflecting means, and other configurations are the same as those in the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and illustration and description thereof are omitted as appropriate.

キューブミラー25は従来周知であって、プリズムや反射鏡を組み合わせて光を入射方向によらず元の方向に反射するもので、図11(a)に示すように立方体の一隅を切り取った形状をした互いに垂直な3つの反射面を有しており、図中のABC面から入射した光が前記3つの反射面で1回ずつ反射して再びABC面から出でいくことになる。   The cube mirror 25 is well known in the art, and combines a prism and a reflecting mirror to reflect light in the original direction regardless of the incident direction. As shown in FIG. Thus, the light incident from the ABC surface in the figure is reflected once by the three reflecting surfaces and exits from the ABC surface again.

而して、キューブミラー25を反射手段とすれば、図11(b)に示すようにキューブミラー25へのレーザ光の入射角度が変化しても反射光が入射方向と略同一方向に反射されるため、測定対象物Dまでの距離が測定不能となることがないものである。   Thus, if the cube mirror 25 is used as the reflecting means, the reflected light is reflected in substantially the same direction as the incident direction even if the incident angle of the laser beam to the cube mirror 25 changes as shown in FIG. For this reason, the distance to the measurement object D does not become unmeasurable.

なお、図11(c)に示すように多数のキューブミラー25を同一平面上に並べたものを反射手段として用いても構わない。この場合、個々のキューブミラー25の大きさは照射光の径の10分の1以下とすることが望ましい。   In addition, as shown in FIG.11 (c), you may use what arranged many cube mirrors 25 on the same plane as a reflection means. In this case, it is desirable that the size of each cube mirror 25 is 1/10 or less of the diameter of the irradiation light.

(実施形態6)
本実施形態は、図12に示すように受光素子3と集光レンズ5の間に反射光の光量を調節する光量調節手段26を設けた点に特徴があり、その他の構成は実施形態1と共通である。よって、実施形態1と共通の構成要素には同一の符号を付して適宜図示並びに説明は省略する。
(Embodiment 6)
This embodiment is characterized in that a light amount adjusting means 26 for adjusting the amount of reflected light is provided between the light receiving element 3 and the condenser lens 5 as shown in FIG. It is common. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and illustration and description thereof are omitted as appropriate.

光量調節手段26は、例えば光の透過率が可変である液晶シャッタや、あるいは濃度の異なる複数のNDフィルタを機械的に入れ替えて光の透過率を可変とするものである。   For example, the light amount adjusting unit 26 is configured to make the light transmittance variable by mechanically replacing a liquid crystal shutter having a variable light transmittance or a plurality of ND filters having different densities.

而して、光量調節手段26により反射光の光量が受光素子3の許容範囲内に収まるように調節すれば、受光素子3における光量の許容範囲を考慮せずにレーザダイオード1から発するレーザ光の光量を大きくすることができるため、障害物によって生じるS/N比の低下により測定対象物Dまでの距離が測定不能となることを防ぐことができる。   Thus, if the light amount adjusting means 26 adjusts the light amount of the reflected light to be within the allowable range of the light receiving element 3, the laser light emitted from the laser diode 1 without taking into consideration the allowable range of the light amount in the light receiving element 3. Since the amount of light can be increased, it is possible to prevent the distance to the measurement object D from becoming unmeasurable due to a decrease in the S / N ratio caused by the obstacle.

(実施形態7)
本実施形態の基本構成は実施形態1と共通であるから、共通の構成要素には同一の符号を付して適宜図示並びに説明を省略し、本実施形態の特徴となる構成についてのみ説明する。
(Embodiment 7)
Since the basic configuration of the present embodiment is the same as that of the first embodiment, common components are denoted by the same reference numerals, and illustration and description thereof are omitted as appropriate, and only the configuration that is a feature of the present embodiment will be described.

本実施形態は、図13(a)に示すようにレーザダイオード1、受光素子3、照射レンズ4並びに集光レンズ5を収容したハウジング22を、一端が筐体20の天面に固定された複数のワイヤ27で吊り下げて筐体20内で揺動自在に支持する点に特徴がある。   In the present embodiment, as shown in FIG. 13A, a plurality of housings 22 each housing a laser diode 1, a light receiving element 3, an irradiation lens 4, and a condenser lens 5 are fixed to the top surface of the housing 20. It is characterized in that it is suspended by a wire 27 and supported in a swingable manner within the housing 20.

而して本実施形態では、筐体20が傾いても支持手段たるワイヤ27によって支持されたハウジング22は傾かずにそのままの姿勢を保持することができるから、レーザ光の照射方向が変化することによって測定対象物Dまでの距離が測定不能となるのを防ぐことができる。   Thus, in this embodiment, the housing 22 supported by the wire 27 serving as the support means can be held without being tilted even when the housing 20 is tilted, and therefore the irradiation direction of the laser light changes. Therefore, it is possible to prevent the distance to the measurement object D from being disabled.

なお、本実施形態では支持手段としてワイヤ27を用いたが、図13(b)に示すように筐体20の天面に取り付けたヒンジ28と、ヒンジ28から垂設されて先端にハウジング22が取り付けられる支柱29とで支持手段を構成しても構わない。   In the present embodiment, the wire 27 is used as the supporting means. However, as shown in FIG. 13B, a hinge 28 attached to the top surface of the housing 20 and a housing 22 that is suspended from the hinge 28 and is attached to the tip. You may comprise a support means with the support | pillar 29 attached.

また、ワイヤ27などの支持手段でハウジング22を筐体20に吊り下げる代わりに、図13(c)に示すようにハウジング22の側面におけるハウジング22の重心位置Gよりも鉛直上方の位置から突設した回転軸(図示せず)を、筐体20の底面から立設した支持台40の先端部に設けた軸受け部41に回動自在に枢支させ、支持台40と回転軸からなる支持手段でハウジング22を揺動自在に支持する構造としても良い。このような支持構造を採用した場合、上述の吊り下げ構造に比較して揺動範囲(揺動半径)が小さくなるために筐体20の小型化が容易であるという利点がある。しかも、回転軸と軸受け部41との間に生じる摩擦力によって、筐体20が振動した場合にハウジング22の揺れが抑制されるという利点もある。   Further, instead of suspending the housing 22 from the housing 20 by the supporting means such as the wire 27, as shown in FIG. 13C, the housing 22 protrudes from a position vertically above the center of gravity G of the housing 22 on the side surface of the housing 22. The rotating shaft (not shown) is pivotally supported by a bearing portion 41 provided at the front end portion of the support base 40 erected from the bottom surface of the housing 20 to support the support base 40 and the rotation shaft. Thus, the housing 22 may be swingably supported. When such a support structure is employed, there is an advantage that the housing 20 can be easily downsized because the swing range (swing radius) is smaller than that of the above-described suspension structure. In addition, there is an advantage that shaking of the housing 22 is suppressed when the housing 20 vibrates due to the frictional force generated between the rotating shaft and the bearing portion 41.

(実施形態8)
本実施形態の基本構成は実施形態1と共通であるから、共通の構成要素には同一の符号を付して適宜図示並びに説明を省略し、本実施形態の特徴となる構成についてのみ説明する。
(Embodiment 8)
Since the basic configuration of the present embodiment is the same as that of the first embodiment, common components are denoted by the same reference numerals, and illustration and description thereof are omitted as appropriate, and only the configuration that is a feature of the present embodiment will be described.

本実施形態は、一つのレーザダイオード1の発するレーザ光を互いに向きの異なる複数のレーザ光に分岐するとともに各レーザ光を互いに異なる距離に存在する複数の測定対象物に照射し、各測定対象物に設置された複数の反射手段で各々反射された複数の反射光を一つの受光素子3で受光し、受光素子3で受光される複数の反射光の順序に応じて演算処理部10が各測定対象物までの距離を演算する点に特徴がある。   In the present embodiment, the laser light emitted from one laser diode 1 is branched into a plurality of laser beams having different directions, and each measurement object is irradiated with each laser beam at different distances. A plurality of reflected lights respectively reflected by a plurality of reflecting means installed on the light receiving element 3 are received by one light receiving element 3, and the arithmetic processing unit 10 performs each measurement according to the order of the plurality of reflected lights received by the light receiving element 3. It is characterized in that the distance to the object is calculated.

図14に示すように、照射レンズ4の入射面と平行にレーザ光を照射する向きにレーザダイオード1を配置し、互いに透過率が異なる第1乃至第5のハーフミラー421〜425がレーザダイオード1の光軸上に一列に並べて配置してある。本実施形態では、第1乃至第5のハーフミラー421〜425の透過率をそれぞれ80%、75%、66%、50%および0%とし、第1乃至第5のハーフミラー421〜425で反射されて照射レンズ4により平行光とされる各照射光が元のレーザ光の20%の光量(強度)となるようにしている。 As shown in FIG. 14, the laser diode 1 is disposed in a direction of irradiating the incident surface parallel to the laser beam irradiation lens 4, the first to fifth half mirror 42 1-42 5 laser transmittance are different from each other They are arranged in a line on the optical axis of the diode 1. In this embodiment, first to fifth half mirror 42 1-42 5 transmittance of 80% each of 75%, 66%, 50% and 0%, a half mirror 42 of the first to 51 to 42 5 each illumination light into parallel light by the irradiation lens 4 is reflected by the is set to be 20% of the amount of the original laser beam (intensity).

このようにして分岐された複数の照射光が各々対応する測定対象物(図示せず)に照射され、各測定対象物に設置された反射体で反射された反射光が受光素子3で受光されることになる。すなわち、図15(a)に示すようなパルス状の照射光がレーザダイオード1から照射されたとき、第1乃至第5のハーフミラー421〜425で分岐された各照射光に対応する複数の反射光R1〜R5が受光素子3で受光されるタイミングは、図15(b)に示すようにそれぞれの測定対象物までの距離が短いほど早くなる。ここで、個々の測定対象物までの距離は予め判っているので、演算処理部10(制御回路11)においては異なるタイミングで受光した反射光R1〜R5が何れの測定対象物による反射光であるかを判別して個々の測定対象物までの距離を求めることができる。 A plurality of irradiation lights branched in this way are irradiated to corresponding measurement objects (not shown), and the reflected light reflected by the reflectors installed on the measurement objects is received by the light receiving element 3. Will be. That is, when the pulsed irradiation light as shown in FIG. 15A is irradiated from the laser diode 1, a plurality of irradiation light beams corresponding to the respective irradiation lights branched by the first to fifth half mirrors 42 1 to 425 are used. As shown in FIG. 15B, the timing at which the reflected lights R1 to R5 are received by the light receiving element 3 is earlier as the distance to each measurement object is shorter. Here, since the distances to the individual measurement objects are known in advance, the reflected lights R1 to R5 received at different timings in the arithmetic processing unit 10 (control circuit 11) are reflected light from any measurement object. It is possible to determine the distance to each measurement object.

而して本実施形態では、複数の測定対象物までの距離を個別に測定することが可能であり、一つの測定対象物までの距離しか測定できない距離測定装置に比較して低コストおよびメンテナンスの省力化が図れるという利点がある。   Thus, in this embodiment, it is possible to individually measure the distances to a plurality of measurement objects, which is lower in cost and maintenance than a distance measurement device that can measure only the distance to one measurement object. There is an advantage that labor saving can be achieved.

(実施形態9)
本実施形態の基本構成は実施形態1と共通であるから、共通の構成要素には同一の符号を付して適宜図示並びに説明を省略し、本実施形態の特徴となる構成についてのみ説明する。
(Embodiment 9)
Since the basic configuration of the present embodiment is the same as that of the first embodiment, common components are denoted by the same reference numerals, and illustration and description thereof are omitted as appropriate, and only the configuration that is a feature of the present embodiment will be described.

本実施形態は、一つのレーザダイオード1の発するレーザ光を互いに向きの異なる複数のレーザ光に分岐するとともに各レーザ光を互いに異なる距離に存在する複数の測定対象物に照射し、複数の測定対象物にそれぞれ設置される反射手段で各レーザ光を互いに偏光方向が異なる直線偏光の反射光とし、反射光の光路上に設置された偏光板を回転させて所望の偏光方向の反射光を択一的に受光素子3で受光するようにした点に特徴がある。但し、レーザ光を複数のレーザ光に分岐する構成は実施形態8と共通であるから説明は省略する。   In the present embodiment, a laser beam emitted from one laser diode 1 is branched into a plurality of laser beams having different directions, and each of the laser beams is irradiated to a plurality of measurement objects at different distances, thereby Each laser beam is converted into linearly polarized reflected light with a different polarization direction by the reflecting means installed on the object, and the reflected light with the desired polarization direction is selected by rotating the polarizing plate installed on the optical path of the reflected light. In particular, the light receiving element 3 receives light. However, since the configuration for branching the laser beam into a plurality of laser beams is the same as that in the eighth embodiment, the description thereof is omitted.

複数の測定対象物に設置される反射手段は、図16に示すように矩形板状の偏光反射板431〜433からなる。レーザダイオード1が発するレーザ光が直線偏光であって、図17(a)の矢印と平行な偏光面(偏光方向)を有するものであるとすると、これらの偏光反射板431〜433で反射された各反射光は、それぞれ図17(b)〜(d)に示すように偏光面が反時計回りに45度、90度、135度回転することになる。 Reflecting means installed in a plurality of measurement object consists of a reflective polarizer 43 1-43 3 of the rectangular plate shape as shown in FIG. 16. Laser light from the laser diode 1 is emitted to a linearly polarized light, reflected in Figure 17 When those having arrow parallel to the plane of polarization of (a) (polarization direction), these polarization reflector 43 1-43 3 As shown in FIGS. 17B to 17D, the respective reflected lights have their polarization planes rotated 45, 90, and 135 degrees counterclockwise.

一方、受光素子3の前方には、図18に示すように略円形の偏光板50が回動自在に配設されている。偏光板50の周面には多数の歯(図示せず)が列設されており、これらの歯と噛み合うギヤ51がサーボモータ52のモータ軸52aに取り付けられている。サーボモータ52はモータコントローラ53によって回転方向並びに回転量が制御される。すなわち、モータコントローラ53でサーボモータ52を制御して偏光板50を回動させ、互いに偏光面が異なる複数の反射光のうちの何れか一つの反射光の偏光面に偏光板50の偏光面を一致させることで所望の偏光方向の反射光を択一的に受光素子3で受光させることができる。なお、何れの反射光を選択するかは制御回路11からモータコントローラ53を制御することで行われる。   On the other hand, a substantially circular polarizing plate 50 is rotatably disposed in front of the light receiving element 3 as shown in FIG. A large number of teeth (not shown) are arranged on the peripheral surface of the polarizing plate 50, and a gear 51 that meshes with these teeth is attached to a motor shaft 52 a of the servomotor 52. The servo motor 52 is controlled by the motor controller 53 in the direction and amount of rotation. That is, the servo motor 52 is controlled by the motor controller 53 to rotate the polarizing plate 50, and the polarization plane of the polarizing plate 50 is set to the polarization plane of any one of the plurality of reflected lights having different polarization planes. By matching, reflected light in a desired polarization direction can be alternatively received by the light receiving element 3. Note that which reflected light is selected is controlled by controlling the motor controller 53 from the control circuit 11.

而して本実施形態では、複数の測定対象物までの距離を個別に測定することが可能であり、一つの測定対象物までの距離しか測定できない距離測定装置に比較して低コストおよびメンテナンスの省力化が図れる。しかも、実施形態8では互いに異なる距離に存在する測定対象物までの距離しか測定できないが、本実施形態ではほぼ同じ距離に存在する測定対象物までの距離でも測定可能であって使い勝手に優れるものである。   Thus, in this embodiment, it is possible to individually measure the distances to a plurality of measurement objects, which is lower in cost and maintenance than a distance measurement device that can measure only the distance to one measurement object. Labor saving can be achieved. In addition, in the eighth embodiment, only distances to measurement objects existing at different distances can be measured. However, in this embodiment, measurement is possible even at distances to measurement objects existing at substantially the same distance, which is excellent in usability. is there.

実施形態1における距離測定装置を示す概略構成図である。It is a schematic block diagram which shows the distance measuring device in Embodiment 1. 同上の距離測定装置における演算処理部のブロック図である。It is a block diagram of the arithmetic processing part in a distance measuring device same as the above. 同上の距離監視システムを示すシステム構成図である。It is a system configuration figure showing a distance monitoring system same as the above. 同上の距離測定装置における要部の他の構成を示す概略構成図である。It is a schematic block diagram which shows the other structure of the principal part in a distance measuring apparatus same as the above. 同上の距離測定装置の他の構成を示す概略構成図である。It is a schematic block diagram which shows the other structure of a distance measuring apparatus same as the above. 同上の距離測定装置の内部構造を示す概略構成図である。It is a schematic block diagram which shows the internal structure of a distance measuring apparatus same as the above. 実施形態2における距離測定装置の要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the distance measuring device in Embodiment 2. 実施形態3における距離測定装置の要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the distance measuring device in Embodiment 3. 実施形態4における距離測定装置の要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the distance measuring device in Embodiment 4. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. (a)は実施形態5における反射手段(キューブミラー)の斜視図、(b)は実施形態5の動作説明図、(c)は反射手段の他の構成を示す斜視図である。(A) is a perspective view of the reflection means (cube mirror) in Embodiment 5, (b) is operation | movement explanatory drawing of Embodiment 5, (c) is a perspective view which shows the other structure of a reflection means. 実施形態6における距離測定装置の要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the distance measuring device in Embodiment 6. (a)は実施形態7における距離測定装置の内部構造を示す概略構成図、(b)は距離測定装置の他の内部構造を示す一部省略した概略構成図、(c)は距離測定装置のさらに他の内部構造を示す概略構成図である。(A) is a schematic block diagram which shows the internal structure of the distance measuring device in Embodiment 7, (b) is a schematic block diagram which abbreviate | omitted one part which showed the other internal structure of the distance measuring device, (c) is a distance measuring device. It is a schematic block diagram which shows another internal structure. 実施形態8における距離測定装置の要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the distance measuring device in Embodiment 8. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 実施形態9における距離測定装置の要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the distance measuring device in Embodiment 9. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上における距離測定装置の要部を示す概略構成図である。It is a schematic block diagram which shows the principal part of the distance measuring device same as the above.

符号の説明Explanation of symbols

1 レーザダイオード
2 反射体
3 受光素子
4 照射レンズ
5 集光レンズ
10 演算処理部
DESCRIPTION OF SYMBOLS 1 Laser diode 2 Reflector 3 Light receiving element 4 Irradiation lens 5 Condensing lens 10 Arithmetic processing part

Claims (11)

測定対象物に向けてレーザ光を照射する照射手段と、測定対象物に設置されて当該レーザ光を反射する反射手段と、反射手段で反射された反射光を受光する受光手段と、照射手段からレーザ光が照射された時点と受光手段により反射光が受光された時点との時間差に基づいて測定対象物までの距離を演算する演算手段とを備え、照射手段は、レーザ光を発する光源と、光源から発するレーザ光の断面積が測定対象物との間に存在する障害物の断面積よりも大きくなるようにレーザ光を拡大する手段とを有することを特徴とする距離測定装置。   From irradiation means for irradiating laser light toward the measurement object, reflection means for reflecting the laser light installed on the measurement object, light receiving means for receiving the reflected light reflected by the reflection means, and irradiation means Computation means for computing the distance to the measurement object based on the time difference between the time when the laser light was irradiated and the time when the reflected light was received by the light receiving means, and the irradiation means, a light source that emits the laser light, A distance measuring apparatus comprising: means for expanding the laser light so that a cross-sectional area of the laser light emitted from the light source is larger than a cross-sectional area of an obstacle existing between the object and the object to be measured. 照射手段は、測定対象物に照射するレーザ光の径を10mm以上に拡げる前記手段を有することを特徴とする請求項1記載の距離測定装置。   2. The distance measuring apparatus according to claim 1, wherein the irradiating means includes the means for expanding the diameter of the laser beam irradiated to the measurement object to 10 mm or more. 受光手段は、光電変換機能を有する受光素子と、直径が10mm以上であって反射光を受光素子に集光するレンズとを有することを特徴とする請求項2記載の距離測定装置。   The distance measuring device according to claim 2, wherein the light receiving means includes a light receiving element having a photoelectric conversion function and a lens having a diameter of 10 mm or more and collecting reflected light on the light receiving element. 反射手段は、レーザ光を入射方向と略同一方向へ反射してなり、受光手段は、光電変換機能を有する受光素子と、反射光を受光素子に集光するレンズとを有し、照射手段は、レーザ光を拡大する前記レンズと、測定対象物に照射されるレーザ光と反射手段で反射された反射光の少なくとも何れか一方を曲折させるハーフミラーとを有することを特徴とする請求項1又は2又は3記載の距離測定装置。   The reflecting means reflects the laser light in substantially the same direction as the incident direction, the light receiving means has a light receiving element having a photoelectric conversion function, and a lens for condensing the reflected light on the light receiving element, and the irradiation means is The lens for enlarging a laser beam, and a half mirror that bends at least one of the laser beam irradiated to the measurement object and the reflected beam reflected by the reflecting means. The distance measuring device according to 2 or 3. 反射手段は、レーザ光を入射方向と略同一方向へ反射してなり、受光手段は、光電変換機能を有する受光素子と、反射光を受光素子に集光するレンズとを有し、照射手段は、レーザ光を拡大する前記レンズと、測定対象物に照射されるレーザ光と反射手段で反射された反射光の少なくとも何れか一方を曲折させるプリズムとを有することを特徴とする請求項1又は2又は3記載の距離測定装置。   The reflecting means reflects the laser light in substantially the same direction as the incident direction, the light receiving means has a light receiving element having a photoelectric conversion function, and a lens for condensing the reflected light on the light receiving element, and the irradiation means is 3. The lens for enlarging a laser beam, and a prism for bending at least one of the laser beam irradiated to the measurement object and the reflected beam reflected by the reflecting means. Or the distance measuring device of 3. 反射手段がキューブミラーからなることを特徴とする請求項1〜5の何れかに記載の距離測定装置。   6. The distance measuring device according to claim 1, wherein the reflecting means is a cube mirror. 受光手段は、光電変換機能を有する受光素子と、反射光の光量が受光素子の許容範囲内に収まるように反射光の光量を調節する光量調節手段とを有することを特徴とする請求項1〜6の何れかに記載の距離測定装置。   The light receiving means includes a light receiving element having a photoelectric conversion function and a light amount adjusting means for adjusting a light amount of the reflected light so that the light amount of the reflected light is within an allowable range of the light receiving element. 6. The distance measuring device according to any one of 6 above. 照射手段並びに受光手段が収容されるハウジングと、該ハウジング並びに演算手段が収容される筐体と、該筐体内でハウジングを揺動自在に支持する支持手段とを備えたことを特徴とする請求項1〜7の何れかに記載の距離測定装置。   A housing for housing the irradiation means and the light receiving means, a housing for housing the housing and the computing means, and a supporting means for swingably supporting the housing within the housing. The distance measuring device according to any one of 1 to 7. 照射手段は、光源の発するレーザ光を互いに向きの異なる複数のレーザ光に分岐するとともに各レーザ光を互いに異なる距離に存在する複数の測定対象物に照射してなり、受光手段は、各測定対象物に設置された複数の反射手段で各々反射された複数の反射光を受光してなり、演算手段は、受光手段で受光される複数の反射光の順序に応じて各測定対象物までの距離を演算することを特徴とする請求項1〜3又は6〜8の何れかに記載の距離測定装置。   The irradiating means divides the laser beam emitted from the light source into a plurality of laser beams having different directions and irradiates each laser beam to a plurality of measuring objects existing at different distances. The plurality of reflected lights respectively reflected by the plurality of reflecting means installed on the object are received, and the computing means is a distance to each measurement object according to the order of the plurality of reflected lights received by the light receiving means. The distance measuring device according to any one of claims 1 to 3 or 6 to 8, wherein 照射手段は、光源の発するレーザ光を互いに向きの異なる複数のレーザ光に分岐するとともに各レーザ光を複数の測定対象物に照射してなり、複数の測定対象物にそれぞれ設置される複数の反射手段は、各レーザ光を互いに偏光方向が異なる直線偏光の反射光としてなり、受光手段は、反射光の光路上に設置された偏光板を回転させて所望の偏光方向の反射光を択一的に受光してなることを特徴とする請求項1〜3又は6〜8の何れかに記載の距離測定装置。   The irradiation means divides the laser beam emitted from the light source into a plurality of laser beams having different directions and irradiates each of the plurality of measurement objects with a plurality of reflections respectively installed on the plurality of measurement objects. The means converts each laser beam into a linearly polarized reflected light having a different polarization direction, and the light receiving means rotates a polarizing plate installed on the optical path of the reflected light to selectively reflect the reflected light in a desired polarization direction. The distance measuring device according to claim 1, wherein the distance measuring device receives light. 請求項1〜10の何れかに記載の距離測定装置と、距離測定装置の測定結果を通信回線を介して送信する通信装置と、通信回線を介して通信装置から受信した測定結果を保持する遠隔監視装置とを備えたことを特徴とする距離監視システム。   11. The distance measuring device according to claim 1, a communication device that transmits a measurement result of the distance measuring device via a communication line, and a remote that holds a measurement result received from the communication device via the communication line A distance monitoring system comprising a monitoring device.
JP2003394650A 2003-11-25 2003-11-25 Distance measuring device and distance monitoring system Pending JP2005156330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003394650A JP2005156330A (en) 2003-11-25 2003-11-25 Distance measuring device and distance monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003394650A JP2005156330A (en) 2003-11-25 2003-11-25 Distance measuring device and distance monitoring system

Publications (1)

Publication Number Publication Date
JP2005156330A true JP2005156330A (en) 2005-06-16

Family

ID=34720653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003394650A Pending JP2005156330A (en) 2003-11-25 2003-11-25 Distance measuring device and distance monitoring system

Country Status (1)

Country Link
JP (1) JP2005156330A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180593A (en) * 2007-01-24 2008-08-07 Matsushita Electric Works Ltd Distance change observation device
JP2011191250A (en) * 2010-03-16 2011-09-29 Mitsubishi Denki Tokki System Kk Underwater distance measurement system
JP2014021039A (en) * 2012-07-23 2014-02-03 Rexxam Co Ltd Laser displacement measurement device
KR101424665B1 (en) 2013-07-02 2014-08-01 한국표준과학연구원 Range Measuring Apparatus
CN109444826A (en) * 2018-11-15 2019-03-08 深圳市速腾聚创科技有限公司 Receiving device receives system and laser radar
JP2020094819A (en) * 2018-12-10 2020-06-18 株式会社Ihi Object detection apparatus
JP2022522058A (en) * 2019-04-22 2022-04-13 ブラックモア センサーズ アンド アナリティクス エルエルシー Providing spatial displacement of transmit and receive modes within a lidar system
CN116202425A (en) * 2022-06-15 2023-06-02 武汉鑫岳光电科技有限公司 Laser ranging device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180593A (en) * 2007-01-24 2008-08-07 Matsushita Electric Works Ltd Distance change observation device
JP2011191250A (en) * 2010-03-16 2011-09-29 Mitsubishi Denki Tokki System Kk Underwater distance measurement system
JP2014021039A (en) * 2012-07-23 2014-02-03 Rexxam Co Ltd Laser displacement measurement device
KR101424665B1 (en) 2013-07-02 2014-08-01 한국표준과학연구원 Range Measuring Apparatus
CN109444826A (en) * 2018-11-15 2019-03-08 深圳市速腾聚创科技有限公司 Receiving device receives system and laser radar
JP2020094819A (en) * 2018-12-10 2020-06-18 株式会社Ihi Object detection apparatus
JP7127517B2 (en) 2018-12-10 2022-08-30 株式会社Ihi object detector
JP2022522058A (en) * 2019-04-22 2022-04-13 ブラックモア センサーズ アンド アナリティクス エルエルシー Providing spatial displacement of transmit and receive modes within a lidar system
US11409043B2 (en) 2019-04-22 2022-08-09 Blackmore Sensors And Analytics, Llc Providing spatial displacement of transmit and receive modes in lidar system
CN116202425A (en) * 2022-06-15 2023-06-02 武汉鑫岳光电科技有限公司 Laser ranging device
CN116202425B (en) * 2022-06-15 2023-09-12 武汉鑫岳光电科技有限公司 Laser ranging device

Similar Documents

Publication Publication Date Title
US20210156966A1 (en) 2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES
JP7266130B2 (en) Systems and methods for LIDAR with adjustable resolution and fail-safe operation
US20180252513A1 (en) Range-finder Apparatus, Methods, and Applications
JP2020126065A (en) LIDAR system and method
JP2007085832A (en) Optical radar system
US10323978B2 (en) Vibration visualization element including optical member
KR101867967B1 (en) Polyhedron optical structure for 360˚ laser scanning and 3d lidar system comprising the same
KR20100019576A (en) Distance sensor system and method
JP2005156330A (en) Distance measuring device and distance monitoring system
JP6754986B2 (en) Vibration visualization element, vibration measurement system, and vibration measurement method
JP6095911B2 (en) Laser displacement measuring device
WO2017217035A1 (en) Visualization element, measurement system, and measurement method
CN101738609B (en) Laser distance-measuring device and control method thereof
JP2017067559A (en) Distance measuring device
CN108656150A (en) A kind of sensor of robot detection obstacle
JP2004133483A5 (en)
CN102759736A (en) Laser range finder
JP2012247255A (en) Laser displacement gauge
CN108663689A (en) A kind of sensor for vehicles detection obstacle
KR20230028289A (en) Dual Shaft Axial Flux Motor for Optical Scanners
JP2010107212A (en) Distance measuring device
TWI687709B (en) Sensing device for making two-dimensional optical radar with cone mirror
CN111670380A (en) Abnormity recording method of distance measuring device, distance measuring device and movable platform
CN101859021B (en) Optical imaging system
JP4506408B2 (en) Laser distance monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Effective date: 20070619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A02 Decision of refusal

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A02