JP2005154950A - Fiber formed product composed of single-wall carbon nanotube - Google Patents

Fiber formed product composed of single-wall carbon nanotube Download PDF

Info

Publication number
JP2005154950A
JP2005154950A JP2003395419A JP2003395419A JP2005154950A JP 2005154950 A JP2005154950 A JP 2005154950A JP 2003395419 A JP2003395419 A JP 2003395419A JP 2003395419 A JP2003395419 A JP 2003395419A JP 2005154950 A JP2005154950 A JP 2005154950A
Authority
JP
Japan
Prior art keywords
fiber
walled carbon
carbon nanotube
carbon nanotubes
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395419A
Other languages
Japanese (ja)
Inventor
Masayuki Jokai
真之 畳開
Hiroaki Kuwabara
広明 桑原
Shunichi Matsumura
俊一 松村
Kazuhiko Sato
和彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2003395419A priority Critical patent/JP2005154950A/en
Publication of JP2005154950A publication Critical patent/JP2005154950A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber improved in affinity for a resin and a solvent and to provide a method for producing the carbon fiber. <P>SOLUTION: A fiber formed product has a crystallization peak in the vicinity of an angle (2θ) of diffraction of 6-10° as a result of analysis by X-ray diffraction method and the formed product is composed of a crystallized single-wall carbon nanotube. The fiber formed product is obtained by spinning the single-wall carbon nanotube and crystallizing the spun single-wall carbon nanotube by heat treatment at ≥500°C in an inert gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、単層カーボンナノチューブからなる繊維でカーボンナノチューブが結晶化し、さらに好適には繊維軸方向に配向した繊維成型体及びその製造方法に関するものである。   The present invention relates to a fiber molded body in which carbon nanotubes are crystallized with fibers composed of single-walled carbon nanotubes, and more preferably oriented in the fiber axis direction, and a method for producing the same.

単層カーボンナノチューブを界面活性剤の存在する水中で分散させ水溶性ポリマーの水溶液中に吐出し単層カーボンナノチューブからなる繊維を得たとの報告が有る(特許文献1,2 非特許文献1,2)。また単層カーボンナノチューブの発煙硫酸中に分散させたドープを水中に吐出し単層カーボンナノチューブからなる繊維を得たとの報告が有る(非特許文献1〜4)。この他シリコンプレート上のカーボンナノチューブからカーボンナノチューブからなる繊維を引っ張り紡績するという報告が有る(非特許文献5)。紡糸工程におけるマトリックスの結晶化は繊維の物性発現において重要で有るにもかかわらずこれらの工程に関する報告はない。   There are reports that single-walled carbon nanotubes are dispersed in water containing a surfactant and discharged into an aqueous solution of a water-soluble polymer to obtain fibers made of single-walled carbon nanotubes (Patent Documents 1 and 2) ). There are reports that single-wall carbon nanotubes dispersed in fuming sulfuric acid were discharged into water to obtain fibers composed of single-wall carbon nanotubes (Non-Patent Documents 1 to 4). In addition, there is a report of pulling and spinning fibers made of carbon nanotubes from carbon nanotubes on a silicon plate (Non-patent Document 5). Although the crystallization of the matrix in the spinning process is important in the development of physical properties of the fiber, there is no report on these processes.

国際公開第01/63028号パンフレット 14〜15頁International Publication No. 01/63028 Pamphlet 14-15 国際公開第02/55769号パンフレット 23〜28頁(実施例1〜8)International Publication No. 02/55769 Pamphlet 23-28 (Examples 1-8) Science 290,1310-1311 (2000)Science 290,1310-1311 (2000) Science 290,1331-1334 (2000)Science 290,1331-1334 (2000) Virginia A. Davis他 Rheology, Phase Behavior, and Fiber Spinning of Carbon Nanotube Dispersions 2001 11/9 annual meeting インターネット <URL:http://www.ruf.rice.edu/~lericson/aiche2001.pdf>Virginia A. Davis et al. Rheology, Phase Behavior, and Fiber Spinning of Carbon Nanotube Dispersions 2001 11/9 annual meeting Internet <URL: http: //www.ruf.rice.edu/~lericson/aiche2001.pdf> Rice University ホームページ Research area 紹介Synthesis, Purification, and Assembly of Carbon Single Wall Nanotube Fibers 他 インターネット <URL:http://www.ruf.rice.edu/~smalleyg/research_areas.htm>Rice University Homepage Research area Introduction Synthesis, Purification, and Assembly of Carbon Single Wall Nanotube Fibers etc.Internet <URL: http: //www.ruf.rice.edu/~smalleyg/research_areas.htm> Nature 423,703 (2003)Nature 423,703 (2003)

本発明の課題は、単層カーボンナノチューブからなる結晶化した繊維成型体及びその製造方法に関することにある。   The subject of this invention is related with the crystallized fiber molded object which consists of a single-walled carbon nanotube, and its manufacturing method.

単層カーボンナノチューブからなる繊維成型体を紡糸後、不活性気体下500℃以上で加熱処理することにより、単層カーボンナノチューブが結晶化し、さらに好適には繊維軸方向に配向した繊維成型体を提供する。   After spinning a fiber molded body composed of single-walled carbon nanotubes, the single-walled carbon nanotubes crystallize by heating at 500 ° C. or higher under an inert gas, and more preferably provide a fiber molded body oriented in the fiber axis direction. To do.

本発明の繊維成型体は、結晶性、およびさらに好適には配向性に優れている。結晶性や配向性に優れた繊維成型体を得ることにより機械強度も向上させることができる。   The fiber molded body of the present invention is excellent in crystallinity and more preferably in orientation. Mechanical strength can also be improved by obtaining a fiber molded body having excellent crystallinity and orientation.

以下、本発明の繊維組成物について詳述する。
(単層カーボンナノチューブについて)
本発明で使用する単層カーボンナノチューブは直径が0.4nm〜1.5nm好ましくは0.8nm〜1.3nmの単層のグラファイトシートが円柱状に巻かれたものが好ましく使用される。
またアスペクト比の好ましい値として上限の制限はない。アスペクト比の下限としては5.0以上、さらには10.0以上、さらに好ましくは50.0以上である事が好ましい。
Hereinafter, the fiber composition of the present invention will be described in detail.
(About single-walled carbon nanotubes)
The single-walled carbon nanotubes used in the present invention are preferably those in which a single-layer graphite sheet having a diameter of 0.4 nm to 1.5 nm, preferably 0.8 nm to 1.3 nm, is wound in a cylindrical shape.
There is no upper limit on the preferred aspect ratio. The lower limit of the aspect ratio is 5.0 or more, more preferably 10.0 or more, and further preferably 50.0 or more.

(単層カーボンナノチューブの製造方法について)
これら単層カーボンナノチューブは従来公知の方法で製造でき、例えば気相流動法、触媒担持型気相流動法、レーザーアブレーション法、高圧一酸化炭素法、アーク放電法等が挙げられるがこれに限定されるものではない。
(About manufacturing method of single-walled carbon nanotube)
These single-walled carbon nanotubes can be produced by a conventionally known method, and examples thereof include, but are not limited to, a gas phase flow method, a catalyst-supported gas phase flow method, a laser ablation method, a high-pressure carbon monoxide method, and an arc discharge method. It is not something.

(さらに熱可塑性樹脂等を含む場合)
本発明の繊維成型体は単層カーボンナノチューブ100重量部に対してさらに熱可塑性樹脂1〜1,000,000重量部を含むことが好ましい。さらに好ましくは単層カーボンナノチューブ100重量部に対してさらに熱可塑性樹脂170〜100,000重量部、より好ましくは1,000〜10,000重量部を含む事が好ましい。熱可塑性樹脂が1,000,000重量部より上のものは力学強度の向上の相乗効果が観察されにくいことがある。
(In addition, when a thermoplastic resin is included)
The molded fiber of the present invention preferably further contains 1 to 1,000,000 parts by weight of a thermoplastic resin with respect to 100 parts by weight of the single-walled carbon nanotube. More preferably, the thermoplastic resin further contains 170 to 100,000 parts by weight, more preferably 1,000 to 10,000 parts by weight, with respect to 100 parts by weight of the single-walled carbon nanotubes. When the thermoplastic resin is above 1,000,000 parts by weight, the synergistic effect of improving the mechanical strength may be difficult to observe.

単層カーボンナノチューブと熱可塑性樹脂とを混合し、熱可塑性樹脂に単層カーボンナノチューブを分散させる方法としては、公知のいかなる方法でも適用できるが、例えば単層カーボンナノチューブを溶媒中でビーズミル処理することや超音波処理を施す、強力なせん断処理を施す、溶媒に添加する前にあらかじめ単層カーボンナノチューブを酸で処理しておく等が分散性を向上し配向に優れる樹脂組成物を得るうえでさらに好ましい。このほか単層カーボンナノチューブを熱可塑性樹脂の重合原料にあらかじめ加えておき、混合し得られた樹脂を紡糸することも好ましく利用できる。   As a method of mixing single-walled carbon nanotubes and a thermoplastic resin and dispersing the single-walled carbon nanotubes in the thermoplastic resin, any known method can be applied. For example, the single-walled carbon nanotubes are bead milled in a solvent. In order to obtain a resin composition that improves dispersibility and is excellent in orientation, such as applying ultrasonic treatment, ultrasonic treatment, applying strong shearing treatment, or treating single-walled carbon nanotubes with an acid in advance before adding to a solvent. preferable. In addition, it is also preferable to add single-walled carbon nanotubes in advance to the polymerization raw material for the thermoplastic resin and spin the resin obtained by mixing.

また、本発明の繊維成型体は、その特性を損なわない範囲内で、紫外線吸収剤、難燃剤、酸化防止剤、滑剤、無機あるいは有機の各種フィラー、無機強化繊維等を必要に応じて添加した構成とすることも可能である。   Further, the fiber molded body of the present invention may be added with an ultraviolet absorber, a flame retardant, an antioxidant, a lubricant, various inorganic or organic fillers, inorganic reinforcing fibers, etc. A configuration is also possible.

(紡糸方法)
単層カーボンナノチューブ繊維の紡糸方法は従来のいかなる方法も好ましく使用できる。例えば、WO 01/63028 A1記載のとおり単層カーボンナノチューブを界面活性剤の存在する水中で分散させ水溶性ポリマーの水溶液中に吐出し単層カーボンナノチューブからなる繊維を得ることができる。この他、 Virginia A. Davis他 Rheology, Phase Behavior, and Fiber Spinning of Carbon Nanotube Dispersions 2001 11/9 annual meeting インターネット <URL:http://www.ruf.rice.edu/~lericson/aiche2001.pdf>
Rice University ホームページ Research area紹介、Synthesis, Purification, and Assembly of Carbon Single Wall Nanotube Fibersインターネット <URL:http://www.ruf.rice.edu/~smalleyg/research_areas.htm>に記載のとおり、単層カーボンナノチューブを発煙硫酸中に分散させたドープを水中に吐出することで単層カーボンナノチューブからなる繊維を得ることが出来る。
(Spinning method)
Any conventional method can be preferably used for spinning the single-walled carbon nanotube fiber. For example, as described in WO 01/63028 A1, single-walled carbon nanotubes can be dispersed in water containing a surfactant and discharged into an aqueous solution of a water-soluble polymer to obtain fibers composed of single-walled carbon nanotubes. In addition, Virginia A. Davis et al. Rheology, Phase Behavior, and Fiber Spinning of Carbon Nanotube Dispersions 2001 11/9 annual meeting Internet <URL: http://www.ruf.rice.edu/~lericson/aiche2001.pdf>
Rice University Home Page Introduction to Research Area, Synthesis, Purification, and Assembly of Carbon Single Wall Nanotube Fibers Internet A fiber comprising single-walled carbon nanotubes can be obtained by discharging a dope in which nanotubes are dispersed in fuming sulfuric acid into water.

(結晶化方法について)
単層カーボンナノチューブ繊維の結晶化方法として、不活性気体存在下500℃以上の高温で処理する事が好ましい。不活性気体としては、窒素、ヘリウム、アルゴン等が好ましく使用される。
(About crystallization method)
As a method for crystallizing single-walled carbon nanotube fibers, it is preferable to treat at a high temperature of 500 ° C. or higher in the presence of an inert gas. As the inert gas, nitrogen, helium, argon or the like is preferably used.

(配向評価について)
単層カーボンナノチューブの配向度Pは,ラマンシフト波数1580cm−1付近のグラファイト構造由来のGバンド強度を用いて次式で定義した。
P = IYY/IXX
ここで,偏光ラマン分光測定で入射レーザーを繊維組成物の側面に繊維軸と直交方向から照射したときの単層カーボンナノチューブのラマンスペクトルにおいて,レーザー偏光面を繊維軸と平行に配置した場合のGバンド強度をIXX,レーザー偏光面を繊維軸と垂直に配置した場合のGバンド強度をIYYとする。
配向度Pはナノチューブが繊維軸方向に平行に配向したときにP=0に漸近し,ランダムな配向ではP=1となる。
本発明における単層カーボンナノチューブの配向度を示すP=IYY/IXX
の値の上限は0.7であり、下限としては0、好ましくは0.001、さらに好ましくは0.01、より好ましくは0.1である。
(About orientation evaluation)
The orientation degree P of the single-walled carbon nanotube was defined by the following equation using the G band intensity derived from the graphite structure in the vicinity of the Raman shift wavenumber of 1580 cm −1 .
P = IYY / IXX
Here, in the Raman spectrum of single-walled carbon nanotubes when the incident laser is irradiated on the side of the fiber composition from the direction orthogonal to the fiber axis in polarized Raman spectroscopy measurement, G in the case where the laser polarization plane is arranged parallel to the fiber axis. The band intensity is I XX , and the G band intensity when the laser polarization plane is arranged perpendicular to the fiber axis is I YY .
The degree of orientation P is asymptotic to P = 0 when the nanotubes are oriented parallel to the fiber axis direction, and P = 1 when the orientation is random.
P = I YY / I XX indicating the degree of orientation of single-walled carbon nanotubes in the present invention
The upper limit of the value is 0.7, and the lower limit is 0, preferably 0.001, more preferably 0.01, more preferably 0.1.

(結晶化評価について)
単層カーボンナノチューブ繊維の結晶化の進行はX線回折測定おいて回折角2θ=6〜10°付近のピークにより確認できる。
(About crystallization evaluation)
The progress of crystallization of the single-walled carbon nanotube fiber can be confirmed by a peak around a diffraction angle 2θ = 6 to 10 ° in X-ray diffraction measurement.

以下、実施例を挙げて本発明を詳述するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is explained in full detail, this invention is not limited at all by these Examples.

ラマン分光測定:ラマン分光装置は,顕微レーザーラマン分光測定装置(堀場ジョバンイボン製LabRamHR)を用いた。励起レーザー光源は波長785nmの半導体レーザーを用い,レーザービーム径は約1μmに集光した。偏光ラマン分光測定は,入射レーザーを繊維組成物の側面に繊維軸と直交方向から照射した時の単層カーボンナノチューブのラマンスペクトルにおいて,レーザー偏光面を繊維軸と平行に配置した場合のラマンシフト波数1580cm−1付近のGバンド強度をIXX,レーザー偏光面を繊維軸と垂直に配置した場合のGバンド強度をIYYを得た。 Raman spectroscopic measurement: A Raman spectroscopic apparatus (LabRamHR manufactured by Horiba Jobin Yvon) was used as the Raman spectroscopic apparatus. A semiconductor laser having a wavelength of 785 nm was used as the excitation laser light source, and the laser beam diameter was focused to about 1 μm. Polarization Raman spectroscopic measurement is the Raman shift wave number when the laser polarization plane is placed parallel to the fiber axis in the Raman spectrum of single-walled carbon nanotubes when the incident laser is irradiated to the side of the fiber composition from the direction orthogonal to the fiber axis. The G band intensity in the vicinity of 1580 cm −1 was obtained as I XX , and the G band intensity obtained when the laser polarization plane was arranged perpendicular to the fiber axis was obtained as I YY .

X線回折測定:X線発生装置(理学電機社製RU−B型)はターゲットCuKα線、電圧45kV、電流70mAの条件にて測定した入射X線はオスミック社製多層膜ミラーにより集光及び単色化し試料の断面を垂直透過法で測定した。回折X線の検出は大きさ200mm×250mmのイメージングプレート(富士写真フィルム製)を用い、カメラ長250mmの条件で測定した。   X-ray diffraction measurement: X-ray generator (Rigaku Denki RU-B type) is a target CuKα ray, voltage 45kV, current 70mA, incident X-ray is collected and monochromatic by a multilayer mirror made by Osmic The cross section of the sample was measured by the vertical transmission method. Detection of diffracted X-rays was performed using an imaging plate (manufactured by Fuji Photo Film) having a size of 200 mm × 250 mm and a camera length of 250 mm.

[参考例1](単層カーボンナノチューブの製造)
多孔性担体にY型ゼオライト粉末(東ソー製;HSZ−390HUA)を用い、触媒金属化合物に酢酸第二鉄と酢酸コバルトを用いて、Fe/Co触媒をゼオライトに担持した。触媒の担持量はそれぞれ2.5重量%に調製した。その後、石英ボートに触媒粉末を乗せてCVD装置の石英管内に設置して真空排気をおこない、Ar流量10ml/分で導入しながら室温から800℃まで昇温した。所定の800℃に達した後、エタノール蒸気を流量3000ml/分で導入し、Ar/エタノール雰囲気下で30分間保持した。得られた黒色の生成物をレーザーラマン分光法(レーザー波長:514nm)で測定した結果、単層のカーボンナノチューブが生成していることが確認された。ついで、得られた生成物(カーボンナノチューブ/ゼオライト/金属触媒)を、フッ化水素酸10%に3時間浸漬後、中性になるまでイオン交換水で洗浄することでゼオライトおよび金属触媒を除去してカーボンナノチューブを精製した。
[Reference Example 1] (Production of single-walled carbon nanotube)
An Fe / Co catalyst was supported on zeolite using Y-type zeolite powder (manufactured by Tosoh; HSZ-390HUA) as the porous carrier, ferric acetate and cobalt acetate as the catalytic metal compound. The catalyst loading was adjusted to 2.5% by weight, respectively. Thereafter, the catalyst powder was placed on a quartz boat, placed in a quartz tube of a CVD apparatus, evacuated, and heated from room temperature to 800 ° C. while being introduced at an Ar flow rate of 10 ml / min. After reaching a predetermined 800 ° C., ethanol vapor was introduced at a flow rate of 3000 ml / min, and maintained for 30 minutes in an Ar / ethanol atmosphere. As a result of measuring the obtained black product by laser Raman spectroscopy (laser wavelength: 514 nm), it was confirmed that single-walled carbon nanotubes were produced. Subsequently, the product (carbon nanotube / zeolite / metal catalyst) obtained was immersed in 10% hydrofluoric acid for 3 hours and then washed with ion-exchanged water until neutral, thereby removing the zeolite and the metal catalyst. The carbon nanotubes were purified.

[参考例2](単層カーボンナノチューブ紡糸用ドープの作成)
30%発煙硫酸18.4mlに参考例1で得られた単層カーボンナノチューブ0.4gを加え60℃にて3時間攪拌し、粘調なドープを得た。
[Reference Example 2] (Preparation of dope for spinning single-walled carbon nanotubes)
0.4 g of the single-walled carbon nanotube obtained in Reference Example 1 was added to 18.4 ml of 30% fuming sulfuric acid and stirred at 60 ° C. for 3 hours to obtain a viscous dope.

[参考例3](単層カーボンナノチューブからなる繊維の作成)
参考例2にて得られた紡糸用ドープをホール径0.2mmの紡糸キャップを用い30℃紡糸速度10m/minにて押し出し7.5デニールのフィラメントを得た。X線回折測定を図1に示す。縦軸はX線回折強度であり、図より結晶化ピークは観察されない。
[Reference Example 3] (Fabrication of single-walled carbon nanotubes)
The spinning dope obtained in Reference Example 2 was extruded at a spinning speed of 10 m / min at 30 ° C. using a spinning cap having a hole diameter of 0.2 mm to obtain a 7.5 denier filament. The X-ray diffraction measurement is shown in FIG. The vertical axis represents the X-ray diffraction intensity, and no crystallization peak is observed from the figure.

[実施例1]
参考例3で得られたフィラメントを窒素雰囲気下1000℃で6時間処理しフィラメントを得た。ラマン分光測定による配向性評価の結果、IYY/IXX=0.64であった。X線回折測定を図2に示す。縦軸はX線回折強度であり、図より紡糸、熱処理による結晶化が観察された。
[Example 1]
The filament obtained in Reference Example 3 was treated at 1000 ° C. for 6 hours in a nitrogen atmosphere to obtain a filament. It was IYY / IXX = 0.64 as a result of the orientation evaluation by Raman spectroscopy measurement. The X-ray diffraction measurement is shown in FIG. The vertical axis represents the X-ray diffraction intensity, and crystallization by spinning and heat treatment was observed from the figure.

[比較例1]
参考例1にて得られた単層カーボンナノチューブを窒素雰囲気下1000℃で6時間処理した。X線回折測定を図3に示す。縦軸はX線回折強度であり、図より結晶化ピークが観察されない事から、紡糸工程を伴わない単なる熱処理では結晶化が進行しない事がわかる。
[Comparative Example 1]
The single-walled carbon nanotube obtained in Reference Example 1 was treated at 1000 ° C. for 6 hours in a nitrogen atmosphere. The X-ray diffraction measurement is shown in FIG. Since the vertical axis represents the X-ray diffraction intensity, and no crystallization peak is observed from the figure, it can be seen that crystallization does not proceed by a simple heat treatment without a spinning step.

参考例3にて得られた糸のX線回折測定結果である。It is an X-ray diffraction measurement result of the yarn obtained in Reference Example 3. 実施例1にて得られた糸のX線回折測定結果である。2 is a result of X-ray diffraction measurement of the yarn obtained in Example 1. FIG. 比較例1にて得られた糸のX線回折測定結果である。3 is an X-ray diffraction measurement result of a yarn obtained in Comparative Example 1.

Claims (4)

X線回折法による解析結果、回折角2θ=6〜10°付近に結晶化ピークを有する、結晶化した単層カーボンナノチューブからなる繊維成型体。   As a result of analysis by X-ray diffractometry, a molded fiber comprising crystallized single-walled carbon nanotubes having a crystallization peak at a diffraction angle of 2θ = 6 to 10 °. 繊維成型体が下記式(1)
0≦IYY/IXX≦0.7 (1)
[式中、偏光ラマン分光測定で入射レーザーを繊維成型体の側面に繊維軸と直交方向から照射したときの単層カーボンナノチューブ由来のラマンスペクトルにおいて、レーザー偏光面を繊維軸と平行に配置した場合のGバンド強度をIXX、レーザー偏光面を繊維軸と垂直に配置した場合のGバンド強度をIYYとする。]
を満たすことを特徴とする、単層カーボンナノチューブが結晶化し、繊維軸方向に配向した請求項1記載の繊維成型体。
The fiber molded body has the following formula (1)
0 ≦ I YY / I XX ≦ 0.7 (1)
[In the formula, when the laser polarization plane is arranged parallel to the fiber axis in the Raman spectrum derived from single-walled carbon nanotubes when the incident laser is irradiated on the side of the fiber molded body from the direction orthogonal to the fiber axis in polarized Raman spectroscopy measurement. The G band intensity is I XX , and the G band intensity when the laser polarization plane is arranged perpendicular to the fiber axis is I YY . ]
The fiber molded body according to claim 1, wherein the single-walled carbon nanotube is crystallized and oriented in the fiber axis direction.
単層カーボンナノチューブ100重量部に対してさらに熱可塑性樹脂1〜1,000,000重量部を含む請求項1〜2のいずれかに記載の繊維成型体。   The fiber molded body according to claim 1, further comprising 1 to 1,000,000 parts by weight of a thermoplastic resin with respect to 100 parts by weight of the single-walled carbon nanotube. 単層カーボンナノチューブを紡糸し、さらに不活性気体下500℃以上で加熱処理により結晶化することを特徴とする請求項1〜3のいずれかに記載の記載の結晶化した単層カーボンナノチューブからなる繊維成型体の製造方法。   The single-walled carbon nanotube according to any one of claims 1 to 3, wherein the single-walled carbon nanotube is spun and further crystallized by heat treatment at 500 ° C or higher under an inert gas. A method for producing a fiber molded body.
JP2003395419A 2003-11-26 2003-11-26 Fiber formed product composed of single-wall carbon nanotube Pending JP2005154950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395419A JP2005154950A (en) 2003-11-26 2003-11-26 Fiber formed product composed of single-wall carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395419A JP2005154950A (en) 2003-11-26 2003-11-26 Fiber formed product composed of single-wall carbon nanotube

Publications (1)

Publication Number Publication Date
JP2005154950A true JP2005154950A (en) 2005-06-16

Family

ID=34721194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395419A Pending JP2005154950A (en) 2003-11-26 2003-11-26 Fiber formed product composed of single-wall carbon nanotube

Country Status (1)

Country Link
JP (1) JP2005154950A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152540A (en) * 2005-12-02 2007-06-21 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Manufacturing method of carbon nanotube element
JP2008518118A (en) * 2004-10-29 2008-05-29 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Composite fiber containing at least carbon nanotubes, method of obtaining composite fiber, and method of using them
JP2008214130A (en) * 2007-03-05 2008-09-18 Teijin Ltd Dispersion of boron nitride nanotubes and nonwoven fabric obtained by using the same
US7704480B2 (en) 2005-12-16 2010-04-27 Tsinghua University Method for making carbon nanotube yarn
US8246874B2 (en) 2005-12-02 2012-08-21 Tsinghua University Method for making carbon nanotube-based device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518118A (en) * 2004-10-29 2008-05-29 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Composite fiber containing at least carbon nanotubes, method of obtaining composite fiber, and method of using them
JP4741601B2 (en) * 2004-10-29 2011-08-03 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Composite fiber containing at least carbon nanotubes, method of obtaining composite fiber, and method of using them
JP2007152540A (en) * 2005-12-02 2007-06-21 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Manufacturing method of carbon nanotube element
US8246874B2 (en) 2005-12-02 2012-08-21 Tsinghua University Method for making carbon nanotube-based device
US7704480B2 (en) 2005-12-16 2010-04-27 Tsinghua University Method for making carbon nanotube yarn
JP2008214130A (en) * 2007-03-05 2008-09-18 Teijin Ltd Dispersion of boron nitride nanotubes and nonwoven fabric obtained by using the same

Similar Documents

Publication Publication Date Title
Palkar et al. Reactivity differences between carbon nano onions (CNOs) prepared by different methods
Wu et al. Hydrothermal carbonization of carboxymethylcellulose: One-pot preparation of conductive carbon microspheres and water-soluble fluorescent carbon nanodots
Wang et al. Synthesis of cellulose-derived carbon dots using acidic ionic liquid as a catalyst and its application for detection of Hg 2+
TWI276649B (en) Composite fiber comprising wholly aromatic polyamide and carbon nanotube
Kukovecz et al. Multi-walled carbon nanotubes
Hao et al. Enhanced photoluminescence of pyrrolic-nitrogen enriched graphene quantum dots
US20070116422A1 (en) Photoresponsive polyimide based fiber
US20020197474A1 (en) Functionalized fullerenes, their method of manufacture and uses thereof
US20050214196A1 (en) Method of manufacturing hydrophilic carbon nanotubes
US20100111813A1 (en) Method for Synthesizing Carbon Nanotubes
Kianfar et al. Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine
JP2010530929A (en) Carbon fiber and carbon film, and production method thereof
Chen et al. Rupturing C60 molecules into graphene‐oxide‐like quantum dots: structure, photoluminescence, and catalytic application
JP2005162877A (en) Carbon nanotube-dispersed polar organic solvent and method for producing the same
Ren et al. Shape‐enhanced photocatalytic activities of thoroughly mesoporous ZnO nanofibers
JP2004168570A (en) Method for manufacturing soluble carbon nanotube
JP7066254B2 (en) Carbon nanotube material, its manufacturing and processing method
JP2005154950A (en) Fiber formed product composed of single-wall carbon nanotube
Vaganov et al. High‐performance crystallized composite carbon nanoparticles/polyimide fibers
WO2020195800A1 (en) Fibrous carbon nanostructure, method for producing fibrous carbon nanostructure, and method for producing surface-modified fibrous carbon nanostructure
Hou et al. Characterization and Mechanism Analysis of Flexible UV Irradiated PAN-Based Carbon Fiber Membranes Prepared
JP2011051887A (en) Method for preparing carbon nanotube, carbon nanotube film, and electronic device
JPWO2019124026A1 (en) Method for evaluating fibrous carbon nanostructures, fibrous carbon nanostructures, and method for producing surface-modified fibrous carbon nanostructures
Bu et al. Fabrication and characterization of optically active polyacetylene@ WO3 nanorodhybrids with low infrared emissivity
Roy et al. Influence of process conditions and effect of functionalization in inducing time dependent polymorphic states in single walled carbon nanotube incorporated poly (vinylidene fluoride)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422