JP2005147990A - Method for measuring substrate concentration - Google Patents

Method for measuring substrate concentration Download PDF

Info

Publication number
JP2005147990A
JP2005147990A JP2003389128A JP2003389128A JP2005147990A JP 2005147990 A JP2005147990 A JP 2005147990A JP 2003389128 A JP2003389128 A JP 2003389128A JP 2003389128 A JP2003389128 A JP 2003389128A JP 2005147990 A JP2005147990 A JP 2005147990A
Authority
JP
Japan
Prior art keywords
voltage application
application step
measuring
time
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003389128A
Other languages
Japanese (ja)
Other versions
JP4449431B2 (en
Inventor
Eriko Yamanishi
永吏子 山西
Hiroyuki Tokunaga
博之 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003389128A priority Critical patent/JP4449431B2/en
Publication of JP2005147990A publication Critical patent/JP2005147990A/en
Application granted granted Critical
Publication of JP4449431B2 publication Critical patent/JP4449431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method in order to reduce measurement errors due to Hct of blood, in the case of quantitatively determining a substrate included in the blood. <P>SOLUTION: The measuring method includes a voltage applying step (T0-T1) for preprocessing the blood; a voltage applying step (T2-T3) for compensating data; and a voltage applying step (T4-T5) for oxidizing a generated reduced electron carrier after a certain period of time. A parameter depending on hematocrit is calculated, based on a ratio of a peak current value (i2) which is obtained in the voltage applying step for compensating, to a peak current value (i4) which is obtained in the voltage applying step for oxidizing the generated reduced electron carrier after the certain period of time, and the amount of substrate is compensated by using the parameter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、血液中に含まれる基質を定量するために、バイオセンサ及びこのバイオセンサが装着される測定装置を用いる測定方法に関するものであり、特に血液中のヘマトクリットによる測定誤差を減少させる為の新規な定量方法を提供するものである。   The present invention relates to a measurement method using a biosensor and a measurement device to which the biosensor is mounted in order to quantify a substrate contained in blood, and particularly for reducing measurement errors due to hematocrit in blood. A new quantitative method is provided.

バイオセンサとは、微生物、酵素、抗体、DNA、RNA等の生物材料の分子認識能を利用し、生物材料を分子識別素子として応用した、試料液中の基質含有量を定量するセンサである。即ち、生物材料が目的の基質を認識したときに起こる反応、例えば微生物の呼吸による酸素の消費、酵素反応、発光等、を利用して試料液中に含まれる基質を定量するのである。そして各種バイオセンサの中でも酵素センサの実用化は進んでおり、例えば、グルコース、乳酸、コレステロール、アミノ酸用のバイオセンサである酵素センサは医療計測や食品工業に利用されている。この酵素センサは、例えば検体である試料液に含まれる基質と酵素などとの反応により生成する電子によって電子伝達体を還元し、測定装置がその電子伝達体の還元量を電気化学的に計測することにより、検体の定量分析を行うようになっている。   A biosensor is a sensor that uses the molecular recognition ability of biological materials such as microorganisms, enzymes, antibodies, DNA, RNA, etc., and applies the biological material as a molecular identification element to quantify the substrate content in a sample solution. That is, the substrate contained in the sample solution is quantified using a reaction that occurs when the biological material recognizes the target substrate, for example, oxygen consumption due to respiration of microorganisms, enzyme reaction, luminescence, and the like. Among various biosensors, enzyme sensors have been put to practical use. For example, enzyme sensors that are biosensors for glucose, lactic acid, cholesterol, and amino acids are used in the medical measurement and food industries. This enzyme sensor, for example, reduces an electron carrier by electrons generated by a reaction between a substrate contained in a sample solution that is a specimen and an enzyme, and the measuring device electrochemically measures the reduction amount of the electron carrier. Thus, the quantitative analysis of the specimen is performed.

このようなバイオセンサを用いた測定方法について様々な形態のものが提案されている。そこで従来の測定方法について説明する。(例えば特許文献1参照。)試料液中の基質含有量を定量するには、バイオセンサを測定装置に挿入後、後述するバイオセンサの電極に測定装置によって一定電圧が印加された状態で、試料液を試料点着部に供給する。点着された試料液がバイオセンサの内部に吸引されて試薬層の溶解が始まる。測定装置はバイオセンサの電極間に生じる電気的変化を検知して定量動作を開始するようになっている。   Various types of measurement methods using such biosensors have been proposed. Therefore, a conventional measurement method will be described. (For example, refer to Patent Document 1.) In order to quantify the substrate content in the sample solution, after inserting the biosensor into the measurement device, the sample is applied in a state where a constant voltage is applied to the electrode of the biosensor described later by the measurement device. The liquid is supplied to the sample spotting part. The spotted sample solution is sucked into the biosensor and the reagent layer starts to dissolve. The measuring device detects the electrical change that occurs between the electrodes of the biosensor and starts the quantitative operation.

試料液供給検知後のプロファイルを図5に示す。本プロファイルには三つの連続期間からなり、例えば時刻t0からt1の第1印加期間、時刻t1からt2の待機時間、時刻t2からt3の第2印加期間からなる。この第1印加期間を設けることでヘマトクリットによる測定誤差を抑制することができる。   The profile after detecting the sample liquid supply is shown in FIG. This profile includes three continuous periods, for example, a first application period from time t0 to t1, a standby time from time t1 to t2, and a second application period from time t2 to t3. By providing this first application period, measurement errors due to hematocrit can be suppressed.

また、誤差影響を補正して分析対象物の濃度を求めるバイオセンサの測定方法について説明する。(例えば特許文献2参照。)バイオセンサに定められた電圧を2回印加して電気化学反応を促進させ、その結果得られる電流値から下記パラメータP1及びP2を算出し、これらのパラメータから統計的手法により誤差を補正して分析対象物濃度を算出する。P1:1回目励起における電流の最大値または最大値以降の電流値(If)と2回目励起の任意の時点における電流値(Ib)の比(If/Ib)。P2:2回目励起の任意の時点における電流値(Ib)。
特開2003−156469号公報 国際公開第99/60391号パンフレット
In addition, a biosensor measurement method for correcting the influence of error and obtaining the concentration of an analysis object will be described. (For example, refer to Patent Document 2.) The voltage determined in the biosensor is applied twice to promote the electrochemical reaction, and the following parameters P1 and P2 are calculated from the current values obtained as a result. The analyte concentration is calculated by correcting the error by the technique. P1: A ratio (If / Ib) of the current value (If) after the maximum value in the first excitation or the current value (If) after the maximum value and the current value (Ib) at an arbitrary time point in the second excitation. P2: Current value (Ib) at an arbitrary time point of the second excitation.
JP 2003-156469 A WO99 / 60391 pamphlet

しかしながら従来の測定方法には、血液のヘマトクリットが測定感度に影響を及ぼすという問題があった。ヘマトクリットとは血液中に占める有形成分の体積比(%)である。一般的に貧血のない人では赤血球が40〜50%を占める。慢性腎不全になり腎性貧血になるとヘマトクリットは下がり15%を下回る状態になる場合もあり、個人差、男女差も大きい。   However, the conventional measurement method has a problem that blood hematocrit affects measurement sensitivity. Hematocrit is the volume ratio (%) of the formed component in the blood. In general, red blood cells account for 40 to 50% in people without anemia. In chronic renal failure and renal anemia, the hematocrit may fall below 15%, and there are large individual and gender differences.

一方、近年のバイオセンサに要求されるスペックとして測定時間の短縮化が望まれている。バイオセンサを用いて迅速に基質の測定を行う場合、試料の粘性がその測定精度に大きな影響を与える。特に、人体の血液を試料液とする場合、粘性の高い(Hctが高い:以下、高Hct)血液の場合は応答レベルが相対的に低下し、粘性の低い(Hctが低い:以下、低Hct)血液の場合は応答レベルが相対的に高くなり、この傾向は測定時間の短縮化が進むにつれ顕著になる場合がある。この現象は、試薬層の血液への溶解性、および溶存種の拡散速度がHctの影響を受けていることを示唆する。   On the other hand, shortening of measurement time is desired as a specification required for recent biosensors. When a substrate is measured quickly using a biosensor, the viscosity of the sample greatly affects the measurement accuracy. In particular, when human blood is used as a sample solution, the response level is relatively low and the viscosity is low (Hct is low: hereinafter, low Hct) in the case of blood having high viscosity (high Hct: hereinafter, high Hct). ) In the case of blood, the response level is relatively high, and this tendency may become more prominent as the measurement time is shortened. This phenomenon suggests that the solubility of the reagent layer in blood and the diffusion rate of dissolved species are affected by Hct.

図6は測定時間とヘマトクリットの関係を示す図である。これは、図5で示した特許文献1の測定手法に準じて測定を行った結果である。測定時間とは図5で示したt3であり、低Hctおよび高Hctの血液を用いて測定した時のt3における電流値をそれぞれプロットしたものである。図6から明らかなように、測定時間が短くなるとヘマトクリットの差異による電流値の差が大きくなることが分かる。とりわけ、測定時間が5秒程度の場合にはヘマトクリットの影響を大きく受ける。その為、特許文献1の測定法で時間短縮を行うことはヘマトクリットによる測定誤差が顕著となり、非常に困難であった。   FIG. 6 is a diagram showing the relationship between measurement time and hematocrit. This is a result of measurement according to the measurement method of Patent Document 1 shown in FIG. The measurement time is t3 shown in FIG. 5, and is a plot of current values at t3 when measured using low and high Hct blood. As is apparent from FIG. 6, it can be seen that the difference in current value due to the difference in hematocrit increases as the measurement time becomes shorter. In particular, when the measurement time is about 5 seconds, it is greatly affected by hematocrit. For this reason, it is very difficult to reduce the time by the measurement method of Patent Document 1 because the measurement error due to hematocrit becomes remarkable.

特許文献2に示される従来の測定方法は、1回目励起における電流の最大値または最大値以降の電流値と、2回目励起の任意の時点における電流値の比を試料物性による影響をより大きく受けるパラメータとして使用している。1回目励起は溶解初期の段階であることから、試薬層の血液への溶解性および溶存種の拡散速度が律速になり、ヘマトクリットに依存した電流値が得られやすいが、血液の供給速度、手技の差によって電流値がばらつきやすい。さらに血液中に含まれる易酸化性物質が1回目励起の際に電流値として検出されやすく、血中易酸化性物質の個人差により1回目励起の電流値は誤差が生じやすい。また、1回目励起の電流の最大値または最大値以降の電流を補正に用いるためには、ある程度の印加時間が必要である。しかし初期段階(1回目励起)で長時間電位をかけると、還元性電子伝達体が過剰量酸化されるため、待機時間を長くして還元性電子伝達体を再び蓄積しなければ2回目励起期間で検知される応答値の基質依存性が悪くなる可能性がある。その為特許文献2の測定方法では、ばらつきを抑えた測定を行うこと、測定時間の短縮を行うことが非常に困難であった。   In the conventional measurement method disclosed in Patent Document 2, the ratio of the maximum current value in the first excitation or the current value after the maximum value to the current value at an arbitrary time point in the second excitation is more greatly affected by the physical properties of the sample. Used as a parameter. Since the first excitation is in the early stage of dissolution, the solubility of the reagent layer in blood and the diffusion rate of dissolved species become rate limiting, and it is easy to obtain a current value depending on hematocrit. The current value tends to vary due to the difference between the two. Furthermore, an easily oxidizable substance contained in blood is easily detected as a current value at the time of the first excitation, and the current value of the first excitation is likely to cause an error due to individual differences in blood oxidizable substances. Further, in order to use the maximum value of the first excitation current or a current after the maximum value for correction, a certain amount of application time is required. However, if an electric potential is applied for a long time in the initial stage (first excitation), the reducing electron carrier is oxidized excessively. Therefore, if the waiting time is lengthened and the reducing electron carrier is not accumulated again, the second excitation period There is a possibility that the substrate dependence of the response value detected by the method will deteriorate. Therefore, in the measurement method of Patent Document 2, it is very difficult to perform measurement with reduced variation and to shorten the measurement time.

前記従来の課題を解決するために、本発明の基質濃度の測定方法は、絶縁基板上の少なくとも一部に形成された対電極、測定電極を含む電極部、当該電極部上または周辺に少なくとも酵素、電子伝達体を含む試薬層を有するバイオセンサと、当該電極部の各電極に電位を印加する為の接続端子及び駆動電源を有する測定装置を用い、当該駆動電源によって前記電極部に電位を印加させて出力される電流を検知し、血液中に含まれる基質を定量する測定方法であって、断続的な3回以上の電圧印加工程を包含する。   In order to solve the above conventional problems, the substrate concentration measuring method of the present invention includes a counter electrode formed on at least a part of an insulating substrate, an electrode part including a measuring electrode, and at least an enzyme on or around the electrode part. A biosensor having a reagent layer containing an electron carrier and a measuring device having a connection terminal and a driving power source for applying a potential to each electrode of the electrode unit, and applying a potential to the electrode unit by the driving power source This is a measurement method for detecting a current output and quantifying a substrate contained in blood, and includes three or more intermittent voltage application steps.

また、前記断続的な電圧印加工程が、少なくとも血液前処理のための電圧印加工程、データ補正のための電圧印加工程、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程を包含してもよい。   The intermittent voltage application step includes at least a voltage application step for blood pretreatment, a voltage application step for data correction, and a voltage application step for oxidizing a reduced electron carrier generated after a certain period of time. May be included.

また、前記電圧印加工程において、血液前処理のための電圧印加工程の後に、データ補正のための電圧印加工程が実施され、当該データ補正のための電圧印加工程の後に、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程が実施されてもよい。   Further, in the voltage application process, a voltage application process for data correction is performed after the voltage application process for blood pretreatment, and the voltage application process for the data correction is generated after a certain time has elapsed. A voltage application step for oxidizing the reduced electron carrier may be performed.

また、前記データ補正のための電圧印加工程より得られたピーク電流値と、前記一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程より得られたピーク電流値との比に基づいてヘマトクリットに依存したパラメータを算出し、前記パラメータにより基質量を補正してもよい。   Further, the ratio between the peak current value obtained from the voltage application step for data correction and the peak current value obtained from the voltage application step for oxidizing the reduced electron carrier generated after the lapse of the predetermined time. The parameter depending on the hematocrit may be calculated based on the above, and the base mass may be corrected by the parameter.

また前記パラメータを判別係数とする判別関数を用いてヘマトクリットを補正してもよい。   Further, the hematocrit may be corrected using a discriminant function using the parameter as a discriminant coefficient.

また、前記血液前処理のための電圧印加工程およびデータ補正のための電圧印加工程における印加電圧が、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程における印加電圧よりも大きいことを特徴とする測定方法としてもよい。   Further, the applied voltage in the voltage application step for blood pretreatment and the voltage application step for data correction is more than the applied voltage in the voltage application step for oxidizing the reduced electron carrier generated after a lapse of a certain time. It may be a measuring method characterized by being large.

また、前記血液前処理のための電圧印加工程における電圧印加時間が0.2秒〜2秒であることを特徴とする測定方法としてもよい。   The voltage application time in the voltage application step for blood pretreatment may be 0.2 second to 2 seconds.

また、前記データ補正のための電圧印加工程直前の開回路時間が0.2秒〜1秒であることを特徴とする測定方法としてもよい。   The open circuit time immediately before the voltage application process for data correction may be 0.2 seconds to 1 second.

また、前記データ補正のための電圧印加工程における電圧印加時間が0.2秒〜2秒であることを特徴とする測定方法としてもよい。   The voltage application time in the voltage application process for data correction may be 0.2 second to 2 seconds.

また、前記一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程直前の開回路時間が1秒〜6秒であることを特徴とする測定方法としてもよい。   Further, the measurement method may be characterized in that the open circuit time immediately before the voltage application step for oxidizing the reduced electron carrier generated after the lapse of the predetermined time is 1 second to 6 seconds.

本発明の基質濃度の測定方法によれば、絶縁基板上の少なくとも一部に形成された対電極、測定電極を含む電極部、当該電極部上または周辺に少なくとも酵素、電子伝達体を含む試薬層を有するバイオセンサと、当該電極部の各電極に電位を印加する為の接続端子及び駆動電源を有する測定装置を用い、当該駆動電源によって前記電極部に電位を印加させて出力される電流を検知し、血液中に含まれる基質を定量する測定方法であって、血液前処理のための電圧印加工程、データ補正のための電圧印加工程、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程を包含し、前記補正のための電圧印加工程より得られたピーク電流値と、前記一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程より得られたピーク電流値との比に基づいてヘマトクリットに依存したパラメータを算出し、前記パラメータにより基質量を補正することで、測定精度の良好な測定方法を提供することができる。     According to the substrate concentration measuring method of the present invention, the counter electrode formed on at least a part of the insulating substrate, the electrode part including the measurement electrode, the reagent layer including at least the enzyme and the electron carrier on or around the electrode part A measuring device having a connection terminal for applying a potential to each electrode of the electrode unit and a drive power supply, and detecting a current output by applying the potential to the electrode unit by the drive power source A method for measuring a substrate contained in blood, wherein a voltage application step for blood pretreatment, a voltage application step for data correction, and a reduced electron carrier generated after a certain period of time are oxidized. Including a voltage application step for the peak current value obtained from the voltage application step for the correction, and a voltage application step for oxidizing the reduced electron carrier generated after the lapse of the predetermined time. Calculating a parameter that depends on the hematocrit based on the ratio of the peak current value that is, by correcting the amount of substrate by the parameter, it is possible to provide a good method for measuring the measurement accuracy.

以下に、本発明の基質濃度の測定方法の実施の形態を図面とともに詳細に説明する。   Embodiments of the substrate concentration measuring method of the present invention will be described below in detail with reference to the drawings.

(実施の形態1)
図1は、本発明の第1の実施例における基質濃度の測定方法のプロファイル図を示す。
(Embodiment 1)
FIG. 1 shows a profile diagram of a substrate concentration measurement method in the first embodiment of the present invention.

図1におけるプロファイルにおいて、血液が供給されたことを検知した時刻をT0とする。図1のプロファイルにおいては、5つの工程からなり、T0からT1を第1工程(血液前処理の為の電圧印加工程)、T1からT2を第2工程(開回路)、T2からT3を第3工程(データ補正のための電圧印加工程)、T3からT4を第4工程(開回路)、T4からT5を第5工程(一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程)とする。   In the profile in FIG. 1, the time when it is detected that blood is supplied is T0. The profile of FIG. 1 includes five steps, T0 to T1 being the first step (voltage application step for blood pretreatment), T1 to T2 being the second step (open circuit), and T2 to T3 being the third step. Step (voltage application step for data correction), T3 to T4 for the fourth step (open circuit), T4 to T5 for the fifth step (voltage application for oxidizing the reduced electron carrier generated after a certain period of time Process).

血液前処理のための第1工程では、溶解初期の段階で酵素反応の結果生成した還元型電子伝達体が酸化されると同時に、血液中に含まれる易酸化性物質が最初の電圧印加工程である第1工程で酸化される。   In the first step for blood pretreatment, the reduced electron carrier generated as a result of the enzyme reaction in the initial stage of dissolution is oxidized, and at the same time, an oxidizable substance contained in the blood is added in the first voltage application step. It is oxidized in a certain first step.

次に第2工程を開回路にすることで、酵素反応により生成した還元型電子伝達体が蓄積されていく。   Next, by making the second step an open circuit, the reduced electron mediator generated by the enzyme reaction is accumulated.

データ補正のための第3工程では、第2工程の開回路時間を十分に持たせずに印加を開始するので、特に高Hctの血液になるほど、還元型電子伝達体を十分に蓄積できず、ピーク電流i2はヘマトクリットの影響を大きく受けた値となる。   In the third step for data correction, the application is started without sufficiently having the open circuit time of the second step, so that the reduced electron mediator cannot be sufficiently accumulated especially as the blood becomes high Hct, The peak current i2 is a value greatly affected by hematocrit.

本発明においては、データ補正に使用する第3工程以外に血液前処理として第1工程を設けることで、血液の供給速度、手技の差によるばらつきや血中の還元性物質の影響を除去することができ、ヘマトクリットの影響のみを受けたパラメータが第3工程で得られる。更にこの第1工程の存在により、血中の易酸化性物質の影響を軽減させた最終応答値を得ることが同時に可能となる。   In the present invention, in addition to the third step used for data correction, the first step is provided as a blood pretreatment, thereby eliminating the variation due to the difference in blood supply speed and procedure and the influence of reducing substances in the blood. In the third step, parameters that are only affected by hematocrit can be obtained. Furthermore, the presence of the first step makes it possible to simultaneously obtain a final response value in which the influence of easily oxidizable substances in blood is reduced.

次に第4工程で再び開回路にし、再度、還元型電子伝達体を蓄積する。このとき、一定時間以上時間をとることで、高Hctの血液においても十分量の還元型電子伝達体が蓄積される。   Next, in the fourth step, the circuit is opened again, and the reduced electron carrier is accumulated again. At this time, a sufficient amount of reduced electron carrier is accumulated even in high-Hct blood by taking a certain time or more.

第5工程で電位V3を印加した際に得られるピーク電流i4は、見かけ上ヘマトクリットの影響が小さい値となる。その後基質濃度との最も依存性が高い電流値を示すi5の電流値を測定する。このi5を最終応答値とする。そして、ヘマトクリットの最終応答値に与える影響を低減させるため、データ補正のための第3工程で求めたi2を利用して、i4/i2のパラメータを算出し、応答値i5にこのパラメータを基に予め決めておいた補正を加える。   The peak current i4 obtained when the potential V3 is applied in the fifth step is a value that is apparently less influenced by hematocrit. Thereafter, the current value of i5 indicating the current value having the highest dependence on the substrate concentration is measured. Let i5 be the final response value. Then, in order to reduce the influence of the hematocrit on the final response value, the i4 / i2 parameter is calculated using i2 obtained in the third step for data correction, and the response value i5 is based on this parameter. Add a predetermined correction.

本測定方法では、データ補正のための電圧印加工程の前の開回路時間T1〜T2は使用する酵素の能力によって異なるが、0.2秒から1秒が好ましい。また、血液前処理のための電圧印加工程の時間T0〜T1及びデータ補正のための電圧印加工程の時間T2〜T3は使用する酵素の能力によって異なるが、0.2秒から2秒が好ましい。また、前記血液前処理のための電圧印加工程およびデータ補正のための電圧印加工程における印加電圧が、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程における印加電圧よりも大きいことが好ましい。さらに、電圧V2は0.1V〜0.8Vが好ましい。また一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程直前の開回路時間は1秒〜6秒であることが好ましい。   In this measurement method, the open circuit time T1 to T2 before the voltage application step for data correction varies depending on the ability of the enzyme used, but is preferably 0.2 seconds to 1 second. Further, the time T0 to T1 of the voltage application process for blood pretreatment and the time T2 to T3 of the voltage application process for data correction vary depending on the ability of the enzyme to be used, but are preferably 0.2 seconds to 2 seconds. Further, the applied voltage in the voltage application step for blood pretreatment and the voltage application step for data correction is more than the applied voltage in the voltage application step for oxidizing the reduced electron carrier generated after a lapse of a certain time. Larger is preferred. Furthermore, the voltage V2 is preferably 0.1V to 0.8V. Moreover, it is preferable that the open circuit time just before the voltage application process for oxidizing the reduced electron carrier produced | generated after progress for a fixed time is 1 second-6 seconds.

また、データ補正のための電圧印加を数回行い、数回のデータ補正のための電圧印加で得られた複数の電流値を補正に用いることでさらに精度が向上する。その際の電圧は違う電圧を印加してもよい。   Further, accuracy is further improved by performing voltage application for data correction several times and using a plurality of current values obtained by voltage application for data correction several times for correction. In this case, a different voltage may be applied.

また、前記データ補正の為の電圧印加工程、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程で得られた電流値を、上記特許文献2に示されたような方法で、判別係数とする判別関数を用いてヘマトクリットを補正してもよい。   Further, the current value obtained in the voltage application step for the data correction and the voltage application step for oxidizing the reduced electron carrier generated after a predetermined time has passed can be obtained by the method as described in Patent Document 2 above. Thus, the hematocrit may be corrected using a discriminant function as a discriminant coefficient.

データ補正のための電圧印加工程ではヘマトクリットの影響を大きく受けた値が得られればどのポイントの電流値を用いても可能であるが、誤差の少ない補正を行う為にはその影響が顕著に出やすいピーク電流を用いることが、好ましい。   In the voltage application process for data correction, the current value at any point can be used as long as a value that is greatly affected by hematocrit is obtained, but the effect is significant in order to perform correction with less error. It is preferable to use an easy peak current.

本発明のより具体的な実施の形態について図面とともに詳細に説明する。以下の構成からなるバイオセンサをセンサの一例として用いた。   More specific embodiments of the present invention will be described in detail with reference to the drawings. A biosensor having the following configuration was used as an example of the sensor.

図2(a)はバイオセンサの分解斜視図であり、図2(b)はバイオセンサの上面から見た電極部の構成を示す図である。19はポリエチレンテレフタレート等からなる絶縁性の基板(以下、「基板」とする。)であって、基板19の表面にはパラジウムからなる導体層がスパッタリングによって形成されている。26は中央部に空気孔27が設けられた絶縁性の基板であって、切欠部25を有するスペーサ24を基板19との間に挟みこんで基板19と一体に配置される。   FIG. 2A is an exploded perspective view of the biosensor, and FIG. 2B is a diagram illustrating the configuration of the electrode portion viewed from the top surface of the biosensor. Reference numeral 19 denotes an insulating substrate (hereinafter referred to as “substrate”) made of polyethylene terephthalate or the like, and a conductor layer made of palladium is formed on the surface of the substrate 19 by sputtering. Reference numeral 26 denotes an insulating substrate having an air hole 27 in the center, and is disposed integrally with the substrate 19 with a spacer 24 having a notch 25 interposed between the substrate 19 and the spacer 19.

基板19上には、複数のスリットによって導体層が分割されて対電極21、測定電極20および検知極22が形成されている。   On the substrate 19, a conductive layer is divided by a plurality of slits to form a counter electrode 21, a measurement electrode 20, and a detection electrode 22.

スペーサ24は基板19上の対電極21、測定電極20および検知電極22を覆うように配置され、検体供給路25aが形成される。スペーサ24の切欠部25から露出している対電極21、測定電極20および検知電極22上に、酵素としてグルコースデヒドロゲナーゼ、電子伝達体としてフェリシアン化カリウム等を含有する試薬を塗布し試薬層23を形成させる。   The spacer 24 is disposed so as to cover the counter electrode 21, the measurement electrode 20, and the detection electrode 22 on the substrate 19, and a specimen supply path 25a is formed. A reagent layer 23 is formed by applying a reagent containing glucose dehydrogenase as an enzyme and potassium ferricyanide as an electron carrier on the counter electrode 21, the measurement electrode 20, and the detection electrode 22 exposed from the notch 25 of the spacer 24. .

この酵素と電子伝達体が含まれる試薬層が検体供給路に吸引された血液に溶解し、血液中の基質であるグルコースとの間で酵素反応が進行し電子伝達体が還元されて還元型電子伝達体が生成される。この還元型電子伝達体を電気化学的に酸化し、このとき得られる電流値から血液中のグルコース濃度が測定される。このような一連の反応は、対電極21、測定電極20及び検知電極22によって電気化学的変化に伴う電流値を読み取る。   The reagent layer containing the enzyme and the electron carrier is dissolved in the blood sucked into the specimen supply channel, and an enzyme reaction proceeds with glucose, which is a substrate in the blood, to reduce the electron carrier and reduce the reduced electron. A transmitter is generated. The reduced electron carrier is electrochemically oxidized, and the glucose concentration in the blood is measured from the current value obtained at this time. In such a series of reactions, the counter electrode 21, the measurement electrode 20, and the detection electrode 22 read the current value associated with the electrochemical change.

図3はHctが25%(低Hct)、45%、65%(高Hct)の血液を用いて、本測定方法において算出したパラメータである。第1工程(血液前処理のための電圧印加)が0.5V印加で0.5秒、第2工程(開回路)が0.5秒、第3工程(データ補正のための印加)が0.5V印加で0.5秒、第4工程(開回路)が1.5秒、第5工程(一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加)が0.2V印加で2秒となっている。そして第3工程での電圧印加開始より0.1秒後の電流値i2と第5工程での電圧印加開始より0.1秒後の電流値i4を測定して算出したi4/i2が図3のパラメータとなる。横軸が第5工程での電圧印加開始より2秒後の最終応答値i5、縦軸がi4/i2である。ヘマトクリット値を判別することの困難な点は、低Hctの低基質濃度の血液と、高Hctの高基質濃度の血液とi5において、同じ電流値が得られる場合があることである。図5のパラメータを用いることによって、i5が同じ電流値を示す場合でもヘマトクリットごとに分別することができることが明らかである。   FIG. 3 shows parameters calculated in this measurement method using blood with Hct of 25% (low Hct), 45%, and 65% (high Hct). The first step (voltage application for blood pretreatment) is 0.5 seconds when 0.5 V is applied, the second step (open circuit) is 0.5 seconds, and the third step (application for data correction) is 0. .5V applied for 0.5 seconds, 4th step (open circuit) for 1.5 seconds, 5th step (voltage applied to oxidize reduced electron carrier generated after a certain period of time) applied 0.2V It is 2 seconds. Then, i4 / i2 calculated by measuring the current value i2 0.1 seconds after the voltage application start in the third step and the current value i4 0.1 seconds after the voltage application start in the fifth step is shown in FIG. Parameter. The horizontal axis represents the final response value i5 after 2 seconds from the start of voltage application in the fifth step, and the vertical axis represents i4 / i2. The difficulty in discriminating the hematocrit value is that the same current value may be obtained for blood with a low substrate concentration of low Hct and blood with a high substrate concentration of high Hct and i5. By using the parameters of FIG. 5, it is clear that even if i5 shows the same current value, it can be classified for each hematocrit.

図3で得られたパラメータの各数値に対する補正値を下記のテーブル1に示す。   Table 1 below shows correction values for the numerical values of the parameters obtained in FIG.

Figure 2005147990
Figure 2005147990

このテーブルに従い、補正値を最終応答値i5に掛ける。 According to this table, the correction value is multiplied by the final response value i5.

図4は本発明の測定手法、従来の手法を用いて測定した際のヘマトクリットの影響を示す図である。従来の測定方法は、第1印加として0.5Vを6秒、待機時間を6秒、第2印加として0.2Vを3秒のトータル測定時間が15秒の場合と、第1印加として0.5Vを2秒、待機時間を2秒、第2印加として0.2Vを1秒のトータル測定時間を5秒に短縮した場合を示す。従来の測定方法は15秒から5秒に時間短縮を行うことによって、Hct25%の低Hct血液は測定結果が基準のHct45%比べて相対的に高く、Hct65%の高Hct血液は相対的に低くなる。   FIG. 4 is a diagram showing the influence of hematocrit when measurement is performed using the measurement method of the present invention and the conventional method. In the conventional measurement method, 0.5 V is applied as the first application for 6 seconds, the standby time is 6 seconds, 0.2 V is applied as the second application for 3 seconds, and the total measurement time is 15 seconds. The case is shown where the total measurement time of 5 V for 2 seconds, the standby time of 2 seconds, and the second application of 0.2 V for 1 second is shortened to 5 seconds. The conventional measurement method shortens the time from 15 seconds to 5 seconds, so that the Hct25% low Hct blood has a relatively high measurement result compared to the reference Hct45%, and the Hct65% high Hct blood has a relatively low value. Become.

本測定方法を用いることによって、トータルの測定時間は等しいにも関わらず、ヘマトクリットのバラツキを低減することが可能になる。   By using this measurement method, it is possible to reduce the variation in hematocrit even though the total measurement time is equal.

本発明にかかるバイオセンサの測定方法は、絶縁基板上の少なくとも一部に形成された対電極、測定電極を含む電極部、当該電極部上または周辺に少なくとも酵素、電子伝達体を含む試薬層を有するバイオセンサと、当該電極部の各電極に電位を印加する為の接続端子及び駆動電源を有する測定装置を用い、当該駆動電源によって前記電極部に電位を印加させて出力される電流を検知し、血液中に含まれる基質を定量する測定方法であって、血液前処理のための電圧印加工程、データ補正のための電圧印加工程、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程を包含し、前記補正のための電圧印加工程より得られたピーク電流値と、前記一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程より得られたピーク電流値との比に基づいてヘマトクリットに依存したパラメータを算出し、前記パラメータにより基質量を補正することで、血液中に含まれる基質濃度を定量するバイオセンサの測定精度の良好な測定方法等として有用である。   The biosensor measurement method according to the present invention includes a counter electrode formed on at least a part of an insulating substrate, an electrode part including the measurement electrode, and a reagent layer including at least an enzyme and an electron carrier on or around the electrode part. And a measuring device having a connection terminal and a driving power source for applying a potential to each electrode of the electrode unit, and detecting a current output by applying a potential to the electrode unit by the driving power source. A measurement method for quantifying a substrate contained in blood, in which a voltage application step for blood pretreatment, a voltage application step for data correction, and a reduced electron carrier generated after a certain period of time are oxidized A voltage application step for oxidizing the reduced electron mediator generated after elapse of the predetermined time, and a peak current value obtained from the voltage application step for the correction Based on the ratio to the peak current value obtained, the hematocrit-dependent parameter is calculated, and the base mass is corrected by the parameter, thereby improving the measurement accuracy of the biosensor that quantifies the substrate concentration contained in the blood. It is useful as a simple measuring method.

本発明の測定方法のプロファイルを示す図The figure which shows the profile of the measuring method of this invention 本発明に関わるバイオセンサの分解斜視図Exploded perspective view of a biosensor according to the present invention 本発明の測定方法をより算出されたパラメータと測定感度の関係を示す図The figure which shows the relationship between the parameter calculated from the measuring method of this invention, and measurement sensitivity 本発明の測定方法、従来の手法を用いて測定した場合のHctの影響を示す図The figure which shows the influence of Hct at the time of measuring using the measuring method of this invention, and the conventional method 従来の測定方法のプロファイルを示す図Figure showing the profile of a conventional measurement method Hct、測定時間および測定感度の関係を示す図The figure which shows the relationship between Hct, measurement time, and measurement sensitivity

符号の説明Explanation of symbols

1 t0 従来の測定方法における血液が供給された時間
2 t1 従来の測定方法における第1印加期間が終了し開回路が開始される時間
3 t2 従来の測定方法における第2印加期間が開始される時間
4 t3 従来の測定方法における最終応答値として電流値を読み取る時間
5 v1 従来の測定方法における第1印加期間の電圧
6 v2 従来の測定方法における第2印加期間の電圧
7 T0 本発明の測定方法における血液が供給された時間
8 T1 本発明の測定方法における血液前処理のための電圧印加工程が終了する
時間
9 T2 本発明の測定方法におけるデータ補正のための電圧印加工程が開始する
時間
10 T3 本発明の測定方法におけるデータ補正のための電圧印加工程が終了する
時間
11 T4 本発明の測定方法における一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程が開始する時間
12 T5 本発明の測定方法における最終応答値として電流値を読み取る時間
13 V1 本発明の測定方法における血液前処理のための印加電圧
14 V2 本発明の測定方法におけるデータ補正のための印加電圧
15 V3 本発明の測定方法における一定時間経過後に生成した還元型電子伝達体
を酸化するための印加電圧
16 i2 本発明の測定方法における血液前処理のための電圧印加工程で得られる
ピーク電流
17 i4 本発明の測定方法における一定時間経過後に生成した還元型電子伝達体
を酸化するための電圧印加工程で得られるピーク電流
18 i5 本発明の測定方法における最終応答値
19 絶縁性の基板
20 測定電極
21 対極
22 検知電極
23 試薬層
24 スペーサ
25 切欠部
25a 検体供給路
26 絶縁性の基板
27 空気孔
1 t0 Time when blood is supplied in the conventional measurement method 2 t1 Time when the first application period ends in the conventional measurement method and the open circuit starts 3 t2 Time when the second application period starts in the conventional measurement method 4 t3 Time to read the current value as the final response value in the conventional measurement method 5 v1 Voltage in the first application period in the conventional measurement method 6 v2 Voltage in the second application period in the conventional measurement method 7 T0 In the measurement method of the present invention Time when blood is supplied 8 T1 The voltage application step for blood pretreatment in the measurement method of the present invention is completed.
Time 9 T2 The voltage application process for data correction in the measurement method of the present invention starts.
Time 10 T3 The voltage application process for data correction in the measurement method of the present invention is completed.
Time 11 T4 Time when the voltage application step for oxidizing the reduced electron carrier generated after a lapse of a certain time in the measurement method of the present invention starts 12 T5 Time for reading the current value as the final response value in the measurement method of the present invention 13 V1 Applied voltage for blood pretreatment in the measurement method of the present invention 14 V2 Applied voltage for data correction in the measurement method of the present invention 15 V3 Reduced electron carrier generated after a certain period of time in the measurement method of the present invention
Applied voltage for oxidizing 16 i2 obtained in the voltage application step for blood pretreatment in the measurement method of the present invention
Peak current 17 i4 Reduced electron carrier generated after a certain period of time in the measurement method of the present invention
Peak current obtained in the voltage application process for oxidizing 18 i5 Final response value in the measurement method of the present invention 19 Insulating substrate 20 Measurement electrode 21 Counter electrode 22 Detection electrode 23 Reagent layer 24 Spacer 25 Notch 25a Specimen supply path 26 Insulating board 27 Air hole

Claims (10)

絶縁基板上の少なくとも一部に形成された対電極、測定電極を含む電極部、当該電極部上または周辺に少なくとも酵素、電子伝達体を含む試薬層を有するバイオセンサと、当該電極部の各電極に電位を印加する為の接続端子及び駆動電源を有する測定装置を用い、当該駆動電源によって前記電極部に電位を印加させて出力される電流を検知し、血液中に含まれる基質を定量する測定方法であって、断続的な3回以上の電圧印加工程を包含することを特徴とする基質濃度の測定方法。 A biosensor having a counter electrode formed on at least a part of an insulating substrate, an electrode part including a measurement electrode, a reagent layer including at least an enzyme and an electron carrier on or around the electrode part, and each electrode of the electrode part Measurement using a measuring device having a connection terminal and a driving power supply for applying a potential to the electrode, detecting a current output by applying a potential to the electrode portion by the driving power supply, and quantifying a substrate contained in blood A method for measuring a substrate concentration, comprising three or more intermittent voltage application steps. 前記断続的な電圧印加工程が、少なくとも血液前処理のための電圧印加工程、データ補正のための電圧印加工程、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程を包含することを特徴とする、請求項1記載の基質濃度の測定方法。 The intermittent voltage application step includes at least a voltage application step for blood pretreatment, a voltage application step for data correction, and a voltage application step for oxidizing a reduced electron carrier generated after a predetermined time has elapsed. The method for measuring a substrate concentration according to claim 1, wherein: 前記電圧印加工程において、血液前処理のための電圧印加工程の後に、データ補正のための電圧印加工程が実施され、当該データ補正のための電圧印加工程の後に、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程が実施されることを特徴とする、請求項2記載の基質濃度の測定方法。 In the voltage application step, after the voltage application step for blood pretreatment, a voltage application step for data correction is performed, and after the voltage application step for data correction, a reduced type generated after a lapse of a certain time The method for measuring a substrate concentration according to claim 2, wherein a voltage application step for oxidizing the electron carrier is performed. 前記データ補正のための電圧印加工程より得られたピーク電流値と、前記一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程より得られたピーク電流値との比に基づいてヘマトクリットに依存したパラメータを算出し、前記パラメータにより基質量を補正することを特徴とする請求項2〜3記載の基質濃度の測定方法。 Based on the ratio between the peak current value obtained from the voltage application step for data correction and the peak current value obtained from the voltage application step for oxidizing the reduced electron carrier generated after the lapse of the predetermined time. 4. The method for measuring a substrate concentration according to claim 2, wherein a parameter dependent on hematocrit is calculated and the base mass is corrected by the parameter. 前記パラメータを判別係数とする判別関数を用いてヘマトクリットを補正することを特徴とする請求項4記載の基質濃度の測定方法。 The method for measuring a substrate concentration according to claim 4, wherein hematocrit is corrected using a discriminant function having the parameter as a discriminant coefficient. 前記血液前処理のための電圧印加工程およびデータ補正のための電圧印加工程における印加電圧が、一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程における印加電圧よりも大きいことを特徴とする請求項1〜5記載の基質濃度の測定方法。 The applied voltage in the voltage application step for blood pretreatment and the voltage application step for data correction is greater than the applied voltage in the voltage application step for oxidizing the reduced electron carrier generated after a lapse of a certain time. The method for measuring a substrate concentration according to claim 1, wherein: 前記血液前処理のための電圧印加工程における電圧印加時間が0.2秒〜2秒であることを特徴とする請求項1〜6記載の基質濃度の測定方法。 The method for measuring a substrate concentration according to claim 1, wherein a voltage application time in the voltage application step for the blood pretreatment is 0.2 second to 2 seconds. 前記データ補正のための電圧印加工程直前の開回路時間が0.2秒〜1秒であることを特徴とする請求項1〜7記載の基質濃度の測定方法。 8. The substrate concentration measuring method according to claim 1, wherein an open circuit time immediately before the voltage application step for data correction is 0.2 second to 1 second. 前記データ補正のための電圧印加工程における電圧印加時間が0.2秒〜2秒であることを特徴とする請求項1〜8記載の基質濃度の測定方法。 The method for measuring a substrate concentration according to claim 1, wherein the voltage application time in the voltage application step for data correction is 0.2 second to 2 seconds. 前記一定時間経過後に生成した還元型電子伝達体を酸化するための電圧印加工程直前の開回路時間が1秒〜6秒であることを特徴とする請求項1〜9記載の基質濃度の測定方法。
10. The method for measuring a substrate concentration according to claim 1, wherein the open circuit time immediately before the voltage application step for oxidizing the reduced electron carrier generated after the lapse of the predetermined time is 1 second to 6 seconds. .
JP2003389128A 2003-11-19 2003-11-19 Substrate concentration measurement method Expired - Lifetime JP4449431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389128A JP4449431B2 (en) 2003-11-19 2003-11-19 Substrate concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389128A JP4449431B2 (en) 2003-11-19 2003-11-19 Substrate concentration measurement method

Publications (2)

Publication Number Publication Date
JP2005147990A true JP2005147990A (en) 2005-06-09
JP4449431B2 JP4449431B2 (en) 2010-04-14

Family

ID=34695972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389128A Expired - Lifetime JP4449431B2 (en) 2003-11-19 2003-11-19 Substrate concentration measurement method

Country Status (1)

Country Link
JP (1) JP4449431B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108171A (en) * 2005-09-30 2007-04-26 Lifescan Inc Method and instrument for quick electrochemical analysis
JPWO2005054839A1 (en) * 2003-12-04 2007-06-28 松下電器産業株式会社 Method for measuring hematocrit (Hct), sensor used therefor, and measuring apparatus
JPWO2005054840A1 (en) * 2003-12-04 2007-06-28 松下電器産業株式会社 Blood component measuring method, sensor and measuring apparatus used therefor
JP2007271623A (en) * 2006-03-31 2007-10-18 Lifescan Inc System and method for discriminating control solution from physiological sample
JP2009085950A (en) * 2007-09-28 2009-04-23 Lifescan Inc Systems and methods of determining control solution from physiological sample
JP2009168815A (en) * 2008-01-17 2009-07-30 Lifescan Inc System and method for measuring analyte in sample
JP2009535651A (en) * 2006-05-03 2009-10-01 バイエル・ヘルスケア・エルエルシー Underfilling detection system for biosensors
KR101001902B1 (en) 2007-09-27 2010-12-17 주식회사 필로시스 Method for correcting Erroneous Results of Measurement in biosensors and Apparatus using the same
US7955492B2 (en) 2004-04-19 2011-06-07 Panasonic Corporation Method for measuring blood components and biosensor and measuring instrument for use therein
JP2011137816A (en) * 2009-12-30 2011-07-14 Lifescan Inc System, device and method for measuring whole blood hematocrit value based on initial filling speed
US8026104B2 (en) 2006-10-24 2011-09-27 Bayer Healthcare Llc Transient decay amperometry
US8147674B2 (en) 2007-12-10 2012-04-03 Bayer Healthcare Llc Rapid-read gated amperometry
US8317988B2 (en) 2004-10-12 2012-11-27 Bayer Healthcare Llc Concentration determination in a diffusion barrier layer
JP2013504053A (en) * 2009-09-04 2013-02-04 ライフスキャン・スコットランド・リミテッド Glucose measurement method and system
JP2013053925A (en) * 2011-09-05 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Detector for detecting detection target substance
US8404100B2 (en) 2005-09-30 2013-03-26 Bayer Healthcare Llc Gated voltammetry
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
WO2013157263A1 (en) * 2012-04-19 2013-10-24 パナソニック株式会社 Biological information measurement device, and biological information measurement method using same
WO2013168390A1 (en) 2012-05-07 2013-11-14 パナソニック株式会社 Biological information measurement device and biological information measurement method using same
WO2013183215A1 (en) * 2012-06-06 2013-12-12 パナソニック株式会社 Biometric information measurement device and biometric information measurement method using same
US8744776B2 (en) 2008-12-08 2014-06-03 Bayer Healthcare Llc Method for determining analyte concentration based on complex index functions
CN104132991A (en) * 2013-05-02 2014-11-05 爱科来株式会社 Measuring apparatus and measuring method
JP2014224828A (en) * 2008-12-08 2014-12-04 バイエル・ヘルスケア・エルエルシーBayer HealthCareLLC Low total salt reagent composition and system for biosensor
US9164076B2 (en) 2010-06-07 2015-10-20 Bayer Healthcare Llc Slope-based compensation including secondary output signals
US9410917B2 (en) 2004-02-06 2016-08-09 Ascensia Diabetes Care Holdings Ag Method of using a biosensor
JP2017037067A (en) * 2015-08-10 2017-02-16 アークレイ株式会社 Measurement method, measurement device and measurement program of sensor using comb-type electrode
EP3156790A1 (en) 2015-10-15 2017-04-19 ARKRAY, Inc. Biosensor and manufacturing method of biosensor
US9775806B2 (en) 2011-09-21 2017-10-03 Ascensia Diabetes Care Holdings Ag Analysis compensation including segmented signals
US9933385B2 (en) 2007-12-10 2018-04-03 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
EP3444602A1 (en) 2017-08-17 2019-02-20 ARKRAY, Inc. Measuring method and measuring apparatus
EP3454057A1 (en) 2017-08-17 2019-03-13 ARKRAY, Inc. Measuring method and measuring apparatus
US10591436B2 (en) 2010-03-22 2020-03-17 Ascensia Diabetes Care Holdings Ag Residual compensation including underfill error
US10739350B2 (en) 2007-12-10 2020-08-11 Ascensia Diabetes Care Holdings Ag Method for determining analyte concentration based on slope-based compensation

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088271B2 (en) 2003-12-04 2012-01-03 Panasonic Corporation Method of measuring hematocrit (Hct), sensor used in the method, and measuring device
JPWO2005054839A1 (en) * 2003-12-04 2007-06-28 松下電器産業株式会社 Method for measuring hematocrit (Hct), sensor used therefor, and measuring apparatus
JP4717636B2 (en) * 2003-12-04 2011-07-06 パナソニック株式会社 Method for measuring hematocrit (Hct), sensor used therefor, and measuring apparatus
JP2011141300A (en) * 2003-12-04 2011-07-21 Panasonic Corp HEMATOCRIT (Hct) MEASURING METHOD, SENSOR USED FOR SAME, AND MEASURING INSTRUMENT
US8480869B2 (en) 2003-12-04 2013-07-09 Panasonic Corporation Method of measuring hematocrit (Hct), sensor used in the method, and measuring device
US8535497B2 (en) 2003-12-04 2013-09-17 Panasonic Corporation Method of measuring blood component, sensor used in the method, and measuring device
US8540864B2 (en) 2003-12-04 2013-09-24 Panasonic Corporation Method of measuring blood component, sensor used in the method, and measuring device
JP2011141301A (en) * 2003-12-04 2011-07-21 Panasonic Corp HEMATOCRIT (Hct) MEASURING METHOD, SENSOR USED FOR SAME, AND MEASURING INSTRUMENT
JP2011047964A (en) * 2003-12-04 2011-03-10 Panasonic Corp Method of measuring hematocrit (hct), sensor used therefor, and measuring instrument
JP2011047963A (en) * 2003-12-04 2011-03-10 Panasonic Corp Method of measuring hematocrit (hct), sensor used therefor, and measuring instrument
JP2011047962A (en) * 2003-12-04 2011-03-10 Panasonic Corp Method of measuring hematocrit (hct), sensor used therefor, and measuring instrument
US9719956B2 (en) 2003-12-04 2017-08-01 Panasonic Healthcare Holdings Co., Ltd. Method of measuring blood component, sensor used in the method, and measuring device
JP2011141302A (en) * 2003-12-04 2011-07-21 Panasonic Corp HEMATOCRIT (Hct) MEASURING METHOD, SENSOR USED FOR SAME, AND MEASURING INSTRUMENT
JPWO2005054840A1 (en) * 2003-12-04 2007-06-28 松下電器産業株式会社 Blood component measuring method, sensor and measuring apparatus used therefor
US9213012B2 (en) 2003-12-04 2015-12-15 Panasonic Healthcare Holdings Co., Ltd. Method of measuring blood component, sensor used in the method, and measuring device
US10067082B2 (en) 2004-02-06 2018-09-04 Ascensia Diabetes Care Holdings Ag Biosensor for determining an analyte concentration
US9410917B2 (en) 2004-02-06 2016-08-09 Ascensia Diabetes Care Holdings Ag Method of using a biosensor
US7955492B2 (en) 2004-04-19 2011-06-07 Panasonic Corporation Method for measuring blood components and biosensor and measuring instrument for use therein
US8524055B2 (en) 2004-04-19 2013-09-03 Panasonic Corporation Method for measuring blood components and biosensor and measuring instrument for use therein
US9285335B2 (en) 2004-04-19 2016-03-15 Panasonic Healthcare Holdings Co., Ltd. Method for measuring blood components and biosensor and measuring instrument for use therein
US9206460B2 (en) 2004-10-12 2015-12-08 Bayer Healthcare Llc Concentration determination in a diffusion barrier layer
US8852422B2 (en) 2004-10-12 2014-10-07 Bayer Healthcare Llc Concentration determination in a diffusion barrier layer
US8317988B2 (en) 2004-10-12 2012-11-27 Bayer Healthcare Llc Concentration determination in a diffusion barrier layer
US9546974B2 (en) 2004-10-12 2017-01-17 Ascensia Diabetes Care Holdings Ag Concentration determination in a diffusion barrier layer
US8425757B2 (en) 2005-07-20 2013-04-23 Bayer Healthcare Llc Gated amperometry
US8877035B2 (en) 2005-07-20 2014-11-04 Bayer Healthcare Llc Gated amperometry methods
US8404100B2 (en) 2005-09-30 2013-03-26 Bayer Healthcare Llc Gated voltammetry
US11435312B2 (en) 2005-09-30 2022-09-06 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US9110013B2 (en) 2005-09-30 2015-08-18 Bayer Healthcare Llc Gated voltammetry methods
US10670553B2 (en) 2005-09-30 2020-06-02 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
JP2007108171A (en) * 2005-09-30 2007-04-26 Lifescan Inc Method and instrument for quick electrochemical analysis
US8647489B2 (en) 2005-09-30 2014-02-11 Bayer Healthcare Llc Gated voltammetry devices
US9835582B2 (en) 2005-09-30 2017-12-05 Ascensia Diabetes Care Holdings Ag Devices using gated voltammetry methods
US8529751B2 (en) 2006-03-31 2013-09-10 Lifescan, Inc. Systems and methods for discriminating control solution from a physiological sample
US8449740B2 (en) 2006-03-31 2013-05-28 Lifescan, Inc. Systems and methods for discriminating control solution from a physiological sample
US9274078B2 (en) 2006-03-31 2016-03-01 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
JP2007271623A (en) * 2006-03-31 2007-10-18 Lifescan Inc System and method for discriminating control solution from physiological sample
JP2009535651A (en) * 2006-05-03 2009-10-01 バイエル・ヘルスケア・エルエルシー Underfilling detection system for biosensors
US8470604B2 (en) 2006-10-24 2013-06-25 Bayer Healthcare Llc Transient decay amperometry
US9005527B2 (en) 2006-10-24 2015-04-14 Bayer Healthcare Llc Transient decay amperometry biosensors
US8026104B2 (en) 2006-10-24 2011-09-27 Bayer Healthcare Llc Transient decay amperometry
US11091790B2 (en) 2006-10-24 2021-08-17 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
US10190150B2 (en) 2006-10-24 2019-01-29 Ascensia Diabetes Care Holdings Ag Determining analyte concentration from variant concentration distribution in measurable species
KR101001902B1 (en) 2007-09-27 2010-12-17 주식회사 필로시스 Method for correcting Erroneous Results of Measurement in biosensors and Apparatus using the same
US8778168B2 (en) 2007-09-28 2014-07-15 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
US9157110B2 (en) 2007-09-28 2015-10-13 Lifescan, Inc. Systems and methods of discriminating control solution from a physiological sample
JP2009085950A (en) * 2007-09-28 2009-04-23 Lifescan Inc Systems and methods of determining control solution from physiological sample
US10739350B2 (en) 2007-12-10 2020-08-11 Ascensia Diabetes Care Holdings Ag Method for determining analyte concentration based on slope-based compensation
US10690614B2 (en) 2007-12-10 2020-06-23 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US10908112B2 (en) 2007-12-10 2021-02-02 Ascensia Diabetes Care Holdings Ag Rapid-read gated amperometry devices
US9933385B2 (en) 2007-12-10 2018-04-03 Ascensia Diabetes Care Holdings Ag Method of using an electrochemical test sensor
US9034160B2 (en) 2007-12-10 2015-05-19 Bayer Healthcare Llc Rapid-read gated amperometry devices
US8147674B2 (en) 2007-12-10 2012-04-03 Bayer Healthcare Llc Rapid-read gated amperometry
US10345255B2 (en) 2007-12-10 2019-07-09 Ascensia Diabetes Care Holdings Ag Rapid-read gated amperometry devices
US8916040B2 (en) 2008-01-17 2014-12-23 Lifescan, Inc. System and method for measuring an analyte in a sample
US8709739B2 (en) 2008-01-17 2014-04-29 Lifescan, Inc. System and method for measuring an analyte in a sample
JP2009168815A (en) * 2008-01-17 2009-07-30 Lifescan Inc System and method for measuring analyte in sample
JP2015092194A (en) * 2008-01-17 2015-05-14 ライフスキャン・インコーポレイテッドLifescan,Inc. Method of identifying defects in test pieces
JP2012123021A (en) * 2008-01-17 2012-06-28 Lifescan Inc System and method for measuring analyte within sample
JP2013040967A (en) * 2008-01-17 2013-02-28 Lifescan Inc System and method for measuring analyte within sample
US8603768B2 (en) 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
US9739749B2 (en) 2008-01-17 2017-08-22 Lifescan, Inc. System and method for measuring an analyte in a sample
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
US9784707B2 (en) 2008-06-09 2017-10-10 Lifescan, Inc. System and method for measuring an analyte in a sample
US8744776B2 (en) 2008-12-08 2014-06-03 Bayer Healthcare Llc Method for determining analyte concentration based on complex index functions
JP2014224828A (en) * 2008-12-08 2014-12-04 バイエル・ヘルスケア・エルエルシーBayer HealthCareLLC Low total salt reagent composition and system for biosensor
US10656113B2 (en) 2008-12-08 2020-05-19 Ascensia Diabetes Care Holdings Ag Biosensor systems for determining analyte concentration based on complex index functions
JP2013504053A (en) * 2009-09-04 2013-02-04 ライフスキャン・スコットランド・リミテッド Glucose measurement method and system
JP2011137816A (en) * 2009-12-30 2011-07-14 Lifescan Inc System, device and method for measuring whole blood hematocrit value based on initial filling speed
US11988626B2 (en) 2010-03-22 2024-05-21 Ascensia Diabetes Care Holdings Ag Residual compensation including underfill error
US10591436B2 (en) 2010-03-22 2020-03-17 Ascensia Diabetes Care Holdings Ag Residual compensation including underfill error
US9995702B2 (en) 2010-06-07 2018-06-12 Ascensia Diabetes Care Holdsings AG Slope-base compensation including secondary output signals
US9164076B2 (en) 2010-06-07 2015-10-20 Bayer Healthcare Llc Slope-based compensation including secondary output signals
US10921278B2 (en) 2010-06-07 2021-02-16 Ascensia Diabetes Care Holdings Ag Slope-based compensation including secondary output signals
JP2013053925A (en) * 2011-09-05 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Detector for detecting detection target substance
US9775806B2 (en) 2011-09-21 2017-10-03 Ascensia Diabetes Care Holdings Ag Analysis compensation including segmented signals
US10646445B2 (en) 2011-09-21 2020-05-12 Ascensia Diabetes Care Holdings Ag Analysis compensation including segmented signals converted into signal processing parameters for describing a portion of total error
US9804115B2 (en) 2012-04-19 2017-10-31 Panasonic Healthcare Holdings Co., Ltd. Biological information measurement device, and biological information measurement method using same
US10012610B2 (en) 2012-04-19 2018-07-03 Phc Holdings Corporation Biological information measurement device, and biological information measurement method using same
US9625442B2 (en) 2012-04-19 2017-04-18 Panasonic Healthcare Holdings Co., Ltd. Biological information measurement device, and biological information measurement method using same
WO2013157263A1 (en) * 2012-04-19 2013-10-24 パナソニック株式会社 Biological information measurement device, and biological information measurement method using same
JPWO2013157263A1 (en) * 2012-04-19 2015-12-21 パナソニックヘルスケアホールディングス株式会社 Biological information measuring apparatus and biological information measuring method using the same
JP5801479B2 (en) * 2012-05-07 2015-10-28 パナソニックヘルスケアホールディングス株式会社 Biological information measuring apparatus and biological information measuring method using the same
WO2013168390A1 (en) 2012-05-07 2013-11-14 パナソニック株式会社 Biological information measurement device and biological information measurement method using same
US9629577B2 (en) 2012-05-07 2017-04-25 Panasonic Healthcare Holdings Co., Ltd. Biological information measurement device and biological information measurement method using same
JPWO2013168390A1 (en) * 2012-05-07 2016-01-07 パナソニックヘルスケアホールディングス株式会社 Biological information measuring apparatus and biological information measuring method using the same
US10107777B2 (en) 2012-06-06 2018-10-23 Phc Holdings Corporation Biological information measurement device and biological information measurement method using same
US9410916B2 (en) 2012-06-06 2016-08-09 Panasonic Healthcare Holdings Co., Ltd. Biological information measurement device and biological information measurement method using same
JP5842059B2 (en) * 2012-06-06 2016-01-13 パナソニックヘルスケアホールディングス株式会社 Biological information measuring apparatus and biological information measuring method using the same
WO2013183215A1 (en) * 2012-06-06 2013-12-12 パナソニック株式会社 Biometric information measurement device and biometric information measurement method using same
JPWO2013183215A1 (en) * 2012-06-06 2016-01-28 パナソニックヘルスケアホールディングス株式会社 Biological information measuring apparatus and biological information measuring method using the same
US10591459B2 (en) 2013-05-02 2020-03-17 Arkray, Inc. Measuring apparatus and measuring method
JP2014232102A (en) * 2013-05-02 2014-12-11 アークレイ株式会社 Measurement device and measurement method
CN104132991A (en) * 2013-05-02 2014-11-05 爱科来株式会社 Measuring apparatus and measuring method
JP2017037067A (en) * 2015-08-10 2017-02-16 アークレイ株式会社 Measurement method, measurement device and measurement program of sensor using comb-type electrode
EP3156790A1 (en) 2015-10-15 2017-04-19 ARKRAY, Inc. Biosensor and manufacturing method of biosensor
US11073495B2 (en) 2015-10-15 2021-07-27 Arkray, Inc. Biosensor and manufacturing method of biosensor
EP3454057A1 (en) 2017-08-17 2019-03-13 ARKRAY, Inc. Measuring method and measuring apparatus
EP3444602A1 (en) 2017-08-17 2019-02-20 ARKRAY, Inc. Measuring method and measuring apparatus

Also Published As

Publication number Publication date
JP4449431B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4449431B2 (en) Substrate concentration measurement method
JP5399543B2 (en) Gated current measuring instrument
EP1688742B1 (en) Electrochemical biosensor
RU2491549C2 (en) Amperometry with strobing and fast reading
US10012610B2 (en) Biological information measurement device, and biological information measurement method using same
JP2003156469A (en) Biosensor, measuring device for biosensor and quantitative determination method of substrate
EP1557662B1 (en) Determination method for automatically identifying analyte liquid and standard solution for biosensor
JP2008536125A (en) Oxidizable species as an internal reference in control solutions for biosensors
JP2007033459A (en) Biosensor, measuring instrument for biosensor and substrate quantifying method
JP4475264B2 (en) Biosensor, biosensor measuring apparatus, and substrate quantification method
US11268925B2 (en) Intertwined electrical input signals
KR20080111547A (en) Biosensor
US10329684B2 (en) Method for forming an optical test sensor
JP2001066274A (en) Method for evaluating biosensor
JP2010164583A (en) Biosensor, measuring device for the same and quantification method for substrate
JPH1123515A (en) Quantitative method for matrix
AU2013200186A1 (en) Gated Voltammetry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R151 Written notification of patent or utility model registration

Ref document number: 4449431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term