JP2005141075A - Phase mask for manufacturing grating - Google Patents

Phase mask for manufacturing grating Download PDF

Info

Publication number
JP2005141075A
JP2005141075A JP2003378590A JP2003378590A JP2005141075A JP 2005141075 A JP2005141075 A JP 2005141075A JP 2003378590 A JP2003378590 A JP 2003378590A JP 2003378590 A JP2003378590 A JP 2003378590A JP 2005141075 A JP2005141075 A JP 2005141075A
Authority
JP
Japan
Prior art keywords
phase mask
light
diffraction grating
exposure
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003378590A
Other languages
Japanese (ja)
Other versions
JP4824273B2 (en
Inventor
Hideaki Morita
英明 森田
Nobuto Toyama
登山  伸人
Kimio Ito
公夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003378590A priority Critical patent/JP4824273B2/en
Publication of JP2005141075A publication Critical patent/JP2005141075A/en
Application granted granted Critical
Publication of JP4824273B2 publication Critical patent/JP4824273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the 0th-order light component transmitting without diffracted to the minimum and to prevent noises in the reflection spectrum of a transferred optical waveguide grating. <P>SOLUTION: The phase mask 21 has a grating type pattern with repetition of recessed grooves 26 and projections 27 having a square cross section on one surface of a transparent substrate, and is used to form a grating in an optical waveguide 22 by interference fringes of diffracted light of UV exposure light 23 by the repeated pattern. The phase mask 21 is constituted in such a manner that the cross sectional dimensions of the repeated pattern of the recessed grooves 26 and the projections 27 satisfy the relation of d/d<SB>0</SB>≥1.03 and f≤0.48, wherein d is the groove depth of the recessed groove, w is the width of the projection, Λ is the period of repetition, λ is the exposure wavelength, n<SB>2</SB>is the refractive index of the transparent substrate, n<SB>1</SB>is the refractive index of the atmosphere, d<SB>0</SB>is defined by d<SB>0</SB>=λ/ä2(n<SB>2</SB>-n<SB>1</SB>)}, and f is defined by f=w/Λ. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回折格子作製用位相マスクに関し、特に、光通信等に用いられる光ファイバー内に紫外線レーザ光を用いて回折格子を作製するための位相マスクに関するものである。   The present invention relates to a phase mask for producing a diffraction grating, and more particularly to a phase mask for producing a diffraction grating using an ultraviolet laser beam in an optical fiber used for optical communication or the like.

光ファイバーは地球規模の通信に大革新をもたらし、高品質、大容量の大洋横断電話通信を可能にしたが、従来より、この光ファイバーに沿ってコア内に周期的に屈折率分布を作り出し、光ファイバー内にブラック回折格子を作り、その回折格子の周期と長さ、屈折率変調の大きさによって回折格子の反射率の高低と波長特性の幅を決めることにより、その回折格子を光通信用の波長多重分割器、レーザやセンサーに使用される狭帯域の高反射ミラー、光ファイバーアンプにおける余分なレーザ波長を取り除く波長選択フィルター等として利用できることが知られている。   Optical fiber has revolutionized global communications, enabling high-quality, high-capacity transoceanic telephone communications, but conventionally, a refractive index profile has been created periodically in the core along this optical fiber, A black diffraction grating, and the wavelength of the diffraction grating for optical communication is determined by determining the reflectivity level and width of the wavelength characteristics according to the period and length of the diffraction grating and the size of the refractive index modulation. It is known that it can be used as a splitter, a narrow-band high-reflection mirror used for a laser or a sensor, a wavelength selection filter for removing an extra laser wavelength in an optical fiber amplifier, and the like.

しかし、石英光ファイバーの減衰が最小となり、長距離通信システムに適している波長は1.55μmであることにより、この波長で光ファイバー回折格子を使用するためには、格子間隔を約500nmとする必要があり、このような細かい構造をコアの中に作ること自体が当初は難しいとされており、光ファイバーのコア内にブラック回折格子を作るのに、側面研磨、フォトレジストプロセス、ホログラフィー露光、反応性イオンビームエッチング等からなる何段階もの複雑な工程がとられていた。このため、作製時間が長く、歩留まりも低かった。   However, since the attenuation of quartz optical fiber is minimized and the wavelength suitable for the long-distance communication system is 1.55 μm, in order to use the optical fiber diffraction grating at this wavelength, the grating interval needs to be about 500 nm. It is said that it is difficult to make such a fine structure in the core at first, and side polishing, photoresist process, holographic exposure, reactive ions are used to create a black diffraction grating in the core of the optical fiber. Many stages of complicated processes, such as beam etching, were taken. For this reason, the production time was long and the yield was low.

しかし、最近、紫外線を光ファイバーに照射し、直接コア内に屈折率の変化をもたらし回折格子を作る方法が知られるようになり、この紫外線を照射する方法は複雑なプロセスを必要としないため、周辺技術の進歩と共に次第に実施されるようになってきた。   However, recently, a method of irradiating an optical fiber with an optical fiber and directly changing the refractive index in the core to make a diffraction grating has been known, and this method of irradiating the ultraviolet light does not require a complicated process. It has come to be implemented gradually as technology advances.

この紫外光を用いる方法の場合、上記のように格子間隔が約500nmと細かいため、2本の光束を干渉させる干渉方法、(エキシマレーザからのシングルパルスを集光して回折格子面を1枚ずつ作る)1点毎の書き込みによる方法、グレーティングを持つ位相マスクを使って照射する方法等がとられている。   In the case of this method using ultraviolet light, since the grating interval is as small as about 500 nm as described above, an interference method in which two light beams interfere with each other (a single diffraction grating surface is formed by condensing a single pulse from an excimer laser). There are a method of writing each point), a method of irradiating using a phase mask having a grating, and the like.

上記の2光束を干渉させる干渉方法には、横方向のビームの品質、すなわち空間コヒーレンスに問題があり、1点毎の書き込みによる方法には、サブミクロンの大きさの緻密なステップ制御が必要で、かつ光を小さく取り込み多くの面を書き込むことが要求され、作業性にも問題があった。   The interference method that causes the two light beams to interfere with each other has a problem in the quality of the beam in the lateral direction, that is, spatial coherence, and the method of writing by each point requires precise step control of submicron size. In addition, it is required to write a lot of surfaces by taking in a small amount of light, and there is a problem in workability.

このため、上記問題に対応できる方法として、位相マスクを用いる照射方法が注目されるようになってきたが、この方法は図1(a)に示すように、石英基板の1面に凹溝を所定の繰り返し周期で所定の深さに設けた位相マスク21を用いて、KrFエキシマレーザ光(波長:248nm)23をそのマスク21照射し、光ファイバー22のコア22Aに直接屈折率の変化をもたらし、グレーティング(格子)を作製するものである。なお、図1(a)には、コア22Aにおける干渉縞パターン24を分かりやすく拡大して示してある。図1(b)、図1(c)はそれぞれ位相マスク21の断面図、それに対応する上面図の一部を示したものである。位相マスク21は、その1面に繰り返し周期Λで深さdの凹溝26を設け、凹溝26間に略同じ幅の凸条27を設けてなるバイナリー位相型回折格子状の構造を有するものである。   For this reason, an irradiation method using a phase mask has been attracting attention as a method that can cope with the above problem. However, as shown in FIG. 1A, this method has a concave groove on one surface of a quartz substrate. Using a phase mask 21 provided at a predetermined depth with a predetermined repetition period, KrF excimer laser light (wavelength: 248 nm) 23 is irradiated with the mask 21 to cause a change in refractive index directly on the core 22A of the optical fiber 22, A grating is formed. In FIG. 1A, the interference fringe pattern 24 in the core 22A is shown in an easily enlarged manner. FIG. 1B and FIG. 1C show a sectional view of the phase mask 21 and a part of a top view corresponding thereto. The phase mask 21 has a binary phase type diffraction grating-like structure in which a concave groove 26 having a repetition period Λ and a depth d is provided on one surface, and a ridge 27 having substantially the same width is provided between the concave grooves 26. It is.

位相マスク21の凹溝26の深さ(凸条27と凹溝26との高さの差)dは、露光光であるエキシマレーザ光(ビーム)23の位相をπラジアンだけ変調するように選択されており、0次光(ビーム)25Aは位相マスク21により5%以下に抑えられ、マスク21から出る主な光(ビーム)は、回折光の35%以上を含むプラス1次の回折光25Bとマイナス1次の回折光25Cに分割される。このため、このプラス1次の回折光25Bとマイナス1次の回折光25Cによる所定ピッチの干渉縞の照射を行い、このピッチでの屈折率変化を光ファイバー22内にもたらすものである。
“SPIE”Vol.883(1988),pp.8〜11
The depth d of the groove 26 of the phase mask 21 (the difference in height between the ridge 27 and the groove 26) d is selected so as to modulate the phase of the excimer laser beam (beam) 23 as the exposure light by π radians. The 0th-order light (beam) 25A is suppressed to 5% or less by the phase mask 21, and the main light (beam) emitted from the mask 21 includes the plus-first-order diffracted light 25B including 35% or more of the diffracted light. And the first-order diffracted light 25C. Therefore, irradiation of interference fringes with a predetermined pitch is performed by the plus first-order diffracted light 25B and minus first-order diffracted light 25C, and a refractive index change at this pitch is brought into the optical fiber 22.
“SPIE” Vol. 883 (1988), p. 8-11

このような位相マスク21の断面形状寸法は、凹溝26の深さdが上記のように波長λの露光光23の位相をπラジアンだけずらせ、かつ、凸条27の幅wと繰り返し周期Λの比w/Λで定義される凸条27のデューティ比fが0.5のときに、0次光成分25Aの回折効率が最小になるとされている(スカラー回折理論)。   The cross-sectional shape of the phase mask 21 is such that the depth d of the groove 26 shifts the phase of the exposure light 23 having the wavelength λ by π radians as described above, and the width w of the ridge 27 and the repetition period Λ. It is said that the diffraction efficiency of the 0th-order light component 25A is minimized when the duty ratio f of the ridge 27 defined by the ratio w / Λ is 0.5 (scalar diffraction theory).

ところが、繰り返し周期の微細化によりその周期が波長オーダーになると、0次光成分25Aが3%程度透過してしまい、そのため、0次光成分25Aが転写の際のノイズとなり、転写した光導波路回折格子の反射スペクトル中にノイズが発生してしまう問題があった。   However, if the period becomes the wavelength order due to the miniaturization of the repetition period, the 0th-order light component 25A is transmitted by about 3%. Therefore, the 0th-order light component 25A becomes noise during transfer, and the transferred optical waveguide diffraction There was a problem that noise was generated in the reflection spectrum of the grating.

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、回折されないで透過する0次光成分を極力小さくして、転写した光導波路回折格子の反射スペクトル中にノイズが発生しないようにした回折格子作製用位相マスクを提供することである。   The present invention has been made in view of such problems of the prior art, and its purpose is to reduce the zero-order light component that is transmitted without being diffracted as much as possible in the reflection spectrum of the transferred optical waveguide diffraction grating. It is an object of the present invention to provide a phase mask for producing a diffraction grating that is free from noise.

上記目的を達成する本発明の回折格子作製用位相マスクは、透明基板の1面に格子状の断面略矩形の凹溝と凸条の繰り返しパタ−ンが設けられ、その繰り返しパタ−ンによる紫外線露光光の回折光相互の干渉縞により光導波路中に回折格子を形成する位相マスクにおいて、凹溝と凸条の繰り返しパタ−ンの断面形状寸法が、d:凹溝の溝深さ、w:凸条の幅、Λ:繰り返し周期、λ:露光波長、n2 :透明基板の屈折率、n1 :雰囲気の屈折率、d0 =λ/{2(n2 −n1 )}、f=w/Λとするとき、
d/d0 ≧1.03、f≦0.48
の関係を満足することを特徴とするものである。
The phase mask for producing a diffraction grating of the present invention that achieves the above object is provided with a repetitive pattern of concave grooves and ridges having a substantially rectangular cross section in the shape of a grating on one surface of a transparent substrate, and ultraviolet rays generated by the repetitive pattern. In the phase mask in which the diffraction grating is formed in the optical waveguide by the interference fringes of the diffracted light of the exposure light, the cross-sectional shape dimension of the repeated pattern of the concave groove and the convex stripe is d: groove depth of the concave groove, w: Width of ridge, Λ: repetition period, λ: exposure wavelength, n 2 : refractive index of transparent substrate, n 1 : refractive index of atmosphere, d 0 = λ / {2 (n 2 −n 1 )}, f = When w / Λ,
d / d 0 ≧ 1.03, f ≦ 0.48
It is characterized by satisfying the relationship.

この場合に、露光光がS偏光であり、
d/d0 ≧1.03、f≦0.47
の関係を満足することが望ましい。
In this case, the exposure light is S-polarized light,
d / d 0 ≧ 1.03, f ≦ 0.47
It is desirable to satisfy this relationship.

また、露光光がP偏光であり、
d/d0 ≧1.05、f≦0.48
の関係を満足することが望ましい。
The exposure light is P-polarized light,
d / d 0 ≧ 1.05, f ≦ 0.48
It is desirable to satisfy this relationship.

また、露光光がランダム偏光であり、
d/d0 ≧1.04、f≦0.48
の関係を満足することが望ましい。
Also, the exposure light is randomly polarized,
d / d 0 ≧ 1.04, f ≦ 0.48
It is desirable to satisfy this relationship.

なお、透明基板としては合成石英を用いることが望ましい。   Note that it is desirable to use synthetic quartz as the transparent substrate.

本発明は、以上の回折格子作製用位相マスクを用いて露光して作製されてなる光ファイバーグレーティングも含むものである。   The present invention also includes an optical fiber grating produced by exposure using the above-described phase mask for producing a diffraction grating.

本発明の回折格子作製用位相マスクによると、凹溝と凸条の繰り返しパターンの断面形状が略矩形状で、凹溝と凸条の繰り返しパターンの断面形状寸法が、透過0次光回折効率が最小になるように最適化されてなるので、この回折格子作製用位相マスクに紫外線露光光を照射してその±1次の回折光相互の干渉により光ファイバー等の光導波路中に所定ピッチの干渉縞の露光を行い、その干渉縞のピッチの屈折率変化を光導波路中に発生させて回折格子を作製することにより、反射スペクトル中にノイズが発生しない高特性の回折格子を作製することができる。   According to the phase mask for producing a diffraction grating of the present invention, the cross-sectional shape of the repetitive pattern of the concave grooves and ridges is substantially rectangular, and the cross-sectional shape dimension of the repetitive pattern of the concave grooves and ridges is the transmission zero-order light diffraction efficiency. Since it is optimized so as to be minimized, an interference fringe having a predetermined pitch is formed in an optical waveguide such as an optical fiber by irradiating this phase mask for producing a diffraction grating with ultraviolet exposure light, and interference between ± 1st order diffracted lights. By producing the diffraction grating by generating the refractive index change in the pitch of the interference fringes in the optical waveguide, a high-quality diffraction grating that does not generate noise in the reflection spectrum can be produced.

上記したように、図1(b)、図1(c)に示したようなバイナリー位相型回折格子(位相マスク)21の各回折次数の回折効率は、ベクトル回折理論(非特許文献1)により厳密に求めることができる。   As described above, the diffraction efficiency of each diffraction order of the binary phase type diffraction grating (phase mask) 21 as shown in FIGS. 1B and 1C is determined by the vector diffraction theory (Non-patent Document 1). It can be determined strictly.

そこで、露光光23を位相マスク21に垂直に入射する場合に0次光回折光25Aが最小となる位相マスク21の断面形状を、このベクトル回折理論により求めた。その結果を図2と図3に示す。この結果は、凸条27の繰り返し周期Λを露光波長λで規格化した値Λ/λを横軸とし、図2は、凹溝26の深さdが露光光23の波長λの位相をπラジアンだけずらす深さd0 (=λ/{2(n2 −n1 )};n2 は透明基板の屈折率、n1 は空気の屈折率)で規格化した値d/d0 を縦軸とし、図3は、凸条27のデューティ比fを縦軸としている。この結果は、λ=248nm、n2 =1.508(合成石英)、n1 =1の場合について求めたものである。S偏光は偏光面が凹溝26に直交、P偏光は偏光面が凹溝26に平行、AVEはランダム偏光の場合である。また、その結果を次の表1に示す。 Accordingly, the cross-sectional shape of the phase mask 21 that minimizes the 0th-order light diffracted light 25A when the exposure light 23 is incident on the phase mask 21 perpendicularly is obtained by this vector diffraction theory. The results are shown in FIGS. As a result, the horizontal axis is a value Λ / λ obtained by normalizing the repetition period Λ of the ridge 27 with the exposure wavelength λ, and FIG. 2 shows that the depth d of the concave groove 26 is the phase of the wavelength λ of the exposure light 23 by π. radians shifting depth d 0 (= λ / {2 (n 2 -n 1)}; n 2 is the refractive index of the transparent substrate, n 1 is the refractive index of air) vertically value d / d 0 normalized with In FIG. 3, the duty ratio f of the ridges 27 is the vertical axis. This result was obtained for the case of λ = 248 nm, n 2 = 1.508 (synthetic quartz), and n 1 = 1. In the case of S-polarized light, the polarization plane is orthogonal to the concave groove 26, in the case of P-polarized light, the polarization plane is parallel to the concave groove 26, and AVE is in the case of random polarization. The results are shown in Table 1 below.

表1.透過0次光の回折効率が最小となる偏光別の最適条件
○S偏光
Λ/λ 1.61 2.02 2.42 2.82 3.23 4.03 8.06 12.10
─────────────────────────────────────
d/d0 1.19 1.08 1.12 1.12 1.07 1.05 1.03 1.02
f 0.251 0.363 0.400 0.396 0.408 0.435 0.469 0.479
─────────────────────────────────────
0次光回折効率
(%) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
─────────────────────────────────────
○P偏光
Λ/λ 1.61 2.02 2.42 2.82 3.23 4.03 8.06 12.10
─────────────────────────────────────
d/d0 1.23 1.21 1.19 1.16 1.13 1.10 1.05 1.03
f 0.373 0.381 0.437 0.434 0.449 0.461 0.483 0.489
─────────────────────────────────────
0次光回折効率
(%) 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
─────────────────────────────────────
○ランダム偏光 Λ/λ 1.61 2.02 2.42 2.82 3.23 4.03 8.06 12.10
─────────────────────────────────────
d/d0 1.12 1.13 1.15 1.14 1.09 1.08 1.04 1.03
f 0.368 0.389 0.413 0.414 0.434 0.449 0.476 0.484
─────────────────────────────────────
0次光回折効率
(%) 4.4 0.8 0.3 0.4 0.3 0.2 0.0 0.0
───────────────────────────────────── 。
Table 1. Optimum conditions for each polarization that minimizes the diffraction efficiency of transmitted zero-order light S-polarized light Λ / λ 1.61 2.02 2.42 2.82 3.23 4.03 8.06 12.10
─────────────────────────────────────
d / d 0 1.19 1.08 1.12 1.12 1.07 1.05 1.03 1.02
f 0.251 0.363 0.400 0.396 0.408 0.435 0.469 0.479
─────────────────────────────────────
Zero-order light diffraction efficiency (%) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
─────────────────────────────────────
○ P-polarized light Λ / λ 1.61 2.02 2.42 2.82 3.23 4.03 8.06 12.10
─────────────────────────────────────
d / d 0 1.23 1.21 1.19 1.16 1.13 1.10 1.05 1.03
f 0.373 0.381 0.437 0.434 0.449 0.461 0.483 0.489
─────────────────────────────────────
Zero-order diffraction efficiency (%) 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
─────────────────────────────────────
○ Random polarization Λ / λ 1.61 2.02 2.42 2.82 3.23 4.03 8.06 12.10
─────────────────────────────────────
d / d 0 1.12 1.13 1.15 1.14 1.09 1.08 1.04 1.03
f 0.368 0.389 0.413 0.414 0.434 0.449 0.476 0.484
─────────────────────────────────────
Zero-order diffraction efficiency (%) 4.4 0.8 0.3 0.4 0.3 0.2 0.0 0.0
───────────────────────────────────── ─.

ところで、光ファイバーを用いた通信には、波長1700nm以下の光が用いられる。この波長は、屈折率1.45の光ファイバー中では約1200nmとなるので、その反射のためには略600nm以下のピッチの干渉縞(ブラック回折格子)が必要である。そのような干渉縞を図1の配置で作製するには、位相マスク21の凸条27の繰り返し周期Λは約1200nmとなる。その露光を波長λ=193nmのフッ化アルゴンエキシマレーザからの紫外線で行うとすると、Λ/λ≦7の範囲の位相マスク21が必要になる。   By the way, light having a wavelength of 1700 nm or less is used for communication using an optical fiber. Since this wavelength is about 1200 nm in an optical fiber having a refractive index of 1.45, interference fringes (black diffraction grating) with a pitch of about 600 nm or less are required for reflection. In order to produce such interference fringes with the arrangement of FIG. 1, the repetition period Λ of the ridges 27 of the phase mask 21 is about 1200 nm. If the exposure is performed with ultraviolet rays from an argon fluoride excimer laser having a wavelength λ = 193 nm, the phase mask 21 in the range of Λ / λ ≦ 7 is required.

図2、図3と上記表1から、そのような位相マスク21としては、S偏光を用いる場合には、d/d0 ≧1.03、f≦0.47、P偏光を用いる場合には、d/d0 ≧1.05、f≦0.48、ランダム偏光を用いる場合には、d/d0 ≧1.04、f≦0.48の条件を満足することが必要であることが分かる。なお、偏光状態を問わないときには、d/d0 ≧1.03、f≦0.48を満足することが必要であると言える。以上の範囲の位相マスク21を用いることにより、反射スペクトル中にノイズが発生しない高特性の回折格子を光ファイバー等の光導波路中に作製することができる。 2 and 3 and Table 1 above, as such a phase mask 21, when S-polarized light is used, d / d 0 ≧ 1.03, f ≦ 0.47, when P-polarized light is used. , D / d 0 ≧ 1.05, f ≦ 0.48, and when using random polarization, it is necessary to satisfy the conditions of d / d 0 ≧ 1.04 and f ≦ 0.48. I understand. When the polarization state is not questioned, it can be said that d / d 0 ≧ 1.03 and f ≦ 0.48 must be satisfied. By using the phase mask 21 in the above range, a high-quality diffraction grating that does not generate noise in the reflection spectrum can be produced in an optical waveguide such as an optical fiber.

なお、上記表1の結果を求める際に、S偏光、P偏光の最適な透過0次光の回折効率は、Λ/λが2.02以上のときに略0(0.05%未満)となることが分かった。   When obtaining the results of Table 1 above, the optimum diffraction efficiency of transmitted 0th-order light of S-polarized light and P-polarized light is substantially 0 (less than 0.05%) when Λ / λ is 2.02 or more. I found out that

次に、本発明による回折格子作製用位相マスクの実施例について説明する。   Next, examples of the phase mask for producing a diffraction grating according to the present invention will be described.

図4は、位相マスク1の製造工程の1例を示した断面図である。図4中、5は位相マスクのブランク、2は石英基板、4はクロム薄膜、4Aはクロム薄膜パターン、4Bはクロム薄膜開口部、6は電子線レジスト、6Aはレジストパターン、6Bはレジスト開口部、7は電子線(ビーム)、1は位相マスク、3は断面矩形波状の凹溝、8は断面矩形波状の凸条である。   FIG. 4 is a cross-sectional view showing an example of the manufacturing process of the phase mask 1. 4, 5 is a phase mask blank, 2 is a quartz substrate, 4 is a chromium thin film, 4A is a chromium thin film pattern, 4B is a chromium thin film opening, 6 is an electron beam resist, 6A is a resist pattern, and 6B is a resist opening. , 7 is an electron beam (beam), 1 is a phase mask, 3 is a groove having a rectangular wave shape in cross section, and 8 is a ridge having a rectangular wave shape in cross section.

まず、図4(a)に示すように、石英基板2上に20nm厚のクロム薄膜4をスパッタにて成膜したブランクス5を用意した。クロム薄膜4は、後工程の電子線レジスト6に電子線7を照射する際のチャージアップ防止に役立ち、石英基板に凹溝3を作製する際のマスクとなるものであるが、クロム薄膜エッチングにおける解像性の点でもその厚さの制御は重要で、10〜20nm厚が適当である。   First, as shown in FIG. 4A, blanks 5 in which a chromium thin film 4 having a thickness of 20 nm was formed on a quartz substrate 2 by sputtering were prepared. The chromium thin film 4 serves to prevent charge-up when the electron beam resist 6 in the subsequent process is irradiated with the electron beam 7 and serves as a mask when the concave groove 3 is formed on the quartz substrate. The control of the thickness is also important in terms of resolution, and a thickness of 10 to 20 nm is appropriate.

次いで、図4(b)に示すように、電子線レジスト6としては、電子線レジストZEP(日本ゼオン(株)製)を用い、厚さ400nmに塗布し、乾燥した。   Next, as shown in FIG. 4B, an electron beam resist ZEP (manufactured by Nippon Zeon Co., Ltd.) was used as the electron beam resist 6 and applied to a thickness of 400 nm and dried.

この後、図4(c)に示すように、電子線レジスト6を電子線描画装置MEBES4500(アプライドマテリアル社製)にて露光量1.2μC/cm2 で、凹溝3に対応する部分を電子ビーム7により露光した。 Thereafter, as shown in FIG. 4C, the electron beam resist 6 is exposed to an electron beam drawing apparatus MEBES 4500 (manufactured by Applied Materials) with an exposure amount of 1.2 μC / cm 2 , and the portion corresponding to the groove 3 is an electron. Exposure was by beam 7.

露光後、90℃で5分間ベーク(PEB:Post Exposure Baking)した後、2.38%濃度のTMAH(テトラメチルアンモニウムハイドロオキサイド)で電子線レジスト6を現像し、図4(d)に示すような所望のレジストパターン6Aを形成した。なお、露光後のベーク(PEB)は電子ビーム7が照射された部分を選択的に感度アップするためのものである。   After exposure, baking is performed at 90 ° C. for 5 minutes (PEB: Post Exposure Baking), and then the electron beam resist 6 is developed with 2.38% concentration of TMAH (tetramethylammonium hydroxide), as shown in FIG. A desired resist pattern 6A was formed. Note that the post-exposure bake (PEB) is for selectively increasing the sensitivity of the portion irradiated with the electron beam 7.

次いで、レジストパターン6Aをマスクとして、CH2 Cl2 ガスを用いてドライエッチングして、図4(e)に示すようなクロム薄膜パターン4Aを形成した。 Next, using the resist pattern 6A as a mask, dry etching using CH 2 Cl 2 gas was performed to form a chromium thin film pattern 4A as shown in FIG.

次いで、図4(f)に示すように、クロム薄膜パターン4AをマスクとしてCF4 ガスを用いて石英基板2を深さ272nm又は244nmだけエッチングした。深さの制御はエッチング時間を制御することにより行われ、深さ200〜400nmの範囲で制御してエッチングが可能である。 Next, as shown in FIG. 4F, the quartz substrate 2 was etched by a depth of 272 nm or 244 nm using CF 4 gas with the chromium thin film pattern 4A as a mask. The depth is controlled by controlling the etching time, and the etching can be performed by controlling the depth in the range of 200 to 400 nm.

この後、70℃の硫酸にてレジストパターン6Aを剥離し、次いで、硝酸第二セリウムアンモニウム溶液によりクロム薄膜パターン4Aをエッチングして除去し、洗浄処理を経て、図4(g)に示すように、矩形波断面形状にライン(凸条8)&スペース(凹溝3)が並んだ位相マスク1を得た。   Thereafter, the resist pattern 6A is peeled off with sulfuric acid at 70 ° C., and then the chromium thin film pattern 4A is removed by etching with a ceric ammonium nitrate solution, followed by a cleaning process, as shown in FIG. 4 (g). A phase mask 1 in which lines (protrusions 8) and spaces (concave grooves 3) are arranged in a rectangular wave cross-sectional shape was obtained.

この位相マスク1の寸法は、ピッチ600nmで、Λ/λ=2.42、本発明に該当する(i)深さ272nm(d/d0 ≒1.12)、凸条8のデューティ比f=0.400、及び、比較例(ii)深さ244nm(d0 )、凸条8のデューティ比f=0.500の2通りを作製した。そして、この(i)、(ii)のそれぞれを位相マスクとして、波長248nmの紫外線レーザ光を用いて位相マスク1へ垂直に入射させ、その偏光が位相マスクの回折格子に対してS偏光となるようにして、Geドープした感光性光ファイバーの光導波路中に転写して光ファイバーグレーティングを作製した。 The phase mask 1 has a pitch of 600 nm, Λ / λ = 2.42, applicable to the present invention (i) depth 272 nm (d / d 0 ≈1.12), and duty ratio f of the ridge 8 f = Two types, 0.400, and Comparative Example (ii), depth 244 nm (d 0 ) and duty ratio f = 0.500 of the ridge 8 were prepared. Then, using each of (i) and (ii) as a phase mask, an ultraviolet laser beam having a wavelength of 248 nm is used to enter the phase mask 1 perpendicularly, and the polarization becomes S-polarized light with respect to the diffraction grating of the phase mask. In this way, a fiber-optic grating was produced by transferring it into an optical waveguide of a Ge-doped photosensitive optical fiber.

その光ファイバーグレーティングの評価結果として、比較例(ii)により作製したものは特性が低く、本発明による(i)による位相マスクにより作製した光ファイバーグレーティングの特性は高かった。その原因は、このような転写は透過回折光の±1次以上の干渉において、透過0次光はノイズと考えられ、(ii)による位相マスクは透過0次光回折効率が約10%と比較的高く、転写時のノイズとなり、干渉縞のコントラストが低下したためで、それに対して、(i)による位相マスクは透過0次光回折効率が約1%と比較的低く、転写時のノイズが少なく、干渉縞のコントラストが高かったためと考えられる。   As an evaluation result of the optical fiber grating, those produced by Comparative Example (ii) had low characteristics, and those of the optical fiber grating produced by the phase mask according to (i) of the present invention were high. The reason for this is that such a transfer is considered to be noise in the first-order or higher-order interference of transmitted diffracted light, and the transmitted zero-order light is considered to be noise, and the phase mask according to (ii) is compared with the transmitted zero-order light diffraction efficiency of about 10%. In contrast, the contrast of interference fringes is reduced due to transfer noise, and the phase mask according to (i) has a relatively low transmission zero-order light diffraction efficiency of about 1%, and the transfer noise is small. This is probably because the contrast of the interference fringes was high.

以上、本発明の回折格子作製用位相マスクをその原理と実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。   As described above, the phase mask for producing a diffraction grating of the present invention has been described based on the principle and examples. However, the present invention is not limited to these examples, and various modifications are possible.

光ファイバー加工に用いられる本発明の位相マスクを説明するための図である。It is a figure for demonstrating the phase mask of this invention used for optical fiber processing. 0次光回折光が最小となる位相マスクの断面形状をベクトル回折理論により求めた1つの結果を示す図である。It is a figure which shows one result which calculated | required the cross-sectional shape of the phase mask from which 0th-order light diffracted light becomes the minimum by the vector diffraction theory. 0次光回折光が最小となる位相マスクの断面形状をベクトル回折理論により求めた別の結果を示す図である。It is a figure which shows another result which calculated | required the cross-sectional shape of the phase mask from which 0th-order light diffracted light becomes the minimum by the vector diffraction theory. 本発明による位相マスクの実施例1の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of Example 1 of the phase mask by this invention.

符号の説明Explanation of symbols

1…位相マスク
2…石英基板
3…断面矩形波状の凹溝
4…クロム薄膜
4A…クロム薄膜パターン
4B…クロム薄膜開口部
5…位相マスクのブランク
6…電子線レジスト
6A…レジストパターン
6B…レジスト開口部
7…電子線(ビーム)
8…断面矩形波状の凸条
21…位相マスク
22…光ファイバー
22A…光ファイバーのコア
23…KrFエキシマレーザ光(露光光)
24…干渉縞パターン
25A…0次光回折光
25B…プラス1次回折光
25C…マイナス1次回折光
26…凹溝
27…凸条
DESCRIPTION OF SYMBOLS 1 ... Phase mask 2 ... Quartz substrate 3 ... Concave groove 4 with a rectangular cross section ... Chrome thin film 4A ... Chrome thin film pattern 4B ... Chrome thin film opening 5 ... Phase mask blank 6 ... Electron beam resist 6A ... Resist pattern 6B ... Resist opening Part 7 ... Electron beam (beam)
8 ... ridges 21 having a rectangular wave shape in section ... phase mask 22 ... optical fiber 22A ... optical fiber core 23 ... KrF excimer laser light (exposure light)
24 ... Interference fringe pattern 25A ... 0th order light diffracted light 25B ... Plus 1st order diffracted light 25C ... Minus 1st order diffracted light 26 ... Groove 27 ... Projection

Claims (6)

透明基板の1面に格子状の断面略矩形の凹溝と凸条の繰り返しパタ−ンが設けられ、その繰り返しパタ−ンによる紫外線露光光の回折光相互の干渉縞により光導波路中に回折格子を形成する位相マスクにおいて、凹溝と凸条の繰り返しパタ−ンの断面形状寸法が、d:凹溝の溝深さ、w:凸条の幅、Λ:繰り返し周期、λ:露光波長、n2 :透明基板の屈折率、n1 :雰囲気の屈折率、d0 =λ/{2(n2 −n1 )}、f=w/Λとするとき、
d/d0 ≧1.03、f≦0.48
の関係を満足することを特徴とする回折格子作製用位相マスク。
A concave pattern having a substantially rectangular cross section in cross section and a convex stripe are provided on one surface of the transparent substrate, and a diffraction grating is formed in the optical waveguide by interference fringes of diffracted light of ultraviolet exposure light by the repeated pattern. The cross-sectional shape dimensions of the groove and ridge repetitive pattern are d: groove depth of the groove, w: width of the ridge, Λ: repetition period, λ: exposure wavelength, n 2 : refractive index of transparent substrate, n 1 : refractive index of atmosphere, d 0 = λ / {2 (n 2 −n 1 )}, f = w / Λ
d / d 0 ≧ 1.03, f ≦ 0.48
A phase mask for manufacturing a diffraction grating, characterized by satisfying the relationship:
露光光がS偏光であり、
d/d0 ≧1.03、f≦0.47
の関係を満足することを特徴とする請求項1記載の回折格子作製用位相マスク。
The exposure light is S-polarized light;
d / d 0 ≧ 1.03, f ≦ 0.47
The phase mask for producing a diffraction grating according to claim 1, wherein the following relationship is satisfied.
露光光がP偏光であり、
d/d0 ≧1.05、f≦0.48
の関係を満足することを特徴とする請求項1記載の回折格子作製用位相マスク。
The exposure light is P-polarized light,
d / d 0 ≧ 1.05, f ≦ 0.48
The phase mask for producing a diffraction grating according to claim 1, wherein the following relationship is satisfied.
露光光がランダム偏光であり、
d/d0 ≧1.04、f≦0.48
の関係を満足することを特徴とする請求項1記載の回折格子作製用位相マスク。
The exposure light is randomly polarized,
d / d 0 ≧ 1.04, f ≦ 0.48
The phase mask for producing a diffraction grating according to claim 1, wherein the following relationship is satisfied.
透明基板が合成石英からなることを特徴とする請求項1から4の何れか1項記載の回折格子作製用位相マスク。 The phase mask for producing a diffraction grating according to any one of claims 1 to 4, wherein the transparent substrate is made of synthetic quartz. 請求項1から5の何れか1項記載の回折格子作製用位相マスクを用いて露光して作製されてなることを特徴とする光ファイバーグレーティング。 An optical fiber grating produced by exposure using the phase mask for producing a diffraction grating according to any one of claims 1 to 5.
JP2003378590A 2003-11-07 2003-11-07 Diffraction grating phase mask Expired - Lifetime JP4824273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378590A JP4824273B2 (en) 2003-11-07 2003-11-07 Diffraction grating phase mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378590A JP4824273B2 (en) 2003-11-07 2003-11-07 Diffraction grating phase mask

Publications (2)

Publication Number Publication Date
JP2005141075A true JP2005141075A (en) 2005-06-02
JP4824273B2 JP4824273B2 (en) 2011-11-30

Family

ID=34688929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378590A Expired - Lifetime JP4824273B2 (en) 2003-11-07 2003-11-07 Diffraction grating phase mask

Country Status (1)

Country Link
JP (1) JP4824273B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268907A (en) * 2007-03-27 2008-11-06 Dainippon Printing Co Ltd Phase mask for manufacturing diffraction grating
JP2009103786A (en) * 2007-10-22 2009-05-14 Dainippon Printing Co Ltd Method for manufacturing diffraction grating using phase mask for manufacturing diffraction grating
JP2011039094A (en) * 2009-08-06 2011-02-24 Dainippon Printing Co Ltd Phase mask for making diffraction grating
JP2011128619A (en) * 2009-12-15 2011-06-30 Toyota Motor Engineering & Manufacturing North America Inc Diffraction grating structure for dividing light
JP2012027049A (en) * 2010-07-20 2012-02-09 Dainippon Printing Co Ltd Hologram
TWI414034B (en) * 2009-08-21 2013-11-01 Asml Netherlands Bv Inspection method and apparatus
JP2016513293A (en) * 2013-08-01 2016-05-12 エルジー・ケム・リミテッド Exposure equipment
WO2016185602A1 (en) * 2015-05-21 2016-11-24 ナルックス株式会社 Diffraction optical element
EP3312674A1 (en) * 2016-10-21 2018-04-25 Thomson Licensing A photolithography device for generating pattern on a photoresist substrate
US11061245B2 (en) 2016-03-24 2021-07-13 Interdigital Ce Patent Holdings Device for forming nanojet beams in a near zone, from incident electromagnetic waves
US11079523B2 (en) 2016-10-21 2021-08-03 Interdigital Ce Patent Holdings Device and method for shielding at least one sub-wavelength-scale object from an incident electromagnetic wave
US11275252B2 (en) 2016-10-21 2022-03-15 Interdigital Ce Patent Holdings Device for forming at least one tilted focused beam in the near zone, from incident electromagnetic waves
US11396474B2 (en) 2017-04-07 2022-07-26 Interdigital Ce Patent Holdings, Sas Method for manufacturing a device for forming at least one focused beam in a near zone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140497A (en) * 1993-07-19 1995-06-02 At & T Corp Method for selective change of refractive index of optical transmission body and optical transmission device with fluctuating refractive index
JPH10142413A (en) * 1996-11-04 1998-05-29 Lucent Technol Inc Production of continuously chirped phase mask

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140497A (en) * 1993-07-19 1995-06-02 At & T Corp Method for selective change of refractive index of optical transmission body and optical transmission device with fluctuating refractive index
JPH10142413A (en) * 1996-11-04 1998-05-29 Lucent Technol Inc Production of continuously chirped phase mask

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268907A (en) * 2007-03-27 2008-11-06 Dainippon Printing Co Ltd Phase mask for manufacturing diffraction grating
JP2009103786A (en) * 2007-10-22 2009-05-14 Dainippon Printing Co Ltd Method for manufacturing diffraction grating using phase mask for manufacturing diffraction grating
JP2011039094A (en) * 2009-08-06 2011-02-24 Dainippon Printing Co Ltd Phase mask for making diffraction grating
TWI414034B (en) * 2009-08-21 2013-11-01 Asml Netherlands Bv Inspection method and apparatus
JP2011128619A (en) * 2009-12-15 2011-06-30 Toyota Motor Engineering & Manufacturing North America Inc Diffraction grating structure for dividing light
JP2016153919A (en) * 2009-12-15 2016-08-25 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Diffraction grating structure for dividing light
JP2012027049A (en) * 2010-07-20 2012-02-09 Dainippon Printing Co Ltd Hologram
JP2016513293A (en) * 2013-08-01 2016-05-12 エルジー・ケム・リミテッド Exposure equipment
WO2016185602A1 (en) * 2015-05-21 2016-11-24 ナルックス株式会社 Diffraction optical element
US11061245B2 (en) 2016-03-24 2021-07-13 Interdigital Ce Patent Holdings Device for forming nanojet beams in a near zone, from incident electromagnetic waves
US11163175B2 (en) 2016-03-24 2021-11-02 Interdigital Ce Patent Holdings Device for forming a field intensity pattern in the near zone, from incident electromagnetic waves
EP3312674A1 (en) * 2016-10-21 2018-04-25 Thomson Licensing A photolithography device for generating pattern on a photoresist substrate
WO2018073427A1 (en) * 2016-10-21 2018-04-26 Thomson Licensing A photolithography device for generating pattern on a photoresist substrate
US10678127B2 (en) 2016-10-21 2020-06-09 Interdigital Ce Patent Holdings, Sas Photolithography device for generating pattern on a photoresist substrate
US11079523B2 (en) 2016-10-21 2021-08-03 Interdigital Ce Patent Holdings Device and method for shielding at least one sub-wavelength-scale object from an incident electromagnetic wave
US11275252B2 (en) 2016-10-21 2022-03-15 Interdigital Ce Patent Holdings Device for forming at least one tilted focused beam in the near zone, from incident electromagnetic waves
US11396474B2 (en) 2017-04-07 2022-07-26 Interdigital Ce Patent Holdings, Sas Method for manufacturing a device for forming at least one focused beam in a near zone

Also Published As

Publication number Publication date
JP4824273B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
US5413884A (en) Grating fabrication using electron beam lithography
US6514674B1 (en) Method of forming an optical element
JP4824273B2 (en) Diffraction grating phase mask
US6200711B1 (en) Phase mask for manufacturing diffraction grating, and method of manufacture
JP5224027B2 (en) Diffraction grating fabrication method using phase mask for diffraction grating fabrication
WO1999001787A1 (en) Phase mask for machining optical fibers and method of manufacturing the same
JP3290861B2 (en) Exposure mask and pattern forming method
JP2001042114A (en) Production of optical element
JPH0435726B2 (en)
JP5170401B2 (en) Diffraction grating phase mask
US6466714B1 (en) Method of producing phase mask for fabricating optical fiber and optical fiber with bragg&#39;s diffraction grating produced by using the phase mask
JP4357803B2 (en) Phase mask for forming diffraction grating, method for manufacturing the same, and method for forming diffraction grating
JP2006339359A (en) Method of manufacturing fine structure, and electronic apparatus
JP3487492B2 (en) Method of manufacturing phase mask for producing diffraction grating
JP2001242313A (en) Method of manufacturing phase mask for processing of optical fiber and optical fiber with bragg diffraction grating manufactured by using that phase mask for processing of optical fiber
JP2000089014A (en) Phase mask for processing optical fiber and manufacture thereof
JP2007264476A (en) Method for forming periodical structure pattern and interference exposure apparatus
JPH0980738A (en) Production of phase shift photomask for working optical fiber
JP5360399B2 (en) Diffraction grating phase mask
JP3818518B2 (en) Manufacturing method of phase mask for optical fiber processing
Tennant et al. Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications
JPH11212246A (en) Phase mask for forming diffraction grating
JP3469570B2 (en) Manufacturing method of exposure mask
JP5887833B2 (en) Optical fiber processing phase mask and manufacturing method thereof
JPH0461331B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100225

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4824273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

EXPY Cancellation because of completion of term