JP2005136389A - Testpiece cooling system of focused ion beam apparatus - Google Patents

Testpiece cooling system of focused ion beam apparatus Download PDF

Info

Publication number
JP2005136389A
JP2005136389A JP2004286936A JP2004286936A JP2005136389A JP 2005136389 A JP2005136389 A JP 2005136389A JP 2004286936 A JP2004286936 A JP 2004286936A JP 2004286936 A JP2004286936 A JP 2004286936A JP 2005136389 A JP2005136389 A JP 2005136389A
Authority
JP
Japan
Prior art keywords
specimen
ion beam
focused ion
cooling system
beam apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004286936A
Other languages
Japanese (ja)
Inventor
In-Yong Song
仁 庸 宋
Chel-Jong Choi
哲 柊 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2005136389A publication Critical patent/JP2005136389A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide a testpiece cooling system of a focused ion beam apparatus, which has a simple structure and an excellent cooling effect. <P>SOLUTION: A specimen cooling system of a focused ion beam apparatus includes: a reaction chamber 21; a stage 22 which is installed in the reaction chamber 21; a testpiece holder 24 which is installed over the stage 22 and on which a testpiece 25 is placed; a heat transfer member 26 which is attached to the testpiece holder 24 and extends from the interior of the reaction chamber 21 to the outside so as to transfer heat, which is generated in the testpiece 25 during a micromachining process performed by the focused ion beam apparatus, to the outside of the reaction chamber 21; and a heat sink 28 which is connected to the heat transfer member 26 extending to the outside of the reaction chamber 21 and absorbs heat transferred by the heat transfer member 26. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、試片冷却システムに係り、より詳細には、集束イオンビームにより素子を微細加工する場合の高熱によって発生する素子の熱的損傷を防止できる集束イオンビーム装置の試片冷却システムに関する。   The present invention relates to a specimen cooling system, and more particularly to a specimen cooling system for a focused ion beam apparatus that can prevent thermal damage to the element caused by high heat when the element is microfabricated by a focused ion beam.

集束イオンビーム(Focused Ion Beam:FIB)装置は、集束されたイオンビームを加工する試片の特定の微細部位に照射して所定の微細加工をする装置である。FIBは、素子の微細加工、半導体工程の評価および分析、イオン注入工程、in−situ工程、二次イオン質量分析 (Secondary Ion Mass Spectrometry:SIMS)等の各種の分野で利用されている。   A focused ion beam (FIB) apparatus is an apparatus that performs a predetermined fine processing by irradiating a specific fine portion of a specimen to be processed with a focused ion beam. FIB is used in various fields such as device microfabrication, semiconductor process evaluation and analysis, ion implantation process, in-situ process, and secondary ion mass spectrometry (SIMS).

FIBを利用して透過型電子顕微鏡(Transmission Electron Microscope:TEM)用の試片を製作する場合、FIBは、試片の特定位置での高分解能分析に著しく貢献している。しかし、FIBを利用してTEM試片を製作した場合、従来のイオンミリング装置などにより製作した場合と比較して熱的損傷が発生し、また、試片自体が厚いため、結晶欠陥などを高分解能で観察するのが困難であるなどの短所がある。すなわち、FIBを利用してTEM試片を製作する場合、シリコンのように熱的に安定な物質では、熱による影響をほとんど受けず、熱による試片の構造変化が小さい。しかし、熱的に不安定な物質、例えば、高い熱伝導度を有する金属物質やInGaAsまたはInGaPなどの半導体物質をFIBで微細加工する場合、局部的に熱が発生する。これをTEMで観察すれば、熱的損傷による構造の変化が発見される。   When a specimen for a transmission electron microscope (TEM) is manufactured using the FIB, the FIB significantly contributes to high-resolution analysis at a specific position of the specimen. However, when a TEM specimen is manufactured using FIB, thermal damage occurs compared to the case where it is manufactured by a conventional ion milling apparatus, and since the specimen itself is thick, crystal defects are increased. There are disadvantages such as difficulty in observing with resolution. That is, when a TEM specimen is manufactured using FIB, a thermally stable material such as silicon is hardly affected by heat, and the structural change of the specimen due to heat is small. However, when a thermally unstable material, for example, a metal material having high thermal conductivity or a semiconductor material such as InGaAs or InGaP is finely processed by FIB, heat is locally generated. When this is observed with a TEM, structural changes due to thermal damage are discovered.

実際に30keVの加速電圧を有するFIBで製作した試片では、約20nmほどの深さまで損傷を受けていることが報告されている。   It has been reported that a specimen manufactured with FIB having an acceleration voltage of 30 keV is actually damaged to a depth of about 20 nm.

従来の温度調節装置の一つを図1に示す。図1は、特許文献1に開示された温度調節装置が適用された反応性イオンエッチング(Reactive Ion Etching:RIE)装置を示す概略的な断面図である。温度調節装置10は、支持体11の内部に設置された温度調節室12内に液体窒素を供給する液体窒素供給装置13と、前記支持体11を加熱する加熱装置14と、支持体11の温度を検出する温度センサー15,16とを具備する。温度センサー15,16はウェハーが載置された支持体11の温度を検出し、制御器18は、温度設定手段17で設定された温度に調節するため、液体窒素供給装置13と加熱装置14とを制御して前記支持体11を冷却または加熱する。   One conventional temperature control device is shown in FIG. FIG. 1 is a schematic cross-sectional view showing a reactive ion etching (RIE) apparatus to which the temperature control apparatus disclosed in Patent Document 1 is applied. The temperature control device 10 includes a liquid nitrogen supply device 13 that supplies liquid nitrogen into a temperature control chamber 12 installed inside the support 11, a heating device 14 that heats the support 11, and the temperature of the support 11. Temperature sensors 15 and 16 for detecting. The temperature sensors 15 and 16 detect the temperature of the support 11 on which the wafer is placed, and the controller 18 adjusts the temperature to the temperature set by the temperature setting means 17, so that the liquid nitrogen supply device 13, the heating device 14, Is controlled to cool or heat the support 11.

このような温度調節装置10は、低温の液体窒素または高温の気体窒素を、直接、装置内部に輸送し、さらに再び回収しなければならないので、装置が複雑になり、装置内部での窒素の漏れによって装置内部の真空調節に問題が発生することがある。
米国特許第5,892,207号明細書
Such a temperature control apparatus 10 has to transport low-temperature liquid nitrogen or high-temperature gaseous nitrogen directly to the inside of the apparatus and recover it again, which complicates the apparatus and causes nitrogen leakage inside the apparatus. May cause a problem in the vacuum adjustment inside the apparatus.
US Pat. No. 5,892,207

本発明は、前記従来技術の問題点を解決するため、簡単な構造で優れた冷却効果を有し、FIBによる各種プロセスにおける対象試片の熱的損傷を大きく減少させることができる試片冷却システムを提供することを目的とする。   In order to solve the problems of the prior art, the present invention has an excellent cooling effect with a simple structure, and can greatly reduce the thermal damage of the target specimen in various processes by FIB. The purpose is to provide.

本発明は、前記目的を達成するために、FIB装置の試片冷却システムにおいて、反応チャンバーと、前記反応チャンバーの内部に設けられるステージと、前記ステージ上部に装着されて前記試片を定着させる試片ホルダーと、前記試片ホルダーに取り付けられ、前記反応チャンバーの内部から外部に延設されて、FIB装置による微細加工工程で前記試片に発生する熱を前記反応チャンバーの外部に伝達する熱伝達部材と、前記反応チャンバーの外部に延設された前記熱伝達部材に連結され、前記熱伝達部材により伝達された熱を吸収するヒートシンクとを含むFIB装置の試片冷却システムを提供する。   In order to achieve the above object, the present invention provides a specimen cooling system for an FIB apparatus in which a reaction chamber, a stage provided in the reaction chamber, and a specimen mounted on the stage to fix the specimen are fixed. Heat transfer that is attached to the specimen holder and attached to the specimen holder, extends from the inside of the reaction chamber to the outside, and transfers heat generated in the specimen in the microfabrication process by the FIB apparatus to the outside of the reaction chamber. There is provided a specimen cooling system for a FIB apparatus including a member and a heat sink coupled to the heat transfer member extending outside the reaction chamber and absorbing heat transferred by the heat transfer member.

本発明において、前記試片ホルダーは、その表面に前記試片を定着させるためのトレンチ構造が形成されていることを特徴とする。   In the present invention, the specimen holder is characterized in that a trench structure for fixing the specimen is formed on the surface thereof.

本発明において、前記試片ホルダーは、Cu、Fe、AuおよびAgから選ばれる少なくとも1種を含む材料で形成されていることを特徴とする。   In the present invention, the specimen holder is formed of a material containing at least one selected from Cu, Fe, Au, and Ag.

本発明において、前記熱伝達部材が前記反応チャンバーの内部から外部に貫通する部位には、冷却ポートが設けられていることを特徴とする。   In the present invention, a cooling port is provided at a site where the heat transfer member penetrates from the inside of the reaction chamber to the outside.

本発明において、前記熱伝達部材は、ワイヤー状、棒状またはチューブ状のいずれか1種の形態であることを特徴とする。   In the present invention, the heat transfer member is in any one of a wire shape, a rod shape, and a tube shape.

本発明において、前記熱伝達部材は、前記試片ホルダーに接触する部位はワイヤー状の形態であり、前記冷却ポートを通って前記反応チャンバーの外部に延設される部位は棒状の形態であることを特徴とする。   In the present invention, the portion of the heat transfer member that contacts the specimen holder has a wire shape, and the portion that extends to the outside of the reaction chamber through the cooling port has a rod shape. It is characterized by.

本発明において、前記熱伝達部材および前記冷却ポートは、Cu、Fe、AuおよびAgから選ばれる少なくとも1種で形成されていることを特徴とする。   In the present invention, the heat transfer member and the cooling port are formed of at least one selected from Cu, Fe, Au, and Ag.

本発明において、前記ヒートシンクは、冷却媒体が入った冷却容器であることを特徴とする。   In the present invention, the heat sink is a cooling container containing a cooling medium.

本発明において、前記冷却媒体は、液体窒素または液体ヘリウムであることを特徴とする。   In the present invention, the cooling medium is liquid nitrogen or liquid helium.

本発明において、前記熱伝達部材は、その端部が前記冷却媒体に浸漬されていることを特徴とする。   In the present invention, the end portion of the heat transfer member is immersed in the cooling medium.

本発明において、前記ヒートシンクとしてペルチエ素子を使用してもよい。
本発明において、前記ステージと前記試片ホルダーの間に試片載置部がさらに設けられていることを特徴とする。
In the present invention, a Peltier element may be used as the heat sink.
In the present invention, a specimen mounting portion is further provided between the stage and the specimen holder.

本発明において、前記試片載置部は、ステンレススチール材で形成されていることを特徴とする。   In the present invention, the specimen mounting portion is formed of a stainless steel material.

本発明のFIB装置の試片冷却システムは、非常に簡単な構造で、かつ冷却効率等の性能が優れ、FIBによる工程で対象試片の熱的欠陥を大きく減少させることができる。   The specimen cooling system of the FIB apparatus of the present invention has a very simple structure and excellent performance such as cooling efficiency, and can greatly reduce the thermal defects of the object specimen in the FIB process.

以下、添付図面を参照して、本発明によるFIB装置の試片冷却システムの一実施形態についてより詳細に説明する。図2は、本発明によるFIB装置の試片冷却システムを採用したFIB装置の構造を示す概略的な断面図である。   Hereinafter, an embodiment of a specimen cooling system for an FIB apparatus according to the present invention will be described in more detail with reference to the accompanying drawings. FIG. 2 is a schematic cross-sectional view showing the structure of an FIB apparatus employing the FIB apparatus specimen cooling system according to the present invention.

図2に示すとおり、FIB装置は、試片25に対して所定の工程が行なわれるチャンバー21と、チャンバー21の内部に設けられ、試片25を搭載するステージ22と、試片載置部23とを備える。試片載置部23の上には、試片25を保持する試片ホルダー24が設けられる。試片ホルダー24は、所定の工程期間中、試片25で発生する熱をチャンバー21の外部に伝達する熱伝達部材26と連結されている。熱伝達部材26は、チャンバー21を貫通して外部に延設され、チャンバー21を貫通する部位には冷却ポート27を備え、この冷却ポート27によってチャンバー21の内部と外部とが遮断される。熱伝達部材26は、前記チャンバー21の内部から外部に延設されて、ヒートシンク28と連結されている。ここで、ヒートシンク28は、熱伝達部材26により伝えられた熱を吸収して結果的に試片25を冷却する役割を有する。   As shown in FIG. 2, the FIB apparatus includes a chamber 21 in which a predetermined process is performed on the specimen 25, a stage 22 provided inside the chamber 21, on which the specimen 25 is mounted, and a specimen mounting portion 23. With. On the specimen mounting portion 23, a specimen holder 24 for holding the specimen 25 is provided. The specimen holder 24 is connected to a heat transfer member 26 that transmits heat generated in the specimen 25 to the outside of the chamber 21 during a predetermined process period. The heat transfer member 26 extends outside through the chamber 21, and a part that penetrates the chamber 21 includes a cooling port 27, and the inside and outside of the chamber 21 are blocked by the cooling port 27. The heat transfer member 26 extends from the inside of the chamber 21 to the outside and is connected to the heat sink 28. Here, the heat sink 28 has a role of absorbing the heat transferred by the heat transfer member 26 and cooling the specimen 25 as a result.

ヒートシンク28は、冷却媒体29が入った冷却容器30(図3C参照)またはペルチエ素子などを用いることができる。例えば、ヒートシンク28が冷却媒体29が入った冷却容器30である場合、熱伝達部材26は、冷却容器30の内部に連結され、冷却媒体29に浸漬されている。前記冷却容器30とてしては、デュワーびんを用いることができる。熱伝達部材26は、図3Bに示すように、柔軟なワイヤー形態の熱伝導性ワイヤー26a、形状が固定された熱伝導性棒26b(図3B参照)、冷却チューブなどの形態に形成することができる。   As the heat sink 28, a cooling container 30 (see FIG. 3C) containing a cooling medium 29 or a Peltier element can be used. For example, when the heat sink 28 is the cooling container 30 containing the cooling medium 29, the heat transfer member 26 is connected to the inside of the cooling container 30 and is immersed in the cooling medium 29. As the cooling container 30, a Dewar bottle can be used. As shown in FIG. 3B, the heat transfer member 26 may be formed in the form of a heat conductive wire 26a in the form of a flexible wire, a heat conductive rod 26b (see FIG. 3B) having a fixed shape, a cooling tube, or the like. it can.

前記試片載置部23は、試片ホルダー24の冷却効率が分散されないようにステンレス材料を加工して形成することが望ましい。試片ホルダー24は、その上面に試片25を配置させ、FIBによる工程の間、前記試片25に局部的に発生する熱を前記熱伝達部材26に伝達する役割を有する。   The specimen mounting portion 23 is preferably formed by processing a stainless material so that the cooling efficiency of the specimen holder 24 is not dispersed. The specimen holder 24 has a role of disposing a specimen 25 on the upper surface thereof and transmitting heat generated locally in the specimen 25 to the heat transfer member 26 during the FIB process.

図3Aは、本発明によるFIB装置の試片冷却システムに用いられる試片ホルダー24の一実施形態を示す斜視図である。図3Aに示すとおり、試片ホルダー24の上面には、試片25が装着される(図2参照)ように、トレンチ構造24aが形成されている。試片ホルダー24は、工程に応じて各種の大きさのものが使用できる。このような試片ホルダー24は、前記のように、FIB装置を用いる工程期間中、前記試片25と接触して前記試片25から発生した熱を熱伝達部材26に伝達しなければならないので、熱伝達特性が良い材料で形成させることが望ましい。すなわち、試片ホルダー24は、Cu、Fe、AuおよびAgからなる群から選ばれる少なくとも1種を含む材料で形成することもでき、また、前記材料の2種以上を含む合金で形成することもできる。   FIG. 3A is a perspective view showing an embodiment of the specimen holder 24 used in the specimen cooling system of the FIB apparatus according to the present invention. As shown in FIG. 3A, a trench structure 24a is formed on the upper surface of the specimen holder 24 so that the specimen 25 is mounted (see FIG. 2). The specimen holder 24 can have various sizes depending on the process. Since the specimen holder 24 is in contact with the specimen 25 and transmits heat generated from the specimen 25 to the heat transfer member 26 during the process using the FIB apparatus as described above. It is desirable to form with a material having good heat transfer characteristics. That is, the specimen holder 24 can be formed of a material including at least one selected from the group consisting of Cu, Fe, Au, and Ag, or can be formed of an alloy including two or more of the materials. it can.

試片ホルダー24のトレンチ構造24a内に試片25を装着させた状態で試片25に発生する熱を熱伝達部材26に迅速に伝達するために、試片25と接触するトレンチ構造24aの隣接部24bのみを熱伝達特性の良い材料で形成してもよい。この場合、その他の部位24cは、前記トレンチ構造24aの隣接部24bの材料より熱伝達率が低い材料、例えば、ステンレススチールで形成することができる。熱伝達部材26は、試片ホルダー24の一側部、あるいは試片ホルダー24の下部に取り付けることができる。ただし、熱伝達部材26の取り付け位置が試片ホルダー24の下部である場合には、構造が比較的複雑になる。   In order to quickly transfer the heat generated in the specimen 25 to the heat transfer member 26 with the specimen 25 mounted in the trench structure 24a of the specimen holder 24, adjacent to the trench structure 24a in contact with the specimen 25. Only the portion 24b may be formed of a material having good heat transfer characteristics. In this case, the other portion 24c can be formed of a material having a lower heat transfer coefficient than the material of the adjacent portion 24b of the trench structure 24a, for example, stainless steel. The heat transfer member 26 can be attached to one side of the specimen holder 24 or to the lower part of the specimen holder 24. However, when the mounting position of the heat transfer member 26 is below the specimen holder 24, the structure becomes relatively complicated.

熱伝達部材26は、試片ホルダー24の一部と接触して試片ホルダー24の熱をチャンバー21の外部に伝達する機能を有する。このような熱伝達部材26は、その全体を細いワイヤ状、チューブ状または棒状の形態に形成できる。熱伝達特性の面では、全体が棒状の形態であることが望ましいが、工程期間中、試片25が装着された試片ホルダー24がチャンバー21の内部を移動できるように、熱伝達部材26の一部が、曲がりやすいワイヤー状の形態に形成されていてもよい。したがって、図3Bに示すように、熱伝達部材26は、試片ホルダー24に接触する部分は曲がりやすいワイヤー形態の熱伝達ワイヤー26aとし、残りの部分は熱伝達棒26bで形成することが望ましい。このような熱伝達部材26は、試片ホルダー24と同様に、熱伝導率が高い材料で形成することが望ましい。熱伝達部材26は、試片ホルダー24と同じ材料で形成してもよいし、あるいは熱伝導率が高い他の材料で形成してもよい。また、試片25の冷却効率を高くするために、熱伝達部材26は、その長さを短くし、その断面は比較的厚いことが望ましい。   The heat transfer member 26 has a function of contacting the part of the specimen holder 24 and transferring the heat of the specimen holder 24 to the outside of the chamber 21. Such a heat transfer member 26 can be formed into a thin wire shape, a tube shape or a rod shape as a whole. In terms of heat transfer characteristics, it is desirable that the whole is in the form of a rod, but the heat transfer member 26 of the heat transfer member 26 can be moved so that the sample holder 24 to which the sample 25 is mounted can move inside the chamber 21 during the process. A part may be formed in the wire-like form which is easy to bend. Therefore, as shown in FIG. 3B, the heat transfer member 26 is preferably formed of a heat transfer wire 26a in the form of a wire that easily bends in a portion that contacts the specimen holder 24, and the remaining portion is formed of a heat transfer rod 26b. Like the specimen holder 24, such a heat transfer member 26 is desirably formed of a material having high thermal conductivity. The heat transfer member 26 may be formed of the same material as that of the specimen holder 24, or may be formed of another material having a high thermal conductivity. Further, in order to increase the cooling efficiency of the specimen 25, it is desirable that the heat transfer member 26 has a short length and a relatively thick cross section.

熱伝達部材26が前記チャンバー21の内部から外部に抜け出す部位には、冷却ポート27が形成される。通常、チャンバー21の側壁または上部には、入出用ポートが形成されるが、本発明の冷却ポート27も前記入出用ポートの形態とそれほど異なるものではない。ただし、本発明において、冷却ポート27は、熱伝達部材26によりチャンバー21の内部から外部に熱が容易に伝達されるように、試片ホルダー24または熱伝達部材26と同じ材料を使用して形成してもよいし、熱伝導率が高い他の材料で形成してもよい。冷却ポート27は、Alで形成してもよいし、Cu、Fe、Au、Agなどで形成してもよい。チャンバー21の内部から外部へのガス漏れを防止するため、熱伝達部材26は、チャンバー21の内部に形成された部位と、チャンバー21の外部に延びて形成された部位とが、一体的に形成されていることが望ましい。   A cooling port 27 is formed at a portion where the heat transfer member 26 is pulled out from the inside of the chamber 21. Usually, an inlet / outlet port is formed on the side wall or upper portion of the chamber 21, but the cooling port 27 of the present invention is not so different from the form of the inlet / outlet port. However, in the present invention, the cooling port 27 is formed using the same material as the specimen holder 24 or the heat transfer member 26 so that heat is easily transferred from the inside of the chamber 21 to the outside by the heat transfer member 26. Alternatively, other materials having high thermal conductivity may be used. The cooling port 27 may be formed of Al, or may be formed of Cu, Fe, Au, Ag, or the like. In order to prevent gas leakage from the inside of the chamber 21 to the outside, the heat transfer member 26 is integrally formed with a portion formed inside the chamber 21 and a portion formed extending outside the chamber 21. It is desirable that

図3Cは、図3Bに示すヒートシンク28の断面図である。図3Cに示すとおり、ヒートシンク28は、冷却媒体29が入った冷却容器30でよい。チャンバー21の冷却ポート27から導出された熱伝達部材26は、冷却容器30と連結されている。熱伝達部材26は、冷却媒体29が入った冷却容器30の内部に延設され、その端部は、冷却媒体29の中に浸漬されている。冷却媒体29は、低温で安定な状態であることが望ましく、液体窒素または液体ヘリウムを用いることができる。冷却容器30に低温の液体窒素が入っている場合、冷却容器30内部の温度は約−179℃であるから、冷却容器30はこの温度を考慮して製作される。また、冷却容器30として、一般的な液体窒素または液体ヘリウムを保存する容器、例えば、デュワーびんを用いることもできる。本発明によるFIB装置の試片冷却システムでは、ヒートシンク28として、冷却媒体29が入った冷却容器30の他にペルチエ素子を用いることができる。   3C is a cross-sectional view of the heat sink 28 shown in FIG. 3B. As shown in FIG. 3C, the heat sink 28 may be a cooling container 30 containing a cooling medium 29. The heat transfer member 26 led out from the cooling port 27 of the chamber 21 is connected to the cooling container 30. The heat transfer member 26 extends inside the cooling container 30 containing the cooling medium 29, and its end is immersed in the cooling medium 29. The cooling medium 29 is desirably in a stable state at a low temperature, and liquid nitrogen or liquid helium can be used. When the cooling container 30 contains low-temperature liquid nitrogen, the temperature inside the cooling container 30 is about −179 ° C., and thus the cooling container 30 is manufactured in consideration of this temperature. Further, as the cooling container 30, a container for storing general liquid nitrogen or liquid helium, for example, a Dewar bottle can be used. In the specimen cooling system of the FIB apparatus according to the present invention, a Peltier element can be used as the heat sink 28 in addition to the cooling container 30 containing the cooling medium 29.

図4Aは、本発明によるFIB装置の試片冷却システムを利用した工程によって製造された素子の概略図および写真を示す。図4Aに示すとおり、試片25の表面の一部を微細加工し、トレンチ構造25aの間に厚さが約50nmないし100nmの膜25bを形成した。図4Aから、本発明によるFIB装置の試片冷却システムを利用した微細加工では、試片25に熱的損傷をほとんど生じないことが確認できる。このことは、従来の技術によって製作された同じ形態の素子を示す図4Bによって明確に説明される。   FIG. 4A shows a schematic view and a photograph of an element manufactured by a process using a specimen cooling system of an FIB apparatus according to the present invention. As shown in FIG. 4A, a part of the surface of the specimen 25 was finely processed to form a film 25b having a thickness of about 50 nm to 100 nm between the trench structures 25a. From FIG. 4A, it can be confirmed that the micro-processing using the specimen cooling system of the FIB apparatus according to the present invention hardly causes thermal damage to the specimen 25. This is clearly illustrated by FIG. 4B which shows the same form of the device made by the prior art.

図4Bは、本発明のFIB装置の試片冷却システムを利用して製作された試片と、従来の技術によって製造された試片とを比較する電子顕微鏡写真である。図4Bにおいて、従来の技術により製造されたトレンチ構造25aの領域と試片25の表面との間の境界部分Aを見ると、FIBによる工程で生じた熱的損傷によって境界部分Aの構造が破壊されて融けていることが分かる。しかし、本発明により製造された構造では、トレンチ構造25aの領域と試片25の平坦部との境界部分Bを見ると、冷却によって加工時に熱的損傷をほとんど受けずに境界領域が非常にきれいに形成されたことが分かる。   FIG. 4B is an electron micrograph comparing a specimen manufactured using the specimen cooling system of the FIB apparatus of the present invention with a specimen manufactured by a conventional technique. In FIG. 4B, when the boundary portion A between the region of the trench structure 25a manufactured by the conventional technique and the surface of the specimen 25 is viewed, the structure of the boundary portion A is destroyed due to thermal damage caused by the FIB process. You can see that it has melted. However, in the structure manufactured according to the present invention, when the boundary portion B between the region of the trench structure 25a and the flat portion of the specimen 25 is viewed, the boundary region is very clean with almost no thermal damage during processing due to cooling. You can see that it was formed.

また、図4Bに示す従来の技術および本発明により製造したそれぞれの素子におけるトレンチ構造25aの間の膜25bを試片25から分離し、その表面を観察した。図5Aないし図5Cは従来の技術により製造したものを撮影した電子顕微鏡写真であり、図6Aないし図6Cは本発明により製造したものを撮影した電子顕微鏡写真である。従来の技術によるトレンチ構造25aの間の膜25bについては、図5Aおよび図5Bに示すとおり、膜表面に、FIBによる加工で生じた熱的損傷Cが発見される。そして、図5Cに示すとおり、膜質が均一でないことがわかる。これとは異なり、図6Aないし図6Cの写真に示すとおり、本発明によって製造された膜の表面は、非常にきれいに形成されていることが分かる。すなわち、これは、本発明によるFIB装置の試片冷却システムを利用した工程の場合、熱による損傷をほとんど受けなかったことを意味する。   Further, the film 25b between the trench structures 25a in each of the elements manufactured by the conventional technique and the present invention shown in FIG. 4B was separated from the specimen 25, and the surface thereof was observed. FIGS. 5A to 5C are electron micrographs taken of the conventional technique, and FIGS. 6A to 6C are electron micrographs taken of the present invention. As for the film 25b between the trench structures 25a according to the prior art, as shown in FIGS. 5A and 5B, thermal damage C caused by processing by FIB is found on the film surface. As shown in FIG. 5C, it can be seen that the film quality is not uniform. On the other hand, as shown in the photographs of FIGS. 6A to 6C, it can be seen that the surface of the film manufactured according to the present invention is very clean. That is, this means that the process using the specimen cooling system of the FIB apparatus according to the present invention was hardly damaged by heat.

以上、図面に示された実施形態に基づいて、本発明を説明したが、前記実施形態は、単なる例示に過ぎず、本発明の範囲を限定するものではなく、望ましい実施形態の例示として解釈されなければならない。したがって、本発明の真の技術的保護範囲は特許請求の範囲に基づいて決定されるものである。   As described above, the present invention has been described based on the embodiments shown in the drawings. However, the embodiments are merely examples, and do not limit the scope of the present invention, and are interpreted as examples of desirable embodiments. There must be. Therefore, the true technical protection scope of the present invention is determined based on the claims.

本発明の試片冷却システムは、FIB装置を用いる分野に適用して、集束イオンビームによる微細加工工程で発生する熱的欠陥を大きく減少させることができ、例えば、素子の微細加工、半導体工程の評価および分析、イオン注入工程、in−situ工程およびSIMSなどに効果的に適用できる。   The specimen cooling system of the present invention can be applied to the field of using an FIB apparatus to greatly reduce thermal defects generated in a microfabrication process using a focused ion beam. It can be effectively applied to evaluation and analysis, ion implantation process, in-situ process and SIMS.

従来の技術におけるウェハーの温度調節装置を示す図である。It is a figure which shows the temperature control apparatus of the wafer in a prior art. 本発明による試片冷却システムを採用したFIB装置を示す概略的な断面図である。1 is a schematic cross-sectional view showing a FIB apparatus employing a specimen cooling system according to the present invention. 本発明によるFIB装置の試片冷却システムの主要部を示す図である。It is a figure which shows the principal part of the specimen cooling system of the FIB apparatus by this invention. 本発明によるFIB装置の試片冷却システムの主要部を示す図である。It is a figure which shows the principal part of the specimen cooling system of the FIB apparatus by this invention. 本発明によるFIB装置の試片冷却システムの主要部を示す図である。It is a figure which shows the principal part of the specimen cooling system of the FIB apparatus by this invention. 本発明によるFIB装置の試片冷却システムを装着したFIB装置により製作した試片およびその電子顕微鏡写真を示す図である。It is a figure which shows the specimen produced by the FIB apparatus equipped with the specimen cooling system of the FIB apparatus by this invention, and its electron micrograph. 本発明のFIB装置の試片冷却システムを利用して製作された試片と、従来の技術によって製造された試片とを比較する電子顕微鏡写真である。It is an electron micrograph which compares the specimen manufactured using the specimen cooling system of the FIB apparatus of this invention with the specimen manufactured by the prior art. 従来の技術により試片に形成されたトレンチ構造物の間の膜の表面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the film | membrane between the trench structures formed in the test piece by the prior art. 従来の技術により試片に形成されたトレンチ構造物の間の膜の表面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the film | membrane between the trench structures formed in the test piece by the prior art. 従来の技術により試片に形成されたトレンチ構造物の間の膜の表面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the film | membrane between the trench structures formed in the test piece by the prior art. 本発明により試片に形成されたトレンチ構造物の間の膜の表面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the film | membrane between the trench structures formed in the test piece by this invention. 本発明により試片に形成されたトレンチ構造物の間の膜の表面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the film | membrane between the trench structures formed in the test piece by this invention. 本発明により試片に形成されたトレンチ構造物の間の膜の表面を撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the surface of the film | membrane between the trench structures formed in the test piece by this invention.

符号の説明Explanation of symbols

10 温度調節装置
11 支持体
12 温度調節室
13 液体窒素供給装置
14 加熱装置
15、16 温度センサー
17 温度設定手段
18 制御器
21 チャンバー
22 ステージ
23 試片載置部
24 試片ホルダー
24a トレンチ構造
24b トレンチ構造形成部位の試片ホルダー部
25 試片
26 熱伝達部材
26a 熱伝達ワイヤー
26b 熱伝達棒
27 冷却ポート
28 ヒートシンク
29 冷却媒体
30 冷却容器
DESCRIPTION OF SYMBOLS 10 Temperature control apparatus 11 Support body 12 Temperature control chamber 13 Liquid nitrogen supply apparatus 14 Heating apparatus 15, 16 Temperature sensor 17 Temperature setting means 18 Controller 21 Chamber 22 Stage 23 Specimen mounting part 24 Specimen holder 24a Trench structure 24b Trench Specimen holder part of structure forming part 25 Specimen 26 Heat transfer member 26a Heat transfer wire 26b Heat transfer rod 27 Cooling port 28 Heat sink 29 Cooling medium 30 Cooling container

Claims (15)

集束イオンビーム装置の試片冷却システムにおいて、
反応チャンバーと、
前記反応チャンバーの内部に設けられるステージと、
前記ステージ上部に装着されて前記試片を定着させる試片ホルダーと、
前記試片ホルダーに取り付けられ、前記反応チャンバーの内部から外部に延設されて、集束イオンビーム装置による微細加工行程で前記試片に発生する熱を前記反応チャンバーの外部に伝達する熱伝達部材と、
前記反応チャンバーの外部に延設された前記熱伝達部材に連結され、前記熱伝達部材により伝達された熱を吸収するヒートシンクとを含むことを特徴とする集束イオンビーム装置の試片冷却システム。
In the specimen cooling system of the focused ion beam device,
A reaction chamber;
A stage provided inside the reaction chamber;
A specimen holder mounted on the stage to fix the specimen;
A heat transfer member attached to the specimen holder, extending from the inside of the reaction chamber to the outside, and transmitting heat generated in the specimen in a microfabrication process by a focused ion beam device to the outside of the reaction chamber; ,
A specimen cooling system for a focused ion beam apparatus, comprising: a heat sink coupled to the heat transfer member extending outside the reaction chamber and absorbing heat transferred by the heat transfer member.
前記試片ホルダーは、その表面に前記試片を定着させるためのトレンチ構造が形成されていることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   The specimen cooling system for a focused ion beam apparatus according to claim 1, wherein the specimen holder has a trench structure for fixing the specimen on a surface thereof. 前記試片ホルダーは、Cu、Fe、AuおよびAgから選ばれる少なくとも1種を含む材料で形成されていることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   2. The specimen cooling system for a focused ion beam apparatus according to claim 1, wherein the specimen holder is made of a material containing at least one selected from Cu, Fe, Au, and Ag. 前記ステージと前記試片ホルダーの間に試片載置部がさらに設けられていることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   2. The specimen cooling system for a focused ion beam apparatus according to claim 1, further comprising a specimen mounting portion provided between the stage and the specimen holder. 前記試片載置部は、ステンレススチール材で形成されていることを特徴とする請求項4に記載の集束イオンビーム装置の試片冷却システム。   The specimen cooling system of the focused ion beam apparatus according to claim 4, wherein the specimen mounting part is formed of a stainless steel material. 前記反応チャンバーは、前記熱伝達部材が前記反応チャンバーの内部から外部に貫通する部位に、冷却ポートを備えることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   The specimen cooling system of the focused ion beam apparatus according to claim 1, wherein the reaction chamber includes a cooling port at a portion where the heat transfer member penetrates from the inside of the reaction chamber to the outside. 前記冷却ポートは、Cu、Fe、AuおよびAgから選ばれる少なくとも1種を含む材料で形成されていることを特徴とする請求項6に記載の集束イオンビーム装置の試片冷却システム。   The specimen cooling system of the focused ion beam apparatus according to claim 6, wherein the cooling port is formed of a material containing at least one selected from Cu, Fe, Au, and Ag. 前記熱伝達部材は、前記試片ホルダーに接触する部位はワイヤー状の形態であり、前記冷却ポートを通って前記反応チャンバーの外部に延設される部位は棒状の形態であることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   The heat transfer member has a wire-like shape at a portion that contacts the specimen holder, and a portion that extends to the outside of the reaction chamber through the cooling port has a rod-like shape. The specimen cooling system of the focused ion beam apparatus according to claim 1. 前記熱伝達部材は、ワイヤー状、棒状またはチューブ状のいずれか1種の形態であることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   2. The specimen cooling system for a focused ion beam apparatus according to claim 1, wherein the heat transfer member has one of a wire shape, a rod shape, and a tube shape. 前記熱伝達部材は、Cu、Fe、AuおよびAgから選ばれる少なくとも1種を含む材料で形成されていることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   The specimen cooling system of the focused ion beam apparatus according to claim 1, wherein the heat transfer member is formed of a material containing at least one selected from Cu, Fe, Au, and Ag. 前記ヒートシンクは、冷却媒体が入った冷却容器であることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   The specimen cooling system of the focused ion beam apparatus according to claim 1, wherein the heat sink is a cooling container containing a cooling medium. 前記熱伝達部材は、前記冷却容器の内部に延設され、その端部が前記冷却媒体に浸漬されていることを特徴とする請求項11に記載の集束イオンビーム装置の試片冷却システム。   12. The specimen cooling system for a focused ion beam apparatus according to claim 11, wherein the heat transfer member extends inside the cooling container, and an end of the heat transfer member is immersed in the cooling medium. 前記冷却媒体が、液状窒素または液状ヘリウムであることを特徴とする請求項12に記載の集束イオンビーム装置の試片冷却システム。   13. The specimen cooling system for a focused ion beam apparatus according to claim 12, wherein the cooling medium is liquid nitrogen or liquid helium. 前記冷却容器は、デュワーびんであることを特徴とする請求項12に記載の集束イオンビーム装置の試片冷却システム。   The specimen cooling system of the focused ion beam apparatus according to claim 12, wherein the cooling container is a Dewar bottle. 前記ヒートシンクは、ペルチエ素子であることを特徴とする請求項1に記載の集束イオンビーム装置の試片冷却システム。   The specimen cooling system of the focused ion beam apparatus according to claim 1, wherein the heat sink is a Peltier element.
JP2004286936A 2003-10-28 2004-09-30 Testpiece cooling system of focused ion beam apparatus Withdrawn JP2005136389A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030075629A KR20050040434A (en) 2003-10-28 2003-10-28 Specimen cooling system of focused ion beam apparatus

Publications (1)

Publication Number Publication Date
JP2005136389A true JP2005136389A (en) 2005-05-26

Family

ID=34511145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286936A Withdrawn JP2005136389A (en) 2003-10-28 2004-09-30 Testpiece cooling system of focused ion beam apparatus

Country Status (3)

Country Link
US (1) US20050086946A1 (en)
JP (1) JP2005136389A (en)
KR (1) KR20050040434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283461A (en) * 2008-05-19 2009-12-03 E Hong Instruments Co Ltd Pre-cryogenic electron microscope specimen holder
KR20210036267A (en) 2019-09-25 2021-04-02 가부시키가이샤 히다치 하이테크 사이언스 Sample holder and charged particle beam device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070283709A1 (en) * 2006-06-09 2007-12-13 Veeco Instruments Inc. Apparatus and methods for managing the temperature of a substrate in a high vacuum processing system
KR100841070B1 (en) * 2006-11-20 2008-06-24 재단법인서울대학교산학협력재단 Cooling system, apparatus for analyzing material properties having the same and method for analyzing material properties using the same
US8397519B2 (en) * 2008-03-14 2013-03-19 The Cooper Union For The Advancement Of Science And Art Bottle stand with active cooling
US20090323287A1 (en) * 2008-06-25 2009-12-31 Joseph Martin Patterson Integrated Circuit Cooling Apparatus for Focused Beam Processes
US8384050B2 (en) * 2010-04-11 2013-02-26 Gatan, Inc. Ion beam sample preparation thermal management apparatus and methods
KR101140509B1 (en) * 2010-09-14 2012-04-30 삼성테크윈 주식회사 Pulsed laser deposition system with cooling substrate and light emitting diode unit using the same
DE102011002583B9 (en) * 2011-01-12 2018-06-28 Carl Zeiss Microscopy Gmbh Particle beam apparatus and method for processing and / or analyzing a sample
US8237105B1 (en) 2011-02-03 2012-08-07 Northrop Grumman Guidance & Electronics Company, Inc. Magneto-optical trap for cold atom beam source
KR101234604B1 (en) * 2011-09-28 2013-02-19 한국기초과학지원연구원 Cryo stage for analysis of bio-sample by epma
CN103207108A (en) * 2013-04-08 2013-07-17 上海大学 Method for obtaining solidification structure of single microparticles at large cooling speed
CN103335475B (en) * 2013-07-11 2015-11-18 太原科技大学 A kind of liquid nitrogen and semiconductor freezer
EP2853847B1 (en) * 2013-09-30 2016-02-03 Fei Company Preparation of cryogenic sample for charged-particle microscopy
KR102317216B1 (en) * 2017-06-30 2021-10-26 한국전력공사 Measurement apparatus of ice adhesion properties and measurement method ice adhesion properties using the same
KR102491082B1 (en) * 2020-10-30 2023-01-26 한국원자력연구원 Superconductor mounting apparatus and mounting installation for electron beam irradiation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500688A (en) * 1982-04-20 1984-04-19 ザ ユニバ−シテイ コ−ト オブ ザ ユニバ−シテイ オブ グラスゴ− Low temperature stage for trace analysis
JPH09157846A (en) * 1995-12-01 1997-06-17 Teisan Kk Temperature controller
US5747818A (en) * 1996-10-21 1998-05-05 Schlumberger Technologies Inc. Thermoelectric cooling in gas-assisted FIB system
WO1998028776A2 (en) * 1996-12-23 1998-07-02 Koninklijke Philips Electronics N.V. Particle-optical apparatus including a low-temperature specimen holder
US20010016302A1 (en) * 1999-12-28 2001-08-23 Nikon Corporation Wafer chucks allowing controlled reduction of substrate heating and rapid substrate exchange
NL1021376C1 (en) * 2002-09-02 2004-03-03 Fei Co Method for obtaining a particle-optical image of a sample in a particle-optical device.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283461A (en) * 2008-05-19 2009-12-03 E Hong Instruments Co Ltd Pre-cryogenic electron microscope specimen holder
KR20210036267A (en) 2019-09-25 2021-04-02 가부시키가이샤 히다치 하이테크 사이언스 Sample holder and charged particle beam device
US11538656B2 (en) 2019-09-25 2022-12-27 Hitachi High Tech Science Corporation Sample holder and charged particle beam device

Also Published As

Publication number Publication date
US20050086946A1 (en) 2005-04-28
KR20050040434A (en) 2005-05-03

Similar Documents

Publication Publication Date Title
JP2005136389A (en) Testpiece cooling system of focused ion beam apparatus
JP4865626B2 (en) Particle-optical apparatus with temperature switch
JP6053113B2 (en) Method for evaluating and studying samples in ETEM
Rykaczewski et al. How nanorough is rough enough to make a surface superhydrophobic during water condensation?
KR101665221B1 (en) Cryogenic specimen holder and cooling source container
US8604446B2 (en) Devices and methods for cryo lift-out with in situ probe
EP3652775B1 (en) Cryotransfer system
TWI455239B (en) Cam lock electrode clamp
Bott et al. Design principles of a variable temperature scanning tunneling microscope
US20030089457A1 (en) Apparatus for controlling a thermal conductivity profile for a pedestal in a semiconductor wafer processing chamber
EP3895196B1 (en) Cryogenic ultra-high vacuum suitcase
JPH06349916A (en) Method and equipment for detection of particle on substrate
Kim et al. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability
TW502366B (en) Wafer clamping apparatus and method
JP2012132921A (en) Device for cooling sample during ion beam processing
CN105474348A (en) Anti-contamination trap, and vacuum application device
EP1852889A2 (en) Particle-optical apparatus with temperature switch
Ravishankar et al. Electric field singularity assisted nanopatterning
US11415463B2 (en) Contactless workpiece temperature sensor
JP2001004505A (en) Gate valve, sample treatment device equipped therewith and sample treatment method
Ichinokawa et al. Behaviors of small molten metal islands on several substrates
Pieper et al. Versatile system for the temperature-controlled preparation of oxide crystal surfaces
Pearl et al. Proximity heater for elevated temperature in situ vacuum scanning tunneling microscopy of metal surfaces
Pathak et al. Carbon nanotube (CNT) fins for enhanced cooling of shape memory alloy wire
Morimoto et al. A new heating stage for transmission electron microscopy up to 1300° C

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060324