JP2005136333A - Concentrating solar cell and method for manufacturing compound semiconductor solar cell including the same - Google Patents

Concentrating solar cell and method for manufacturing compound semiconductor solar cell including the same Download PDF

Info

Publication number
JP2005136333A
JP2005136333A JP2003372944A JP2003372944A JP2005136333A JP 2005136333 A JP2005136333 A JP 2005136333A JP 2003372944 A JP2003372944 A JP 2003372944A JP 2003372944 A JP2003372944 A JP 2003372944A JP 2005136333 A JP2005136333 A JP 2005136333A
Authority
JP
Japan
Prior art keywords
solar cell
layer
concentrating
compound semiconductor
concentrating solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003372944A
Other languages
Japanese (ja)
Inventor
Tatsuya Takamoto
達也 高本
Takaaki Akoin
高明 安居院
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003372944A priority Critical patent/JP2005136333A/en
Publication of JP2005136333A publication Critical patent/JP2005136333A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concentrating solar cell having high photoelectric conversion rate, and to provide a method for manufacturing a compound semiconductor solar cell which effectively utilizes spaces. <P>SOLUTION: The concentrating solar cell 13 comprises an upper solar cell including an emitter layer made of AlInGaP or InGaP and a window layer formed on the emitter layer, an intermediate solar cell including an emitter layer made of InGaAs or GaAs, and a lower solar cell made of Ge, in this order starting from the side of a light-receiving surface. The concentrating solar cell 13 has an arrangement wherein the thickness of the emitter layer in the upper solar cell is 0.1μm or smaller, the sheet resistance of the emitter layer and the window layer altogether in the upper solar cell is 200 Ω/SQUARE or smaller, and the distance between grid electrodes set up on the side of the light-receiving surface is 0.15mm or smaller. The method for manufacturing the compound semiconductor solar cell 14, including a step of forming the concentrating solar cell 13 and a non-concentrating solar cell 12, is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、集光型太陽電池とこれを含む化合物半導体太陽電池の製造方法に関し、特に高い光電変換効率を有する集光型太陽電池とこれを含む化合物半導体太陽電池の製造方法に関する。   The present invention relates to a concentrating solar cell and a method for producing a compound semiconductor solar cell including the same, and particularly relates to a concentrating solar cell having high photoelectric conversion efficiency and a method for producing a compound semiconductor solar cell including the same.

近年、人工衛星等の宇宙機器の電源に使用される宇宙用太陽電池として、GaAs等のIII−V族化合物半導体を用いた多接合型の化合物半導体太陽電池を使用する例が増加しつつある。この多接合型の化合物半導体太陽電池は、従来から宇宙用太陽電池として広く用いられているSi太陽電池に比べて高い光電変換効率を期待することができるので、Si太陽電池では設計が困難であった小型衛星や大電力衛星等への使用に適している。   In recent years, an example of using a multi-junction type compound semiconductor solar cell using a III-V group compound semiconductor such as GaAs as a space solar cell used for a power source of space equipment such as an artificial satellite is increasing. This multi-junction compound semiconductor solar cell can be expected to have a higher photoelectric conversion efficiency than a Si solar cell that has been widely used as a space solar cell. Suitable for use on small satellites and high power satellites.

この中でも、地上用または宇宙用に限られず、現在最も高い光電変換効率を有する太陽電池は、例えばInGaP/InGaAs/Geの構造を有する3接合型の化合物半導体太陽電池である。この化合物半導体太陽電池は、例えば、AlInPからなる窓層とInGaPからなるエミッタ層とを含む上部太陽電池と、InGaAsからなるエミッタ層を含む中間部太陽電池と、Geからなる下部太陽電池とを受光面側からこの順序で含んでいる。そして、この化合物半導体太陽電池の上部太陽電池のエミッタ層の厚さを0.1μm以下とし、上部太陽電池の窓層とエミッタ層とを合わせた層のシート抵抗を200Ω/□以下とし、受光面側に設置されたグリッド電極の間隔を1mm程度とした場合には、非集光時に30%を超える光電変換効率が達成されている(非特許文献2、3参照)。   Among these, the solar cell having the highest photoelectric conversion efficiency at present is not limited to terrestrial use or space use, for example, is a three-junction type compound semiconductor solar cell having an InGaP / InGaAs / Ge structure. This compound semiconductor solar cell receives, for example, an upper solar cell including a window layer made of AlInP and an emitter layer made of InGaP, an intermediate solar cell including an emitter layer made of InGaAs, and a lower solar cell made of Ge. Includes in this order from the face side. The thickness of the emitter layer of the upper solar cell of this compound semiconductor solar cell is 0.1 μm or less, the sheet resistance of the combined layer of the window layer and the emitter layer of the upper solar cell is 200Ω / □ or less, and the light receiving surface When the interval between the grid electrodes installed on the side is about 1 mm, a photoelectric conversion efficiency exceeding 30% is achieved at the time of non-condensing (see Non-Patent Documents 2 and 3).

従来においては、非集光時に高い光電変換効率を有するこの非集光型太陽電池の受光面の面積を縮小することによって集光型太陽電池が製造されていた。しかしながら、この集光型太陽電池に集光された高強度の光が入射すると、光電流が増加し、直列抵抗による曲線因子(FF)の低下が生じて光電変換効率が大きく低下してしまうという問題があった。   Conventionally, a concentrating solar cell has been manufactured by reducing the area of the light receiving surface of the non-condensing solar cell having high photoelectric conversion efficiency when not condensing. However, when high-intensity light collected on this concentrating solar cell is incident, the photocurrent increases, the reduction of the fill factor (FF) due to series resistance occurs, and the photoelectric conversion efficiency is greatly reduced. There was a problem.

また、この非集光型太陽電池は宇宙用太陽電池として既に実用化されている。この宇宙用太陽電池としては、図9の模式的上面図に示すように、100mm径の宇宙用太陽電池100の全体に約40mm×70mmの矩形の非集光型太陽電池12が2枚含まれているものが使用されている。しかしながら、この宇宙用太陽電池においては、宇宙用太陽電池全体の大きさに対する非集光型太陽電池12が占める割合が少ないため、スペースを有効に活用できていないという問題があった。
T.Takamoto, T.Agui et al, “MULTIJUNCTION SOLAR CELL TECHNOLOGIES - HIGH EFFICIENCY,RADIATION RESISTANCE, AND CONCENTRATOR APPLICATIONS ”. T.Takamoto, et al, “Over 30% Efficient InGaP/GaAs tandem solar cells”,Appl.Phys.Lett.70,p.381(1997). T.Takamoto, T.Agui et al,“High Efficiency InGaP/InGaAs tandem Solar Cells on Ge Substrates”, Proceeding of the 28th PVSC,p.976(2000).
Further, this non-condensing solar cell has already been put into practical use as a space solar cell. As shown in the schematic top view of FIG. 9, the space solar cell includes two rectangular non-concentrating solar cells 12 of about 40 mm × 70 mm in the entire space solar cell 100 having a diameter of 100 mm. What is being used. However, in this space solar cell, there is a problem that the non-condensing solar cell 12 occupies a small proportion of the size of the space solar cell as a whole, so that the space cannot be effectively used.
T.Takamoto, T.Agui et al, “MULTIJUNCTION SOLAR CELL TECHNOLOGIES-HIGH EFFICIENCY, RADIATION RESISTANCE, AND CONCENTRATOR APPLICATIONS”. T. Takamoto, et al, “Over 30% Efficient InGaP / GaAs tandem solar cells”, Appl. Phys. Lett. 70, p. 381 (1997). T. Takamoto, T. Agui et al, “High Efficiency InGaP / InGaAs tandem Solar Cells on Ge Substrates”, Proceeding of the 28th PVSC, p.976 (2000).

本発明の目的は、高い光電変換効率を有する集光型太陽電池を提供することにある。また、本発明の目的は、スペースを有効に活用した化合物半導体太陽電池の製造方法を提供することにある。   An object of the present invention is to provide a concentrating solar cell having high photoelectric conversion efficiency. Moreover, the objective of this invention is providing the manufacturing method of the compound semiconductor solar cell which utilized space effectively.

本発明は、AlInGaPまたはInGaPからなるエミッタ層とエミッタ層上に形成された窓層とを含む上部太陽電池と、InGaAsまたはGaAsからなるエミッタ層を含む中間部太陽電池と、Geからなる下部太陽電池と、を受光面側からこの順序で含む集光型太陽電池であって、上部太陽電池のエミッタ層の厚さが0.1μm以下であり、上部太陽電池のエミッタ層と窓層とを合わせた層のシート抵抗が200Ω/□以下であって、受光面側に設置されたグリッド電極の間隔が0.15mm以下である集光型太陽電池である。   The present invention relates to an upper solar cell including an emitter layer made of AlInGaP or InGaP and a window layer formed on the emitter layer, an intermediate solar cell including an emitter layer made of InGaAs or GaAs, and a lower solar cell made of Ge. And in this order from the light receiving surface side, the thickness of the emitter layer of the upper solar cell is 0.1 μm or less, and the emitter layer and the window layer of the upper solar cell are combined This is a concentrating solar cell in which the sheet resistance of the layer is 200 Ω / □ or less, and the interval between the grid electrodes installed on the light receiving surface side is 0.15 mm or less.

ここで、本発明の集光型太陽電池の受光面の面積は、50mm2以下であることが好ましい。 Here, the area of the light receiving surface of the concentrating solar cell of the present invention is preferably 50 mm 2 or less.

さらに、本発明は、上記集光型太陽電池を含む化合物半導体太陽電池の製造方法であって、半導体基板の上方に半導体層を形成する工程と、半導体層の上方の一部に集光装置を設置して集光型太陽電池と非集光型太陽電池とを形成する工程とを含む化合物半導体太陽電池の製造方法である。   Furthermore, the present invention is a method for producing a compound semiconductor solar cell including the concentrating solar cell, wherein a step of forming a semiconductor layer above a semiconductor substrate, and a concentrating device on a part above the semiconductor layer are provided. It is the manufacturing method of a compound semiconductor solar cell including the process of installing and forming a concentrating solar cell and a non-condensing solar cell.

また、本発明の化合物半導体太陽電池の製造方法においては、集光型太陽電池を構成する半導体層と非集光型太陽電池を構成する半導体層とが同一のプロセスにて形成されることが好ましい。   Moreover, in the manufacturing method of the compound semiconductor solar cell of this invention, it is preferable that the semiconductor layer which comprises a concentrating solar cell and the semiconductor layer which comprises a non-condensing solar cell are formed in the same process. .

また、本発明の化合物半導体太陽電池の製造方法においては、集光型太陽電池の受光面の面積が50mm2以下であって、非集光型太陽電池の受光面の面積が100mm2以上であることが好ましい。 In the compound semiconductor solar cell manufacturing method of the present invention, the area of the light receiving surface of the concentrating solar cell is 50 mm 2 or less, and the area of the light receiving surface of the non-condensing solar cell is 100 mm 2 or more. It is preferable.

本発明によれば、集光時に光電変換効率が低下する非集光型太陽電池と同様の構造を用いた場合であっても高い光電変換効率を有する集光型太陽電池を提供することができる。また、本発明によれば、スペースを有効に活用した化合物半導体太陽電池の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where the same structure as the non-condensing type solar cell to which photoelectric conversion efficiency falls at the time of condensing is used, the concentrating type solar cell which has high photoelectric conversion efficiency can be provided. . Moreover, according to this invention, the manufacturing method of the compound semiconductor solar cell which utilized space effectively can be provided.

以下、本発明の実施の形態について説明する。なお、本願の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。   Embodiments of the present invention will be described below. In the drawings of the present application, the same reference numerals denote the same or corresponding parts.

本発明はAlInGaPまたはInGaPからなるエミッタ層とエミッタ層上に形成された窓層とを含む上部太陽電池と、InGaAsまたはGaAsからなるエミッタ層を含む中間部太陽電池と、Geからなる下部太陽電池とを受光面側からこの順序で含む集光型太陽電池であって、上部太陽電池のエミッタ層の厚さが0.1μm以下であり、上部太陽電池のエミッタ層と窓層とを合わせた層のシート抵抗が200Ω/□以下であって、受光面側に形成されたグリッド電極の間隔が0.15mm以下である集光型太陽電池である。   The present invention relates to an upper solar cell including an emitter layer made of AlInGaP or InGaP and a window layer formed on the emitter layer, an intermediate solar cell including an emitter layer made of InGaAs or GaAs, and a lower solar cell made of Ge. Are arranged in this order from the light receiving surface side, and the thickness of the emitter layer of the upper solar cell is 0.1 μm or less, and the layer of the emitter layer and the window layer of the upper solar cell is combined. This is a concentrating solar cell having a sheet resistance of 200Ω / □ or less and an interval between grid electrodes formed on the light receiving surface side of 0.15 mm or less.

これは、上述した30%を超える光電変換効率を達成する、InGaP/InGaAs/Geの構造を有する非集光型太陽電池の上部太陽電池のエミッタ層の厚さを0.1μm以下とし、上部太陽電池のエミッタ層と窓層とを合わせた層のシート抵抗を200Ω/□以下とした従来の技術的思想を採り入れつつ(非特許文献2、3参照)、さらに受光面側に形成されたグリッド電極の間隔を0.15mm以下とすることによって、特に高い光電変換効率が得られることを本発明者が見出したものである。ここで、グリッド電極の間隔は、図1の模式的上面図に示すように、本発明の集光型太陽電池の受光面側に設置された表面電極11における電極パッド部10と交差するグリッド電極8の間隔Xのことである。また、AlInGaPはInGaPよりもバンドギャップが大きいことから、上部太陽電池のエミッタ層を構成する材料にAlInGaPを用いることによってさらなる光電変換効率の向上を図ることができる点で好ましい。また、同様に、GaAsはInGaAsよりもバンドギャップが大きいことから、中間部太陽電池のエミッタ層を構成する材料にGaAsを用いることによってさらなる光電変換効率の向上を図ることができる点で好ましい。   This is because the thickness of the emitter layer of the upper solar cell of the non-concentrating solar cell having the structure of InGaP / InGaAs / Ge that achieves the above-described photoelectric conversion efficiency exceeding 30% is set to 0.1 μm or less. The grid electrode formed on the light receiving surface side while adopting the conventional technical idea that the sheet resistance of the combined emitter layer and window layer of the battery is 200Ω / □ or less (see Non-Patent Documents 2 and 3). The present inventors have found that a particularly high photoelectric conversion efficiency can be obtained by setting the distance of 0.15 mm or less. Here, as shown in the schematic top view of FIG. 1, the interval between the grid electrodes is a grid electrode intersecting with the electrode pad portion 10 in the surface electrode 11 installed on the light receiving surface side of the concentrating solar cell of the present invention. This is an interval X of 8. Moreover, since AlInGaP has a larger band gap than InGaP, it is preferable in that AlInGaP can be further improved by using AlInGaP as a material constituting the emitter layer of the upper solar cell. Similarly, since GaAs has a larger band gap than InGaAs, it is preferable in that photoelectric conversion efficiency can be further improved by using GaAs as a material constituting the emitter layer of the intermediate solar cell.

また、本発明の集光型太陽電池の受光面の面積は50mm2以下であることが好ましく、16mm2以下であることがより好ましく、1mm2以下であることがさらに好ましい。これは、受光面の面積が小さくなるにつれて、本発明の集光型太陽電池で発生する光電流が小さくなる(電流密度は変わらない)ことから直列抵抗による電圧降下が小さくなり、曲線因子(FF)が大きくなるためである。 The area of the light receiving surface of the concentrating solar cell of the present invention is preferably 50 mm 2 or less, more preferably 16 mm 2 or less, and further preferably 1 mm 2 or less. This is because the photocurrent generated in the concentrating solar cell of the present invention decreases (the current density does not change) as the area of the light receiving surface decreases, so that the voltage drop due to series resistance decreases, and the fill factor (FF ) Becomes larger.

そして、本発明においては、図2の模式的上面図に示すように、化合物半導体太陽電池14中における非集光型太陽電池12が占めるスペース以外のスペースに、この受光面の面積が小さいほど光電変換効率が大きい本発明の集光型太陽電池13を形成することができる。これによって、従来、有効に活用することができなかったスペースを有効に活用することができるだけでなく、非集光型太陽電池12と集光型太陽電池13とからなる化合物半導体太陽電池14の出力も向上させることができる。   In the present invention, as shown in the schematic top view of FIG. 2, the smaller the area of the light receiving surface in the space other than the space occupied by the non-condensing solar cell 12 in the compound semiconductor solar cell 14, The concentrating solar cell 13 of the present invention having high conversion efficiency can be formed. As a result, it is possible not only to effectively utilize a space that could not be effectively utilized in the past, but also to output the compound semiconductor solar cell 14 including the non-concentrating solar cell 12 and the concentrating solar cell 13. Can also be improved.

ここで、本発明においては、非集光型太陽電池12と集光型太陽電池13とが同一のプロセスで製造されることが好ましい。すなわち、非集光型太陽電池12と集光型太陽電池13を構成する材料および構造等が同一である場合には、非集光型太陽電池12と集光型太陽電池13(フレネルレンズ等の集光装置以外)とを同一のプロセスを用いて同時に形成することができるため、化合物半導体太陽電池14の製造コストを低減することができる。さらに、この化合物半導体太陽電池14は、非集光時に高い光電変換効率を有する非集光型太陽電池12と、集光時に高い光電変換効率を有する集光型太陽電池13とから構成されていることから、入射した太陽光エネルギを高い効率で電気エネルギに変換して、高い出力を得ることができる。   Here, in the present invention, it is preferable that the non-concentrating solar cell 12 and the concentrating solar cell 13 are manufactured by the same process. That is, when the materials and structures constituting the non-condensing solar cell 12 and the concentrating solar cell 13 are the same, the non-condensing solar cell 12 and the concentrating solar cell 13 (such as a Fresnel lens) The manufacturing cost of the compound semiconductor solar cell 14 can be reduced because the same process can be simultaneously formed using the same process. Furthermore, this compound semiconductor solar cell 14 is comprised from the non-condensing solar cell 12 which has high photoelectric conversion efficiency at the time of non-condensing, and the concentrating solar cell 13 which has high photoelectric conversion efficiency at the time of condensing. Therefore, it is possible to obtain high output by converting incident solar energy into electric energy with high efficiency.

また、非集光型太陽電池12の受光面の面積は、上述した集光型太陽電池13の受光面の面積よりも大きいことが好ましく、特に100mm2以上であることが好ましい。非集光型太陽電池12の受光面の面積が100mm2以上である場合には、電極パッド部の面積に対して受光面積が増加することで、非集光型太陽電池12の光電変換効率が向上する傾向にあるためである。 Further, the area of the light receiving surface of the non-concentrating solar cell 12 is preferably larger than the area of the light receiving surface of the concentrating solar cell 13 described above, and particularly preferably 100 mm 2 or more. When the area of the light receiving surface of the non-condensing solar cell 12 is 100 mm 2 or more, the photoelectric conversion efficiency of the non-condensing solar cell 12 is increased by increasing the light receiving area with respect to the area of the electrode pad portion. This is because it tends to improve.

図3に本発明の集光型太陽電池と非集光型太陽電池からなる化合物半導体太陽電池の好ましい一例の模式的な断面図を示す。この化合物半導体太陽電池は、厚さ150μmのp型Ge層1aと厚さ1μmのn型Ge層1bとからなる下部太陽電池1上に、厚さ300μmのn型GaAs層であるバッファ層2、厚さ0.02μmのn型InGaP層3aと厚さ0.02μmのp型AlGaAs層3bとからなるトンネル接合層3、厚さ0.1μmのp型InGaP層である裏面電界層4aと厚さ3μmのp型GaAs層であるベース層4bと厚さ0.1μmのn型GaAs層であるエミッタ層4cと厚さ0.03μmのn型AlInP層である窓層4dとからなる中間部太陽電池4、厚さ0.02μmのn型InGaP層5aと厚さ0.02μmのp型AlGaAs層5bとからなるトンネル接合層5、厚さ0.03μmのp型AlInP層である裏面電界層6aと厚さ4μmのp型AlInGaP層であるベース層6bと厚さ0.05μmのn型AlInGaP層であるエミッタ層6cと厚さ0.03μmのn型AlInP層である窓層6dとからなる上部太陽電池6およびn型GaAs層からなるキャップ層7がこの順序で形成された半導体層9が形成される。そして、半導体層9上にグリッド電極8が形成される。ここで、上部太陽電池6のエミッタ層6cと窓層6dとを合わせた層のシート抵抗は200Ω/□以下である。   FIG. 3 shows a schematic cross-sectional view of a preferred example of a compound semiconductor solar cell comprising the concentrating solar cell and the non-condensing solar cell of the present invention. This compound semiconductor solar cell includes a buffer layer 2, which is an n-type GaAs layer having a thickness of 300 μm, on a lower solar cell 1 composed of a p-type Ge layer 1a having a thickness of 150 μm and an n-type Ge layer 1b having a thickness of 1 μm. Tunnel junction layer 3 composed of an n-type InGaP layer 3a having a thickness of 0.02 μm and a p-type AlGaAs layer 3b having a thickness of 0.02 μm, a back surface field layer 4a which is a p-type InGaP layer having a thickness of 0.1 μm, and a thickness An intermediate solar cell comprising a base layer 4b which is a 3 μm p-type GaAs layer, an emitter layer 4c which is an n-type GaAs layer having a thickness of 0.1 μm, and a window layer 4d which is an n-type AlInP layer having a thickness of 0.03 μm. 4, a tunnel junction layer 5 composed of an n-type InGaP layer 5a having a thickness of 0.02 μm and a p-type AlGaAs layer 5b having a thickness of 0.02 μm, a back surface electric field layer 6a which is a p-type AlInP layer having a thickness of 0.03 μm, 4μ thickness An upper solar cell 6 comprising a base layer 6b which is a p-type AlInGaP layer, an emitter layer 6c which is an n-type AlInGaP layer having a thickness of 0.05 μm, and a window layer 6d which is an n-type AlInP layer having a thickness of 0.03 μm; A semiconductor layer 9 in which a cap layer 7 made of an n-type GaAs layer is formed in this order is formed. Then, the grid electrode 8 is formed on the semiconductor layer 9. Here, the sheet resistance of the layer including the emitter layer 6c and the window layer 6d of the upper solar cell 6 is 200Ω / □ or less.

この化合物半導体太陽電池に入射した太陽光は、波長の短い(エネルギの大きい)光から順次、上部太陽電池6、中間部太陽電池4および下部太陽電池1において吸収されていき、この太陽光によって発生したキャリアがエミッタ層およびベース層の接合部で分けられ、グリッド電極8で集められて外部に取り出される。ここで、窓層は、太陽光によって発生したキャリアがエミッタ層の表面欠陥等と再結合することによって消滅することを抑制するためにエミッタ層上に形成されている。また、裏面電界層は、内部電界を生じさせることによってベース層の表面欠陥等とキャリアとの再結合を抑制するためにベース層の下部に形成されている。また、トンネル接合層は、トンネル電流を利用して上部太陽電池6と中間部太陽電池4との間および中間部太陽電池4と下部太陽電池1との間の接続を良好なものとするために設けられている。また、キャップ層は、電極接触抵抗等の直列抵抗による電流損失を低減するために設けられている。   Sunlight incident on the compound semiconductor solar cell is absorbed in the upper solar cell 6, the intermediate solar cell 4 and the lower solar cell 1 in order from light having a short wavelength (high energy), and is generated by this solar light. The carriers thus separated are separated at the junction of the emitter layer and the base layer, collected by the grid electrode 8, and taken out to the outside. Here, the window layer is formed on the emitter layer in order to suppress disappearance of carriers generated by sunlight due to recombination with surface defects of the emitter layer. The back surface electric field layer is formed below the base layer in order to suppress recombination between the surface defects of the base layer and the carriers by generating an internal electric field. Further, the tunnel junction layer uses a tunnel current to improve the connection between the upper solar cell 6 and the intermediate solar cell 4 and between the intermediate solar cell 4 and the lower solar cell 1. Is provided. The cap layer is provided to reduce current loss due to series resistance such as electrode contact resistance.

図4に、この化合物半導体太陽電池の製造方法の好ましい一例のフローチャートを示す。まず、ステップ1(S1)において、MOCVD法(有機金属気相成長法)を用いて、110mm径のGaドープp型Ge基板(Ga濃度:5.0×1018cm-3)上に図3に示す半導体層9が形成される。この半導体層9の形成時にp型Ge基板上のn型GaAs層からn型ドーパントが拡散されてGe基板中にpn接合が形成され、下部太陽電池1が形成される。 In FIG. 4, the flowchart of a preferable example of the manufacturing method of this compound semiconductor solar cell is shown. First, in step 1 (S1), an MOCVD method (metal organic vapor phase epitaxy) is used to form FIG. 3 on a 110 mm diameter Ga-doped p-type Ge substrate (Ga concentration: 5.0 × 10 18 cm −3 ). The semiconductor layer 9 shown in FIG. When the semiconductor layer 9 is formed, the n-type dopant is diffused from the n-type GaAs layer on the p-type Ge substrate to form a pn junction in the Ge substrate, and the lower solar cell 1 is formed.

ここで、半導体層9の形成は、MOCVD装置内にp型Ge基板を設置し、MOCVD装置内の温度を例えば700℃にした状態で行なわれる。GaAs層の形成には、このMOCVD装置内に、TMG(トリメチルガリウム)とAsH3(アルシン)とが導入されて行なわれる。また、InGaP層の形成には、TMI(トリメチルインジウム)とPH3(ホスフィン)とTMGとが導入されて行なわれる。AlGaAs層の形成には、TMAl(トリメチルアルミニウム)とTMGとAsH3とが導入されて行なわれる。AlInP層の形成には、TMAlとTMIとPH3とが導入されて行なわれる。AlInGaP層の形成には、TMAlとTMIとTMGとPH3とが導入されて行なわれる。また、n型の半導体層の形成には、MOCVD装置内にSiH4(モノシラン)がさらに導入され、p型の半導体層の形成には、DEZn(ジエチルジンク)がさらに導入される。なお、トンネル接合層3、5を構成するp型AlGaAs層の形成には、DEZnの代わりにCBr4(四臭化炭素)が導入される。 Here, the formation of the semiconductor layer 9 is performed in a state where a p-type Ge substrate is placed in the MOCVD apparatus and the temperature in the MOCVD apparatus is set to 700 ° C., for example. The GaAs layer is formed by introducing TMG (trimethyl gallium) and AsH 3 (arsine) into the MOCVD apparatus. The InGaP layer is formed by introducing TMI (trimethylindium), PH 3 (phosphine), and TMG. The AlGaAs layer is formed by introducing TMAl (trimethylaluminum), TMG, and AsH 3 . The AlInP layer is formed by introducing TMAl, TMI, and PH 3 . The AlInGaP layer is formed by introducing TMAl, TMI, TMG, and PH 3 . Further, SiH 4 (monosilane) is further introduced into the MOCVD apparatus for the formation of the n-type semiconductor layer, and DEZn (diethyl zinc) is further introduced for the formation of the p-type semiconductor layer. Note that CBr 4 (carbon tetrabromide) is introduced in place of DEZn for forming the p-type AlGaAs layers constituting the tunnel junction layers 3 and 5.

次に、ステップ2(S2)において、キャップ層7上にグリッド電極8を含む表面電極が形成される。表面電極の形成は、まず、フォトリソグラフィ法によりキャップ層7上に表面電極の形状に孔が形成されたレジストパターンを形成した後、真空蒸着装置内に設置してGeを12%含むAuからなる層(厚さ:100nm)を抵抗加熱法により形成し、Ni層(厚さ:20nm)、Au層(厚さ:5000nm)を連続してEB蒸着法(電子ビーム蒸着法)により形成する。そして、リフトオフによってレジストを除去して、表面電極が形成される。   Next, in step 2 (S 2), a surface electrode including the grid electrode 8 is formed on the cap layer 7. The surface electrode is formed by first forming a resist pattern in which holes are formed in the shape of the surface electrode on the cap layer 7 by a photolithography method, and then setting the surface electrode in a vacuum vapor deposition apparatus to be made of Au containing 12% Ge. A layer (thickness: 100 nm) is formed by a resistance heating method, and a Ni layer (thickness: 20 nm) and an Au layer (thickness: 5000 nm) are successively formed by an EB vapor deposition method (electron beam vapor deposition method). Then, the resist is removed by lift-off to form a surface electrode.

次いで、ステップ3(S3)において、表面電極をマスクとして、表面電極が形成されていない部分のキャップ層7をアルカリ水溶液を用いて除去する。   Next, in step 3 (S3), using the surface electrode as a mask, the portion of the cap layer 7 where the surface electrode is not formed is removed using an alkaline aqueous solution.

続いて、ステップ4(S4)において、フォトリソグラフィ法によりメサエッチングをする形状に孔を形成したレジストパターンを形成し、孔が形成された部分の半導体層をアルカリ水溶液および酸溶液を用いてメサエッチングし、下部太陽電池1の表面の一部を露出させる。   Subsequently, in step 4 (S4), a resist pattern in which holes are formed in the shape to be mesa-etched by photolithography is formed, and the semiconductor layer in the portion where the holes are formed is mesa-etched using an alkaline aqueous solution and an acid solution. Then, a part of the surface of the lower solar cell 1 is exposed.

そして、ステップ5(S5)において、下部太陽電池1の裏面にAg層(厚さ:1000nm)からなる裏面電極をEB蒸着法により形成する。そして、露出している下部太陽電池1の表面に反射防止膜としてTiO2層(厚さ:50nm)とAl23層(厚さ:85nm)を順次、EB蒸着法により形成する。 In step 5 (S5), a back electrode made of an Ag layer (thickness: 1000 nm) is formed on the back surface of the lower solar cell 1 by EB vapor deposition. Then, a TiO 2 layer (thickness: 50 nm) and an Al 2 O 3 layer (thickness: 85 nm) are sequentially formed as an antireflection film on the exposed surface of the lower solar cell 1 by EB vapor deposition.

その後、ステップ6(S6)において、表面電極のシンタリングと、裏面電極および反射防止膜のアニーリングを兼ねて、窒素雰囲気中において例えば380℃の熱処理を行なう。   Thereafter, in step 6 (S6), a heat treatment at, for example, 380 ° C. is performed in a nitrogen atmosphere, both for the sintering of the front electrode and the annealing of the back electrode and the antireflection film.

最後に、ステップ7(S7)において、メサエッチングされたラインの中にダイシングラインが入るようにして半導体層9を切断し、半導体層9の上方の一部にフレネルレンズ等の集光装置を設置して、図2に示す化合物半導体太陽電池14が製造される。ここでは、化合物半導体太陽電池14として、40mm×70mmの矩形の非集光型太陽電池12(集光装置が設置されていない)が2枚、7mm×9mmの矩形の集光型太陽電池13(集光装置が設置されている)が38枚形成されている。   Finally, in step 7 (S7), the semiconductor layer 9 is cut so that the dicing line enters the mesa-etched line, and a light condensing device such as a Fresnel lens is installed above the semiconductor layer 9. Thus, the compound semiconductor solar cell 14 shown in FIG. 2 is manufactured. Here, as the compound semiconductor solar cell 14, two rectangular non-condensing solar cells 12 of 40 mm × 70 mm (no concentrating device is installed) and a rectangular concentrating solar cell 13 of 7 mm × 9 mm ( 38 pieces of light collecting devices are installed).

図5に、非集光型太陽電池12の電流−電圧特性を示す。ここで、非集光型太陽電池12の開放電圧(Voc)は2.567Vであり、短絡電流(Isc)は0.476Aであって、FFは0.872であった。また、非集光型太陽電池12の光電変換効率(Eff)は28.2%であった。なお、非集光型太陽電池12の電流−電圧特性は、AM0基準太陽光を照射するソーラーシュミレータを用いて測定された。   FIG. 5 shows current-voltage characteristics of the non-condensing solar cell 12. Here, the open circuit voltage (Voc) of the non-condensing solar cell 12 was 2.567 V, the short circuit current (Isc) was 0.476 A, and the FF was 0.872. Moreover, the photoelectric conversion efficiency (Eff) of the non-condensing solar cell 12 was 28.2%. In addition, the current-voltage characteristic of the non-condensing solar cell 12 was measured using a solar simulator that irradiates AM0 reference sunlight.

図6に、集光型太陽電池13の受光面の面積を変化させたときのFFの変化を示す。例えば、500倍に集光したとき(500sun)の集光型太陽電池13のFFは、集光型太陽電池13の受光面の面積が100mm2であるときは約0.86であり、49mm2であるときは約0.876となって大きく向上した。また、集光型太陽電池13の受光面の面積が16mm2(FF:約0.885)、1mm2(FF:約0.892)と小さくなるにつれて、FFはさらに向上した。 FIG. 6 shows changes in FF when the area of the light receiving surface of the concentrating solar cell 13 is changed. For example, the FF of the concentrating solar cell 13 when concentrating 500 times (500 sun) is about 0.86 when the area of the light receiving surface of the concentrating solar cell 13 is 100 mm 2 , and 49 mm 2. When it is, it is about 0.876, which is greatly improved. Further, the FF was further improved as the area of the light receiving surface of the concentrating solar cell 13 was reduced to 16 mm 2 (FF: about 0.885) and 1 mm 2 (FF: about 0.892).

図7に、集光型太陽電池13のグリッド電極の間隔を変化させたときのFFの変化を示す。ここで、集光倍率は250倍である。250倍の集光時における集光型太陽電池13のFFは、グリッド電極の間隔が0.15mmの場合に約0.845となった。なお、グリッド電極の間隔を0.15mmよりもさらに狭くしてもFFはあまり変化しなかった。   In FIG. 7, the change of FF when the space | interval of the grid electrode of the concentrating solar cell 13 is changed is shown. Here, the condensing magnification is 250 times. The FF of the concentrating solar cell 13 at the time of 250 times condensing was about 0.845 when the distance between the grid electrodes was 0.15 mm. Note that the FF did not change much even when the interval between the grid electrodes was made narrower than 0.15 mm.

図8に、集光型太陽電池13の受光面の面積を50mm2とし、グリッド電極の間隔を0.12mmとしたときの集光倍率の変化に対するEffの変化を示す。図8に示すように、通常の太陽光を100〜500倍集光したときに、Effが36%以上となって非常に高い光電変換効率が得られた。 FIG. 8 shows a change in Eff with respect to a change in the focusing magnification when the area of the light receiving surface of the concentrating solar cell 13 is 50 mm 2 and the grid electrode interval is 0.12 mm. As shown in FIG. 8, when normal sunlight was condensed 100 to 500 times, Eff was 36% or more, and very high photoelectric conversion efficiency was obtained.

なお、集光型太陽電池13の上記特性評価は、AM1.5G基準太陽光を照射するソーラーシュミレータの光をフレネルレンズで集光して行なわれた。   In addition, the said characteristic evaluation of the concentrating solar cell 13 was performed by condensing the light of the solar simulator which irradiates AM1.5G standard sunlight with a Fresnel lens.

また、本願において、GaAs層はGaとAsとを含む層のことをいう。また、InGaP層はInとGaとPとを含む層のことをいう。また、AlGaAs層はAlとGaとAsとを含む層のことをいう。また、AlInP層はAlとInとPとを含む層のことをいう。また、AlInGaP層はAlとInとGaとPとを含む層のことをいう。   In this application, the GaAs layer refers to a layer containing Ga and As. The InGaP layer refers to a layer containing In, Ga, and P. An AlGaAs layer is a layer containing Al, Ga, and As. An AlInP layer refers to a layer containing Al, In, and P. An AlInGaP layer is a layer containing Al, In, Ga, and P.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明によれば、高い光電変換効率を有する集光型太陽電池を提供することができ、また、スペースを有効に活用した高い光電変換効率を有する集光型太陽電池と非集光型太陽電池とからなる化合物半導体太陽電池の製造方法を提供することができるので、本発明は太陽電池分野に好適に利用することができる。   According to the present invention, a concentrating solar cell having high photoelectric conversion efficiency can be provided, and a concentrating solar cell and a non-condensing solar cell having high photoelectric conversion efficiency that effectively utilize space. Since the manufacturing method of the compound semiconductor solar cell which consists of these can be provided, this invention can be utilized suitably for the solar cell field | area.

本発明の集光型太陽電池の表面電極の好ましい一例の模式的な拡大上面図である。It is a typical enlarged top view of a preferable example of the surface electrode of the concentrating solar cell of this invention. 本発明の化合物半導体太陽電池の好ましい一例の模式的な上面図である。It is a typical top view of a preferable example of the compound semiconductor solar battery of the present invention. 本発明の化合物半導体太陽電池の好ましい一例の模式的な断面図である。It is typical sectional drawing of a preferable example of the compound semiconductor solar cell of this invention. 本発明の化合物半導体太陽電池の製造方法の好ましい一例を示したフローチャートである。It is the flowchart which showed a preferable example of the manufacturing method of the compound semiconductor solar cell of this invention. 本発明に用いられる非集光型太陽電池の電流−電圧特性を示した図である。It is the figure which showed the current-voltage characteristic of the non-condensing type solar cell used for this invention. 本発明の集光型太陽電池の受光面の面積を変化させたときのFFの変化を示した図である。It is the figure which showed the change of FF when changing the area of the light-receiving surface of the concentrating solar cell of this invention. 本発明の集光型太陽電池のグリッド電極の間隔を変化させたときのFFの変化を示した図である。It is the figure which showed the change of FF when the space | interval of the grid electrode of the concentrating solar cell of this invention is changed. 本発明の集光型太陽電池の集光倍率の変化に対するEffの変化を示した図である。It is the figure which showed the change of Eff with respect to the change of the condensing magnification of the concentrating solar cell of this invention. 従来の宇宙用太陽電池の一例の模式的な上面図である。It is a typical top view of an example of the conventional solar cell for space.

符号の説明Explanation of symbols

1 下部太陽電池、1a p型Ge層、1b n型Ge層、2 バッファ層、3,5 トンネル接合層、3a,5a n型InGaP層、3b,5b p型AlGaAs層、4 中間部太陽電池、4a,6a 裏面電界層、4b,6b ベース層、4c,6c エミッタ層、4d,6d 窓層、6 上部太陽電池、7 キャップ層、8 グリッド電極、9 半導体層、10 電極パッド部、11 表面電極、12 非集光型太陽電池、13 集光型太陽電池、14 化合物半導体太陽電池、100 宇宙用太陽電池。   1 lower solar cell, 1a p-type Ge layer, 1b n-type Ge layer, 2 buffer layer, 3,5 tunnel junction layer, 3a, 5a n-type InGaP layer, 3b, 5b p-type AlGaAs layer, 4 middle solar cell, 4a, 6a Back surface electric field layer, 4b, 6b Base layer, 4c, 6c Emitter layer, 4d, 6d Window layer, 6 Upper solar cell, 7 Cap layer, 8 Grid electrode, 9 Semiconductor layer, 10 Electrode pad part, 11 Surface electrode , 12 Non-condensing solar cell, 13 Concentrating solar cell, 14 Compound semiconductor solar cell, 100 Space solar cell.

Claims (5)

AlInGaPまたはInGaPからなるエミッタ層と前記エミッタ層上に形成された窓層とを含む上部太陽電池と、InGaAsまたはGaAsからなるエミッタ層を含む中間部太陽電池と、Geからなる下部太陽電池と、を受光面側からこの順序で含む集光型太陽電池であって、前記上部太陽電池のエミッタ層の厚さが0.1μm以下であり、前記上部太陽電池のエミッタ層と窓層とを合わせた層のシート抵抗が200Ω/□以下であって、前記受光面側に設置されたグリッド電極の間隔が0.15mm以下であることを特徴とする、集光型太陽電池。   An upper solar cell including an emitter layer made of AlInGaP or InGaP and a window layer formed on the emitter layer; an intermediate solar cell including an emitter layer made of InGaAs or GaAs; and a lower solar cell made of Ge. A concentrating solar cell including in this order from the light-receiving surface side, the emitter layer of the upper solar cell having a thickness of 0.1 μm or less, and a layer combining the emitter layer and the window layer of the upper solar cell The concentrating solar cell is characterized in that the sheet resistance is 200Ω / □ or less and the interval between the grid electrodes installed on the light receiving surface side is 0.15 mm or less. 前記集光型太陽電池の受光面の面積が50mm2以下であることを特徴とする、請求項1に記載の集光型太陽電池。 2. The concentrating solar cell according to claim 1, wherein an area of a light receiving surface of the concentrating solar cell is 50 mm 2 or less. 請求項1に記載の集光型太陽電池を含む化合物半導体太陽電池の製造方法であって、半導体基板の上方に半導体層を形成する工程と、前記半導体層の上方の一部に集光装置を設置して前記集光型太陽電池と非集光型太陽電池とを形成する工程とを含む、化合物半導体太陽電池の製造方法。   A method of manufacturing a compound semiconductor solar cell including the concentrating solar cell according to claim 1, wherein a step of forming a semiconductor layer above a semiconductor substrate, and a concentrating device on a part above the semiconductor layer The manufacturing method of a compound semiconductor solar cell including the process of installing and forming the said concentrating solar cell and a non-condensing solar cell. 前記集光型太陽電池を構成する半導体層と前記非集光型太陽電池を構成する半導体層とが同一のプロセスにて形成されることを特徴とする、請求項3に記載の化合物半導体太陽電池の製造方法。   4. The compound semiconductor solar cell according to claim 3, wherein the semiconductor layer constituting the concentrating solar cell and the semiconductor layer constituting the non-condensing solar cell are formed by the same process. Manufacturing method. 前記集光型太陽電池の受光面の面積が50mm2以下であって、前記非集光型太陽電池の受光面の面積が100mm2以上であることを特徴とする、請求項3または4に記載の化合物半導体太陽電池の製造方法。 The area of the light receiving surface of the concentrating solar cell is 50 mm 2 or less, and the area of the light receiving surface of the non-condensing solar cell is 100 mm 2 or more. A method for producing a compound semiconductor solar cell.
JP2003372944A 2003-10-31 2003-10-31 Concentrating solar cell and method for manufacturing compound semiconductor solar cell including the same Withdrawn JP2005136333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372944A JP2005136333A (en) 2003-10-31 2003-10-31 Concentrating solar cell and method for manufacturing compound semiconductor solar cell including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372944A JP2005136333A (en) 2003-10-31 2003-10-31 Concentrating solar cell and method for manufacturing compound semiconductor solar cell including the same

Publications (1)

Publication Number Publication Date
JP2005136333A true JP2005136333A (en) 2005-05-26

Family

ID=34649179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372944A Withdrawn JP2005136333A (en) 2003-10-31 2003-10-31 Concentrating solar cell and method for manufacturing compound semiconductor solar cell including the same

Country Status (1)

Country Link
JP (1) JP2005136333A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227080A (en) * 2007-03-12 2008-09-25 Sharp Corp Manufacturing method of concentrating solar cell, and electric characteristics measuring instrument
JP2009177172A (en) * 2008-01-25 2009-08-06 Emcore Corp High concentration terrestrial solar cell arrangement with iii-v compound semiconductor cell
KR101217540B1 (en) * 2011-05-30 2013-01-02 한국에너지기술연구원 Hybrid solar cell
JP2014175582A (en) * 2013-03-12 2014-09-22 Sumitomo Electric Ind Ltd Solar power generation device
JP2017139956A (en) * 2017-04-28 2017-08-10 住友電気工業株式会社 Photovoltaic power generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227080A (en) * 2007-03-12 2008-09-25 Sharp Corp Manufacturing method of concentrating solar cell, and electric characteristics measuring instrument
JP2009177172A (en) * 2008-01-25 2009-08-06 Emcore Corp High concentration terrestrial solar cell arrangement with iii-v compound semiconductor cell
KR101217540B1 (en) * 2011-05-30 2013-01-02 한국에너지기술연구원 Hybrid solar cell
JP2014175582A (en) * 2013-03-12 2014-09-22 Sumitomo Electric Ind Ltd Solar power generation device
JP2017139956A (en) * 2017-04-28 2017-08-10 住友電気工業株式会社 Photovoltaic power generation device

Similar Documents

Publication Publication Date Title
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
JP6461278B2 (en) Method of manufacturing a semiconductor-based multi-junction photovoltaic device
TWI614987B (en) High-efficiency multi-junction photovoltaic cell including GaInNAsSb sub-battery, and photovoltaic module
TWI542026B (en) High efficiency multijunction solar cells
JP3318658B2 (en) High efficiency solar cell and its manufacturing method
US7309832B2 (en) Multi-junction solar cell device
TWI441343B (en) Heterojunction subcells in inverted metamorphic multijunction solar cells
JP3657143B2 (en) Solar cell and manufacturing method thereof
US6316715B1 (en) Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
JP5479574B2 (en) Multijunction photovoltaic cell with nanowires
JP2004296658A (en) Multijunction solar cell and its current matching method
WO1994011906A1 (en) Heterojunction solar cell with passivated emitter surface
JP2008103720A (en) Solar battery structure having localized doping of cap layer
JPH05114747A (en) Improved monolithic tandem-type solar cell
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
JP2012004557A (en) HIGH EFFICIENCY InGaAsN SOLAR CELL, AND MANUFACTURING METHOD THEREOF
JP2003218374A (en) Group iii-v solar battery
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
JP4471584B2 (en) Method for producing compound solar cell
US20150122329A1 (en) Silicon heterojunction photovoltaic device with non-crystalline wide band gap emitter
TW202114242A (en) Dilute nitride optical absorption layers having graded doping
JPH0964386A (en) Multijunction solar cell
JP2005136333A (en) Concentrating solar cell and method for manufacturing compound semiconductor solar cell including the same
JP4986056B2 (en) Condensing photoelectric converter
JP4804571B2 (en) Compound solar cell and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109