JP2005135400A - 自走式作業ロボット - Google Patents

自走式作業ロボット Download PDF

Info

Publication number
JP2005135400A
JP2005135400A JP2004293776A JP2004293776A JP2005135400A JP 2005135400 A JP2005135400 A JP 2005135400A JP 2004293776 A JP2004293776 A JP 2004293776A JP 2004293776 A JP2004293776 A JP 2004293776A JP 2005135400 A JP2005135400 A JP 2005135400A
Authority
JP
Japan
Prior art keywords
traveling
traveling unit
unit
obstacle
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004293776A
Other languages
English (en)
Inventor
Nobukazu Kawagoe
宣和 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figla Co Ltd
Original Assignee
Figla Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figla Co Ltd filed Critical Figla Co Ltd
Priority to JP2004293776A priority Critical patent/JP2005135400A/ja
Publication of JP2005135400A publication Critical patent/JP2005135400A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Suction Cleaners (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】 作業対象となる領域の床面に対して隅々まで残らず作業することができる自走式作業ロボットを提供する。
【解決手段】 鉛直線Oのまわりに回転可能な走行部1と、床面に対する作業を行う作業部2と、走行部1の回転角度θを測定する回転角度測定手段7と、回転角度θを記憶する記憶手段31と、進行方向Yの障害物までの距離を測定する複数の前方距離測定手段3c,3dと、側方にある障害物までの距離を測定する側方距離測定手段3a,3bと、側方距離測定手段によって測定された複数の測定値からなる履歴に基づいて、横壁の有無を判別する判別手段30と、走行部1の走行動作を制御する制御手段8とを備える。制御手段8は、前方距離測定手段3c,3dの出力、ならびに、判別手段30による横壁の判別結果に基づいて走行部1の走行動作を制御する。
【選択図】 図4

Description

本発明は、自走式の作業ロボットに関する。
従来、この種の作業ロボットは、作業対象となる領域の周囲の壁の隅部、特にその角度が直角でない隅部に対して作業を行うことが難しく、作業残りが発生するという問題があった。
例えば、下記の特許文献1の清掃ロボットでは、直角な隅部を概ね清掃することは可能であるが、直角でない隅部の場合には作業残りが生じるおそれがある。
特開平9−269810(要約、図29) 特開平9−114523(要約、図7)
特許文献1の清掃ロボットは、予め記憶された動作シーケンスに従ってその動作が制御されるが、隅部が直角でない場合に隅々まで残らず清掃する場合の動作についての説明が無く、開示されている制御方法のみでは、ゴミが最も溜まりやすい隅部に清掃残りが生じてしまう。
特許文献2の自律走行車両は、車両の側面に対向する壁に平行に制御することが可能であるが、隅部に対して作業を行うことはできず、特許文献1の清掃ロボットと同様に、ゴミが最も溜まりやすい隅部に清掃残りが生じてしまう。
したがって、本発明の目的は、作業対象となる領域の床面に対して隅々まで残らず作業することができる自走式作業ロボットを提供することである。
前記目的を達成するために、本発明の作業ロボットは、自走する作業ロボットであって、床面に対して鉛直線のまわりに回転可能な走行部と、前記走行部の前方または後方に取り付けられ、床面に対して作業を行う作業部と、前記鉛直線のまわりの前記走行部の回転角度を測定する回転角度測定手段と、前記回転角度を記憶する記憶手段と、前記走行部の幅方向に互いに離間して設けられ、前記走行部の進行方向にある障害物までの距離を測定する複数の前方距離測定手段と、前記走行部の進行方向に対して側方にある障害物までの距離を測定する側方距離測定手段と、前記側方距離測定手段によって測定された複数の測定値に基づいて、前記走行部が横壁に沿って走行しているか否かを判別する判別手段と、前記走行部の走行動作を制御する制御手段とを備え、前記制御手段は、前記複数の前方距離測定手段の少なくとも一つの測定値が、所定の第1の閾値以下となった場合に、走行部が前方の障害物に近接していると判断して前記走行部の走行を停止させると共に、前記複数の前方距離測定手段の測定値を比較して、当該障害物の面までの測定距離の差もしくは比が所定範囲内か否かを判別し、前記測定距離の差もしくは比が所定範囲外であると判別した場合には、前記測定距離の差もしくは比が所定範囲内になるまで前記走行部を前記鉛直線のまわりに回転動作させると共に、前記所定範囲内となった時点の走行部の回転角度を前記記憶手段に記憶させ、前記判別手段により、前記回転動作を行うまでの前記走行部の走行が横壁に沿った走行であったと判別された場合には、前記横壁と前方の障害物とによって形成される隅部に対して作業を行った後、前記記憶手段に記憶されている前記回転角度に基づいて前方の障害物に沿って走行するように前記制御手段が前記走行部の走行動作を制御することを特徴とする。
本発明では、走行部の進行方向に対して所定の角度以上傾いた障害物が検出されると、前記走行部が走行を停止して、前記複数の前方距離測定手段の測定距離が概ね等しくなるまで、前記走行部が鉛直線のまわりに回転動作する。走行部の進行方向に対する前記障害物の傾き角度は、前記複数の前方距離測定手段の測定距離が概ね等しくなった時点の回転角度に等しいから、該回転角度を前記回転角度測定手段により測定することで、前記障害物の傾き角度を求めることができる。一方、前記判別手段により横壁の有無を検知することにより、隅部に対する作業が必要であるか否かが判断される。走行部が横壁に沿って走行していたと判別された場合は、隅部に対して作業を行った後に、前方の障害物に沿って走行するように走行部の動作が制御される。これに対し、走行部が横壁から離れた位置を走行していたと判別された場合は、走行部が前記回転動作を行った後、すぐに前方の障害物に沿って走行するように制御される。
本発明によれば、走行部の前方にある障害物の傾き角度にかかわらず、障害物の傾き角度および横壁の有無に応じて走行部の走行動作が制御されるので、横壁と前方の障害物とによって形成される隅部に対しても確実に作業を行うことができるから、作業対象となる領域の床面に対して隅々まで残らず作業することができる。
本発明において、前記判別手段は、前記前方距離測定手段が障害物を検出して前記走行部が停止した際、前記走行部が前記回転動作を開始する前に前記判別を行い、前記判別手段により、前記回転動作を行うまでの前記走行部の走行が横壁に沿った走行であったと判別された場合には、前記回転動作の回転中心を前記横壁から離れる方向に所定の距離移動させた後、前記回転動作を行うように前記制御手段が前記走行部の走行動作を制御するのが好ましい。
この態様によれば、走行部が前記回転動作を行う前に、回転動作の回転中心を横壁から所定の距離離れた位置にズラすことで、前記回転動作中に前方距離測定手段の一部が、前方の障害物までの距離と誤って横壁までの距離を測定するおそれがないから、前方の障害物の傾き角度を正確に測定することができる。
本発明の好適な態様においては、前記前方距離測定手段が、複数の超音波式センサと複数の光学式センサとを備え、前記超音波式センサおよび光学式センサを、各々、前記走行部の幅方向に互いに離間して設け、前記超音波式センサが障害物を検出し、かつ、前記光学式センサが障害物を検出している場合は、当該障害物の前記走行部の進行方向に対する傾きが所定の傾き角度よりも大きいと断定せず、一方、前記超音波式センサが障害物を検出せず、かつ、前記光学式センサが障害物を検出している場合は、当該障害物の前記走行部の進行方向に対する傾きが所定の傾き角度よりも大きいと判断する。
この態様によれば、前方の障害物の傾きが所定の傾き角度よりも大きくて超音波式センサでは検出できない場合でも、光学式センサにより障害物を検出できるので、障害物の検出精度を向上させることができる。また、障害物を検出して当該障害物の傾き角度を測定する際には、測定精度の良い超音波式センサを主として用いることで、障害物の傾き角度の測定精度を向上させることができる。
本発明において、前記前方距離測定手段が複数の超音波式センサと複数の光学式センサとを備えている場合には、前記複数の光学式センサが、前記走行部の進行方向に対して所定の角度傾けて設けられたセンサを含むのが好ましい。
こうすれば、走行部の斜め前方にある障害物を検出することができるから、障害物の検出精度が更に向上する。
本発明のより具体的な態様においては、前記側方距離測定手段の測定値の履歴に基づいて算出された側方の障害物までの距離である「側方距離値」が前記記憶手段に記憶される。また、前記前方の障害物の傾き角度を求めるための回転動作で、前記複数の前方距離測定手段の測定距離の差もしくは比が所定範囲内となった時点の走行部の回転角度が前記前方障害物の傾き角度である「傾き角度値」として前記記憶手段に記憶されると共に、その時点の前方距離測定手段の測定距離が「前方距離値」として前記記憶手段に記憶される。前記制御手段は、前記「側方距離値」、「傾き角度値」および「前方距離値」の値に基づいて、前方障害物と側方障害物との交点の位置と走行部との位置関係を算出し、その位置関係情報に基づいて、前方障害物と側方障害物とによって形成される隅部に対して作業を行うように前記走行部の走行動作を制御する。
このようにすれば、直角でない壁の隅部と作業ロボットの現在位置との相対位置関係を計算できるので、隅々まで正確に作業をすることができる。
以下、本発明の一実施例を図面に従って説明する。
全体構成:
本作業ロボット100は、図2に示す走行部1および作業部2を備えている。図1に示すように、前記走行部1は、走行部1の駆動を行うための駆動輪6a,6bと、走行部1のバランスをとるための従動輪9a,9bとを備えている。前記駆動輪6a,6bは、それぞれ、駆動モータ5a,5bによって駆動される。駆動モータ5a,5bは正逆回転可能で、マイコン(制御手段)8によって回転が制御される。
直進走行時には、前記2つの駆動モータ5a,5bが同方向に回転することで、走行部1は前進または後退することができる。
回転動作を行う際には、前記2つの駆動モータ5a,5bがそれぞれ逆方向に回転することで、走行部1は、図1の床面に対する鉛直線(回転中心)Oのまわりに回転することができる。
なお、前記2つの駆動モータ5a,5bの回転の比率を制御することで、走行部1はカーブ走行を行うことができる。
走行部1の後部には、前記作業部2を取り付けるための取付部11が設けられている。取付部11は、スライド駆動モータ15によって駆動され、スライドレール14に沿って走行部1の幅方向Xにスライド移動可能とされている。
図2(a)の作業部2は、前記取付部11に取り付けられることで、前記走行部1の後方に取り付けられる。前記作業部2は、床面に近接ないし接触して床面に対して作業を行うものであり、たとえば、床上のゴミを吸引したり床面にワックスを塗布する。前記作業部2は、前記取付部11に取り付けられていることで、走行部1に対して幅方向Xにスライド移動することができる。
図1に示すように、走行部1の前部には、複数の超音波式センサ3a〜3eと、複数の光学式センサ17a〜17eとが設けられている。これら複数のセンサのうち、2つの超音波式センサ3a,3bは、走行部1の左右にある障害物までの距離を測定する側方距離測定手段を構成する。一方、残りの超音波式センサ3c,3d,3eおよび光学式センサ17a,17b,17c,17d,17eは、走行部1の前方にある障害物までの距離を測定する前方距離測定手段を構成する。
なお、走行部1の前部外縁部には、障害物との接触を検知するためのバンパーセンサ10が設けられている。
前記超音波式センサ3c,3d,3eおよび前記光学式センサ17a,17b,17c,17d,17eは、各々、前記走行部1の幅方向Xに互いに離間して設けられている。前記光学式センサ17a〜17eのうち、2つの光学式センサ17b,17dは、それぞれ、前記走行部1の進行方向に対して所定の角度傾けて設けられている。
制御構成:
つぎに制御構成について説明する。
図2(b)に示すように、前記マイコン8には、駆動モータ5a,5b、スライド駆動モータ15、前方距離測定手段3c〜3e,17a〜17e、側方距離測定手段3a,3b、ジャイロセンサ(回転角度測定手段)7およびバンパーセンサ10などが図示しないインターフェイスを介して接続されている。
前記ジャイロセンサ7は、前記鉛直線Oのまわりの走行部1の回転角度を測定するものであり、図1に示すように、前記回転中心Oの近傍に設けられている。
前記マイコン8はCPU(制御手段、判別手段)30およびメモリ(記憶手段)31を備えている。前記メモリ31には、前記前方距離測定手段3c〜3e,17a〜17e、側方距離測定手段3a,3bおよびジャイロセンサ7によって測定される各測定値が記憶される。
動作:
つぎに、本作業ロボットの動作について詳しく説明する。
まず、図3を参照して、直角の壁で囲まれたスペースを作業する場合の基本的な動作について説明する。
図3に示すように、作業ロボット100は、横壁(側方障害物)の壁面に平行な複数の走行レーンを一方の端から順に走行していく。あるレーンの走行中に、作業ロボット100が前方に壁(前方障害物)を検出すると、走行部1は90度回転、前壁に沿って所定距離前進、90度回転を行って隣の走行レーンに移動する。このように、作業ロボット100は、ジグザグ走行を繰り返して開始位置P1から終了位置P2まで走行しながら対象領域の作業を行う。
次に、作業対象領域に斜めの壁が存在する場合の動作について説明する。
図4は、作業ロボット100が横壁52に沿って前進しながら作業を行っている途中に、前方の斜め壁51に遭遇した場合の例を示している。ただし、前方の斜め壁51と横壁52との成す角度が鈍角である場合の例である。
図4(a)は、作業ロボット100が横壁52に沿って前進している様子を示す図である。この図4(a)において、符号D1は走行部1の回転中心Oから横壁52までの距離であって、前記センサ3bの測定距離Mbに、前記センサ3bの前記回転中心Oからの幅方向Xの離間距離を加えることにより算出される。前記側方距離測定手段3a,3bによる測定は、所定の周期で繰り返し実行され、過去120回のデータが時系列で前記メモリ31に記憶される。また、走行部1の走行距離データが、前記駆動モータ5a,5bに接続されたエンコーダ(図示せず)により検出され、前記メモリ31に記憶される。
図4(b)は、作業ロボット100が横壁52に沿って前進中に、前壁51が所定距離以内に近づいたことを検出し、走行停止した状態を示している。この図4(b)において、符号Wは作業部2の幅であり、Mcは左側の超音波式センサ3cの測定距離であり、Mdは右側の超音波式センサ3dの測定距離である。前記右側センサ3dの測定距離Mdの値が所定の第1の閾値(走行停止限界距離SHd)以下となると、走行部1は走行を停止する。このときの前記回転中心Oの位置をA点とする。
この停止状態においては、前方の壁51は右側が走行部1に近くなっているので、前記測定距離Mc,Mdの関係は、Mc>Mdとなる。そのため、前記CPU30は、前方の壁51の右側が近くにあり、左側が遠くにあると判断する。CPU30は、前記測定距離McとMdとを比較して、McとMdとの差の絶対値が所定の第2の閾値(傾き判別基準値SHa)よりも大きいか否かを判別する。前記測定距離McとMdとの差の絶対値が所定の第2の閾値よりも大きい(所定値の範囲外の)場合には、前壁の傾き角を測定するため、CPU30は回転中心Oを前記A点の位置から動かさないようにして、走行部1を右方向に回転動作させる。
図4(c)は、走行部1が右方向に回転して、前記測定距離Mc,Mdの差の絶対値が、所定の第2の閾値以下(所定値の範囲内)となったことで、CPU30が走行部1と前方の斜め壁51とが概ね正対する向きになったと判断して、走行部1の回転動作を停止させた状態を示す。このときの走行部1の回転角度θは、前記ジャイロセンサ7により測定され、前記メモリ31に記憶される。また、このときの前壁51までの距離D2が前記メモリ31に記憶される。
図4(d)は、図4(c)の状態から、図4(a)の進行方向Yに対して走行部1が90度回転して、作業部2の右端部21が、前壁51と横壁52とが交差するC点に接し、かつ、作業部2の後端が横壁52に接する位置に移動した状態を示す。このときの前記回転中心Oの位置をB点とする。
この状態から、作業ロボット100が所定距離前進することにより、図4(b)に示す状態で作業をやり残している隅部の床面に対して作業を行うことができる。
図4(e)は、作業ロボット100が前壁51に沿った姿勢となり、前記C点に作業部2の右端部21が接している状態を示す。この状態から、作業ロボット100が所定距離前進することにより、前壁51に沿って走行しながら作業を行うことができる。
前記C点の位置は、たとえば、下記の演算式により算出される。
図4(f)において、A点の座標を(Xa,Ya)、C点の座標を(Xc,Yc)、D点の座標を(Xd,Yd)とする。なお、D点は、走行部1のY軸方向の中心線Lyが前壁51と交差する点である。
前記C点のX座標は、Xc=Xa+D1
前記D点のY座標は、Yd=Ya+D2/cos θ
前記C点のY座標は、Yc=Yd−D1×tan θ
=Ya+D2/cos θ−D1×tan θ
上記の式から、C点の座標(Xc,Yc)は、A点の座標Xa,Yaと、距離D1,D2および回転角度θを用いて下記のように表せる。
Xc=Xa+D1
Yc=Ya+D2/cos θ−D1×tan θ
従って図4(d)のB点の座標(Xb,Yb)は、回転中心Oから作業部2の後端までの距離D3と、作業部の幅Wを用いて下記のように表せる。
Xb=Xc−D3
=Xa+D1−D3 …(1)
Yb=Yc−W/2
=Ya+D2/cos θ−D1×tan θ−W/2 …(2)
同様に、図4(e)に示すE点の座標(Xe,Ye)は、下記のように表せる。
Xe=Xc−(W/2)×sin θ−D3×cos θ
=Xa+D1−(W/2)×sin θ−D3×cos θ …(3)
Ye=Yc−(W/2)×cos θ+D3×sin θ
=Ya+D2/cos θ−D1×tan θ
−(W/2)×cos θ+D3×sin θ …(4)
上記の如く、A点からB点およびE点へ移動する為の、X軸方向、Y軸方向の移動距離が計算できるので、作業部2の右端部21を前記C点に接する位置に、作業ロボット100を自律的に移動させることができる。
図5(a)〜(s)を参照して、作業ロボット100が横壁52に沿って作業しながら前進中に、前方に斜めの壁51が現れた場合の動作の流れを説明する。ただし、前方の斜め壁51と横壁52との成す角度が鈍角である場合の例である。
なお、図5においてハッチングを施している部分は、作業が済んでいる領域である。
図5(a)に示すように、作業ロボット100は横壁52に沿って作業しながら前進している。この時、紙面左右方向Xの障害物までの距離を測定する為の側方距離測定手段3a,3bの過去120回の測定データが、測定時点の走行距離データと共に前記メモリ31に記憶される。
図5(b)に示すように、前壁(前方障害物)51が現れたことを前方距離測定手段3c〜3e,17a〜17eが検出すると、走行部1は走行を停止する。そして、前記センサ3c、3dの測定距離Mc,Mdを比較し、McとMdの差の絶対値が第2閾値よりも大きく、かつ、Mc>Mdであることから、前方の障害物が右側が近く左側が遠い斜めの壁であると判断し、かつ、過去120回の側方距離測定手段3a,3bの測定距離の履歴と、該測定距離を測定した時点の走行距離のデータとから走行部1の右横に壁52が存在していると判別する。
つぎに、図5(c)に示すように、走行部1が右回りに回転動作しながら、前記左右のセンサ3c、3dで前壁51までの距離を繰り返し測定し、前記左右のセンサ3c、3dの測定距離Mc、Mdの値の差の絶対値が前記第2閾値以下になった時点で回転動作を停止する。
図5(d)では、前記CPU30が前述の(1)式および(2)式から、前記B点(図4(d))の座標を計算し、回転中心OのY座標がB点のY座標Ybに一致する地点まで走行部1を後退させる。その後、図5(e)に示すように、作業部2を走行部1に対して左方向いっぱいにスライド移動させた状態で、走行部1が左回りに角度(θ+90°)回転する。続いて、図5(f)に示すように、回転中心OのX座標が、前記B点のX座標Xbに一致する地点まで後退する。この後退中に作業部2の後端部に設けられた図示しない接触センサが横壁52に接触すると、走行部1の後退が停止される。これにより、作業部2の右端部21を、前記C点に接する位置に移動させることができる。
つぎに、図5(g)に示すように、作業ロボット100は作業部2の幅Wに相当する距離だけ作業をしながら前進する。これにより、隅部の一部分が作業済みになる。図5(h)では、CPU30が前述の(3)式および(4)式から、前記E点(図4(e))の座標を計算し、前記回転中心OのX座標がE点のX座標Xeに一致する地点まで走行部1を後退させる。その後、図5(i)に示すように、作業部2を走行部1に対して左方向いっぱいにスライド移動させた状態で、走行部1が右回りに90度回転する。続いて、図5(j)に示すように、回転中心OのY座標がE点のY座標Yeに一致する地点まで作業をしながら前進する。その後、図5(k)に示すように、走行部1は、左回りに角度θだけ回転し前方の斜め壁51に沿った姿勢となる。
図5(l)に示すように、作業ロボット100は斜め壁51に沿って作業をしながら所定距離前進する。これにより、隅部の残りの部分と前壁51沿いのスペースの一部が作業済みとなる。つぎに、図5(m)に示すように、走行部1が左回りに90度回転した後、作業部2の後端が前壁51に接触するまで後退する。その後、図5(n)に示すように、作業ロボット100は作業をしながら所定距離前進する。
続いて、図5(o)に示すように、走行部1は左回りに90度旋回した後、図5(p)に示すように、作業ロボット100は作業をしながら所定距離前進する。つぎに、図5(q)に示すように、前記図5(a)で走行していたレーンの隣のレーンの中心位置に回転中心OのX座標が一致するまで後退する。ここで、図5(r)に示すように、走行部1が右回りに角度(90°−θ)だけ回転することで、走行部1が前記図5(a)での進行方向と180度反対の方向に向く。その後、図5(s)に示すように、作業ロボット100は作業をしながら前進し、次のレーンの作業を行う。
このように、作業ロボット100は、斜めの壁が存在する場合でも、壁の隅部まで隈なく作業することができる。
次に、図6(a)〜(l)を参照して、作業ロボット100が横壁から離れたレーンを作業しながら前進中に、前方に斜めの壁51が現れた場合で、かつ、走行部1に対して前方の斜め壁の作業開始位置P1側の距離が小さく、作業終了位置P2側の距離が大きい場合の動作の流れについて説明する。
図6(a)〜図6(b)のように、作業ロボット100は横壁52から離れたレーンを作業しながら前進し、前壁51を検出すると、走行を停止する。そして、CPU30が走行部1の側方に横壁が存在するか否かを判別すると共に、前壁51の傾きが所定の角度以上であるかを判別する。
つぎに、図6(c)のように、走行部1が右回りに回転動作し、前壁51と概ね正対する向きとなったところで、回転動作を停止する。続いて、図6(d)に示すように、走行部1は左回りに90度回転することで、前方の斜め壁51に沿った姿勢となる。
以後の動作の流れは、図6(e)〜図6(l)に示すように、横壁52に沿って作業する場合(図5(l)〜図5(s)参照)の動作と同様であるため、その詳しい説明を省略する。
次に、図7(a)〜(l)を参照して、作業ロボット100が横壁から離れたレーンを作業しながら前進中に、前方に斜めの壁51が現れた場合で、かつ、走行部1に対して前方の斜め壁51の作業開始位置P1側の距離が大きく、作業終了位置P2側の距離が小さい場合の動作の流れについて説明する。
図7(a)〜図7(b)のように、作業ロボット100は横壁52から離れたレーンを作業しながら前進し、前壁51を検出すると、走行を停止する。そして、CPU30が走行部1の側方に横壁が存在するか否かを判別すると共に、前壁51の傾きが所定の角度以上であるかを判別した後、作業ロボット100は、前記図6に示す動作とは若干異なる動作を行う。
図7(c)に示すように、走行部1が左回りに回転動作しながら、前記左右のセンサ3c、3dで前壁51までの距離を繰り返し測定し、前記左右のセンサ3c、3dの測定距離Mc、Mdの値の差の絶対値が前記第2閾値以下になった時点で回転動作を停止する。続いて、図7(d)に示すように、走行部1は左回りに90度回転することで、前壁51に沿った姿勢となる。その後、図7(e)に示すように、作業ロボット100は、前記斜め壁51に沿って作業をしながら所定距離前進する。これにより、前方斜め壁51沿いのスペースの一部が作業済みとなる。
その後、図7(f)に示すように、走行部1は、左回りに90度回転した後、作業部2の後端が前壁51に接触するまで後退した後、図7(g)に示すように、作業ロボット100は作業をしながら所定距離前進する。
続いて、図7(h)に示すように、前記図7(a)で走行していたレーンの隣のレーンの中心位置に回転中心OのX座標が一致するまで後退する。ここで、図7(i)に示すように、走行部1が右回りに角度θだけ回転することで、走行部1が前記図7(a)での進行方向と180度反対の方向を向く。その後、図7(j)に示すように、作業ロボット100は作業をしながら前進し次のレーンの作業を行う。
次に、図8(a)〜(n)を参照して、作業ロボット100が横壁に沿って作業しながら前進中に、前方に斜めの壁51が現れた場合の作業の流れを説明する。ただし、前方の斜め壁51と横壁52との成す角度が鋭角である場合の例である。
図8(a)に示すように、作業ロボット100は横壁52に沿って作業しながら前進している。この時、紙面左右方向Xの障害物までの距離を測定する為の側方距離測定手段3a,3bの過去120回の測定データが、測定時点の走行距離データと共に前記メモリ31に記憶される。
図8(b)に示すように、前方に障害物51が現れたことを前方距離測定手段3c〜3e,17a〜17eが検出すると、走行部1は走行を停止する。そして、前記センサ3c、3dの測定距離Mc,Mdを比較し、McとMdの差の絶対値が第2閾値よりも大きく、かつ、Mc<Mdであることから、前方の障害物51が右側が遠く左側が近い斜めの壁であると判断し、かつ、過去120回の側方距離測定手段3a,3bの測定距離の履歴と、該測定距離を測定した時点の走行距離のデータとから走行部1の右横に壁52が存在していると判別する。
つぎに、図8(c)に示すように、走行部1が左回りに90度回転した後、作業部2の後端が横壁52に接触するまで後退した後、図8(d)に示すように、作業ロボット100は、作業を行いながら前進し、前壁51を再び検出して走行を停止する。図8(e)に示すように、走行部1は、再度、作業部2の後端が横壁52に接触するまで後退した後、作業部2の右端部21が前壁51に接触するまで、作業部2を走行部1に対して右方向に移動させる。その後、図8(f)に示すように、作業ロボット100は作業を行いながら前進する。この走行中、作業部2は前壁51に沿って徐々に左方向に移動するように制御される。作業ロボット100は、再度前壁51を検出するまで走行する。
前壁51を検出し停止した状態から、図8(g)に示すように、作業ロボット100は、作業部2を走行部1に対して左いっぱいに移動させた後、右回りに90度回転する。この状態から、図8(h)に示すように、走行部1が左回りに90度回転したと仮定して、作業部2を走行部1に対して右いっぱいに移動させた場合に、前壁51に作業部2の右端部21が接する位置を計算し、算出した位置まで後退する。その後、図8(i)に示すように、走行部1が左回りに90度回転して、作業部2の右端部21が前壁51に接触するまで作業部2を走行部1に対して右方向に移動させる。
その後、図8(j)に示すように、作業ロボット100は作業を行いながら前進し、前壁51を検出した時点で停止する。この走行中、作業部2は前壁51に沿って徐々に左方向に移動するように制御される。
つぎに、図8(k)に示すように、走行部1は右回りに回転しながら、前方の左右のセンサ3c,3dにより前壁51までの距離を繰り返し測定し、センサ3c、3dの測定距離Mc、Mdの値の差の絶対値が第2閾値以下になった時点で回転を停止する。続いて、図8(l)に示すように、走行部1が左回りに90度回転して前方向の斜め壁51に沿ったあと、図8(m)に示すように、作業部2の後端が横壁52に接触するまで後退する。そして、図8(n)に示すように、作業ロボット100は斜め壁51に沿って、作業をしながら所定距離前進する。これにより、前方の斜め壁51沿いのスペースの一部が作業済みとなる。以後の動作は、前述した図7(f)〜図7(j)と同様の動作を行って作業ロボット100は次のレーンに移る。
ところで、図9(a)に示すように、実際にはロボットが斜め壁51に正対する向きにあっても、右側の超音波センサ3dが誤って横壁52を検出してしまい、左右のセンサ3c,3dの測定距離Mc,Mdが近い値にならなかったり、あるいは、超音波センサ3dから出射された超音波の反射波が帰ってこず、測定距離が得られないという場合が生ずる。この場合、図9(a)の時点では、走行部1が回転を停止せず、図9(b)に示すように、右側の超音波センサ3dの測定距離Mdと、左側の超音波距離センサ3cの測定距離Mcとが、ほぼ等しい値になった時点で回転を停止し、その時点での回転角度θを、斜め壁51の傾き角度であると誤って認識してしまい、以後の動作を正しく制御できなくなるおそれがある。
そこで、こういった不具合を解消するため、走行部1が横壁52に沿って走行している場合は、斜め壁51の傾き角度を計測する前に、前記回転動作の回転中心Oを横壁52から離れる方向に所定距離移動させるように制御する。すなわち、図9(c)に示すように、回転中心OをA点の位置から、横壁52から離れたF点の位置に移動させることによって、図9(d)に示すように、右側の超音波センサ3dが横壁52までの距離を測定することなく、斜め壁51と正対する角度を正確に測定することが可能になる。
図10(a)〜(k)を参照して、かかる動作の具体例を説明する。
図10(a)〜図10(b)の動作については、前述した図5(a)〜図5(b)の動作と同様であるので説明を省略する。図10(c)に示すように、走行部1が右回りに90度回転する。続いて、図10(d)に示すように、走行部1が横壁52から離れる方向に所定距離後退すると共に、この時の移動距離D4を記憶する。この後退後、図10(e)に示すように、走行部1が左回りに90度回転する。そして、図10(f)に示すように、作業ロボット100は作業を行いながら前進し、前方に障害物を検出した時点で走行を停止する。
つぎに、図10(g)に示すように、走行部1が右回りに回転して、前方の斜め壁の傾き角度θを記憶する。図10(h)に示すように、走行部1が左回りに前記角度θだけ回転して前記図10(f)の進行方向Yの向きに戻る。図10(i)では、後述する(5)式および(6)式から、B点(図4(d))の座標を計算し、回転中心OのY座標がB点のY座標Ybに一致する地点まで後退する。そして、図10(j)に示すように、走行部1が左回りに90度回転した後、図10(k)に示すように、回転中心OのX座標がB点のX座標Xbに一致する地点まで後退する。この後退中に作業部2の後端が横壁52に接触したら、そこで後退を停止する。これにより、作業部2の右側の端部21を前記C点に接する位置に移動させることができる。以後の動作は、前記図5(g)〜図5(s)に示す動作と同様にして、作業ロボット100は次のレーンに移る。
前記B点の座標は、たとえば、下記の演算式から算出される。図9(c)および図9(d)において、
C点の座標を(Xc,Yc)、D点の座標を(Xd,Yd)、F点の座標を(Xf,Yf)とする。
C点のX座標は、Xc=Xa+D1=Xf+D4+D1
D点のY座標は、Yd=Yf+D2/cos θ
C点のY座標は、Yc=Yd−(D1+D4)×tan θ
=Yf+D2/cos θ−(D1+D4)×tan θ
上記の如く、C点の座標(Xc,Yc)は、F点の座標(Xf,Yf)と、D1、D2、D4、θを用いて下記のように表せる。
Xc=Xf+D4+D1
Yc=Yf+D2/cos θ−(D1+D4)×tan θ
従って図4(d)のB点の座標(Xb,Yb)は、回転中心Oから作業部2の後端までの距離D3と、作業部2の幅Wを用いて下記のように表せる。
Xb=Xc−D3=Xf+D4+D1−D3 …(5)
Yb=Yc−W/2
=Yf+D2/cos θ−(D1+D4)×tan θ−W/2 …(6)
なお、前記複数の超音波センサ3a〜3eは、超音波の干渉を避けるため、一つずつ所定の時間間隔を空けて、所定の順序で測定するのが好ましい。
ところで、超音波センサは、超音波を発射してから障害物で反射された反射波が戻ってくるまでの時間を計測することにより障害物までの距離を測定するものであるが、障害物の傾斜が大きくなると、超音波センサに反射波が戻ってこず、測定が出来ない場合がある。そのため、超音波センサだけでは、傾斜の小さい障害物しか検出することができない。
そこで、本発明では、超音波センサ3a〜3eに加え、光学式センサ17a〜17eを設けている。光学式センサは、一般に測定対象の面が鏡面でなく拡散面であれば、散乱反射された光の一部を検出することができるので、傾斜の大きい障害物であっても距離を測定することができる。
これにより、たとえば、図11(a)や図11(b)に示すように、障害物51が作業ロボット100の進行方向Yに対して大きく傾斜している場合でも、光学式センサ17a〜17eの検出により測定することができるから、障害物の検出精度を向上させることができる。
したがって、例えば、右側の超音波センサ3dが障害物51を検出せず、かつ、右側の光学式センサ17eが障害物51を検出している場合は、当該障害物51の傾きが所定の傾き角度よりも大きいと判断され、ロボットの右側に斜め壁51が存在すると判断することも可能である。
なお、超音波センサおよび光学式センサの双方が障害物を検出している場合は、障害物の傾きが大きいと断定せずに、前記両センサのうちの1種以上のセンサからの出力に基づいて傾斜角の大小を判別してもよい。
また、真正面の前方を測定する光学式センサと所定の角度傾けた光学式センサとの測定値を比較することにより、壁の傾きの大きさを、ある程度認識することができる。そのため壁が非常に大きく傾いている場合は、その壁を横壁と見なす等の、より高度な処理を行うことができる(図11(a)と図11(b)の差が分かる)。
さらに、ロボットの左右のそれぞれに超音波センサおよび/または光学式センサの双方を有することにより、図11(c)に示すように傾斜している2つの壁が交わる隅部に向ってロボットが走行しているか否かについても検出ことが可能である。ロボットがそのような隅部に向って走行していることが検出された場合は、ロボットがいずれか一方の壁に沿うようにロボットの姿勢を変更してもよく、そうすることにより、図4(b)に示すような横壁に沿った状態にすることができる。
ところで、前記実施例では、側方距離測定手段によって測定された複数の測定値からなる履歴に基づいて、走行アセンブリが横壁に沿って走行しているか否かについて判別した。しかし、この判別のための測定値は、測定手段を複数ないし多数設けて得るようにしてもよい。
また、測定距離の差の絶対値が所定の第2閾値よりも大きいか否かにより、前方の障害物の傾きを判別した。しかし、この判別は図4(b),(c)の測定距離Mc,Mdの比率(Mc/MdまたはMd/Mc)で行うことが可能である。前記判別が前記比率で行われるロボットにおいては、図4(c)のように、当該比率が1.0に近い値の場合は、つまり、前記比率が所定範囲内である場合は、障害物51の傾きが小さいと判断され、一方、図4(b)のように、当該比率が1.0に近くない場合は、つまり、前記比率が所定範囲外である場合は障害物51の傾きが大きいと判断される。すなわち、この判別は測定距離の比が所定範囲内であるか否かにより行われてもよい。
ところで、前方距離測定手段および/または側方距離測定手段の各センサの個数および配置は前記実施例に限定されず、適宣設定されることができる。また、隅部での動作制御で用いる演算式は、前記のものもに限られず、他の制御方法であってもよい。
以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。
たとえば、車輪の構造には自在キャスタを採用してもよい。ロボットは液剤の塗布などを行うものでもよい。
したがって、そのような変更および修正は、請求の範囲から定まる本発明の範囲内のものと解釈される。
本発明のロボットは、自走しながら種々の作業を行うロボットに利用できる。
実施例1にかかる作業ロボットの走行部の構成を示す平面図および側面図である。 (a)は作業ロボットの外観を示す平面図、(b)は制御構成を示すブロック図である。 直角の壁に囲まれた領域を作業する場合の動作を示す平面図である。 鈍角の隅部を作業する際の動作を示す平面図である。 同一連の作業工程を示す平面図である。 横壁から離れたレーンで斜め壁に沿って作業する場合の動作を示す平面図である。 横壁から離れたレーンで斜め壁に沿って作業する場合の動作を示す平面図である。 鋭角の隅部を作業する際の動作を示す平面図である。 実施例2の動作を示す平面図である。 同一連の作業工程を示す平面図である。 超音波センサだけでは測定できない場合の動作を示す平面図である。
符号の説明
1:走行部
2:作業部
7:ジャイロセンサ(回転角度測定手段)
8:マイコン(制御手段)
3a,3b:超音波センサ(側方距離測定手段)
3c〜3e:超音波センサ(前方距離測定手段)
17a〜17e:光学式センサ(前方距離測定手段)
30:CPU(制御手段,判別手段)
31:メモリ(記憶手段)
θ:回転角度
O:回転中心(鉛直線)

Claims (4)

  1. 自走する作業ロボットであって、
    床面に対して鉛直線のまわりに回転可能な走行部と、
    前記走行部の前方または後方に取り付けられ、床面に対して作業を行う作業部と、
    前記鉛直線のまわりの前記走行部の回転角度を測定する回転角度測定手段と、
    前記回転角度を記憶する記憶手段と、
    前記走行部の幅方向に互いに離間して設けられ、前記走行部の進行方向にある障害物までの距離を測定する複数の前方距離測定手段と、
    前記走行部の進行方向に対して側方にある障害物までの距離を測定する側方距離測定手段と、
    前記側方距離測定手段によって測定された複数の測定値に基づいて、前記走行部が横壁に沿って走行しているか否かを判別する判別手段と、
    前記走行部の走行動作を制御する制御手段とを備え、
    前記制御手段は、前記複数の前方距離測定手段の少なくとも一つの測定値が、所定の第1の閾値以下となった場合に、走行部が前方の障害物に近接していると判断して前記走行部の走行を停止させると共に、前記複数の前方距離測定手段の測定値を比較して、当該障害物の面までの測定距離の差もしくは比が所定範囲内か否かを判別し、前記測定距離の差もしくは比が所定範囲外であると判別した場合には、前記測定距離の差もしくは比が所定範囲内になるまで前記走行部を前記鉛直線のまわりに回転動作させると共に、前記所定範囲内となった時点の走行部の回転角度を前記記憶手段に記憶させ、
    前記判別手段により、前記回転動作を行うまでの前記走行部の走行が横壁に沿った走行であったと判別された場合には、前記横壁と前方の障害物とによって形成される隅部に対して作業を行った後、前記記憶手段に記憶されている前記回転角度に基づいて前方の障害物に沿って走行するように前記制御手段が前記走行部の走行動作を制御する自走式作業ロボット。
  2. 請求項1において、
    前記判別手段は、前記前方距離測定手段が障害物を検出して前記走行部が停止した際、前記走行部が前記回転動作を開始する前に前記判別を行い、
    前記判別手段により、前記回転動作を行うまでの前記走行部の走行が横壁に沿った走行であったと判別された場合には、前記回転動作の回転中心を前記横壁から離れる方向に所定距離移動させた後、前記回転動作を行うように前記制御手段が前記走行部の走行動作を制御する自走式作業ロボット。
  3. 請求項1もしくは2において、
    前記前方距離測定手段は、複数の超音波式センサと複数の光学式センサとを備え、
    前記超音波式センサおよび光学式センサは、各々、前記走行部の幅方向に互いに離間して設けられており、
    前記超音波式センサが障害物を検出せず、かつ、前記光学式センサが障害物を検出している場合は、当該障害物の前記走行部の進行方向に対する傾きが所定の傾き角よりも大きいと判断する自走式作業ロボット。
  4. 請求項3において、
    前記複数の光学式センサは、前記走行部の進行方向に対して所定の角度傾けて設けられたセンサを含む自走式作業ロボット。
JP2004293776A 2003-10-08 2004-10-06 自走式作業ロボット Pending JP2005135400A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293776A JP2005135400A (ja) 2003-10-08 2004-10-06 自走式作業ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003349296 2003-10-08
JP2004293776A JP2005135400A (ja) 2003-10-08 2004-10-06 自走式作業ロボット

Publications (1)

Publication Number Publication Date
JP2005135400A true JP2005135400A (ja) 2005-05-26

Family

ID=34655997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293776A Pending JP2005135400A (ja) 2003-10-08 2004-10-06 自走式作業ロボット

Country Status (1)

Country Link
JP (1) JP2005135400A (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7643906B2 (en) 2006-05-09 2010-01-05 Industrial Technology Research Institute Obstacle and cliff avoiding system and method thereof
KR101165969B1 (ko) * 2011-04-27 2012-07-18 목포대학교산학협력단 거리 및 각도측정 기능을 갖는 위치측정장치
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
JP5661961B1 (ja) * 2014-05-21 2015-01-28 有限会社渥美不動産アンドコーポレーション 自走式電気掃除機
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
JP2018180870A (ja) * 2017-04-12 2018-11-15 アルパイン株式会社 電動車両の自動走行制御装置および自動走行制御方法

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8659256B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US8659255B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8763199B2 (en) 2002-01-03 2014-07-01 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US7643906B2 (en) 2006-05-09 2010-01-05 Industrial Technology Research Institute Obstacle and cliff avoiding system and method thereof
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
EP3031375A1 (en) * 2007-05-09 2016-06-15 iRobot Corporation Compact autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
KR101165969B1 (ko) * 2011-04-27 2012-07-18 목포대학교산학협력단 거리 및 각도측정 기능을 갖는 위치측정장치
JP5661961B1 (ja) * 2014-05-21 2015-01-28 有限会社渥美不動産アンドコーポレーション 自走式電気掃除機
JP2015217233A (ja) * 2014-05-21 2015-12-07 有限会社渥美不動産アンドコーポレーション 自走式電気掃除機
WO2015178408A1 (ja) * 2014-05-21 2015-11-26 有限会社渥美不動産アンドコーポレーション 自走式電気掃除機
JP2018180870A (ja) * 2017-04-12 2018-11-15 アルパイン株式会社 電動車両の自動走行制御装置および自動走行制御方法

Similar Documents

Publication Publication Date Title
JP2005135400A (ja) 自走式作業ロボット
KR102426578B1 (ko) 로봇청소기 및 그 제어방법
US9844876B2 (en) Robot cleaner and control method thereof
US7660650B2 (en) Self-propelled working robot having horizontally movable work assembly retracting in different speed based on contact sensor input on the assembly
EP1955632A2 (en) Robot cleaner using edge detection and method of controlling the same
KR20170000071A (ko) 진공 청소기 및 그의 제어방법
CN107249415B (zh) 自律型走行体
CN112423639B (zh) 自主行走式吸尘器
US20210274987A1 (en) Self-propelled vacuum cleaner
JP2007179394A (ja) 自走式掃除機
JP4429850B2 (ja) 自走式作業ロボット
JP2005346477A (ja) 自律走行体
JP2004139264A (ja) 自律走行ロボット
CN115500737A (zh) 一种地面介质探测方法、装置及清洁设备
CN114355871A (zh) 一种自行走装置及其控制方法
JP2020013486A (ja) 自走式掃除機及び自走式掃除機の制御方法
JP7065449B2 (ja) 自走式掃除機
JP7429873B2 (ja) 自走式掃除機
JP7403423B2 (ja) ロボット掃除機
JP2020047188A (ja) 自律走行掃除機
KR100635829B1 (ko) 로봇 청소기의 청소영역 주행 방법
JP4583070B2 (ja) 自走式掃除機
JP2005211401A (ja) 自動走行式掃除機
JPH01112312A (ja) 自走式掃除機
CN114305202A (zh) 一种自行走装置及其控制方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818