JP2005130638A - Power conversion device for electric vehicle - Google Patents

Power conversion device for electric vehicle Download PDF

Info

Publication number
JP2005130638A
JP2005130638A JP2003364563A JP2003364563A JP2005130638A JP 2005130638 A JP2005130638 A JP 2005130638A JP 2003364563 A JP2003364563 A JP 2003364563A JP 2003364563 A JP2003364563 A JP 2003364563A JP 2005130638 A JP2005130638 A JP 2005130638A
Authority
JP
Japan
Prior art keywords
current
excitation current
motor
command value
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003364563A
Other languages
Japanese (ja)
Inventor
Makoto Hayashi
誠 林
Haruhisa Takamura
晴久 高村
Kazuto Kawakami
和人 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2003364563A priority Critical patent/JP2005130638A/en
Publication of JP2005130638A publication Critical patent/JP2005130638A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power conversion device for electric vehicles, wherein excitation current command is adjusted according to the state of operation and the system efficiency is improved. <P>SOLUTION: The power conversion device for electric vehicles comprises a direct-current power supply 1, an inverter 32 that converts the output of the direct-current power supply 1 into an alternating-current output for driving an alternating-current motor 4 via a smoothing capacitor 31, and a control means 33 that controls the inverter 32. The control means 33 separates the current of the alternating-current motor into an exciting current and a torque current orthogonal to the exciting current, by vector control or sensorless vector control and then controls them. The control means is so constituted that it has a changing means that selectively changes the command value for exciting current, according to the operation mode, powering or regeneration of the alternating-current motor 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、システム効率を改善した電気自動車用電力変換装置に関する。   The present invention relates to a power converter for an electric vehicle with improved system efficiency.

従来の電気自動車駆動システムは、バッテリーなどによる直流電源から供給される直流入力をインバータにより交流に変換し、この変換された交流出力で交流電動機を駆動する構成となっている。   A conventional electric vehicle drive system has a configuration in which a DC input supplied from a DC power source such as a battery is converted into AC by an inverter, and an AC motor is driven by the converted AC output.

インバータの制御は、トルク電流と励磁電流を分離して制御する所謂ベクトル制御が用いられるのが通常であり、更に速度センサを用いないセンサレスベクトル制御も使用されている。また、通常インバータにはパルス幅変調(PWM)制御が採用される。   As the control of the inverter, so-called vector control in which torque current and excitation current are separately controlled is used, and sensorless vector control without using a speed sensor is also used. Further, pulse width modulation (PWM) control is usually employed for the inverter.

電気自動車駆動は、定格速度まではトルク一定制御を行い、励磁電流を一定に制御するが、定格速度以上になると励磁電流を速度に略反比例させて減少させる所謂弱め界磁制御を行う。   The electric vehicle drive performs constant torque control up to the rated speed and controls the excitation current to be constant, but performs so-called field weakening control that decreases the excitation current approximately in inverse proportion to the speed when the speed exceeds the rated speed.

また、減速時あるいは下り坂では回生運転を行い、余剰エネルギーをバッテリーに充電する。   Also, during deceleration or downhill, regenerative operation is performed to charge the battery with surplus energy.

電気自動車駆動システムにおいては、力行モードと比較したときに、回生モードはバッテリーを充電しているので、直流電圧が高くなる。従って、図5(a)に示すように回生モードでは力行モードよりトルク電流を大きくできる(図5(a)のトルク電流は絶対値で表示)。しかしながら、力行時に効率の良い励磁電流指令id*と同一値の励磁電流で回生最大トルクを発生させると、図5(a)に示すように効率の良い励磁電流とトルク電流の位相関係(電流位相θT)がくずれる。即ち、トルク電流だけが大きくなってしまい、電動機の効率が低下し、従って電気自動車としては重要な指標であるシステム効率が低下する。   In the electric vehicle drive system, when compared with the power running mode, the regenerative mode charges the battery, so the DC voltage becomes higher. Accordingly, as shown in FIG. 5A, the torque current can be increased in the regenerative mode than in the power running mode (the torque current in FIG. 5A is displayed as an absolute value). However, when the regenerative maximum torque is generated with the excitation current having the same value as the efficient excitation current command id * during power running, the phase relationship between the exciting current and the torque current (current phase) as shown in FIG. θT) is broken. That is, only the torque current is increased, and the efficiency of the electric motor is lowered. Therefore, the system efficiency, which is an important index for an electric vehicle, is lowered.

また、従来の電気自動車用電力変換装置では、図5(b)に示すように力行、回生モードに関係なく励磁電流指令id*を同一に設定しているので、前述の弱め界磁制御に移行する回転数は力行モードと回生モードで同一の回転数nとなり、やはりシステム効率が低下する。   Further, in the conventional electric vehicle power converter, as shown in FIG. 5B, the excitation current command id * is set to be the same regardless of the power running and the regenerative mode, so that the rotation shifts to the aforementioned field weakening control. The number becomes the same rotation speed n in the power running mode and the regeneration mode, and the system efficiency is also lowered.

これらの対策として、トルク指令に応じて損失を最小にするような励磁電流を所定の伝達関数に基づいて演算によって求め、高効率化を計る提案が行われている(例えば特許文献1参照。)。
特開平7−67397号公報(第3−8頁、図1)
As a countermeasure against these problems, a proposal has been made to obtain an excitation current that minimizes the loss in accordance with the torque command by calculation based on a predetermined transfer function to improve efficiency (see, for example, Patent Document 1). .
JP-A-7-67397 (page 3-8, FIG. 1)

上記特許文献1によるシステムの効率向上手法は、制御系が複雑となる上、モータ定数などを予め設定する必要があり、手間がかかるという問題点があった。   The method for improving the efficiency of the system according to Patent Document 1 has a problem that the control system is complicated and it is necessary to set motor constants in advance, which is troublesome.

本発明は、上記問題点に鑑み為されたもので、簡単な制御回路構成で、運転状態により励磁電流指令を調整し、システム効率を改善した電気自動車用電力変換装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a power conversion device for an electric vehicle in which an excitation current command is adjusted according to an operation state with a simple control circuit configuration, and system efficiency is improved. To do.

上記目的を達成するために、本発明の電気自動車用電力変換装置は、直流電源と、この直流電源の出力を平滑コンデンサを介し、交流電動機駆動用の交流出力に変換するインバータと、このインバータを制御する制御手段とから構成され、前記制御手段は、ベクトル制御またはセンサレスベクトル制御により前記交流電動機の電流を励磁電流と励磁電流に直交するトルク電流に分離して制御するようにし、前記交流電動機の力行または回生の運転モードに応じて前記励磁電流の指令値を選択的に切換える切換手段を有することを特徴としている。   In order to achieve the above object, a power converter for an electric vehicle according to the present invention includes a DC power supply, an inverter for converting the output of the DC power supply to an AC output for driving an AC motor through a smoothing capacitor, and the inverter. The control means is configured to control the current of the AC motor separately into an excitation current and a torque current orthogonal to the excitation current by vector control or sensorless vector control. It is characterized by having a switching means for selectively switching the command value of the exciting current according to the power running or regenerative operation mode.

本発明によれば、比較的簡単な制御回路を加えるだけで、回生モードと力行モードの運転モードに応じて、励磁電流の調整が可能となり、システム効率を改善した電気自動車用電力変換装置を提供することができる。   According to the present invention, it is possible to adjust the excitation current according to the operation mode of the regenerative mode and the power running mode only by adding a relatively simple control circuit, and to provide a power converter for an electric vehicle with improved system efficiency. can do.

以下、本発明の実施例を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明による電気自動車用電力変換装置の実施例1を図1及び図2を参照して説明する。図1は本発明の電気自動車用電力変換装置の回路構成図である。   A first embodiment of a power converter for an electric vehicle according to the present invention will be described with reference to FIGS. FIG. 1 is a circuit configuration diagram of a power converter for an electric vehicle according to the present invention.

直流電源1は、開閉器2を介し交流電動機4を駆動するためのインバータ3に直流電力を供給する。インバータ3は、直流を平滑するためのコンデンサ31、主回路素子32u、32v、32w、32x、32y及び32zをブリッジ接続して構成したインバータ回路32、及びこのインバータ回路32を制御する制御回路33を備えている。インバータ3には直流電流を検出する電流検出器34が取り付けられている。また交流電動機4には、回転数を検出するための回転数検出器5が取り付けられている。   A DC power source 1 supplies DC power to an inverter 3 for driving an AC motor 4 via a switch 2. The inverter 3 includes a capacitor 31 for smoothing DC, main circuit elements 32u, 32v, 32w, 32x, 32y, and an inverter circuit 32 configured by bridge connection, and a control circuit 33 for controlling the inverter circuit 32. I have. A current detector 34 for detecting a direct current is attached to the inverter 3. The AC motor 4 is provided with a rotation speed detector 5 for detecting the rotation speed.

制御回路33の構成は以下の通りである。与えられたトルク電流(q軸電流)指令iq*及び後述する手法により求められる励磁電流(d軸電流)指令id*と、フィードバック演算されたトルク電流(q軸電流)iq及び励磁電流(d軸電流)idとを夫々演算増幅器331及び演算増幅器332で比較演算し、その夫々の出力をq軸電圧指令vq*及びd軸電圧指令vd*とする。このq軸電圧指令vq*及びd軸電圧指令vd*を座標変換器333で3相電圧基準に変換し、これをPWM制御器334でパルスに変換することにより、インバータ回路32のゲート信号を得ている。   The configuration of the control circuit 33 is as follows. A given torque current (q-axis current) command iq *, an excitation current (d-axis current) command id * obtained by a method to be described later, a torque current (q-axis current) iq and an excitation current (d-axis) calculated by feedback calculation The current) id is compared and calculated by the operational amplifier 331 and the operational amplifier 332, and the respective outputs are set as the q-axis voltage command vq * and the d-axis voltage command vd *. The q-axis voltage command vq * and the d-axis voltage command vd * are converted into a three-phase voltage reference by the coordinate converter 333 and converted into a pulse by the PWM controller 334, thereby obtaining a gate signal of the inverter circuit 32. ing.

前述したq軸電流iqとd軸電流idは、インバータ3の任意の2相の出力電流、例えばU相電流iuとW相電流iwを検出し、これを座標変換器335で、3相から2相へ変換して求めている。ここで、座標変換器335の基準位相は、回転数検出器5で検出された回転数nを積分した位相角θrと、トルク電流指令iq*と励磁電流指令id*から演算で求めたすべり周波数fsを積分して得られる位相角θsを加えた位相角θを用いる。前述した座標変換器333の基準位相も同様にこの位相角θを用いる。   The q-axis current iq and the d-axis current id described above detect an arbitrary two-phase output current of the inverter 3, for example, a U-phase current iu and a W-phase current iw, and these are detected by the coordinate converter 335 from 2 to 2 It is calculated by converting to a phase. Here, the reference phase of the coordinate converter 335 is the slip frequency obtained by calculation from the phase angle θr obtained by integrating the rotational speed n detected by the rotational speed detector 5, the torque current command iq *, and the excitation current command id *. A phase angle θ obtained by adding a phase angle θs obtained by integrating fs is used. Similarly, the phase angle θ is used for the reference phase of the coordinate converter 333 described above.

励磁電流(d軸電流)指令id*は以下の手法により求められる。即ち、前述した電流検出器34による検出電流の極性が正であれば、力行時励磁電流設定器336の出力を選択し、逆にこの極性が負であれば、回生時励磁電流設定器337の出力を選択する。力行時励磁電流設定器336及び回生時励磁電流設定器337は、図2に示すように、夫々トルク電流指令iq*及び回転数nの関数として設定される。   The excitation current (d-axis current) command id * is obtained by the following method. That is, if the polarity of the current detected by the current detector 34 is positive, the output of the powering excitation current setting device 336 is selected. Conversely, if the polarity is negative, the regenerative excitation current setting device 337 is selected. Select an output. As shown in FIG. 2, the power running excitation current setting device 336 and the regeneration excitation current setting device 337 are set as functions of the torque current command iq * and the rotation speed n, respectively.

尚、力行または回生の運転モードの判別は、必ずしも本実施例の電流検出器34で得られた直流電流の極性で判定する必要はなく、例えば、トルク電流指令iq*の極性判定によっても良い。   Note that the determination of the power running or regenerative operation mode is not necessarily performed based on the polarity of the direct current obtained by the current detector 34 of the present embodiment, and may be performed by, for example, determining the polarity of the torque current command iq *.

図2(a)はトルク電流指令iq*の絶対値に応じて励磁電流指令id*を調整する原理を示している。力行時は定格励磁電流id*1が最大励磁電流となるが、回生時は前述したようにトルク電流指令iq*を力行時より大きく設定することが可能となり、この時の最大励磁電流はid*2となる。尚、前述したように電流位相θTを一定に保つことが電動機の最大効率を保持することになるため、トルク電流指令iq*の変化に応じて、励磁電流id*を変化させる。   FIG. 2A shows the principle of adjusting the excitation current command id * according to the absolute value of the torque current command iq *. The rated excitation current id * 1 is the maximum excitation current during power running, but during regeneration, the torque current command iq * can be set larger than that during power running as described above, and the maximum excitation current at this time is id *. 2. Note that, as described above, keeping the current phase θT constant maintains the maximum efficiency of the electric motor, so the excitation current id * is changed according to the change of the torque current command iq *.

図2(b)はトルク一定運転からパワー一定運転への切換の回転数を示したものである。図2(b)に示したように、力行運転では、回転数n1以上で弱め界磁制御を行うが、回生運転では回転数n1よりも大きい回転数n2で弱め界磁制御を行うようにし、システム効率を改善する。   FIG. 2B shows the number of rotations for switching from constant torque operation to constant power operation. As shown in FIG. 2B, in the power running operation, the field weakening control is performed at the rotational speed n1 or more, but in the regenerative operation, the field weakening control is performed at the rotational speed n2 larger than the rotational speed n1, thereby improving the system efficiency. To do.

以上説明したように、本発明の実施例1によれば、力行運転、回生運転の運転モードに応じて電動機効率が最大となる励磁電流を自動的に選択することができるので、簡単な制御回路構成で、システム効率を改善した電気自動車用電力変換装置を提供することができる。   As described above, according to the first embodiment of the present invention, the excitation current that maximizes the motor efficiency can be automatically selected according to the operation mode of the power running operation and the regenerative operation. With the configuration, it is possible to provide a power converter for an electric vehicle with improved system efficiency.

尚、以上の説明では、力行時の最大トルク発生時の効率が最も良くなるように励磁電流の基準を設定すると説明したが、逆に、回生時の効率の最大条件から励磁電流の基準を設定しても良い。   In the above explanation, it has been explained that the excitation current reference is set so that the efficiency at the time of maximum torque generation during power running is the best, but conversely, the excitation current reference is set from the maximum efficiency condition during regeneration. You may do it.

図3は本発明の実施例2に係る電気自動車用電力変換装置の回路構成図である。この実施例2の各部について図1の実施例1に係る電気自動車用電力変換装置の各部と同一部分は同一符号で示し、その説明を省略する。この実施例2が実施例1と異なる点は、図1の電流検出器6に代えてインバータ3の直流電圧検出器35を設けた点と、図1の力行時励磁電流設定器336及び回生時励磁電流設定器337に代え、時励磁電流設定器338及び励磁電流調整器339を設けた点である。   FIG. 3 is a circuit configuration diagram of the electric power converter for an electric vehicle according to the second embodiment of the present invention. The same parts of the second embodiment as those of the electric power converter for an electric vehicle according to the first embodiment shown in FIG. The second embodiment is different from the first embodiment in that a DC voltage detector 35 of the inverter 3 is provided instead of the current detector 6 in FIG. 1, and in the power running excitation current setting device 336 and the regeneration time in FIG. Instead of the excitation current setting device 337, an hour excitation current setting device 338 and an excitation current adjuster 339 are provided.

時励磁電流設定器338の動作は、図1の力行時励磁電流設定器336または回生時励磁電流設定器337の動作と基本的に同一である。以下励磁電流調整器338の動作について図4を参照して説明する。   The operation of the excitation current setting device 338 is basically the same as the operation of the excitation current setting device 336 or the excitation current setting device 337 during regeneration in FIG. The operation of the excitation current adjuster 338 will be described below with reference to FIG.

図4(a)に示すように、直流電圧検出器35の検出電圧に応じて励磁電流指令id*を変化させ、その重みを励磁電流指令値id*に乗算するようにする。通常時は、直流電圧の高い状態は回生運転、直流電圧が低い状態は、力行運転となる。電圧範囲はバッテリの充電状態や経年劣化によって変化する。図4(a)のa点で効率の良い励磁電流とトルク電流の関係を電流位相θTに設定した場合、図4(b)に示すように、直流電圧が高い場合は、トルク電流の増加に伴い励磁電流を増加し、最大効率a点の電流位相θTを保つように制御する。直流電圧が低い場合は、トルク電流の減少に伴って励磁電流を減少し、最大効率a点の電流の位相θTを保つように制御し、この結果、効率の良い運転が可能となる。もし励磁電流を調整しない場合は、図4(c)に示すように、直流電圧が高い場合は電流位相θT1>θT、また直流電圧が低い場合はθT2<θTとなるため、効率が低下する。   As shown in FIG. 4A, the excitation current command id * is changed according to the detected voltage of the DC voltage detector 35, and the weight is multiplied by the excitation current command value id *. Under normal conditions, a regenerative operation is performed when the DC voltage is high, and a power running operation is performed when the DC voltage is low. The voltage range changes depending on the state of charge of the battery and aging. When the relationship between the exciting current and torque current that is efficient at point a in FIG. 4A is set to the current phase θT, as shown in FIG. 4B, when the DC voltage is high, the torque current increases. Accordingly, the excitation current is increased, and control is performed so as to maintain the current phase θT at the maximum efficiency a. When the DC voltage is low, the excitation current is reduced as the torque current is reduced, and control is performed so as to maintain the phase θT of the current at the point of maximum efficiency a. As a result, efficient operation becomes possible. If the excitation current is not adjusted, as shown in FIG. 4 (c), the current phase θT1> θT when the DC voltage is high, and θT2 <θT when the DC voltage is low.

以上説明したように。本発明の実施例2によっても、簡単な制御回路構成で、システム
効率を改善した電気自動車用電力変換装置を提供することができる。
As explained above. According to the second embodiment of the present invention, it is possible to provide a power converter for an electric vehicle with improved system efficiency with a simple control circuit configuration.

尚、本発明の各実施例の説明では、交流電動機4はすべり周波数fsを持つ誘導電動機を例に説明したが、すべり周波数fsがゼロの同期電動機の場合であっても本発明は適用可能である。   In the description of each embodiment of the present invention, the AC motor 4 is described as an induction motor having a slip frequency fs as an example. However, the present invention can be applied even to a synchronous motor having a slip frequency fs of zero. is there.

本発明の実施例1に係る電気自動車用電力変換装置の回路構成図。The circuit block diagram of the power converter device for electric vehicles which concerns on Example 1 of this invention. 本発明の実施例1の励磁電流とトルク指令の説明図。Explanatory drawing of the exciting current and torque command of Example 1 of this invention. 本発明の実施例2に係る電気自動車用電力変換装置の回路構成図。The circuit block diagram of the power converter device for electric vehicles which concerns on Example 2 of this invention. 本発明の実施例2の励磁電流とトルク指令の説明図。Explanatory drawing of the excitation current and torque command of Example 2 of this invention. 従来の励磁電流とトルク指令の説明図。Explanatory drawing of the conventional excitation current and torque command.

符号の説明Explanation of symbols

1 直流電源
2 開閉器
3 インバータ
4 交流電動機
5 電流検出器
6 回転数検出器
7 電圧検出器
31 直流コンデンサ
32 インバータ回路
33 制御回路
331 演算増幅器
332 演算増幅器
333 座標変換器(2相/3相)
334 PWM制御器
335 座標変換器(3相/2相)
336 力行励磁電流設定器
337 回生励磁電流設定器
338 励磁電流設定器
339 励磁電流調節器
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Switch 3 Inverter 4 AC motor 5 Current detector 6 Rotation speed detector 7 Voltage detector 31 DC capacitor 32 Inverter circuit 33 Control circuit 331 Operational amplifier 332 Operational amplifier 333 Coordinate converter (2 phase / 3 phase)
334 PWM controller 335 Coordinate converter (3 phase / 2 phase)
336 Power running excitation current setting device 337 Regenerative excitation current setting device 338 Excitation current setting device 339 Excitation current controller

Claims (6)

直流電源と、
この直流電源の出力を平滑コンデンサを介し、交流電動機駆動用の交流出力に変換するインバータと、
このインバータを制御する制御手段と
から構成され、
前記制御手段は、
ベクトル制御またはセンサレスベクトル制御により前記交流電動機の電流を励磁電流と励磁電流に直交するトルク電流に分離して制御するようにし、
前記交流電動機の力行または回生の運転モードに応じて前記励磁電流の指令値を選択的に切換える切換手段を有することを特徴とする電気自動車用電力変換装置。
DC power supply,
An inverter that converts the output of the DC power source into an AC output for driving an AC motor through a smoothing capacitor;
And a control means for controlling the inverter,
The control means includes
The current of the AC motor is separated and controlled into an excitation current and a torque current orthogonal to the excitation current by vector control or sensorless vector control,
A power converter for an electric vehicle, comprising switching means for selectively switching the command value of the exciting current according to the power running or regenerative operation mode of the AC motor.
前記交流電動機の力行または回生の運転モードの判定は、前記インバータ回路の直流電流の極性によることを特徴とする請求項1に記載の電気自動車用電力変換装置。   The electric power converter for an electric vehicle according to claim 1, wherein the determination of the power running or regenerative operation mode of the AC motor is based on the polarity of the DC current of the inverter circuit. 前記励磁電流の指令値は、前記トルク電流の指令値に略比例して変化させ、回生モードにおける前記励磁電流の指令値を力行モードにおける前記励磁電流の指令値より大きくしたことを特徴とする請求項1に記載の電気自動車用電力変換装置。   The command value of the excitation current is changed substantially in proportion to the command value of the torque current, and the command value of the excitation current in the regeneration mode is made larger than the command value of the excitation current in the power running mode. Item 4. A power converter for an electric vehicle according to Item 1. 力行モードにおける前記励磁電流の指令値は、前記交流電動機の回転数が第1の所定値以上になったとき、回転数に略反比例して低減させ、
回生モードにおける前記励磁電流の指令値は、前記交流電動機の回転数が前記第1の所定値より大きい第2の所定値以上になったとき、回転数に略反比例して低減させるようにしたことを特徴とする請求項1に記載の電気自動車用電力変換装置。
The command value of the excitation current in the power running mode is reduced approximately in inverse proportion to the rotational speed when the rotational speed of the AC motor is equal to or higher than the first predetermined value,
The command value of the excitation current in the regenerative mode is reduced substantially in inverse proportion to the rotational speed when the rotational speed of the AC motor becomes equal to or greater than a second predetermined value that is greater than the first predetermined value. The electric power converter for electric vehicles according to claim 1 characterized by things.
直流電源と、
この直流電源の出力を平滑コンデンサを介し、交流電動機駆動用の交流出力に変換するインバータと、
このインバータを制御する制御手段と
前記インバータの直流電圧を検出する電圧検出器と
から構成され、
前記制御手段は、
ベクトル制御またはセンサレスベクトル制御により前記交流電動機の電流を励磁電流と励磁電流に直交するトルク電流に分離して制御するようにし、
前記電圧検出器により検出した直流電圧に応じて、前記励磁電流の指令値を変化させるようにしたことを特徴とする電気自動車用電力変換装置。
DC power supply,
An inverter that converts the output of the DC power source into an AC output for driving an AC motor through a smoothing capacitor;
Consists of a control means for controlling the inverter and a voltage detector for detecting a DC voltage of the inverter,
The control means includes
The current of the AC motor is separated and controlled into an excitation current and a torque current orthogonal to the excitation current by vector control or sensorless vector control,
A power converter for an electric vehicle, characterized in that a command value of the exciting current is changed in accordance with a DC voltage detected by the voltage detector.
前記励磁電流の指令値は、
前記直流電圧に略比例して変化させ、且つ上限及び下限のリミットを設けたことを特徴とする請求項5に記載の電気自動車用電力変換装置。
The command value of the excitation current is
6. The electric power converter for an electric vehicle according to claim 5, wherein the power converter is changed substantially in proportion to the DC voltage, and an upper limit and a lower limit are provided.
JP2003364563A 2003-10-24 2003-10-24 Power conversion device for electric vehicle Pending JP2005130638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364563A JP2005130638A (en) 2003-10-24 2003-10-24 Power conversion device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364563A JP2005130638A (en) 2003-10-24 2003-10-24 Power conversion device for electric vehicle

Publications (1)

Publication Number Publication Date
JP2005130638A true JP2005130638A (en) 2005-05-19

Family

ID=34643507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364563A Pending JP2005130638A (en) 2003-10-24 2003-10-24 Power conversion device for electric vehicle

Country Status (1)

Country Link
JP (1) JP2005130638A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030664A (en) * 2005-07-26 2007-02-08 Kayaba Ind Co Ltd Electromagnetic suspension device
JP2007089334A (en) * 2005-09-22 2007-04-05 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device for electric vehicle
CN103781654A (en) * 2011-09-13 2014-05-07 丰田自动车株式会社 Motor control system
CN103972954A (en) * 2013-02-06 2014-08-06 Lg电子株式会社 Charging apparatus and electric vehicle including the same
CN104779870A (en) * 2014-01-13 2015-07-15 上海迅微信息科技有限公司 Comprehensive method for vector and direct torque control of permanent-magnetic wind generator
CN110071672A (en) * 2018-01-24 2019-07-30 欧姆龙(上海)有限公司 Field weakening control method, weak magnetic controller, current-order generator and electric machine control system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030664A (en) * 2005-07-26 2007-02-08 Kayaba Ind Co Ltd Electromagnetic suspension device
JP2007089334A (en) * 2005-09-22 2007-04-05 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device for electric vehicle
CN103781654A (en) * 2011-09-13 2014-05-07 丰田自动车株式会社 Motor control system
CN103972954A (en) * 2013-02-06 2014-08-06 Lg电子株式会社 Charging apparatus and electric vehicle including the same
US9358893B2 (en) 2013-02-06 2016-06-07 Lg Electronics Inc. Charging apparatus and electric vehicle including the same
CN103972954B (en) * 2013-02-06 2017-01-18 Lg电子株式会社 Charging apparatus and electric vehicle including the same
US9789776B2 (en) 2013-02-06 2017-10-17 Lg Electronics Inc. Charging apparatus and electric vehicle including the same
CN104779870A (en) * 2014-01-13 2015-07-15 上海迅微信息科技有限公司 Comprehensive method for vector and direct torque control of permanent-magnetic wind generator
CN110071672A (en) * 2018-01-24 2019-07-30 欧姆龙(上海)有限公司 Field weakening control method, weak magnetic controller, current-order generator and electric machine control system

Similar Documents

Publication Publication Date Title
US8278855B2 (en) Controller of motor preventing an increase in inverter loss
JP4205157B1 (en) Electric motor control device
RU2466040C1 (en) Power inverter
US8138712B2 (en) Motor drive system and its control method
JP4353304B2 (en) Motor drive control device
JP4458174B2 (en) Rotating machine control device and rotating machine control system
US20110241583A1 (en) Control device of motor driving apparatus
US7852040B2 (en) Motor driver system and method for controlling motor driver
WO2016006386A1 (en) Control device and control method for vehicle dynamo
JP2007089248A (en) Driver of electric motor
JP4931105B2 (en) Electric vehicle power converter
JP2004166415A (en) Equipment for driving and controlling motor
JP2009183051A (en) Controller of synchronous machine
JP2005130638A (en) Power conversion device for electric vehicle
JP4007309B2 (en) Motor control device and motor control method
JP2007267512A (en) Drive controller of ac motor
JP2007221864A (en) Inverter controller of ac motor
JP2004282838A (en) Braking method of inverter driven induction motor
JP2003033071A (en) Motor controller
JP2005033932A (en) Motor controller
JP2010161875A (en) Deceleration control method for induction motor
JP2005168140A (en) Motor controller and its control method
JPH09182498A (en) A.c. motor controller
JP2001238497A (en) Drive control unit of induction motor
JP6681266B2 (en) Electric motor control device and electric vehicle equipped with the same