JP2005120470A - Method for producing metallic fine particle, and metallic fine particle - Google Patents

Method for producing metallic fine particle, and metallic fine particle Download PDF

Info

Publication number
JP2005120470A
JP2005120470A JP2004275531A JP2004275531A JP2005120470A JP 2005120470 A JP2005120470 A JP 2005120470A JP 2004275531 A JP2004275531 A JP 2004275531A JP 2004275531 A JP2004275531 A JP 2004275531A JP 2005120470 A JP2005120470 A JP 2005120470A
Authority
JP
Japan
Prior art keywords
metal
oxide
particles
powder
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004275531A
Other languages
Japanese (ja)
Other versions
JP4288674B2 (en
Inventor
Hisato Tokoro
久人 所
Shigeo Fujii
重男 藤井
Tsunehiro Kawada
常宏 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004275531A priority Critical patent/JP4288674B2/en
Publication of JP2005120470A publication Critical patent/JP2005120470A/en
Application granted granted Critical
Publication of JP4288674B2 publication Critical patent/JP4288674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive coating method having superior mass productivity and imparting superior corrosion resistance, and to provide a metallic fine particle. <P>SOLUTION: This method for producing the fine particle of a metal M1 reduced by an element M2 comprises mixing an oxide powder of a metal M1 with a powder containing such an element M2 that the standard free energy of the formation of its oxide satisfies the relationship of ΔG<SB>M1-O</SB>>ΔG<SB>M2-O</SB>, and heat-treating the mixed powder in a non-oxidizing atmosphere. Then, the surface of the fine particle of the metal M1 is covered with at least one substance among M2, an alloy containing M2, the oxide of M2, and a nitride of M2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

磁気テープ、磁気記録ディスク等の磁気記録媒体や、電波吸収体、インダクタ、プリント基板等の電子デバイス(ヨークなどの軟磁性形状体)、更には核酸抽出用磁気ビーズや医療用マイクロスフィアの原材料に用いる磁性金属粒子およびその製造方法に関する。   For magnetic recording media such as magnetic tapes and magnetic recording disks, electronic devices such as radio wave absorbers, inductors and printed circuit boards (soft magnetic bodies such as yokes), as well as magnetic beads for nucleic acid extraction and raw materials for medical microspheres The present invention relates to magnetic metal particles used and a method for producing the same.

電子機器の小型軽量化に伴い、電子デバイスを構成する原材料自体もナノサイズ化が要求されている。同時にデバイスの高性能化も実現しなければならない。例えば磁気記録密度の向上を目的として、磁気テープに塗布する磁性粒子のナノサイズ化と磁化の向上が同時に要求される。   As electronic devices become smaller and lighter, the raw materials that make up electronic devices themselves are also required to be nanosized. At the same time, device performance must be improved. For example, for the purpose of improving the magnetic recording density, it is required to simultaneously increase the nanosize and the magnetization of the magnetic particles applied to the magnetic tape.

ナノ磁性粒子の製法は、共沈法や水熱合成法などで代表される液相合成法が主流であった。上記液相法で得られるナノ磁性粒子はフェライトやマグネタイトなどの酸化物粒子であった。また最近では金属有機物質の熱分解を利用した手法がとられており、例えばFe(CO)からFeのナノ粒子を合成するものがある。 The main method for producing nanomagnetic particles is a liquid phase synthesis method represented by a coprecipitation method or a hydrothermal synthesis method. The nanomagnetic particles obtained by the liquid phase method were oxide particles such as ferrite and magnetite. Recently, a technique using thermal decomposition of a metal organic material has been taken, and for example, there is one that synthesizes Fe nanoparticles from Fe (CO) 5 .

金属の磁性粒子は酸化物に比べて磁化が大きいため、工業的利用への期待が大きい。例えば、金属Feはその飽和磁化が218A・m/kgと酸化鉄に比べて非常に大きく、磁場応答性に優れる、信号強度が大きくとれる、といったメリットがある。しかし金属Feなどの金属粒子は容易に酸化するため、特に100μm以下、さらには1μm以下の微粒子状にした場合は比表面積が極端に増大してしまい、粒子が大気中で激しく酸化して燃えてしまう、水溶液中で激しく酸化して変質してしまう、磁性が劣化してしまう等の問題が生じ、乾燥粒子として取り扱うことが難しかった。そのためフェライトやマグネタイトなどの酸化物粒子がより広く利用されてきた。 Since magnetic particles of metal are larger in magnetization than oxides, there are high expectations for industrial use. For example, metallic Fe has the advantage that its saturation magnetization is 218 A · m 2 / kg, which is much larger than that of iron oxide, has excellent magnetic field response, and has high signal intensity. However, since metal particles such as metal Fe are easily oxidized, the specific surface area is extremely increased especially when the particle size is 100 μm or less, and even 1 μm or less, and the particles violently oxidize and burn in the atmosphere. In other words, problems such as violent oxidation in an aqueous solution and degeneration, deterioration of magnetism, and the like have occurred, making it difficult to handle as dry particles. Therefore, oxide particles such as ferrite and magnetite have been widely used.

そこで、金属粒子を乾燥粒子として取り扱う際、金属としての機能を損なわせないためには、粒子を直接大気(酸素)に触れさせないように粒子表面に被膜を付与することが不可欠である。しかし、金属酸化物で表面を被覆する方法は、少なからず金属を酸化劣化させている(特許文献1)。   Therefore, when the metal particles are handled as dry particles, it is indispensable to provide a coating on the particle surface so that the particles are not directly exposed to the atmosphere (oxygen) in order not to impair the metal function. However, the method of coating the surface with a metal oxide not a little causes oxidative degradation of the metal (Patent Document 1).

そこで、金属粒子をグラファイトでコーティングする手法が報告されている(特許文献2)。しかし、本手法に従って金属粒子をグラファイトコーティングするためには、金属が炭素を溶融する状態を作るために1600℃〜2800℃という極めて高い温度で金属粒子を熱処理しなければならず、金属粒子の焼結が懸念される。この問題を打開する被覆方法として、窒化ほう素(BN)による金属粒子の被覆が挙げられる(例えば、非特許文献1)。BNは「るつぼ」に用いられる材料であり、融点が3000℃と高く熱的安定性に優れているとともに、金属との反応性が低い。また絶縁性を有する特徴がある。金属粒子にBN被膜を付与する製法は、(1)金属とBの混合粉末を窒素雰囲気中でアーク放電によって加熱する、あるいは(2)金属とBの混合粉末を水素とアンモニアの混合雰囲気中で加熱する、あるいは(3)硝酸金属塩と尿素とホウ酸の混合物を水素雰囲気中で熱処理する、といった方法がある。特に製法(2)と(3)は1000℃の低温で熱処理するため、上記グラファイトコーティングに比べて粒子焼結の大幅な抑制が期待される。   Therefore, a technique for coating metal particles with graphite has been reported (Patent Document 2). However, in order to coat the metal particles with graphite according to this method, the metal particles must be heat-treated at an extremely high temperature of 1600 ° C. to 2800 ° C. in order to create a state in which the metal melts carbon. There is concern about the result. As a coating method that overcomes this problem, there is a method of coating metal particles with boron nitride (BN) (for example, Non-Patent Document 1). BN is a material used for “crucibles”, has a high melting point of 3000 ° C. and excellent thermal stability, and has low reactivity with metals. It also has an insulating property. The production method for applying a BN film to metal particles is as follows: (1) a mixed powder of metal and B is heated by arc discharge in a nitrogen atmosphere, or (2) a mixed powder of metal and B is mixed in a mixed atmosphere of hydrogen and ammonia. There are methods such as heating, or (3) heat-treating a mixture of metal nitrate, urea and boric acid in a hydrogen atmosphere. In particular, since the manufacturing methods (2) and (3) are heat-treated at a low temperature of 1000 ° C., the particle sintering is expected to be greatly suppressed as compared with the graphite coating.

特開2000−30920号公報(第9〜11頁、図2)JP 2000-30920 A (pages 9-11, FIG. 2) 特開平9−143502号公報(第3〜4頁、図5)JP-A-9-143502 (pages 3-4, FIG. 5) 「インターナショナル ジャーナル オブ インオーガニック マテリアルズ 3 2001(International Journal of Inorganic Materials 3 2001)」,2001年,p.597“International Journal of Inorganic Materials 3 2001”, 2001, p. 597

特許文献2に開示されるような金属微粒子表面にグラファイトをコーティングする手法が考案されたが、生産効率が低く実用性に乏しいという課題があった。また金属微粒子に窒化ほう素をコーティングする手法が考案されたが、ほう素粉末が非常に高価で原料コストが高いという課題があった。さらに、グラファイトはグラフェンシートが積層した構造をしているため、球状の粒子を被覆する場合には必ず格子欠陥が導入される。窒化ホウ素の場合も同様に積層構造であるため、完全結晶の被覆層を得ることは困難であった。したがって、これらの欠陥が存在する被覆では、磁気ビーズ用途など高度の耐食性が要求される用途においては満足の行くものとは言えなかった。そこで、耐食性がいっそう高い金属微粒子と、それを安価・簡易に提供できる工業生産性に優れた製造方法が望まれていた。   Although a technique for coating graphite on the surface of metal fine particles as disclosed in Patent Document 2 has been devised, there is a problem that production efficiency is low and practicality is poor. In addition, a method of coating metal nitride with boron nitride has been devised, but there is a problem that boron powder is very expensive and the raw material cost is high. Further, since graphite has a structure in which graphene sheets are laminated, lattice defects are always introduced when coating spherical particles. Similarly, since boron nitride has a laminated structure, it is difficult to obtain a completely crystalline coating layer. Therefore, the coating with these defects cannot be said to be satisfactory in applications requiring high corrosion resistance such as magnetic beads. Accordingly, there has been a demand for a metal fine particle having higher corrosion resistance and a production method excellent in industrial productivity that can provide it at low cost and in a simple manner.

本発明者は上記目的を達成するために鋭意研究を重ねた結果本発明に至った。   The inventor of the present invention has arrived at the present invention as a result of intensive studies to achieve the above object.

(1) 本発明の金属微粒子の製造方法は、金属M1の酸化物粉末と、酸化物の標準生成自由エネルギーがΔGM1−O>ΔGM2−Oの関係を満たす元素M2を含む粉末とを混合し、その混合粉末を非酸化性雰囲気中で熱処理することにより、元素M2によって還元された金属M1の金属微粒子の表面をM2、M2の酸化物、M2の窒化物の少なくとも一つによって被覆することを特徴とする。前記熱処理において、金属M1に対してかかる関係を満たす元素M2を含む粉末を用いることにより、金属M1の酸化物粉末が元素M2によって還元されると同時に、元素M2の酸化物等の被覆が形成される。したがって、金属粒子の生成と被覆の形成が同一工程で行なわれるため、工程が極めて簡略化されて生産性向上に寄与すると共に、金属微粒子の酸化劣化を防止することができる。熱処理温度は900℃〜1500℃の範囲が好ましい。 (1) In the method for producing metal fine particles of the present invention, an oxide powder of metal M1 is mixed with a powder containing element M2 in which the standard free energy of formation of oxide satisfies the relationship of ΔG M1-O > ΔG M2-O. Then, the surface of the metal fine particles of the metal M1 reduced by the element M2 is coated with at least one of M2, M2 oxide, and M2 nitride by heat-treating the mixed powder in a non-oxidizing atmosphere. It is characterized by. In the heat treatment, by using the powder containing the element M2 that satisfies such a relationship with the metal M1, the oxide powder of the metal M1 is reduced by the element M2, and at the same time, a coating such as an oxide of the element M2 is formed. The Therefore, since the generation of the metal particles and the formation of the coating are performed in the same process, the process is greatly simplified and contributes to the improvement of productivity, and oxidation deterioration of the metal fine particles can be prevented. The heat treatment temperature is preferably in the range of 900 ° C to 1500 ° C.

(2) さらに他の本発明の製造方法は、前記(1)に記載の金属微粒子の製造方法であって、前記金属M1がFeであり、前記元素M2がAl、Mn、Nb、Ti、Vのうちの少なくとも一種であることを特徴とする。これらのM2元素はFeに比べて酸化物の標準生成エネルギーが小さいため、Feの酸化物を効率よくかつ確実に還元することができる。したがって、飽和磁化が高く、耐食性にも優れた磁性金属微粒子を提供することができる。   (2) Still another manufacturing method of the present invention is the manufacturing method of metal fine particles according to (1), wherein the metal M1 is Fe, and the element M2 is Al, Mn, Nb, Ti, V It is at least one of these. Since these M2 elements have a lower standard generation energy of oxide than Fe, the oxide of Fe can be reduced efficiently and reliably. Therefore, magnetic metal fine particles having high saturation magnetization and excellent corrosion resistance can be provided.

(3) 本発明の金属微粒子は、金属M1の金属微粒子の表面が、酸化物の標準生成自由エネルギーがΔGM1−O>ΔGM2−Oの関係を満たす元素M2、M2の酸化物、M2の窒化物のうちの少なくとも一つによって被覆されていることを特徴とする。金属微粒子を、前記関係を満たすM2の酸化物等で被覆することによって、耐食性に優れた金属微粒子とすることができる。 (3) In the metal fine particles of the present invention, the surface of the metal fine particles of the metal M1 is an oxide of elements M2, M2 and M2 in which the standard free energy of formation of the oxide satisfies the relationship of ΔG M1-O > ΔG M2-O It is characterized by being covered with at least one of nitrides. By coating the metal fine particles with an M2 oxide or the like that satisfies the above relationship, metal fine particles having excellent corrosion resistance can be obtained.

(4) さらに本発明の他の金属微粒子は、酸化物の標準生成自由エネルギーが、金属M1に対してΔGM1−O>ΔGM2−Oの関係を満たす元素M2のM2、M2の酸化物、M2の窒化物の少なくとも一つから成る母粒子中に、2個以上の金属M1の粒子が含まれていることを特徴とする。該構成の金属微粒子とすることで、耐食性に優れた粒子を得るととともに、粒子の比重・分散性を制御することができる (4) Furthermore, other metal fine particles of the present invention are oxides of M2 and M2 of element M2, in which the standard free energy of formation of the oxide satisfies the relationship of ΔG M1-O > ΔG M2-O with respect to metal M1, Two or more metal M1 particles are contained in the mother particle composed of at least one of M2 nitrides. By using the metal fine particles having such a structure, it is possible to obtain particles having excellent corrosion resistance and to control the specific gravity and dispersibility of the particles.

(5) さらに本発明の他の金属微粒子は、上記(3)または(4)に記載の金属微粒子であって、前記金属微粒子のX線回折パターンにおける元素M2、M2の酸化物、M2の窒化物のいずれかの回折ピークのうち強度が最も大きいピークは、その半値幅が0.3°以下であり、かつ金属M1の回折ピークのうち強度が最も大きいピークに対する強度比が0.001以上であることを特徴とする。該構成は、被覆の結晶性が良好であることを意味し、かかる被覆を有する粒子は高い信頼性・耐食性を具備する。   (5) Further, another metal fine particle of the present invention is the metal fine particle according to the above (3) or (4), wherein the element M2, the oxide of M2, and the nitridation of M2 in the X-ray diffraction pattern of the metal fine particle Among the diffraction peaks of any of the objects, the peak with the highest intensity has a half-width of 0.3 ° or less, and the intensity ratio of the diffraction peak of metal M1 to the peak with the highest intensity is 0.001 or more. It is characterized by being. This configuration means that the crystallinity of the coating is good, and the particles having such a coating have high reliability and corrosion resistance.

(6) さらに本発明の他の金属微粒子は、前記(3)〜(5)のいずれかに記載の金属微粒子であって、前記金属M1がFeであり、前記元素M2がAl、Mn、Nb、Ti、Vのうちの少なくとも一種であることを特徴とする。金属M1を飽和磁化の高い磁性元素であるFeとし、M2元素を酸化物の標準生成エネルギーの小さいAl、Mn、Nb、Ti、Vのうちの少なくとも一種とする構成は、緻密な被覆が得やすく、飽和磁化が高く、耐食性に優れた磁性金属微粒子を提供することができる。   (6) Further, another metal fine particle of the present invention is the metal fine particle according to any one of (3) to (5), wherein the metal M1 is Fe, and the element M2 is Al, Mn, Nb. , Ti, or V. A structure in which the metal M1 is Fe, which is a magnetic element having a high saturation magnetization, and the M2 element is at least one of Al, Mn, Nb, Ti, and V, which have a low standard generation energy of oxide, makes it easy to obtain a dense coating. In addition, magnetic metal fine particles having high saturation magnetization and excellent corrosion resistance can be provided.

(7) さらに本発明の他の金属微粒子は、前記(6)に記載の金属微粒子であって、飽和磁化の値が100〜180A・m/kgであることを特徴とする。かかる飽和磁化の範囲は、被覆の厚の制御、非磁性粒子の除去によって実現することができ、高飽和磁化と高耐食性を兼ね備えた金属微粒子を提供することができる。 (7) Furthermore, another metal fine particle of the present invention is the metal fine particle according to the above (6), wherein the saturation magnetization value is 100 to 180 A · m 2 / kg. Such a saturation magnetization range can be realized by controlling the thickness of the coating and removing the nonmagnetic particles, and can provide metal fine particles having both high saturation magnetization and high corrosion resistance.

(8) さらに本発明の他の金属微粒子は、前記(7)に記載の金属微粒子であって、純水100質量部に対して前記金属微粒子1質量部を投入して1時間保持した場合の、前記純水中へのFeの溶出量が0.10ppm以下であることを特徴とする。緻密な被覆により耐食性が向上した本発明の金属微粒子を用いることにより、高度な耐食性が要求される用途に使用できる。   (8) Further, another metal fine particle of the present invention is the metal fine particle according to (7), wherein 1 part by mass of the metal fine particle is added to 100 parts by mass of pure water and held for 1 hour. The elution amount of Fe into the pure water is 0.10 ppm or less. By using the metal fine particles of the present invention whose corrosion resistance has been improved by dense coating, it can be used for applications requiring high corrosion resistance.

本発明により、量産性に優れた安価なコーティング方法および金属微粒子を得ることができる。また、耐食性に優れた金属微粒子を提供することができる。   According to the present invention, an inexpensive coating method and metal fine particles excellent in mass productivity can be obtained. In addition, metal fine particles having excellent corrosion resistance can be provided.

上記(1)の本発明は金属微粒子の被覆方法に相当する。すなわち、酸化物の標準生成自由エネルギーがΔGM1−O>ΔGM2−Oの関係を満たす金属M1の酸化物粉末と元素M2を含む粉末とを混合し、その混合粉末を非酸化性雰囲気中で熱処理することにより、元素M2によって還元された金属M1の金属微粒子の表面をM2、M2の酸化物、M2の窒化物の少なくとも一つによって被覆する。この製法において用いられる金属M1の酸化物粉末は、目標とする金属微粒子の粒径に合わせてその粒径を自由に選択することができる。金属M1の酸化物粉末の粒子径は0.001μm〜5μmの範囲から選ばれることが好ましい。粒径が0.001μm未満の酸化物粒子は「かさ」が大きくなるだけでなく2次凝集が激しいため、その後の製造プロセスでの取り扱いが困難になる。また5μmを越える粒子は比表面積が小さくなり、結果として還元反応が進行しにくくなる。実用的には1〜1000nmの範囲が好適である。金属M1の酸化物粉末とは、例えば遷移金属、貴金属、希土類金属M1の酸化物から選ばれる。また金属M1の元素としては特に限定されないが、例えば磁性材料であればFe、Co、Ni、またはこれらを含む合金などが選ばれ、酸化物粉末としてはFe、Fe、CoO、Co、NiOが挙げられる。このうち、Feは飽和磁化が高いため、金属M1として特に好ましい。 The present invention (1) corresponds to a method for coating fine metal particles. That is, the oxide powder of the metal M1 that satisfies the relationship of ΔG M1-O > ΔG M2-O in which the standard free energy of formation of the oxide is mixed with the powder containing the element M2, and the mixed powder is mixed in a non-oxidizing atmosphere. By performing the heat treatment, the surface of the metal fine particles of the metal M1 reduced by the element M2 is covered with at least one of M2, M2 oxide, and M2 nitride. The particle size of the metal M1 oxide powder used in this production method can be freely selected according to the target particle size of the metal fine particles. The particle diameter of the metal M1 oxide powder is preferably selected from the range of 0.001 μm to 5 μm. Oxide particles having a particle size of less than 0.001 μm are not only large in “bulk” but also severely secondary agglomerated, making it difficult to handle in subsequent manufacturing processes. Moreover, the particle | grains exceeding 5 micrometers have a small specific surface area, and as a result, a reductive reaction becomes difficult to advance. Practically, the range of 1 to 1000 nm is preferable. The oxide powder of the metal M1 is selected from, for example, oxides of transition metals, noble metals, and rare earth metals M1. The element of the metal M1 is not particularly limited. For example, if it is a magnetic material, Fe, Co, Ni, or an alloy containing these is selected, and the oxide powder is Fe 2 O 3 , Fe 3 O 4 , CoO. , Co 3 O 4 , and NiO. Among these, Fe is particularly preferable as the metal M1 because of its high saturation magnetization.

元素M2を含む粉末において、酸化物の標準生成自由エネルギーがΔGM1−O>ΔGM2−Oの関係を満足するものであればM1酸化物を還元することができる。ここでΔGMi−OとはMi酸化物の標準生成エネルギーの値を表している(iは1または2)。例えばM1酸化物としてFeを考えた場合、ΔGFe2O3=−740kJ/molよりも小さいΔGM2−Oを有するものは、Al、As、CeO、Ce、Co、Cr、Ga、HfO、In、Mn、Mn、Nb、TiO、Ti、Ti、V、V、V、ZrO、Sc、Y、Ta、希土類元素の酸化物各種、などが挙げられる。すなわち元素M2はAl、As、Ce、Co、Cr、Ga、Hf、In、Mn、Nb、Ti、V、Zr、Sc、Y、Ta、各希土類元素、の中から選択されるのが好ましく、M2を含む粉末であればFeを還元することができる。また、M2を含む粉末は、異種または同種のM2を含む2種類以上の粉末を使用してもよい。特にAl、Mn、Nb、Ti、Vについては、Al、Mn、Nb、Ti、Ti、V、VのΔGFe2O3が小さく、酸化鉄を還元しやすいのでM2元素として好ましい。このうちAl、Tiは他の元素に比べて軽い元素なので、これを被覆に用いることで被覆金属微粒子の比重が低下し、例えば磁気ビーズ用途のように液体中に分散させる場合に好適である。 In the powder containing the element M2, the M1 oxide can be reduced if the standard free energy of formation of the oxide satisfies the relationship of ΔG M1-O > ΔG M2-O . Here, ΔG Mi-O represents a value of standard generation energy of Mi oxide (i is 1 or 2). For example, when considering the Fe 2 O 3 as M1 oxide, ΔG Fe2O3 = -740kJ / mol having a small .DELTA.G M2-O than is, Al 2 O 3, As 2 O 5, CeO 2, Ce 2 O 3 , Co 3 O 4 , Cr 2 O 3 , Ga 2 O 3 , HfO 2 , In 2 O 3 , Mn 2 O 3 , Mn 3 O 4 , Nb 2 O 5 , TiO 2 , Ti 2 O 3 , Ti 3 O 5 , V 2 O 3 , V 2 O 5 , V 3 O 5 , ZrO 2 , Sc 2 O 3 , Y 2 O 3 , Ta 2 O 5 , various rare earth element oxides, and the like. That is, the element M2 is preferably selected from Al, As, Ce, Co, Cr, Ga, Hf, In, Mn, Nb, Ti, V, Zr, Sc, Y, Ta, and each rare earth element, If it is a powder containing M2, Fe 2 O 3 can be reduced. As the powder containing M2, two or more kinds of powders containing different or the same kind of M2 may be used. Especially for Al, Mn, Nb, Ti, V, ΔG Fe2O3 of Al 2 O 3 , Mn 3 O 4 , Nb 2 O 5 , Ti 2 O 3 , Ti 3 O 5 , V 2 O 5 , V 3 O 5 Is preferable as the M2 element because iron oxide is easy to reduce. Among these elements, Al and Ti are lighter elements than other elements, so using them for coating lowers the specific gravity of the coated fine metal particles, and is suitable for dispersion in liquids, such as for magnetic beads.

金属M1の酸化物が酸化鉄で、M2元素がTiの場合、前記酸化鉄を還元するTiは、Ti単独に限定されず、Ti-Al、Ti−X1(X1:Ag、Au、Bi、C、Cu、Cs、Cd、Ge、Ga、Hg、K、N、Na、Pd、Pt、Rb、Rh、S、Sn、Tl、Te、Znから少なくとも一つ)等のTi化合物、あるいはそれらの混合物であっても良い。X1の限定理由は、X1の酸化物生成の標準生成自由エネルギーFX−OがTiOの生成標準自由エネルギーFTiO(=−490kJ/mol)よりも大きい物質である。もしFX−O<FTiOなるX1元素を選択すると元素X1が還元剤として作用し、Ti酸化物が生成しなくなる。酸化鉄を還元するに足るTiが含まれていれば、X1の含有量は特に限定されない。一方、金属M1の酸化物が酸化鉄で、M2元素がAlの場合、前記酸化鉄を還元するAlは、Al単独に限定されず、Al−Ti、Al−X2(X2:Ag、Am、As、Au、Ba、Be、Bi、C、Ca、Cd、Cr、Cs、Cu、Ga、Gd、Ge、Hg、In、Ir、K、Li、Lu、Mg、Mn、Mo、N、Na、Os、Pb、Pd、Pt、Rb、Rh、Re、S、Sb、Sc、Si、Sn、Sr、Tc、Te、Tl、V、W、Zn、Zrから少なくとも一つ)等のAl化合物、あるいはそれら化合物であってもよい。X2の限定理由は、X2の酸化物生成の標準生成自由エネルギーFX−OがAlの生成標準自由エネルギーFAl2O3(=−1580kJ/mol)よりも大きい物質である。もしFX−O<FAl2O3なるX2元素を選択するとX2が還元剤として作用し、Al酸化物が生成しなくなる。酸化鉄を還元するに足るAlが含まれていれば、X2の含有量は特に限定されない。 When the oxide of the metal M1 is iron oxide and the M2 element is Ti, Ti for reducing the iron oxide is not limited to Ti alone, and Ti—Al, Ti—X 1 (X 1 : Ag, Au, Bi) Ti compounds such as C, Cu, Cs, Cd, Ge, Ga, Hg, K, N, Na, Pd, Pt, Rb, Rh, S, Sn, Tl, Te, Zn), or the like It may be a mixture of Reasons for limiting the X 1 is standard free energy F X-O of the oxide formation of the X 1 is larger material than the product of the TiO standard free energy F TiO (= -490kJ / mol) . If the X 1 element of F X-O <F TiO is selected, the element X 1 acts as a reducing agent and no Ti oxide is generated. The content of X 1 is not particularly limited as long as Ti is sufficient to reduce iron oxide. On the other hand, when the oxide of the metal M1 is iron oxide and the M2 element is Al, the Al that reduces the iron oxide is not limited to Al alone, and Al—Ti, Al—X 2 (X 2 : Ag, Am As, Au, Ba, Be, Bi, C, Ca, Cd, Cr, Cs, Cu, Ga, Gd, Ge, Hg, In, Ir, K, Li, Lu, Mg, Mn, Mo, N, Na Al compound such as Os, Pb, Pd, Pt, Rb, Rh, Re, S, Sb, Sc, Si, Sn, Sr, Tc, Te, Tl, V, W, Zn, Zr) Alternatively, these compounds may be used. Reasons for limiting the X 2 is greater substance than standard free energy of formation oxide X 2 F X-O is generated standard Al 2 O 3 free energy F Al2O3 (= -1580kJ / mol) . If the X 2 element satisfying F X-O <F Al 2 O 3 is selected, X 2 acts as a reducing agent and no Al oxide is generated. The content of X 2 is not particularly limited as long as it contains Al sufficient to reduce iron oxide.

M2含有粉末の粒径は1nm〜1mmの範囲が好ましく、より還元反応を効率的に行なうためには1nm〜0.1mmの範囲が好ましい。0.1mmを超える粒径となると還元反応温度が高温となり、昇降温に時間がかかるために熱処理サイクルが長くなって効率が落ちる、あるいは炉自体の部材に耐熱品を使用しなければならず、設備コストが高くなる、などの短所が顕著となる。さらに好ましくは、0.01μm〜20μmの範囲であり、特に好ましくは0.1μm〜5μmである。粒子径が0.01μm未満であると大気中での酸化が著しくなり、還元剤として機能しにくくなる。20μm超であると比表面積が小さく、還元反応が十分に進行しない。特に0.1μm〜5μmの範囲であれば、大気中での酸化を抑制しつつ、還元反応の十分な進行を図ることができる。   The particle size of the M2-containing powder is preferably in the range of 1 nm to 1 mm, and in order to perform the reduction reaction more efficiently, the range of 1 nm to 0.1 mm is preferable. When the particle diameter exceeds 0.1 mm, the reduction reaction temperature becomes high, and it takes time to raise and lower the temperature, so the heat treatment cycle becomes long and the efficiency decreases, or a heat-resistant product must be used as a member of the furnace itself, Disadvantages such as increased equipment costs become significant. More preferably, it is the range of 0.01 micrometer-20 micrometers, Most preferably, it is 0.1 micrometer-5 micrometers. When the particle diameter is less than 0.01 μm, oxidation in the air becomes remarkable and it becomes difficult to function as a reducing agent. If it exceeds 20 μm, the specific surface area is small and the reduction reaction does not proceed sufficiently. In particular, when the thickness is in the range of 0.1 μm to 5 μm, the reduction reaction can proceed sufficiently while suppressing oxidation in the atmosphere.

上記M1酸化物の粉末と元素M2含有粉末との混合比は、M2がM1酸化物を還元する化学量論比近傍が好ましく、より好ましくはM2が上記化学量論比よりも過剰となることが好ましい。M2が不足すると、熱処理中にM1酸化物粉末が焼結してしまい、最終的にバルク化してしまうので適さない。例えばTi含有粉あるいはAl含有粉で酸化鉄を還元する場合は、Ti含有粉あるいはAl含有粉は混合粉全体の25〜60mass%が好ましい。25mass%未満であると還元が不十分となり、60mass%超とするとFeの比率が低下して磁化低下の原因となり相応しくない。より好ましくは30〜50mass%である。上記M1酸化物の粉末と元素M2含有粉末との混合には、乳鉢、スターラー、V字型ミキサー、ボールミル、振動ミル、その他一般的な攪拌機の中から選択できる。   The mixing ratio of the M1 oxide powder and the element M2-containing powder is preferably in the vicinity of the stoichiometric ratio where M2 reduces the M1 oxide, and more preferably, M2 is excessive in comparison with the stoichiometric ratio. preferable. If M2 is insufficient, the M1 oxide powder is sintered during the heat treatment and eventually becomes bulky, which is not suitable. For example, when reducing iron oxide with Ti-containing powder or Al-containing powder, the Ti-containing powder or Al-containing powder is preferably 25 to 60 mass% of the entire mixed powder. If it is less than 25 mass%, the reduction is insufficient, and if it exceeds 60 mass%, the ratio of Fe is lowered, causing a decrease in magnetization, which is not suitable. More preferably, it is 30-50 mass%. The mixing of the M1 oxide powder and the element M2-containing powder can be selected from a mortar, a stirrer, a V-shaped mixer, a ball mill, a vibration mill, and other general stirrers.

M1酸化物粉末とM2含有粉末の混合粉を非酸化性雰囲気中で熱処理すると、M1酸化物粉末とM2含有粉末との接触部で還元反応が開始され、最終的にはM2、M2の酸化物、M2の窒化物の少なくとも一つで表面を被覆されたM1金属粒子が生成する。ここで、M2、M2の酸化物、M2の窒化物のM2は1種類でもよいが、2種類以上であってもよい。以下、金属M1の粒子をM1金属粒子と記載する。熱処理時の雰囲気は非酸化性雰囲気が好ましい。例えばAr,Heなどの不活性ガスやN、CO、NHなどを使用することができるが、これらに限定されない。また熱処理温度および時間は還元反応が十分進行するに足る条件であることが好ましい。より、具体的には、熱処理温度は900℃〜1500℃の範囲が好ましい。この熱処理により、酸化鉄中の酸素がTiやAlなどのM2元素に移行し、Ti酸化物あるいはAl酸化物などのM2の酸化物等が、還元されたFe粒子を内包し、被覆するようになる。熱処理温度は900℃未満であると還元反応が十分に進行せず、1500℃超であるとTiまたはAlなどのM2元素の酸化が激しく起こり、酸化反応に伴う発熱により試料が溶融状態となってバルク化してしまう。 When the mixed powder of the M1 oxide powder and the M2 containing powder is heat-treated in a non-oxidizing atmosphere, a reduction reaction starts at the contact portion between the M1 oxide powder and the M2 containing powder, and finally the oxides of M2 and M2 , M1 metal particles having a surface coated with at least one of M2 nitrides are formed. Here, M2 and M2 oxide, and M2 nitride M2 may be one type, but may be two or more types. Hereinafter, the metal M1 particles are referred to as M1 metal particles. The atmosphere during the heat treatment is preferably a non-oxidizing atmosphere. For example, an inert gas such as Ar or He, N 2 , CO 2 , NH 3, or the like can be used, but is not limited thereto. The heat treatment temperature and time are preferably conditions sufficient for the reduction reaction to proceed sufficiently. More specifically, the heat treatment temperature is preferably in the range of 900 ° C to 1500 ° C. By this heat treatment, oxygen in iron oxide is transferred to M2 element such as Ti and Al, and M2 oxide such as Ti oxide or Al oxide encloses and covers the reduced Fe particles. Become. If the heat treatment temperature is less than 900 ° C., the reduction reaction does not proceed sufficiently, and if it exceeds 1500 ° C., oxidation of M2 elements such as Ti or Al occurs violently, and the sample becomes molten due to heat generated by the oxidation reaction. It becomes bulky.

前記M1金属粒子を内包し、被覆するM2の酸化物等は、例えばM2がTiの場合を例にとると、Ti酸化物は、TiO、TiO、Ti、TiO等が代表的であるが、それらの混相でもよく、TiO(x:0.3〜2)で表される組成が好適である。xが0.3未満であるとTiOは化学的に不安定で酸化活性度が高くなり、耐食性が低下する。また出発原料にTi―X1(X1:Ag、Au、Bi、C、Cu、Cs、Cd、Ge、Ga、Hg、K、N、Na、Pd、Pt、Rb、Rh、S、Sn、Tl、Te、Znから少なくとも一つ)化合物を用いた場合は、Ti酸化物にXが含有されていてもよい。また、例えばM2がAlの場合を例にとると、前記金属粒子を内包するAl酸化物は、Alが代表的であるがこれに限定されず、AlO(y:1.0〜1.5)で表される組成が好適である。yが1.0未満であるとAlOは化学的に不安定であり、同様に防食性が低下する。出発原料にAl−X(X:Ag、Am、As、Au、Ba、Be、Bi、C、Ca、Cd、Cr、Cs、Cu、Ga、Gd、Ge、Hg、In、Ir、K、Li、Lu、Mg、Mn、Mo、N、Na、Os、Pb、Pd、Pt、Rb、Rh、Re、S、Sb、Sc、Si、Sn、Sr、Tc、Te、Tl、V、W、Zn、Zrから少なくとも一つ)化合物を用いた場合は、Al酸化物にXが含有されていても良い。 For example, when M2 is Ti, for example, the oxide of M2 encapsulating and covering the M1 metal particles is typically Ti 2 O, TiO, Ti 3 O 5 , TiO 2 or the like. However, a mixed phase thereof may be used, and a composition represented by TiO x (x: 0.3 to 2) is preferable. When x is less than 0.3, TiO x is chemically unstable, the oxidation activity is increased, and the corrosion resistance is lowered. Further, Ti—X 1 (X 1 : Ag, Au, Bi, C, Cu, Cs, Cd, Ge, Ga, Hg, K, N, Na, Pd, Pt, Rb, Rh, S, Sn, In the case of using at least one compound from Tl, Te, and Zn, X 1 may be contained in the Ti oxide. For example, taking the case where M2 is Al as an example, the Al oxide encapsulating the metal particles is typically Al 2 O 3, but is not limited thereto, and AlO y (y: 1.0 to 1.0). The composition represented by 1.5) is preferred. When y is less than 1.0, AlO y is chemically unstable, and the corrosion resistance is similarly lowered. Al-X 2 in the starting material (X 2: Ag, Am, As, Au, Ba, Be, Bi, C, Ca, Cd, Cr, Cs, Cu, Ga, Gd, Ge, Hg, In, Ir, K Li, Lu, Mg, Mn, Mo, N, Na, Os, Pb, Pd, Pt, Rb, Rh, Re, S, Sb, Sc, Si, Sn, Sr, Tc, Te, Tl, V, W , Zn, in the case of using at least one) compound from Zr, X 2 may be contained in the Al oxide.

被覆物質とM1金属粒子は、必ずしもコアーシェル構造になっている必要はなく、M2、M2の酸化物、M2の窒化物の少なくとも一つで構成される粒子の中に2個以上のM1金属粒子が分散した構造であっても構わない。すなわちM2の酸化物等の母粒子の中にM1金属粒子が2個以上含まれている構成によれば、M1金属粒子を確実に被覆しやすく、耐食性を向上するうえで好ましい。また、金属粒子部分は、完全に前記酸化物等で被覆されている必要はなく、部分的に金属粒子が表面に露出している粒子が含まれていても構わない。   The coating material and the M1 metal particles do not necessarily have a core-shell structure, and two or more M1 metal particles are included in particles composed of at least one of M2, M2 oxide, and M2 nitride. A dispersed structure may be used. That is, the configuration in which two or more M1 metal particles are contained in the mother particles such as the M2 oxide is preferable for easily covering the M1 metal particles and improving the corrosion resistance. Further, the metal particle portion does not need to be completely covered with the oxide or the like, and may contain particles in which the metal particles are partially exposed on the surface.

上記製造方法により、M1酸化物の粉末と元素M2含有粉末との混合粉末を非酸化性雰囲気で上記条件で熱処理することにより、元素M2によって還元された金属M1の微粒子であって、表面をM2、M2の酸化物、M2の窒化物の少なくとも一つによって被覆されていることを特徴とする金属微粒子を得ることができる。該金属微粒子の粒径は、M1酸化物粉末の粒径に依存する。例えば、高い耐食性、分散性を得るためには、前記金属微粒子の平均粒径は、0.01μm〜100μmが好ましい。0.01μm未満であると十分な厚さの被覆を確保できず耐食性が低下する。また100μmを超えると、液体中での分散性が低下する。より好ましくは0.1〜10μmである。なお、平均粒径は、レーザー回折による湿式粒度測定器で測定したd50の値を代表例として用いた。   According to the above manufacturing method, the mixed powder of the M1 oxide powder and the element M2 containing powder is heat-treated in the non-oxidizing atmosphere under the above-described conditions, so that the fine particles of the metal M1 reduced by the element M2 are obtained. , Metal fine particles characterized by being coated with at least one of M2 oxide and M2 nitride. The particle size of the metal fine particles depends on the particle size of the M1 oxide powder. For example, in order to obtain high corrosion resistance and dispersibility, the average particle diameter of the metal fine particles is preferably 0.01 μm to 100 μm. If the thickness is less than 0.01 μm, a sufficient thickness of coating cannot be secured and the corrosion resistance is lowered. On the other hand, if it exceeds 100 μm, the dispersibility in the liquid decreases. More preferably, it is 0.1-10 micrometers. In addition, the average particle diameter used the value of d50 measured with the wet particle size measuring device by laser diffraction as a representative example.

また、M2、M2の酸化物、M2の窒化物のうち少なくとも一つを有する被覆の厚さは1〜800nmが好ましい。1nm未満であると十分な耐食性が得られない。また、800nm超であると、粒子全体の粒径が大きくなり液中での分散性が低下する他、磁性金属微粒子の場合は飽和磁化が減少する。より、好ましくは5〜500nmである。なお、被覆の厚さは透過電子顕微鏡(TEM)写真から算出し、厚さが不均一な場合は、最大厚さと最小厚さの平均を被覆の厚さとした。   The thickness of the coating having at least one of M2, M2 oxide, and M2 nitride is preferably 1 to 800 nm. If the thickness is less than 1 nm, sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 800 nm, the particle diameter of the whole particle becomes large and the dispersibility in the liquid decreases, and in the case of magnetic metal fine particles, the saturation magnetization decreases. More preferably, it is 5 to 500 nm. The thickness of the coating was calculated from a transmission electron microscope (TEM) photograph. When the thickness was not uniform, the average of the maximum thickness and the minimum thickness was taken as the coating thickness.

また、本発明では、金属M1の酸化物の還元によるM1金属微粒子の生成とM2元素酸化物等の被覆の形成を同一の熱処理工程で行なうため、熱処理で得られた被覆金属微粒子の、M1金属部分と被覆との間にM1金属の酸化層は明確には確認されない。また、900℃以上に加熱した熱処理を施すため、被覆の結晶性が高く、ゾル−ゲル法等によって得られるアモルファス或いは結晶性の低い被覆に比べて高耐食性を発揮する。本発明では、金属微粒子のX線回折パターンにおける元素M2、M2の酸化物、M2の窒化物のうちいずれかの回折ピークで、強度が最も大きいピークの半値幅が0.3°以下であり、かつ金属M1の回折ピークのうち強度が最も大きいピークに対する前記ピークの強度比が0.001以上であることを結晶性の良否判断に用いた。金属微粒子のX線回折パターンにおいて、M2の酸化物等のピークがかかる範囲となる金属微粒子は、その被覆が高い結晶性を示し、その結果高耐食性も実現する。アモルファス或いは結晶性の悪い被覆の場合は、ピークが観察されないか、ピークがブロードになるため、上記ピーク強度比が小さくなるとともに、半値幅も広がる。なお、前記強度比は、結晶性上特に上限を必要としないが、その強度比が高くなることは被覆部分の割合が多くなることを意味する。被覆部分の割合が多くなりすぎると、飽和磁化の低下が顕著になるため、前記強度比は3以下が好ましい。ここにX線回折パターンの測定は集中ビーム方式を採用し、入射線と回折線の試料面に対する角度が1:2となるような角度走印法によって測定した。放射線光源としては、例えばFe粒子が主体の場合にはCuKα線源が用いられる。半値幅は、不要なバックグランドの回折強度を除外した実質的な回折ピーク強度の半分の強度を与える2点の角度として定義される。   Further, in the present invention, the generation of the M1 metal fine particles by the reduction of the metal M1 oxide and the formation of the coating of the M2 element oxide and the like are performed in the same heat treatment step. No M1 metal oxide layer is clearly identified between the part and the coating. Moreover, since the heat treatment heated to 900 ° C. or higher is performed, the coating has high crystallinity and exhibits higher corrosion resistance than an amorphous or low-crystalline coating obtained by a sol-gel method or the like. In the present invention, the full width at half maximum of the diffraction peak of any of the elements M2, M2 oxide, and M2 nitride in the X-ray diffraction pattern of the metal fine particles is 0.3 ° or less, In addition, the fact that the intensity ratio of the peak with respect to the peak having the highest intensity among the diffraction peaks of the metal M1 is 0.001 or more was used for determining the crystallinity. In the X-ray diffraction pattern of the metal fine particles, the metal fine particles in the range where the peak of M2 oxide or the like is applied have high crystallinity, and as a result, high corrosion resistance is also realized. In the case of an amorphous coating or a coating with poor crystallinity, no peak is observed or the peak becomes broad, so that the peak intensity ratio is reduced and the full width at half maximum is increased. The intensity ratio does not particularly require an upper limit in terms of crystallinity, but an increase in the intensity ratio means an increase in the proportion of the coating portion. When the ratio of the covering portion is excessively increased, the saturation magnetization is remarkably lowered. Therefore, the intensity ratio is preferably 3 or less. Here, the X-ray diffraction pattern was measured by a concentrated beam method, and was measured by an angle scanning method in which the angle of the incident line and the diffraction line with respect to the sample surface was 1: 2. As the radiation light source, for example, when Fe particles are mainly used, a CuKα ray source is used. The half-width is defined as the angle between two points giving half the intensity of the substantial diffraction peak, excluding unwanted background diffraction intensity.

金属微粒子が磁性金属微粒子である場合、前記製法によって得られた磁性粒子は、酸化物等の非磁性成分を過剰に含んでいる場合があるため、永久磁石を用いて磁性粒子だけを回収する磁気分離操作を施すことが好ましい。かかる磁気分離操作を行なうことによって、100A・m/kg以上の飽和磁化(bcc構造の金属Fe粒子が46%以上含有されていることに相当)を有する磁性粒子金属微粒子を得ることができる。また、高い飽和磁化を得るためには非磁性部分である被覆はなるべく薄いことが好ましいが、十分な耐食性を得るためには、十分な被覆厚を有していることが好ましく、その場合の飽和磁化は180A・m/kg以下とする。 When the metal fine particles are magnetic metal fine particles, the magnetic particles obtained by the above production method may contain an excessive amount of non-magnetic components such as oxides. It is preferable to perform a separation operation. By performing such magnetic separation operation, magnetic particle metal fine particles having a saturation magnetization of 100 A · m 2 / kg or more (corresponding to containing 46% or more of metal Fe particles having a bcc structure) can be obtained. In order to obtain high saturation magnetization, the coating that is a non-magnetic part is preferably as thin as possible, but in order to obtain sufficient corrosion resistance, it is preferable to have a sufficient coating thickness, The magnetization is 180 A · m 2 / kg or less.

本発明の金属微粒子において、コアとなる金属M1をFe、被覆に含まれる元素M2をAl、Mn、Nb、Ti、Vのうち少なくとも1種とし、結晶性の高い被覆とすることで、高い耐食性を実現することができる。この場合、純水100質量部に対して前記金属微粒子1質量部を投入して1時間保持した場合の、前記純水中へのFeの溶出量が0.10ppm以下であることが好ましい。なお、本発明では、イオン交換および蒸留したものを純水として用い、Feの溶出量はFeが溶出した純水をICPにて分析し、そのFeの濃度をもってFeの溶出量とした。Feの溶出量を前記範囲とすることで、溶液中の使用においても高い耐食性が要求される磁気ビーズ等に対しても、本発明の金属微粒子を好適に用いることができる。Feの溶出量は少ないほど好ましく、より好ましくは、0.05ppmである。   In the metal fine particles of the present invention, the core metal M1 is Fe, and the element M2 contained in the coating is at least one of Al, Mn, Nb, Ti, and V, and the coating has high crystallinity, thereby providing high corrosion resistance. Can be realized. In this case, it is preferable that the elution amount of Fe into the pure water is 0.10 ppm or less when 1 part by mass of the metal fine particles is added to 100 parts by mass of pure water and held for 1 hour. In the present invention, ion-exchanged and distilled water was used as pure water, and the elution amount of Fe was analyzed by ICP of pure water from which Fe was eluted, and the Fe concentration was defined as the Fe elution amount. By setting the elution amount of Fe within the above range, the metal fine particles of the present invention can be suitably used for magnetic beads and the like that are required to have high corrosion resistance even when used in a solution. The smaller the elution amount of Fe, the better, and more preferably 0.05 ppm.

以下、実施例により本発明を説明する。ただし、これら実施例により本発明が必ずしも限定されるものではない。   Hereinafter, the present invention will be described by way of examples. However, the present invention is not necessarily limited by these examples.

(実施例1)
平均粒径0.03μmのα−Fe粉と平均粒径17μmのTi粉を質量比で1:1となるように秤量し、V字型混合機で10分間混合した。得られた混合粉をアルミナボートに適量充填し、窒素ガス中にて1200℃×2時間の熱処理を行なった。室温まで冷却した後にアルミナボートを取り出し、熱処理された試料粉末を回収した。
(Example 1)
Α-Fe 2 O 3 powder having an average particle diameter of 0.03 μm and Ti powder having an average particle diameter of 17 μm were weighed so as to have a mass ratio of 1: 1 and mixed for 10 minutes with a V-shaped mixer. An appropriate amount of the obtained mixed powder was filled in an alumina boat, and heat treatment was performed at 1200 ° C. for 2 hours in nitrogen gas. After cooling to room temperature, the alumina boat was taken out and the heat-treated sample powder was collected.

上記試料粉末のX線回折パターンを図1に示す。リガク製解析ソフト「Jade,ver.5」にて解析すると、図1の回折パターンはα−Fe、Ti、TiNに同定された。図1のグラフの横軸は回折の2θ(°)に相当し、縦軸は回折の強度(相対値)に相当する。 The X-ray diffraction pattern of the sample powder is shown in FIG. When analyzed by Rigaku analysis software “Jade, ver. 5”, the diffraction pattern of FIG. 1 was identified as α-Fe, Ti 3 O 5 , and TiN. The horizontal axis of the graph in FIG. 1 corresponds to 2θ (°) of diffraction, and the vertical axis corresponds to the intensity of diffraction (relative value).

酸化物の標準生成エネルギーは、ΔGFe2O3=−742kJ/molに対してΔGTi3O5=−2317kJ/molであり、Tiの標準生成エネルギーがより小さい。すなわち、α−FeはTiによって還元されてTiが生成し、還元に寄与しなかった余剰のTiが雰囲気中のN原子と反応してTiNが生成したと考えられる。 The standard generation energy of the oxide is ΔG Ti3O5 = −2317 kJ / mol with respect to ΔG Fe2O3 = −742 kJ / mol, and the standard generation energy of Ti 3 O 5 is smaller. That is, it is considered that α-Fe 2 O 3 is reduced by Ti to produce Ti 3 O 5 , and excess Ti that did not contribute to the reduction reacts with N atoms in the atmosphere to produce TiN.

上記試料粉末の組織を高分解能電子顕微鏡(HRTEM)によって観察した。図2はFIB加工により切り出した代表的な粉末の断面のHRTEM像である。図3に図2の組織を模写した概略図を示す。組織の各相をEDX分析により組成分析すると、粒径0.5μm付近のFe粒子1,2,3,4複数個がTi5で被覆されていることがわかる。白色の部分は空洞6に相当する。図中の横棒は、長さ500nmのスケールを表わす。 The structure of the sample powder was observed with a high-resolution electron microscope (HRTEM). FIG. 2 is a HRTEM image of a cross section of a typical powder cut out by FIB processing. FIG. 3 shows a schematic view of the structure shown in FIG. When the composition of each phase of the structure is analyzed by EDX analysis, it can be seen that a plurality of Fe particles 1, 2, 3, 4 having a particle diameter of about 0.5 μm are coated with Ti 3 O 5 5. The white part corresponds to the cavity 6. The horizontal bar in the figure represents a scale having a length of 500 nm.

更に上記試料粉末の磁気特性をVSM(振動型磁力計)により測定した。最大印加磁界を1.6MA/mとして測定した結果、飽和磁化Ms:65.8A・m/kg、保磁力iHc:1.3kA/mであった。 Further, the magnetic properties of the sample powder were measured with a VSM (vibrating magnetometer). As a result of measuring the maximum applied magnetic field at 1.6 MA / m, the saturation magnetization Ms was 65.8 A · m 2 / kg, and the coercive force iHc was 1.3 kA / m.

図1でα―Fe以外で強度の最も大きいTiのピークの半値幅、Fe(110)ピークに対するピーク強度比を表2に示した。ピーク半値幅は0.3以下と小さく、ピーク強度は0.001以上が得られており、被覆の結晶性も良好であった。 The full width at half maximum of the peak of Ti 3 O 5 having the highest intensity other than α-Fe in FIG. 1 and the peak intensity ratio to the Fe (110) peak are shown in Table 2. The peak half-value width was as small as 0.3 or less, the peak intensity was 0.001 or more, and the crystallinity of the coating was good.

また、耐食性を評価するため、上記生成粉0.2gを純水20g中へ投入して1時間経過後、上澄み液だけを取り出し、溶液中のFeイオン濃度をICP分析により測定した。なお、純水には、イオン交換と蒸留したものを使用した。その結果、Feの溶出量は0.01ppm未満であった。このようにTi酸化物等で内包されたFe粒子は溶出が少なく、耐食性に優れていることが分かる。   Further, in order to evaluate the corrosion resistance, 0.2 g of the produced powder was put into 20 g of pure water, and after 1 hour, only the supernatant was taken out and the Fe ion concentration in the solution was measured by ICP analysis. Pure water used was ion-exchanged and distilled. As a result, the elution amount of Fe was less than 0.01 ppm. Thus, it can be seen that the Fe particles encapsulated with Ti oxide or the like have little elution and are excellent in corrosion resistance.

(実施例2)
平均粒径0.03μmのα−Fe粉と平均粒径4.8μmのSi粉を質量比で1:1となるように秤量し、V字型混合機で10分間混合した。得られた混合粉をアルミナボートに適量充填し、窒素ガス中にて1200℃×2時間の熱処理を行なった。室温まで冷却した後にアルミナボートを取り出し、熱処理された試料粉末を回収した。
(Example 2)
Α-Fe 2 O 3 powder having an average particle size of 0.03 μm and Si powder having an average particle size of 4.8 μm were weighed so as to have a mass ratio of 1: 1 and mixed for 10 minutes with a V-shaped mixer. An appropriate amount of the obtained mixed powder was filled in an alumina boat, and heat treatment was performed at 1200 ° C. for 2 hours in nitrogen gas. After cooling to room temperature, the alumina boat was taken out and the heat-treated sample powder was collected.

上記試料粉末のX線回折パターンを図4に示す。実施例1と同様にして解析した結果、図4の回折パターンはα−Fe、SiO、Siに同定された。SiOの標準生成エネルギーは、ΔGSiO2=−856kJ/molであり、α−Feの標準生成エネルギーよりも小さい。すなわちSiが還元剤として作用してFeを還元し、SiOが生成したと考えられる。図4のグラフの横軸は回折の2θ(°)に相当し、縦軸は回折の強度(相対値)に相当する。 The X-ray diffraction pattern of the sample powder is shown in FIG. As a result of analysis in the same manner as in Example 1, the diffraction pattern in FIG. 4 was identified as α-Fe, SiO 2 , and Si. The standard production energy of SiO 2 is ΔG SiO 2 = −856 kJ / mol, which is smaller than the standard production energy of α-Fe 2 O 3 . That is, it is considered that Si acts as a reducing agent to reduce Fe 2 O 3 and generate SiO 2 . The horizontal axis of the graph in FIG. 4 corresponds to 2θ (°) of diffraction, and the vertical axis corresponds to the intensity of diffraction (relative value).

図5は実施例1と同様にして観察したHRTEM像である。図6に図5の構造を模式的に説明するための概略図を示す。Fe粒子7がSiO8によって被覆されている。図中の横棒は、長さ500nmのスケールを表わす。また、実施例1と同様にして測定した磁気特性の値は、飽和磁化Ms:55.2A・m/kg、保磁力iHc:1.5kA/mであった。 FIG. 5 is an HRTEM image observed in the same manner as in Example 1. FIG. 6 is a schematic diagram for schematically explaining the structure of FIG. Fe particles 7 are covered with SiO 2 8. The horizontal bar in the figure represents a scale having a length of 500 nm. The values of the magnetic characteristics measured in the same manner as in Example 1 were the saturation magnetization Ms: 55.2 A · m 2 / kg and the coercive force iHc: 1.5 kA / m.

図4でα―Fe以外で強度の最も大きいSiのピークの半値幅、Fe(110)ピークに対するピーク強度比を表2に示した。ピーク半値幅は0.3以下と小さく、ピーク強度は0.001以上が得られており、被覆の結晶性も良好であった。   Table 2 shows the half-width of the Si peak having the highest intensity other than α-Fe and the peak intensity ratio to the Fe (110) peak in FIG. The peak half-value width was as small as 0.3 or less, the peak intensity was 0.001 or more, and the crystallinity of the coating was good.

(実施例3)
平均粒径0.03μmのα―Fe2O3粉35gと平均粒径1μmのTiC粉15g(質量比で7:3)をポリ容器に投入し、更にジルコニアボールを500g加えて密閉したポリ容器を回転させ攪拌混合した。得られた混合粉を適量アルミナボートに充填し、管状電気炉を用い、窒素ガス中にて1200℃×2時間の熱処理を行なった。その後磁性粒子を精製するため、アルコール溶媒中に前記生成物を投入し混合分散させた、永久磁石を用いて磁性粒子のみを捕捉して、分離した。その後、ドラフト内で精製粉を乾燥させ、本発明の磁性粒子を得た。この磁性粒子を透過型電子顕微鏡で観察した結果を図7に、その模式図を図8に示す。約350nmの粒子径を有するFe粒子をTiOが内包している約1μm径の粒子が確認できたまた、被覆層の厚さは270μmであった。各相の組成比はEDX分析により決定した(図9)。またこの磁性粒子を最大印加磁場1.6MA/mとしてVSMにより磁化測定した結果、140A・m/kgの高い値が得られた。更にこの磁性粒子の粒度をレーザー回折粒度分布計で測定した結果、d50は2.4μmであった。耐食性を評価するため、上記磁性粒子0.2gを純水20ml中へ投入して1時間経過後、上澄み液だけを取り出し、溶液中のFeイオン濃度をICP分析により測定した。その結果、0.01ppm未満であった。またこの磁性粒子について回折角度2θ=20°〜80°の範囲でX線回折測定を行ったところ、α−Fe以外にTi酸化物に相当する回折ピークが出現していることを確認した。それらピークの中で強度が最大であるピークについて回折角度、ピーク半値幅及びFe(110)ピーク強度に対するピーク強度比を表に示した。ピーク半値幅は0.3以下と小さく、ピーク強度は0.001以上が得られている。
(Example 3)
35 g of α-Fe 2 O 3 powder with an average particle size of 0.03 μm and 15 g of TiC powder with an average particle size of 1 μm (7: 3 by mass ratio) are put into a plastic container, and 500 g of zirconia balls are added, and the sealed plastic container is rotated. Stir and mix. An appropriate amount of the obtained mixed powder was filled into an alumina boat, and heat treatment was performed at 1200 ° C. for 2 hours in nitrogen gas using a tubular electric furnace. Thereafter, in order to purify the magnetic particles, only the magnetic particles were captured and separated using a permanent magnet in which the product was added and mixed and dispersed in an alcohol solvent. Thereafter, the purified powder was dried in a draft to obtain the magnetic particles of the present invention. FIG. 7 shows a result of observing the magnetic particles with a transmission electron microscope, and FIG. 8 shows a schematic diagram thereof. A particle having a diameter of about 1 μm in which TiO contained Fe particles having a particle diameter of about 350 nm was confirmed, and the thickness of the coating layer was 270 μm. The composition ratio of each phase was determined by EDX analysis (FIG. 9). Moreover, as a result of measuring the magnetization of this magnetic particle by VSM with a maximum applied magnetic field of 1.6 MA / m, a high value of 140 A · m 2 / kg was obtained. Furthermore, as a result of measuring the particle size of the magnetic particles with a laser diffraction particle size distribution analyzer, d50 was 2.4 μm. In order to evaluate the corrosion resistance, 0.2 g of the above magnetic particles were put into 20 ml of pure water, and after 1 hour, only the supernatant was taken out, and the Fe ion concentration in the solution was measured by ICP analysis. As a result, it was less than 0.01 ppm. Further, when X-ray diffraction measurement was performed on the magnetic particles in a diffraction angle range of 2θ = 20 ° to 80 °, it was confirmed that a diffraction peak corresponding to Ti oxide appeared in addition to α-Fe. The diffraction intensity, the peak half-value width, and the peak intensity ratio to the Fe (110) peak intensity are shown in the table for the peak having the maximum intensity among the peaks. The peak half-value width is as small as 0.3 or less, and the peak intensity is 0.001 or more.

(比較例1)
実施例3の出発原料であるTiCの代わりに平均粒径0.02μmのカーボンブラック粉を用いた以外は、実施例1と同様の手順で混合・熱処理を行なった。得られた生成粉をTEM観察した結果、膜厚約10nmのC膜で被覆されたFe粒子を確認した。更に生成粉から実施例1と同様の手順で磁性粒子を精製した。得られた磁性粒子の飽和磁化、平均粒径d50、溶出量を表にまとめた。なお、各測定及び評価方法は実施例1と同様である。
(Comparative Example 1)
Mixing and heat treatment were performed in the same procedure as in Example 1 except that carbon black powder having an average particle size of 0.02 μm was used instead of TiC which is the starting material of Example 3. As a result of TEM observation of the obtained produced powder, Fe particles coated with a C film having a thickness of about 10 nm were confirmed. Further, magnetic particles were purified from the produced powder by the same procedure as in Example 1. The saturation magnetization, average particle diameter d50, and elution amount of the obtained magnetic particles are summarized in a table. Each measurement and evaluation method is the same as in Example 1.

(実施例4)
実施例3の出発原料であるTiCの代わりに平均粒径3μmのAl粉を用いた以外は、実施例2と同様の手順で混合・熱処理を行なった。得られた生成粉をTEM観察した。図10はその観察例で、図11にその模式図を示す。5nm厚のAl膜がFe粒子を被覆している組織が確認できる。更に生成粉から磁性粒子だけを実施例1と同様の手法で精製した。得られた磁性粒子の飽和磁化、平均粒径d50、溶出量を表1にまとめた。また得られた磁性粒子について実施例3と同様にX線回折測定を行った結果、Al酸化物に相当する回折ピークが出現していた。回折強度が最大であったピークについて回折角度、ピーク半値幅及びα−Fe(110)ピーク強度に対するピーク強度比を表に示した。ピーク半値幅は0.3以下と小さく、ピーク強度比は0.001以上の値が得られた
Example 4
Mixing and heat treatment were performed in the same procedure as in Example 2, except that Al powder having an average particle diameter of 3 μm was used instead of TiC which is the starting material of Example 3. The obtained produced powder was observed by TEM. FIG. 10 shows an example of the observation, and FIG. 11 shows a schematic diagram thereof. Tissue can be confirmed that the Al 2 O 3 film of 5nm thickness covers the Fe particles. Further, only magnetic particles were purified from the produced powder in the same manner as in Example 1. Table 1 shows the saturation magnetization, average particle diameter d50, and elution amount of the obtained magnetic particles. Further, as a result of performing X-ray diffraction measurement on the obtained magnetic particles in the same manner as in Example 3, a diffraction peak corresponding to Al oxide appeared. The peak with the highest diffraction intensity shows the diffraction angle, peak half-width, and peak intensity ratio with respect to the α-Fe (110) peak intensity in the table. The peak half-value width was as small as 0.3 or less, and the peak intensity ratio was 0.001 or more.

本発明は、磁気テープ、磁気記録ディスク等の磁気記録媒体や、電波吸収体、インダクタ、プリント基板等の電子デバイス(ヨークなどの軟磁性形状体)、更には核酸抽出用磁気ビーズや医療用マイクロスフィアの原材料に用いる磁性金属粒子およびその製造方法に利用することができる。   The present invention relates to magnetic recording media such as magnetic tapes and magnetic recording disks, electronic devices such as radio wave absorbers, inductors and printed boards (soft magnetic shapes such as yokes), magnetic beads for nucleic acid extraction, and medical microspheres. The present invention can be used for magnetic metal particles used as sphere raw materials and a method for producing the same.

実施例1の試料粉末のX線回折パターンを示すグラフである。2 is a graph showing an X-ray diffraction pattern of a sample powder of Example 1. 電子顕微鏡で観察した実施例1に係る粒子の断面構造の顕微鏡写真である。It is a microscope picture of the section structure of the particle concerning Example 1 observed with the electron microscope. 図2の構造を模式的に説明するための概略図である。It is the schematic for demonstrating the structure of FIG. 2 typically. 実施例2の試料粉末のX線回折パターンを示すグラフである。4 is a graph showing an X-ray diffraction pattern of a sample powder of Example 2. 電子顕微鏡で観察した実施例2に係る粒子の断面構造の顕微鏡写真である。It is a microscope picture of the cross-sectional structure of the particle | grains concerning Example 2 observed with the electron microscope. 図5の構造を模式的に説明するための概略図である。It is the schematic for demonstrating the structure of FIG. 5 typically. 電子顕微鏡で観察した実施例3に係る粒子の顕微鏡写真である。It is the microscope picture of the particle | grains which concern on Example 3 observed with the electron microscope. 図7の構造を模式的に説明するための概略図である。It is the schematic for demonstrating the structure of FIG. 7 typically. 図7の粒子のFe粒子部および被覆部のエネルギー分散型分光法(EDX)のスペクトルである。FIG. 8 is an energy dispersive spectroscopy (EDX) spectrum of an Fe particle part and a coating part of the particle of FIG. 7. FIG. 電子顕微鏡で観察した実施例4に係る粒子の顕微鏡写真である。It is the microscope picture of the particle | grains which concern on Example 4 observed with the electron microscope. 図10の構造を模式的に説明するための概略図である。It is the schematic for demonstrating the structure of FIG. 10 typically.

符号の説明Explanation of symbols

1,2,3,4、9、11:Fe粒子、
5:Ti
6:空洞、
7:Fe粒子、
8:SiO
10:TiO
12:Al
1, 2, 3, 4, 9, 11: Fe particles,
5: Ti 3 O 5 ,
6: Cavity,
7: Fe particles,
8: SiO 2
10: TiO
12: Al 2 O 3

Claims (8)

金属M1の酸化物粉末と、酸化物の標準生成自由エネルギーがΔGM1−O>ΔGM2−Oの関係を満たす元素M2を含む粉末とを混合し、その混合粉末を非酸化性雰囲気中で熱処理することにより、元素M2によって還元された金属M1の金属微粒子の表面をM2、M2の酸化物、M2の窒化物の少なくとも一つによって被覆することを特徴とする金属微粒子の製造方法。 An oxide powder of the metal M1 and a powder containing an element M2 in which the standard free energy of formation of oxide satisfies the relationship of ΔG M1-O > ΔG M2-O are mixed, and the mixed powder is heat-treated in a non-oxidizing atmosphere. Then, the surface of the metal fine particles of the metal M1 reduced by the element M2 is covered with at least one of M2, M2 oxide, and M2 nitride. 前記金属M1がFeであり、前記元素M2がAl、Mn、Nb、Ti、Vのうちの少なくとも一種を含むことを特徴とする請求項1に記載の金属微粒子の製造方法。   The method for producing fine metal particles according to claim 1, wherein the metal M1 is Fe, and the element M2 contains at least one of Al, Mn, Nb, Ti, and V. 金属M1の金属微粒子の表面が、酸化物の標準生成自由エネルギーがΔGM1−O>ΔGM2−Oの関係を満たす元素M2、M2の酸化物、M2の窒化物のうちの少なくとも一つによって被覆されていることを特徴とする金属微粒子。 The surface of the metal fine particle of the metal M1 is covered with at least one of the elements M2, M2 oxide, and M2 nitride in which the standard free energy of formation of the oxide satisfies the relationship of ΔG M1-O > ΔG M2-O Metal fine particles characterized by being made. 酸化物の標準生成自由エネルギーが、金属M1に対してΔGM1−O>ΔGM2−Oの関係を満たす元素M2、M2の酸化物、M2の窒化物の少なくとも一つから成る母粒子中に、2個以上の金属M1の粒子が含まれていることを特徴とする金属微粒子。 In the base particles composed of at least one of the elements M2, M2 oxide, and M2 nitride satisfying the relationship of ΔG M1-O > ΔG M2-O with respect to the metal M1, the standard free energy of formation of the oxide is A metal fine particle comprising two or more particles of metal M1. 前記金属微粒子のX線回折パターンにおける元素M2、M2の酸化物、M2の窒化物のいずれかの回折ピークのうち強度が最も大きいピークは、その半値幅が0.3°以下であり、かつ金属M1の回折ピークのうち強度が最も大きいピークに対する強度比が0.001以上であることを特徴とする請求項3または4のいずれかに記載の金属微粒子。   Among the diffraction peaks of any of the elements M2, M2 oxides, and M2 nitrides in the X-ray diffraction pattern of the metal fine particles, the peak with the highest intensity has a half-value width of 0.3 ° or less, and the metal 5. The metal fine particle according to claim 3, wherein an intensity ratio with respect to a peak having the highest intensity among diffraction peaks of M <b> 1 is 0.001 or more. 前記金属M1がFeであり、前記元素M2がAl、Mn、Nb、Ti、Vのうちの少なくとも一種である請求項3〜5のいずれかに記載の金属微粒子。   The metal fine particle according to any one of claims 3 to 5, wherein the metal M1 is Fe, and the element M2 is at least one of Al, Mn, Nb, Ti, and V. 飽和磁化の値が100〜180A・m/kgであることを特徴とする請求項6に記載の金属微粒子。 The value of saturation magnetization is 100-180A * m < 2 > / kg, The metal microparticle of Claim 6 characterized by the above-mentioned. 純水100質量部に対して前記金属微粒子1質量部を投入して1時間保持した場合の、前記純水中へのFeの溶出量が0.10ppm以下であることを特徴とする請求項6または7に記載の金属微粒子。
The amount of Fe elution into the pure water when 1 part by mass of the metal fine particles is added to 100 parts by mass of pure water and held for 1 hour is 0.10 ppm or less. Or metal fine particles according to 7.
JP2004275531A 2003-09-25 2004-09-22 Method for producing magnetic metal fine particles and magnetic metal fine particles Active JP4288674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275531A JP4288674B2 (en) 2003-09-25 2004-09-22 Method for producing magnetic metal fine particles and magnetic metal fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003332940 2003-09-25
JP2004275531A JP4288674B2 (en) 2003-09-25 2004-09-22 Method for producing magnetic metal fine particles and magnetic metal fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009026914A Division JP5024683B2 (en) 2003-09-25 2009-02-09 Magnetic beads

Publications (2)

Publication Number Publication Date
JP2005120470A true JP2005120470A (en) 2005-05-12
JP4288674B2 JP4288674B2 (en) 2009-07-01

Family

ID=34621993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275531A Active JP4288674B2 (en) 2003-09-25 2004-09-22 Method for producing magnetic metal fine particles and magnetic metal fine particles

Country Status (1)

Country Link
JP (1) JP4288674B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100986A1 (en) * 2005-03-22 2006-09-28 Hitachi Metals, Ltd. Coated metal fine particle and method for producing same
WO2008029861A1 (en) * 2006-09-01 2008-03-13 The University Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorbent
WO2008035681A1 (en) * 2006-09-20 2008-03-27 Hitachi Metals, Ltd. Coated metal fine particles and process for production thereof
JP2008081779A (en) * 2006-09-27 2008-04-10 Hitachi Metals Ltd Powder of coated metal particulate and magnetic bead
WO2009119757A1 (en) * 2008-03-27 2009-10-01 日立金属株式会社 Coated fine metal particle and process for producing the same
JP2010517287A (en) * 2007-01-24 2010-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for influencing and / or detecting magnetic particles in the working area, use of magnetic particles and magnetic particles
WO2010073766A1 (en) * 2008-12-25 2010-07-01 国立大学法人東京大学 Fine structural body, method for manufacturing fine structural body, magnetic memory, charge storage memory and optical information recording medium
JP2011017057A (en) * 2009-07-09 2011-01-27 Hitachi Metals Ltd Composite sintered compact of aluminum oxide and iron and method for producing the same
EP2374759A1 (en) * 2008-12-04 2011-10-12 The University of Tokyo Titanium oxide particles, manufacturing method thereof, magnetic memory, and charge storage type memory
US20130105723A1 (en) * 2010-05-21 2013-05-02 The University Of Tokyo Titanium oxide particles, process for producing same, magnetic memory, optical information recording medium, and charge accumulation type memory
WO2014156848A1 (en) * 2013-03-29 2014-10-02 パウダーテック株式会社 Noise-suppressing composite magnetic powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504734B1 (en) * 2013-02-06 2015-03-23 건국대학교 산학협력단 Metal­ceramic core­shell structured magnetic materials powder prepared by gas phase process and the preparation method thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766276B2 (en) * 2005-03-22 2011-09-07 日立金属株式会社 Coated fine metal particles and method for producing the same
JPWO2006100986A1 (en) * 2005-03-22 2008-09-04 日立金属株式会社 Coated fine metal particles and method for producing the same
WO2006100986A1 (en) * 2005-03-22 2006-09-28 Hitachi Metals, Ltd. Coated metal fine particle and method for producing same
US7858184B2 (en) 2005-03-22 2010-12-28 Hitachi Metals, Ltd. Fine, TiO2-based titanium oxide-coated metal particles and their production method
WO2008029861A1 (en) * 2006-09-01 2008-03-13 The University Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorbent
JP2008277726A (en) * 2006-09-01 2008-11-13 Univ Of Tokyo Magnetic crystal for radio wave absorbing material and radio wave absorber
US8072365B2 (en) 2006-09-01 2011-12-06 The University Of Tokyo Magnetic crystal for electromagnetic wave absorbing material and electromagnetic wave absorber
WO2008035681A1 (en) * 2006-09-20 2008-03-27 Hitachi Metals, Ltd. Coated metal fine particles and process for production thereof
JP5521328B2 (en) * 2006-09-20 2014-06-11 日立金属株式会社 Coated fine metal particles and method for producing the same
US8247074B2 (en) 2006-09-20 2012-08-21 Hitachi Metals, Ltd. Coated, fine metal particles comprising specific content of carbon and nitrogen, and their production method
JP2008081779A (en) * 2006-09-27 2008-04-10 Hitachi Metals Ltd Powder of coated metal particulate and magnetic bead
JP2010517287A (en) * 2007-01-24 2010-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for influencing and / or detecting magnetic particles in the working area, use of magnetic particles and magnetic particles
WO2009119757A1 (en) * 2008-03-27 2009-10-01 日立金属株式会社 Coated fine metal particle and process for producing the same
JPWO2009119757A1 (en) * 2008-03-27 2011-07-28 日立金属株式会社 Coated fine metal particles and method for producing the same
CN101977711B (en) * 2008-03-27 2013-03-13 日立金属株式会社 Coated fine metal particle and process for producing the same
US8481115B2 (en) 2008-03-27 2013-07-09 Hitachi Metals, Ltd. Coated, fine metal particles comprising titanium oxide and silicon oxide coating, and their production method
EP2374759A1 (en) * 2008-12-04 2011-10-12 The University of Tokyo Titanium oxide particles, manufacturing method thereof, magnetic memory, and charge storage type memory
EP2374759A4 (en) * 2008-12-04 2012-06-06 Univ Tokyo Titanium oxide particles, manufacturing method thereof, magnetic memory, and charge storage type memory
US8609261B2 (en) 2008-12-04 2013-12-17 The University Of Tokyo Titanium oxide particles, manufacturing method thereof, magnetic memory, and charge storage type memory
US8535816B2 (en) 2008-12-25 2013-09-17 The University Of Tokyo Fine structural body, method for manufacturing fine structural body, magnetic memory, charge storage memory and optical information recording medium
WO2010073766A1 (en) * 2008-12-25 2010-07-01 国立大学法人東京大学 Fine structural body, method for manufacturing fine structural body, magnetic memory, charge storage memory and optical information recording medium
JP2011017057A (en) * 2009-07-09 2011-01-27 Hitachi Metals Ltd Composite sintered compact of aluminum oxide and iron and method for producing the same
US20130105723A1 (en) * 2010-05-21 2013-05-02 The University Of Tokyo Titanium oxide particles, process for producing same, magnetic memory, optical information recording medium, and charge accumulation type memory
US9079782B2 (en) * 2010-05-21 2015-07-14 The University Of Tokyo Titanium oxide particles, process for producing same, magnetic memory, optical information recording medium, and charge accumulation type memory
WO2014156848A1 (en) * 2013-03-29 2014-10-02 パウダーテック株式会社 Noise-suppressing composite magnetic powder

Also Published As

Publication number Publication date
JP4288674B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4895151B2 (en) Iron-based nano-sized particles and method for producing the same
JP4288674B2 (en) Method for producing magnetic metal fine particles and magnetic metal fine particles
JP2008100871A (en) METHOD OF PRODUCING epsi-IRON OXIDE
JP4766276B2 (en) Coated fine metal particles and method for producing the same
JP5732945B2 (en) Fe-Ni alloy powder
JP4853769B2 (en) Magnetic silica particles and method for producing the same
JP6461828B2 (en) Method for producing magnetic particles
JP2007046074A (en) Fine metal particle and manufacturing method therefor
JP2007046074A5 (en)
JP5556756B2 (en) Iron-based nano-sized particles and method for producing the same
Chaudhary et al. Mechanochemically Processed Nd− Fe− Co− Cr− B Nanoparticles with High Coercivity and Reduced Spin Reorientation Transition Temperature
JP4775713B2 (en) Coated fine metal powder and magnetic beads
JP2008069431A (en) Method for producing magnetic particle, and magnetic particle
JP4811658B2 (en) Coated metal fine particles and production method thereof,
JP2004259807A (en) Dust core and magnetic powder therefor
JP4320729B2 (en) Method for producing magnetic metal particles
JP2015120958A (en) Rare earth-iron-nitrogen based magnetic alloy and method for manufacturing the same
JP5024683B2 (en) Magnetic beads
KR101483319B1 (en) Method for forming rare earth metal hydride and method for forming rare earth metal-transition metal alloy powder using the same
JP4304668B2 (en) Metal fine particles and method for producing metal fine particles
JP6759855B2 (en) Method for manufacturing rare earth-iron-nitrogen alloy powder
KR102333257B1 (en) Method for producing magnetic powder
JP7177393B2 (en) soft magnetic metal powder
JP6949414B2 (en) Magnet powder and method for manufacturing magnet powder
JP2023147298A (en) Method for producing hexagonal barium ferrite magnetic powder and magnetic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350