JP2005117665A - Air-gap type fbar, method of manufacturing the same, and filter and duplexer using the same - Google Patents

Air-gap type fbar, method of manufacturing the same, and filter and duplexer using the same Download PDF

Info

Publication number
JP2005117665A
JP2005117665A JP2004293811A JP2004293811A JP2005117665A JP 2005117665 A JP2005117665 A JP 2005117665A JP 2004293811 A JP2004293811 A JP 2004293811A JP 2004293811 A JP2004293811 A JP 2004293811A JP 2005117665 A JP2005117665 A JP 2005117665A
Authority
JP
Japan
Prior art keywords
air gap
substrate
dielectric film
fbar
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004293811A
Other languages
Japanese (ja)
Inventor
Yun-Kwon Park
允 權 朴
Inso So
寅 相 宋
Heichu Ka
炳 柱 河
Jun-Sik Hwang
俊 式 黄
Duck-Hwan Kim
徳 煥 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2005117665A publication Critical patent/JP2005117665A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/582Multiple crystal filters implemented with thin-film techniques
    • H03H9/586Means for mounting to a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/587Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/105Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for fabricating an air-gap type FBAR, FBAR manufactured by the method, and to provide a filter and duplexer which uses the same. <P>SOLUTION: The air-gap type FBAR includes a first substrate having a cavity part at a predetermined region on its upper surface; a dielectric film stacked on the upper part of the substrate; a first air gap formed between the first substrate and the dielectric film; a stacked resonance part including a lower electrode/piezoelectric layer/upper electrode formed on the upper part of the dielectric film; a second substrate having a cavity part at a predetermined region on its lower surface and joined to the first substrate; and a second air gap formed between the stacked resonance part and the second substrate. A thin film, having predetermined thickness made of a liquid crystal polymer (LCP), may be used as the dielectric film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、RF(Radio Frequency)帯域の通信のためのフィルタ、デュープレクサなどに使用可能なFBAR(Film Bulk Acoustic Resonator)に関し、より詳しくは、液晶高分子(LCP)薄膜フィルムを用いることで、より工程が簡単であり、安定したエアギャップ(Air−Gap)型FBARおよびその製造方法、並びにこれを用いたフィルタおよびデュープレクサに関する。   The present invention relates to an FBAR (Film Bulk Acoustic Resonator) that can be used for filters, duplexers, and the like for RF (Radio Frequency) band communication, and more specifically, by using a liquid crystal polymer (LCP) thin film film. The present invention relates to a stable air gap (Air-Gap) type FBAR, a manufacturing method thereof, and a filter and a duplexer using the same.

近年、無線移動通信技術は、目覚しく発展している。かかる移動通信技術では、限定された周波数帯域で効率良く情報を伝達することができる種々のRF部品が必要となる。特に、RF部品のうちフィルタは、移動通信技術に使用される核心部品の一つであって、無数の空中波のうちから使用者が希望する信号を選択するか、転送しようとする信号をフィルタリングすることで高品質の通信を行うことが可能となる。   In recent years, wireless mobile communication technology has been remarkably developed. Such mobile communication technology requires various RF components that can efficiently transmit information in a limited frequency band. In particular, a filter among RF components is one of the core components used in mobile communication technology, and a signal desired by a user is selected from countless aerial waves or a signal to be transmitted is filtered. By doing so, it becomes possible to perform high-quality communication.

現在、無線通信用RFフィルタの代表的なものとしては、誘電体フィルタとSAW(Surface Acoustic wave)フィルタが挙げられる。誘電体フィルタは、高誘電率、低挿入損失、高温での安定性、耐振動・耐衝撃に強いという長所を有する。しかし、誘電体フィルタは、最近の技術発展動向である、小型化およびMMIC(Monolithic Microwave IC)化には限界がある。また、SAWフィルタは、誘電体フィルタに比べて小型でありながら信号処理が容易で、回路が単純であると共に、半導体工程を用いることで大量生産が可能であるという利点を有する。また、SAWフィルタは、誘電体フィルタに比べて通過帯域内のサイドリジェクション(Side Rejection)が高いため高品位の情報やり取りが行える長所がある。しかし、SAWフィルタ工程には、紫外線(UV)を用いて露光を行う工程が含まれているため、IDT(InterDigital Transducer)線幅が0.5μm程度が限界であるという短所を有する。従って、SAWフィルタを用いて超高周波(5GHz以上)帯域をカバーすることができないという問題点があり、根本的に半導体基板におけるMMIC構造と単一チップ上で構成されることはできないという問題点がある。   At present, typical RF filters for wireless communication include dielectric filters and SAW (Surface Acoustic wave) filters. Dielectric filters have the advantages of high dielectric constant, low insertion loss, stability at high temperature, and resistance to vibration and shock. However, the dielectric filter has a limit in miniaturization and MMIC (Monolithic Microwave IC) which are recent technological development trends. In addition, the SAW filter is advantageous in that it is small in size as compared with the dielectric filter, can easily perform signal processing, has a simple circuit, and can be mass-produced by using a semiconductor process. Further, the SAW filter has an advantage that high-quality information exchange can be performed because side rejection in the pass band is higher than that of the dielectric filter. However, since the SAW filter process includes a process of performing exposure using ultraviolet rays (UV), there is a disadvantage that an IDT (InterDigital Transducer) line width is about 0.5 μm. Therefore, there is a problem that it is not possible to cover a super high frequency (5 GHz or higher) band using a SAW filter, and it is fundamentally impossible to be configured on a single chip with an MMIC structure on a semiconductor substrate. is there.

前述のような限界および問題点を克服するため、既存の半導体(Si、GaAs)基板に他の能動素子と共に集積され、周波数制御回路を完全にMMIC化することができるFBARが提案されている。   In order to overcome the limitations and problems described above, an FBAR has been proposed that can be integrated with other active devices on an existing semiconductor (Si, GaAs) substrate and the frequency control circuit can be made completely MMIC.

FBARは、薄膜素子であって、低価格でかつ小型であると共に、高品質(High Q)係数の特性が実現可能であるため、種々の周波数帯域(900MHz〜10GHz)の無線通信機器、軍用レーダーなどに使用可能である。また、誘電体フィルタおよび集中定数(LC)フィルタより数百分の1の大きさに小型化が可能で、SAWフィルタより挿入損失が非常に小さいという特性を有する。従って、FBARは、安定性が高く、高品質係数が求められるMMICに適用することができる。   The FBAR is a thin film element that is low in cost and small in size, and can realize characteristics of a high quality (High Q) coefficient. Therefore, the FBAR is a wireless communication device and a military radar in various frequency bands (900 MHz to 10 GHz). Can be used. Further, the size can be reduced to one hundredth of the size of dielectric filters and lumped constant (LC) filters, and the insertion loss is much smaller than that of SAW filters. Therefore, FBAR can be applied to MMICs that are highly stable and require a high quality factor.

FBARは、上部電極・圧電体・下部電極のようなサンドイッチ構造を用いた半導体工程で作られ、圧電現象を発生させ、一定の周波数帯域で共振を発生し、この共振で実体波を用いて実体波の周波数と入力された電気信号の周波数とが等しくなると、共振現象が起こる。かかる共振現象を用いた共振器を電気的カップリングを現象化してFBARフィルタを製作し、さらには、FBARフィルタを用いたデュープレクサが実現可能である。   FBAR is made by a semiconductor process using a sandwich structure such as an upper electrode, a piezoelectric body, and a lower electrode, generates a piezoelectric phenomenon, and generates resonance in a certain frequency band. When the frequency of the wave is equal to the frequency of the input electrical signal, a resonance phenomenon occurs. A resonator using such a resonance phenomenon is made into an electrical coupling phenomenon to produce an FBAR filter, and a duplexer using the FBAR filter can be realized.

なお、FBAR構造は、さまざまな形態で研究が行われてきている。メンブレン型FBARは、基板上にシリコン酸化膜(SiO)を蒸着し、その反対面を異方性エッチング(Isotropic Etching)で形成された空洞部を介してメンブレン層を形成する。また、シリコン酸化膜の上部に下部電極を形成し、この下部電極層の上部に圧電物質をRFマグネトロンスパッタリング法で蒸着して圧電層を形成し、圧電層の上部に上部電極を形成している。 The FBAR structure has been studied in various forms. In the membrane type FBAR, a silicon oxide film (SiO 2 ) is vapor-deposited on a substrate, and a membrane layer is formed on the opposite surface via a cavity formed by anisotropic etching (Isotropic Etching). Also, a lower electrode is formed on the silicon oxide film, a piezoelectric material is deposited on the lower electrode layer by RF magnetron sputtering to form a piezoelectric layer, and an upper electrode is formed on the piezoelectric layer. .

かかるメンブレン型FBARは、キャビティにより、基板誘電損失が少なく、電力損失が少ないという長所を有する。しかし、メンブレン型FBARは、シリコン基板の方向性により、素子が占める面積が大きく、後続のパッケージング工程において構造的な安定性が低いため、破損による歩留まり低下の問題点がある。従って、最近、メンブレンによる損失を減らすため、素子製造工程を単純化するため、エアギャップ型とブラッグ反射(Bragg Reflector)型のFBARが登場している。   Such a membrane-type FBAR has the advantages of low substrate dielectric loss and low power loss due to the cavity. However, the membrane type FBAR has a problem that the yield is reduced due to breakage because the element occupies a large area due to the directivity of the silicon substrate and the structural stability is low in the subsequent packaging process. Therefore, recently, air gap type and Bragg reflector type FBARs have appeared to reduce the loss caused by the membrane and to simplify the device manufacturing process.

ブラッグ反射型FBARは、基板上に弾性インピーダンスの差が大きな物質を一層おきに蒸着して反射層を構成し、下部電極、圧電層および上部電極を順に積層した構造であって、圧電層を通過した弾性波エネルギーが基板方向に伝達されずに反射層で全て反射され、効率的な共振が発生されるようにしたものである。かかるブラッグ反射型FBARは、構造的に堅固であり、反りによるストレスがないが、全反射のための厚さが正確な4層以上の反射層形成が困難であり、製作のための時間や費用が多くかかるという短所がある。   The Bragg reflection type FBAR has a structure in which a substance having a large difference in elastic impedance is deposited on a substrate every other layer to form a reflection layer, and a lower electrode, a piezoelectric layer, and an upper electrode are laminated in order, and pass through the piezoelectric layer. The elastic wave energy is not transmitted in the direction of the substrate but is totally reflected by the reflective layer so that efficient resonance is generated. Such a Bragg reflection type FBAR is structurally robust and free from stress due to warping, but it is difficult to form a reflective layer of four or more layers having a precise thickness for total reflection. There is a disadvantage that it takes a lot.

なお、反射層の代わりにエアギャップを用いて基板と共振部とを隔離させる構造を有する従来のエアギャップ型FBARは、図1に示されたように、シリコン基板100の表面を異方性エッチングして犠牲層を形成し、CMPで表面研磨を施した後、絶縁層120、下部電極133、圧電層135および上部電極137を順に蒸着し、ビアホールを介して犠牲層110を除去、エアギャップ140を形成することで、FBARを実現している。   Note that the conventional air gap type FBAR having a structure in which the substrate and the resonance portion are separated by using an air gap instead of the reflective layer, the anisotropic etching is performed on the surface of the silicon substrate 100 as shown in FIG. After forming the sacrificial layer and polishing the surface by CMP, the insulating layer 120, the lower electrode 133, the piezoelectric layer 135, and the upper electrode 137 are sequentially deposited, the sacrificial layer 110 is removed through the via hole, and the air gap 140 FBAR is realized by forming.

しかし、前述のような従来のFBARの製作は、CMP工程が必要となるため、工程が複雑化し、単価がアップする要因となり、犠牲層を除去してエアギャップを形成するためウェットエッチングを用いているが、この場合、エッチング液の除去が難しく、エッチング液の完全な除去ができなければ、残存のエッチング液により、素子が弱くなり、共振周波数の変化が誘発される問題点があった。なお、ドライエッチングを行う場合でも、既存のプラズマドライエッチングを行う時、プラズマ状態のイオン、分子などが素子に与える物理的な衝撃および高熱による劣化などの問題点があった。   However, the fabrication of the conventional FBAR as described above requires a CMP process, which complicates the process and increases the unit price, and uses wet etching to remove the sacrificial layer and form an air gap. However, in this case, it is difficult to remove the etching solution, and if the etching solution cannot be removed completely, the remaining etching solution weakens the element and induces a change in resonance frequency. Even when dry etching is performed, there are problems such as physical impact that ions, molecules, etc. in the plasma state exert on the device and deterioration due to high heat when performing existing plasma dry etching.

本発明の目的は、簡単でかつ堅固なFBARを実現することにある。また、本発明の他の目的は、前述の方式によるエアギャップ型FBARを用いてフィルタおよびデュープレクサを実現することにある。   An object of the present invention is to realize a simple and robust FBAR. Another object of the present invention is to realize a filter and a duplexer using the air gap type FBAR according to the above-described method.

前述の目的を達成するための本発明のエアギャップ型FBARは、上面の所定領域に空洞部を有する第1の基板と、前記第1の基板の空洞部に第1のエアギャップを形成するため前記第1の基板の上部に積層された誘電膜と、前記誘電膜の上部に下部電極・圧電層・上部電極で形成される積層共振部と、下面の所定領域に空洞部を有し、前記第1の基板と接合される第2の基板とを備える。このように、エアギャップ型FBARを製造するにあたって、空洞部を有するシリコン基板上に誘電膜を積層し、CMP工程および犠牲層を除去する工程を行うことなくエアギャップを形成することで、既存のドライエッチング工程による素子への衝撃を減らし、工程ステップおよび工程誤差を減らすことにより、簡単でかつ堅固なFBARを実現することができる。   An air gap type FBAR of the present invention for achieving the above-mentioned object is provided for forming a first substrate having a cavity in a predetermined region on the upper surface and a first air gap in the cavity of the first substrate. A dielectric film laminated on the first substrate; a laminated resonance part formed of a lower electrode, a piezoelectric layer, and an upper electrode on the dielectric film; and a cavity in a predetermined region on the lower surface, And a second substrate bonded to the first substrate. Thus, in manufacturing an air gap type FBAR, a dielectric film is stacked on a silicon substrate having a cavity, and an air gap is formed without performing a CMP step and a step of removing a sacrificial layer. By reducing the impact on the device due to the dry etching process and reducing the process steps and process errors, a simple and robust FBAR can be realized.

前記誘電膜は、液晶高分子(LCP)で形成された所定の厚さを有する薄膜フィルムを用いるか、液晶高分子(LCP)で形成された薄膜フィルムを所定の厚さにエッチングして形成することができる。また、前記誘電膜は、液晶高分子(LCP)で形成された薄膜フィルムを前記第1のエアギャップに対応する所定の領域のみを局部的に所定の厚さにエッチングして形成することができる。   The dielectric film is formed by using a thin film having a predetermined thickness formed of liquid crystal polymer (LCP) or etching a thin film formed of liquid crystal polymer (LCP) to a predetermined thickness. be able to. The dielectric film may be formed by etching a thin film formed of liquid crystal polymer (LCP) only to a predetermined area corresponding to the first air gap to a predetermined thickness. .

本発明に係るエアギャップ型FBARの製造方法は、上面の所定領域に空洞部を有する第1の基板上に誘電膜を積層して第1のエアギャップを形成するステップと、前記誘電膜の上部表面に積層共振部を形成するステップと、前記第1の基板および下面の所定領域に空洞部を有する第2の基板を接合して第2のエアギャップを形成するステップとを含む。   The method of manufacturing an air gap type FBAR according to the present invention includes a step of forming a first air gap by stacking a dielectric film on a first substrate having a cavity in a predetermined region on the upper surface, and an upper portion of the dielectric film. Forming a laminated resonance portion on the surface; and joining a second substrate having a cavity in a predetermined region of the first substrate and the lower surface to form a second air gap.

前記積層共振部を形成するステップは、前記誘電膜の上部表面の所定領域に下部電極を蒸着するステップと、前記第1の基板の空洞部に対応する前記下部電極の上部表面に圧電層を蒸着するステップと、前記圧電層の上部表面および前記下部電極が蒸着されない誘電膜の所定領域の上部表面に上部電極を蒸着するステップとを含む。   The step of forming the laminated resonance part includes depositing a lower electrode on a predetermined region of the upper surface of the dielectric film and depositing a piezoelectric layer on the upper surface of the lower electrode corresponding to the cavity of the first substrate. And depositing an upper electrode on the upper surface of the piezoelectric layer and an upper surface of a predetermined region of the dielectric film on which the lower electrode is not deposited.

好ましくは、前記第1のエアギャップを形成するステップにおいて、前記誘電膜としては、液晶高分子(LCP)で形成された所定の厚さを有する薄膜フィルムを用いる。   Preferably, in the step of forming the first air gap, a thin film having a predetermined thickness made of liquid crystal polymer (LCP) is used as the dielectric film.

本発明に係るエアギャップ型FBARフィルタは、第1の共振周波数を有する複数のFBARが直列連結されて形成される第1の共振部と、第2の共振周波数を有し、前記第1の共振部の複数のFBARと並列連結される複数のFBARで形成される第2の共振部と、前記第2の共振部をなす複数のFBARにそれぞれ直列連結された複数のインダクタをとを備え、前記第1および第2の共振部を構成するそれぞれのFBARは、上面に複数の空洞部を有する第1の基板の上部に積層された誘電膜と、前記第1の基板および前記誘電膜の間に形成される第1のエアギャップと、前記誘電膜の上部に下部電極・圧電層・上部電極で形成された積層共振部とを備える。   The air gap type FBAR filter according to the present invention has a first resonance part formed by connecting a plurality of FBARs having a first resonance frequency in series, a second resonance frequency, and the first resonance frequency. A second resonating unit formed of a plurality of FBARs connected in parallel to a plurality of FBARs of the unit, and a plurality of inductors respectively connected in series to the plurality of FBARs forming the second resonating unit, Each of the FBARs constituting the first and second resonating portions includes a dielectric film stacked on top of a first substrate having a plurality of cavities on the upper surface, and between the first substrate and the dielectric film. A first air gap is formed, and a laminated resonance part formed of a lower electrode, a piezoelectric layer, and an upper electrode on the dielectric film.

前記誘電膜としては、液晶高分子(LCP)で形成された所定の厚さを有する薄膜フィルムを用いる。   As the dielectric film, a thin film having a predetermined thickness made of liquid crystal polymer (LCP) is used.

本発明に係るエアギャップ型FBARデュープレクサは、アンテナを介して送信端子に入力される信号を送信するための第1のFBARフィルタと、前記アンテナを介して受信される信号が受信端子に入力されるようにする第2のFBARフィルタと、前記アンテナと前記第2のフィルタとの間に形成され、送受信される信号の位相を変化させ、前記第1のフィルタと前記第2のフィルタにおける信号干渉を防止する位相変化部とを備え、前記第1および第2のフィルタは、それぞれ互いに異なる所定の共振周波数を有する第1および第2の共振部を有し、前記第1および第2の共振部に形成される複数のFBARのそれぞれは、上面に複数の空洞部を有する第1の基板の上部に積層された誘電膜と、前記第1の基板および前記誘電膜層の間に形成される第1のエアギャップと、前記誘電膜の上部に下部電極・圧電層・上部電極で形成された積層共振部とを備える。   An air gap type FBAR duplexer according to the present invention includes a first FBAR filter for transmitting a signal input to a transmission terminal via an antenna, and a signal received via the antenna to a reception terminal. The second FBAR filter is formed, and is formed between the antenna and the second filter, and changes the phase of a signal to be transmitted / received to reduce signal interference in the first filter and the second filter. And the first and second filters have first and second resonating parts each having a predetermined resonance frequency different from each other, and the first and second resonating parts are included in the first and second resonating parts. Each of the plurality of FBARs formed includes a dielectric film stacked on top of a first substrate having a plurality of cavities on the upper surface, and a gap between the first substrate and the dielectric film layer. Comprising a first air gap is formed, and a laminated resonance part which said the upper part of the dielectric film is formed in the lower electrode, the piezoelectric layer, the upper electrode.

本発明によるエアギャップ型FBARは、空洞部を有するシリコン基板上に液晶高分子(LCP)薄膜フィルムを積層し、CMP工程および犠牲層を除去する工程を行うことなく簡単にエアギャップを形成することで、工程ステップおよび工程誤差を減らすことができ、既存のFBAR製造工程に比べて製作が簡便で、製作にかかる時間が短縮され、向上した共振特性を有する長所がある。また、本発明により作られたエアギャップ型FBARを用いることで、工程がより簡便で、より向上したFBARフィルタおよびデュープレクサを実現することが可能となる。   In the air gap type FBAR according to the present invention, a liquid crystal polymer (LCP) thin film is laminated on a silicon substrate having a cavity, and an air gap is easily formed without performing a CMP step and a step of removing a sacrificial layer. Therefore, the process steps and process errors can be reduced, the manufacturing process is simpler than the existing FBAR manufacturing process, the time required for the manufacturing process is shortened, and the resonance characteristics are improved. Further, by using an air gap type FBAR made according to the present invention, it is possible to realize an improved FBAR filter and duplexer with a simpler process.

以下、添付の図面に基づいて本発明のFBARおよびその製造工程について詳述する。   Hereinafter, the FBAR of the present invention and the manufacturing process thereof will be described in detail with reference to the accompanying drawings.

図2は、本発明に係るエアギャップ型FBARの製作工程を段階別に示す断面図である。本発明に係るエアギャップ型FBARは、第1の基板200、第2のエアギャップ210、誘電膜220、積層共振部230、第2の基板240、第2のエアギャップ250で構成される。   FIG. 2 is a cross-sectional view showing the manufacturing process of the air gap type FBAR according to the present invention step by step. The air gap type FBAR according to the present invention includes a first substrate 200, a second air gap 210, a dielectric film 220, a laminated resonance unit 230, a second substrate 240, and a second air gap 250.

先ず、空洞部を有する第1の基板200は、シリコン基板上面の所定領域、即ち、積層共振部230に対応する領域を2〜3μmの深さに異方性エッチングして形成することができる(図2(a))
第1のエアギャップ210は、第1の基板200上に所定厚さの誘電膜200を積層して形成されるが、この誘電膜は、積層共振部230を支持し、絶縁層としての役割をし、LCP(Liquid Crystal Polymer)のようなポリマーからなる薄膜を用いる(図2(b))。この場合、LCP薄膜を約1μmの厚さに研磨して使用するか、最初から約1μm厚さのフィルムを用いることもできる。また、5μmのLCP薄膜フィルムを第1の基板に積層した後、5〜10μmの厚さにPRを蒸着し、第1のエアギャップに対応する部分を約1μmの厚さにエッチングして使用することもできる(図2(c))。本発明では、前記PRが蒸着されない誘電膜をドライエッチング方法でエッチングする。
First, the first substrate 200 having a cavity portion can be formed by anisotropically etching a predetermined region on the upper surface of the silicon substrate, that is, a region corresponding to the stacked resonance unit 230 to a depth of 2 to 3 μm ( FIG. 2 (a))
The first air gap 210 is formed by laminating a dielectric film 200 having a predetermined thickness on the first substrate 200. This dielectric film supports the laminating resonance part 230 and serves as an insulating layer. Then, a thin film made of a polymer such as LCP (Liquid Crystal Polymer) is used (FIG. 2B). In this case, the LCP thin film is used after being polished to a thickness of about 1 μm, or a film having a thickness of about 1 μm from the beginning can be used. Further, after laminating a 5 μm LCP thin film on the first substrate, PR is deposited to a thickness of 5 to 10 μm, and a portion corresponding to the first air gap is etched to a thickness of about 1 μm. (FIG. 2 (c)). In the present invention, the dielectric film on which the PR is not deposited is etched by a dry etching method.

積層共振部230は、誘電膜220上に形成されるが、第1のエアギャップに対応する個所を含む一定の領域に下部電極233、圧電層235、上部電極237が順に蒸着され、形成される(図2(d))。2つの電極の間に外部から信号が印加されると、2つの電極の間に入力伝達された電気的エネルギーの一部が圧電効果による機械的エネルギーに変換し、これを再び電気的エネルギーに変化する過程で圧電層235の厚さによる固有振動の周波数に対して共振するようになる。なお、LCP薄膜フィルムの厚さを異にすることで、互いに異なる共振周波数を得ることもできる。   The laminated resonance unit 230 is formed on the dielectric film 220. The lower electrode 233, the piezoelectric layer 235, and the upper electrode 237 are sequentially deposited and formed in a certain region including a portion corresponding to the first air gap. (FIG. 2 (d)). When an external signal is applied between the two electrodes, part of the electrical energy input between the two electrodes is converted into mechanical energy due to the piezoelectric effect, which is converted back into electrical energy. In the process, resonance occurs with respect to the frequency of the natural vibration due to the thickness of the piezoelectric layer 235. In addition, mutually different resonant frequencies can also be obtained by making the thickness of the LCP thin film different.

下部電極233を蒸着する場合、誘電膜220の一端において共振が直接的に発生する積層共振部230の下に第1のエアギャップ210が位置すれば、基板の隔離がなされ、共振効率が良くなるため、下部電極233は、第1のエアギャップ210の上層まで覆うようにパターニングされる必要がある。下部電極としては、金属のような通常の電導物質を使用するが、好ましくは、アルミニウム(Al)、タングステン(W)、金(Au)、白金(Pt)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、パラジウム(Pd)およびモリブデン(Mo)の群から1つを選択することができる。   When the lower electrode 233 is deposited, if the first air gap 210 is positioned under the laminated resonance part 230 where resonance occurs directly at one end of the dielectric film 220, the substrate is isolated and the resonance efficiency is improved. Therefore, the lower electrode 233 needs to be patterned so as to cover the upper layer of the first air gap 210. As the lower electrode, a normal conductive material such as metal is used, but preferably aluminum (Al), tungsten (W), gold (Au), platinum (Pt), nickel (Ni), titanium (Ti). One can be selected from the group of chromium (Cr), palladium (Pd) and molybdenum (Mo).

次のステップでは、前記下部電極233および前記誘電膜130の一定領域上に圧電層235を蒸着させる。通常の圧電物質としては、窒化アルミニウム(AlN)または酸化亜鉛(ZnO)を使用するが、これに限定されるのではない。蒸着方法は、RFマグネトロンスパッタリング法およびエバポレーション(evaporation)法などのいずれか1つを用いることができる。前記圧電層235は、下部電極233上に蒸着された後、下部電極233と同様に、下部にエアギャップ210が位置する部分の上層を覆うようにパターニングされる必要がある。   In the next step, a piezoelectric layer 235 is deposited on a predetermined region of the lower electrode 233 and the dielectric layer 130. As a normal piezoelectric material, aluminum nitride (AlN) or zinc oxide (ZnO) is used, but is not limited thereto. As the vapor deposition method, any one of an RF magnetron sputtering method and an evaporation method can be used. After the piezoelectric layer 235 is deposited on the lower electrode 233, it is necessary to pattern the piezoelectric layer 235 so as to cover the upper layer where the air gap 210 is located in the lower portion, like the lower electrode 233.

次のステップでは、前記圧電層235および誘電膜220上に上部電極237を蒸着させる。前記上部電極237は、前記下部電極233と同じ物質、同じ蒸着方法、およびパターニング方法を使用することもできる。   In the next step, an upper electrode 237 is deposited on the piezoelectric layer 235 and the dielectric film 220. The upper electrode 237 may use the same material, the same vapor deposition method, and the same patterning method as the lower electrode 233.

次に、所定の領域に空洞部を有する第2の基板240を積層共振部が形成された第1の基板200と接合した後、外部信号との連結のための複数のビアを形成する(図2(e))。   Next, the second substrate 240 having a cavity in a predetermined region is bonded to the first substrate 200 having the laminated resonance portion, and then a plurality of vias for connection with an external signal are formed (FIG. 2 (e)).

このように、エアギャップ型FBARを製造するにあたって、空洞部を有するシリコン基板上に液晶高分子(LCP)薄膜フィルムを積層し、CMP工程および犠牲層を除去する工程を行うことなくエアギャップを形成することで、既存のドライエッチング工程による素子への衝撃を減らし、工程ステップおよび工程誤差を減らすことにより、簡単でかつ堅固なFBARを実現することができる。   Thus, when manufacturing an air gap type FBAR, a liquid crystal polymer (LCP) thin film is laminated on a silicon substrate having a cavity, and an air gap is formed without performing a CMP step and a step of removing a sacrificial layer. By doing so, it is possible to realize a simple and robust FBAR by reducing the impact on the element due to the existing dry etching process and reducing the process steps and process errors.

前述のように作られたエアギャップ型FBARを用いて直列FBARおよび並列FBARを梯子状に回路化してFBARフィルタを実現することができる。回路を構成するそれぞれのFBARの共振特性によってフィルタの通過帯域が決定される。   Using the air gap type FBAR made as described above, the FBAR filter can be realized by circuitizing the serial FBAR and the parallel FBAR in a ladder shape. The pass band of the filter is determined by the resonance characteristics of the respective FBARs constituting the circuit.

FBARフィルタは、第1の共振周波数を有する複数のFBARで形成される第1の共振部、第2の共振周波数を有し、第1の共振部の複数のFBARと並列連結される複数のFBARで形成される第2の共振部および第2の共振部をなす複数のFBARにそれぞれ直列連結された複数のインダクタで構成される。   The FBAR filter includes a plurality of FBARs having a first resonance part formed of a plurality of FBARs having a first resonance frequency, a second resonance frequency, and being connected in parallel to the plurality of FBARs of the first resonance part. And a plurality of inductors connected in series to a plurality of FBARs forming the second resonance part and the second resonance part.

図3は、本発明に係るエアギャップ型FBARフィルタの第1の共振部3Aおよび第2の共振部3Bを示す断面図である。本フィルタは、複数の空洞部を有する基板300上にLCP薄膜フィルム320を積層して第1のエアギャップ310a、310bを形成し、誘電膜320上部に下部電極333・圧電層335a、335b・上部電極337a、337bを順に蒸着して積層共振部を形成した後、空洞部を有する第2の基板360を第1の基板の上部に接合させ、外部信号との連結のためのビア360a、360bを形成することで、実現される。   FIG. 3 is a cross-sectional view showing the first resonance unit 3A and the second resonance unit 3B of the air gap type FBAR filter according to the present invention. In this filter, a first air gap 310a, 310b is formed by laminating an LCP thin film 320 on a substrate 300 having a plurality of cavities, and a lower electrode 333, a piezoelectric layer 335a, 335b, an upper portion are formed on the dielectric film 320. After electrodes 337a and 337b are sequentially deposited to form a laminated resonance part, a second substrate 360 having a cavity is joined to the upper part of the first substrate, and vias 360a and 360b for connection with external signals are formed. Realized by forming.

図4は、本発明に係るエアギャップ型FBARデュープレクサの簡略な構造図を示すものである。図面において、450bに連結される1つのアンテナを介して送受信される信号を適切に分岐させるFBARデュープレクサの基本構造は、大別して、送信端フィルタ410、受信端フィルタ420および位相変化部430からなる。送信端フィルタ410および受信端フィルタ420は、それぞれ送受信しようとする周波数のみを通過させるバンドパスフィルタである。かかる送受信端フィルタ410、420を介して送受信される信号の周波数は、その差が微々たるものであるが、相互間の干渉に敏感に反応するようになるところ、送受信端フィルタ410、420を隔離させて相互間の干渉を防止する位相変化部430が必要となる。位相変化部430は、通常、キャパシタおよびインダクタを用いて位相シフトを行うことで、送受信信号の位相差が90度を有するようにして相互間の干渉を防止する。   FIG. 4 is a simplified structural diagram of an air gap type FBAR duplexer according to the present invention. In the drawing, the basic structure of an FBAR duplexer that appropriately branches a signal transmitted and received via one antenna connected to 450b is roughly composed of a transmission end filter 410, a reception end filter 420, and a phase change unit 430. The transmission end filter 410 and the reception end filter 420 are band-pass filters that allow only frequencies to be transmitted and received to pass through. The frequency of signals transmitted and received through the transmission / reception end filters 410 and 420 has a slight difference, but the transmission / reception end filters 410 and 420 are isolated from each other when they are sensitive to mutual interference. Thus, the phase change unit 430 that prevents the mutual interference is required. The phase changing unit 430 normally performs phase shift using a capacitor and an inductor so that the phase difference between the transmission and reception signals has 90 degrees to prevent mutual interference.

以上、図面を参照して本発明の好適な実施例を説明してきたが、本発明の保護範囲は、前述の実施例に限定されるものではなく、特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The preferred embodiments of the present invention have been described above with reference to the drawings. However, the scope of protection of the present invention is not limited to the above-described embodiments, and is shown by the claims. There are no restrictions on the text of the description. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、RF帯域の通信を行うためのフィルタ、デュープレクサなどに適用される。   The present invention is applied to a filter, a duplexer, and the like for performing communication in the RF band.

従来のエアギャップ型FBARの製作過程を段階別に示す工程図である。It is process drawing which shows the manufacture process of the conventional air gap type FBAR according to a stage. 本発明の一実施例に係るエアギャップ型FBARの製作過程を段階別に示す工程図である。It is process drawing which shows the manufacture process of the air gap type FBAR which concerns on one Example of this invention according to a step. 本発明に係るエアギャップ型FBARを用いたフィルタを示す構造図である。It is a structural diagram showing a filter using an air gap type FBAR according to the present invention. 本発明に係るエアギャップ型FBARを用いたデュープレクサの概略的な構造を示す図である。It is a figure which shows the schematic structure of the duplexer using the air gap type FBAR which concerns on this invention.

符号の説明Explanation of symbols

200 第1の基板
210 第1のエアギャップ
220 誘電膜
230 積層共振部
233 下部電極
235 圧電層
237 上部電極
240 第2の基板
250 第2のエアギャップ
310a、310b 第1のエアギャップ
320 誘電膜
333 下部電極
335a、335b 圧電層
337a、337b 上部電極
410 送信端フィルタ
420 受信端フィルタ
430 位相変化部
200 First substrate 210 First air gap 220 Dielectric film 230 Laminated resonance part 233 Lower electrode 235 Piezoelectric layer 237 Upper electrode 240 Second substrate 250 Second air gap 310a, 310b First air gap 320 Dielectric film 333 Lower electrode 335a, 335b Piezoelectric layer 337a, 337b Upper electrode 410 Transmission end filter 420 Reception end filter 430 Phase change section

Claims (10)

上面の所定領域に空洞部を有する第1の基板と、
前記第1の基板の空洞部に第1のエアギャップを形成するため前記第1の基板の上部に積層された誘電膜と、
前記誘電膜の上部に下部電極・圧電層・上部電極で形成される積層共振部と、
下面の所定領域に空洞部を有し、前記第1の基板と接合される第2の基板と、
を備えることを特徴とするエアギャップ型FBAR。
A first substrate having a cavity in a predetermined region on the upper surface;
A dielectric film stacked on top of the first substrate to form a first air gap in the cavity of the first substrate;
A laminated resonance part formed of a lower electrode, a piezoelectric layer, and an upper electrode on the dielectric film;
A second substrate having a cavity in a predetermined region on the lower surface and bonded to the first substrate;
An air gap type FBAR characterized by comprising:
前記誘電膜としては、液晶高分子(LCP)で形成された所定の厚さを有する薄膜フィルムを用いることを特徴とする請求項1に記載のエアギャップ型FBAR。   2. The air gap type FBAR according to claim 1, wherein the dielectric film is a thin film having a predetermined thickness made of liquid crystal polymer (LCP). 前記誘電膜は、液晶高分子(LCP)で形成された薄膜フィルムを所定の厚さにエッチングして形成することを特徴とする請求項1に記載のエアギャップ型FBAR。   The air gap type FBAR according to claim 1, wherein the dielectric film is formed by etching a thin film made of liquid crystal polymer (LCP) to a predetermined thickness. 前記誘電膜は、液晶高分子(LCP)で形成された薄膜フィルムを前記第1のエアギャップに対応する所定領域のみを局部的に所定の厚さにエッチングして形成することを特徴とする請求項1に記載のエアギャップ型FBAR。   The dielectric film is formed by locally etching a thin film formed of liquid crystal polymer (LCP) to a predetermined thickness only in a predetermined region corresponding to the first air gap. Item 2. The air gap type FBAR according to Item 1. 上面の所定領域に空洞部を有する第1の基板上に誘電膜を積層して第1のエアギャップを形成するステップと、
前記誘電膜の上部表面に積層共振部を形成するステップと、
前記第1の基板および下面の所定領域に空洞部を有する第2の基板を接合して第2のエアギャップを形成するステップと、
を含むことを特徴とするエアギャップ型FBARの製造方法。
Forming a first air gap by laminating a dielectric film on a first substrate having a cavity in a predetermined region on the upper surface;
Forming a laminated resonance part on the upper surface of the dielectric film;
Bonding a first substrate and a second substrate having a cavity in a predetermined region on the lower surface to form a second air gap;
The manufacturing method of the air gap type FBAR characterized by including.
前記積層共振部を形成するステップは、
前記第1の基板の空洞部に対応する前記下部電極の上部表面に圧電層を蒸着するステップと、
前記圧電層の上部表面および前記下部電極が蒸着されない誘電膜の所定領域の上部表面に上部電極を蒸着するステップと、
を含むことを特徴とする請求項5に記載のエアギャップ型FBARの製造方法。
The step of forming the laminated resonance part includes
Depositing a piezoelectric layer on the upper surface of the lower electrode corresponding to the cavity of the first substrate;
Depositing an upper electrode on the upper surface of the piezoelectric layer and an upper surface of a predetermined region of the dielectric film on which the lower electrode is not deposited;
The manufacturing method of the air gap type FBAR of Claim 5 characterized by the above-mentioned.
前記第1のエアギャップを形成するステップにおいて、前記誘電膜としては、液晶高分子(LCP)で形成された所定の厚さを有する薄膜フィルムを用いることを特徴とする請求項5に記載のエアギャップ型FBARの製造方法。   6. The air according to claim 5, wherein, in the step of forming the first air gap, a thin film having a predetermined thickness formed of liquid crystal polymer (LCP) is used as the dielectric film. Gap type FBAR manufacturing method. 第1の共振周波数を有する複数のFBARが直列連結されて形成される第1の共振部と、
第2の共振周波数を有し、前記第1の共振部の複数のFBARと並列連結される複数のFBARで形成される第2の共振部と、
前記第2の共振部をなす複数のFBARにそれぞれ直列連結された複数のインダクタをと、を備え、
前記第1および第2の共振部を構成するそれぞれのFBARは、
上面に複数の空洞部を有する第1の基板の上部に第1のエアギャップを形成するため前記第1の基板の上部に積層された誘電膜と、
前記誘電膜の上部に下部電極・圧電層・上部電極で形成された積層共振部と、
を備えることを特徴とするエアギャップ型FBARフィルタ。
A first resonance part formed by connecting a plurality of FBARs having a first resonance frequency in series;
A second resonating unit having a second resonance frequency and formed of a plurality of FBARs connected in parallel to the plurality of FBARs of the first resonating unit;
A plurality of inductors connected in series to a plurality of FBARs forming the second resonating unit,
The respective FBARs constituting the first and second resonating parts are:
A dielectric film stacked on top of the first substrate to form a first air gap above the first substrate having a plurality of cavities on the top surface;
A laminated resonance part formed of a lower electrode, a piezoelectric layer, and an upper electrode on the dielectric film;
An air gap type FBAR filter.
前記誘電膜としては、液晶高分子(LCP)で形成された所定の厚さを有する薄膜フィルムを用いることを特徴とする請求項8に記載のエアギャップ型FBARフィルタ。   9. The air gap type FBAR filter according to claim 8, wherein a thin film having a predetermined thickness formed of liquid crystal polymer (LCP) is used as the dielectric film. アンテナを介して送信端子に入力される信号を送信するための第1のFBARフィルタと、
前記アンテナを介して受信される信号が受信端子に入力されるようにする第2のFBARフィルタと、
前記アンテナと前記第2のフィルタとの間に形成され、送受信される信号の位相を変化させ、前記第1のフィルタと前記第2のフィルタにおける信号干渉を防止する位相変化部と、を備え、
前記第1および第2のフィルタは、
それぞれ互いに異なる所定の共振周波数を有する第1および第2の共振部を有し、前記第1および第2の共振部に形成される複数のFBARのそれぞれは、上面に複数の空洞部を有する第1の基板の上部に第1のエアギャップを形成するため前記第1の基板の上部に積層された誘電膜と、
前記誘電膜の上部に下部電極・圧電層・上部電極で形成された積層共振部と、
を備えることを特徴とするエアギャップ型FBARデュープレクサ。
A first FBAR filter for transmitting a signal input to the transmission terminal via the antenna;
A second FBAR filter that allows a signal received via the antenna to be input to a receiving terminal;
A phase change unit that is formed between the antenna and the second filter, changes a phase of a signal transmitted and received, and prevents signal interference in the first filter and the second filter;
The first and second filters are:
Each of the plurality of FBARs formed in the first and second resonance units has a plurality of cavities on the upper surface. The first and second resonance units each have a predetermined resonance frequency different from each other. A dielectric film stacked on top of the first substrate to form a first air gap on the top of the one substrate;
A laminated resonance part formed of a lower electrode, a piezoelectric layer, and an upper electrode on the dielectric film;
An air gap type FBAR duplexer comprising:
JP2004293811A 2003-10-07 2004-10-06 Air-gap type fbar, method of manufacturing the same, and filter and duplexer using the same Pending JP2005117665A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030069543A KR100555762B1 (en) 2003-10-07 2003-10-07 Air-gap type ???? fabrication method and FBAR fabricated by the same, filter and duPlexer using the FBAR.

Publications (1)

Publication Number Publication Date
JP2005117665A true JP2005117665A (en) 2005-04-28

Family

ID=34309551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293811A Pending JP2005117665A (en) 2003-10-07 2004-10-06 Air-gap type fbar, method of manufacturing the same, and filter and duplexer using the same

Country Status (4)

Country Link
US (1) US7253703B2 (en)
EP (1) EP1523097B1 (en)
JP (1) JP2005117665A (en)
KR (1) KR100555762B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102028719B1 (en) * 2018-07-30 2019-10-07 (주)와이솔 Method for manufacturing FBAR

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635268B1 (en) * 2004-05-17 2006-10-19 삼성전자주식회사 Filter comprising inductor, duplexer using the filter and fabricating methods thereof
EP1864310A2 (en) * 2005-03-02 2007-12-12 Georgia Tech Research Corporation Packaging systems incorporating thin film liquid crystal polymer (lcp) and methods of manufacture
US7248131B2 (en) * 2005-03-14 2007-07-24 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Monolithic vertical integration of an acoustic resonator and electronic circuitry
JP2007036829A (en) * 2005-07-28 2007-02-08 Toshiba Corp Thin film piezoelectric resonator, filter and method for manufacturing thin film piezoelectric resonator
FR2890490A1 (en) * 2005-09-05 2007-03-09 St Microelectronics Sa ACOUSTIC RESONATOR SUPPORT AND CORRESPONDING INTEGRATED CIRCUIT
US7486003B1 (en) * 2005-09-22 2009-02-03 Sei-Joo Jang Polymer bulk acoustic resonator
KR100822469B1 (en) * 2005-12-07 2008-04-16 삼성전자주식회사 System on chip structure comprising air cavity for isolating elements, duplexer and duplexer fabrication method thereof
DE102007028292B4 (en) 2007-06-20 2019-06-19 Snaptrack, Inc. Component with reduced voltage attachment
KR101708893B1 (en) 2010-09-01 2017-03-08 삼성전자주식회사 Bulk acoustic wave resonator structure and manufacturing method thereof
KR101696665B1 (en) * 2010-09-16 2017-01-16 삼성전자주식회사 Bulk acoustic wave resonator sensor
KR101959204B1 (en) * 2013-01-09 2019-07-04 삼성전자주식회사 Radio frequency filter and manufacturing mathod thereof
US20140226988A1 (en) * 2013-02-12 2014-08-14 Avago Technologies General Ip (Singapore) Pte. Ltd Bidirectional optical data communications module having reflective lens
CN109889173B (en) * 2018-12-26 2022-07-12 天津大学 Connection structure of flexible substrate film bulk acoustic wave filter
US11245383B2 (en) * 2019-07-25 2022-02-08 Zhuhai Crystal Resonance Technologies Co., Ltd. Packages with organic back ends for electronic components

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2312861A1 (en) 1975-05-29 1976-12-24 Brunot Michel Thin film piexo-electric resonator - operates in 400 Mhz to 1 Ghz range, is mounted on substrate and has gold electrodes
JPS6382116A (en) * 1986-09-26 1988-04-12 Matsushita Electric Ind Co Ltd Piezoelectric thin film resonator and its manufacture
JPH0784281A (en) 1993-09-14 1995-03-31 Sharp Corp Active element
KR970013677A (en) * 1995-08-17 1997-03-29 빈센트 비. 인그라시아 Thin film piezoelectric resonator with sealed cavity and its assembly method
US5692279A (en) * 1995-08-17 1997-12-02 Motorola Method of making a monolithic thin film resonator lattice filter
US5910756A (en) * 1997-05-21 1999-06-08 Nokia Mobile Phones Limited Filters and duplexers utilizing thin film stacked crystal filter structures and thin film bulk acoustic wave resonators
US6060818A (en) * 1998-06-02 2000-05-09 Hewlett-Packard Company SBAR structures and method of fabrication of SBAR.FBAR film processing techniques for the manufacturing of SBAR/BAR filters
FI108583B (en) * 1998-06-02 2002-02-15 Nokia Corp resonator structures
US6262637B1 (en) 1999-06-02 2001-07-17 Agilent Technologies, Inc. Duplexer incorporating thin-film bulk acoustic resonators (FBARs)
GB0016861D0 (en) 2000-07-11 2000-08-30 Univ Cranfield Improvements in or relating to filters
JP2002164714A (en) 2000-11-28 2002-06-07 Kyocera Corp High frequency transmission line
US6509813B2 (en) * 2001-01-16 2003-01-21 Nokia Mobile Phones Ltd. Bulk acoustic wave resonator with a conductive mirror
JP2004523949A (en) * 2001-01-18 2004-08-05 インフィネオン テクノロジーズ アクチェンゲゼルシャフト Filter device and method of fabricating filter device
TW488044B (en) 2001-02-09 2002-05-21 Asia Pacific Microsystems Inc Bulk acoustic filter and its package
US6472954B1 (en) * 2001-04-23 2002-10-29 Agilent Technologies, Inc. Controlled effective coupling coefficients for film bulk acoustic resonators
JP3937302B2 (en) 2001-12-10 2007-06-27 宇部興産株式会社 Filter and duplexer using thin film piezoelectric resonator
JP2002344280A (en) 2001-05-18 2002-11-29 Mitsubishi Electric Corp Piezoelectric thin-film element and manufacturing method
KR20030039446A (en) 2001-11-13 2003-05-22 삼성전자주식회사 Fabrication of Film Bulk Acoustic Resonator
US6794958B2 (en) * 2002-07-25 2004-09-21 Agilent Technologies, Inc. Method of fabricating a semiconductor device and an apparatus embodying the method
EP1469599B1 (en) * 2003-04-18 2010-11-03 Samsung Electronics Co., Ltd. Air gap type FBAR, duplexer using the FBAR, and fabricating methods thereof
KR100541596B1 (en) 2003-06-21 2006-01-11 박희대 The method of fbar and fbar band pass filter fabrication using the preferred orientation of piezo layer based on helped seed.
US20050181572A1 (en) * 2004-02-13 2005-08-18 Verhoeven Tracy B. Method for acoustically isolating an acoustic resonator from a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102028719B1 (en) * 2018-07-30 2019-10-07 (주)와이솔 Method for manufacturing FBAR

Also Published As

Publication number Publication date
KR20050033701A (en) 2005-04-13
KR100555762B1 (en) 2006-03-03
US7253703B2 (en) 2007-08-07
EP1523097A2 (en) 2005-04-13
US20050128027A1 (en) 2005-06-16
EP1523097B1 (en) 2014-03-05
EP1523097A3 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
KR100622955B1 (en) Film bulk acoustic resonator and the method thereof
EP1482638B1 (en) Film bulk acoustic resonator having supports and manufacturing method therefor
JP4401228B2 (en) Air gap type FBAR and duplexer manufactured using substrate bonding and manufacturing method thereof
US7939356B2 (en) Method of manufacturing film bulk acoustic resonator using internal stress of metallic film and resonator manufactured thereby
US10784838B2 (en) Air-gap type film bulk acoustic resonator and method of manufacturing the same
US7250831B2 (en) Filter comprising inductor, duplexer using the filter and fabricating methods thereof
JP4625260B2 (en) Method for manufacturing thin film bulk resonator
JP2003347884A (en) Film bulk acoustic resonator element and manufacturing method thereof
JP2005333642A (en) Air gap type thin film bulk acoustic resonator and its manufacturing process
JP2005184851A (en) Duplexer manufactured with integrated fbar and isolation part, and method of manufacturing the same
KR100555762B1 (en) Air-gap type ???? fabrication method and FBAR fabricated by the same, filter and duPlexer using the FBAR.
JP2009182368A (en) Duplexer
KR102579165B1 (en) Air-gap type fbar

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070717

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617