JP2005112673A - Apparatus and method for forming optical element - Google Patents

Apparatus and method for forming optical element Download PDF

Info

Publication number
JP2005112673A
JP2005112673A JP2003349275A JP2003349275A JP2005112673A JP 2005112673 A JP2005112673 A JP 2005112673A JP 2003349275 A JP2003349275 A JP 2003349275A JP 2003349275 A JP2003349275 A JP 2003349275A JP 2005112673 A JP2005112673 A JP 2005112673A
Authority
JP
Japan
Prior art keywords
mold
preform material
lower molds
optical element
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003349275A
Other languages
Japanese (ja)
Other versions
JP4233972B2 (en
Inventor
Takayuki Nagahara
孝行 永原
Masayuki Takahashi
正行 高橋
Toru Nakagawa
亨 中川
Katsuki Shingu
克喜 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003349275A priority Critical patent/JP4233972B2/en
Publication of JP2005112673A publication Critical patent/JP2005112673A/en
Application granted granted Critical
Publication of JP4233972B2 publication Critical patent/JP4233972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for forming an optical element through press-forming using a concave mold, wherein variation in thickness of the optical element can be inhibited, life of the mold can be managed and cost for pretreatment of a preform material can be reduced. <P>SOLUTION: In the apparatus, the preform material 4 is placed between a cylindrical concave mold 1 and upper and lower dies 2a and 2b which are located inside the concave mold 1, the concave mold 1, the upper and lower dies 2a and 2b and the preform material 4 are heated, and the upper and lower dies 2a and 2b are moved to perform press-forming of the optical element. Here, molding conditions such as press force at pressing are optimized according to the height of the mold or the height and size of the preform immediately before forming, by measuring the height of the lower die 2b before placing the preform material 4 and the height and size of the preform material 4 when placing the preform 4 inside the lower die 2b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プリフォーム素材をプレス成形して光学機器に使用するレンズ、ミラー、プリズムなどの光学素子を成形する光学素子成形方法及び装置に関するものである。   The present invention relates to an optical element molding method and apparatus for molding optical elements such as lenses, mirrors, and prisms used for optical equipment by press molding a preform material.

従来のカメラなどの光学レンズは、研磨などのプロセスにより製造されてきたが、近年のDSCやビデオカメラ、レーザープリンタなどの光学素子を使用している商品では、その高性能化や小型化、軽量化、また低コスト化のために、非球面のレンズが多く使われている。特に、射出成形による樹脂の非球面レンズでは対応しきれない高性能なガラスの非球面レンズの製造には、ガラスをプレス成形する方法がとられている(例えば、特許文献1参照。)。   Conventional optical lenses such as cameras have been manufactured by a process such as polishing. However, in recent products that use optical elements such as DSCs, video cameras, and laser printers, their performance, size, and weight are reduced. Aspherical lenses are often used to reduce the cost and cost. In particular, a method of press-molding glass is used to manufacture a high-performance glass aspherical lens that cannot be handled by a resin aspherical lens by injection molding (see, for example, Patent Document 1).

従来のガラスのプレス成形による一般的なレンズ成形装置及び成形工程を図5を参照して説明する。図5において、セットステージS1で、筒状の胴型1と、この胴型1内に固定された下型2bと、この下型2bに対して胴型1内を移動可能に配置された上型2aの間に、樹脂やガラス素材から成るプリフォーム素材4を供給し、胴型1の外側に所定のレンズ厚みになるように任意の高さ寸法に調整した外胴型3をセットする。プリフォーム素材4は、図5に示すような球状のものや、円柱状、あるいは最終レンズ形状近くまで成形された形状のものなど、レンズ形状によって任意に選択される。次に、胴型1、上下型2a、2b及び外胴型3から成る成形型を投入ステージS2に移し、成形装置の入口にあるシャッタ5を開いて予備加熱ステージS3に移送する。成形装置内は、酸素濃度を管理できるように密閉度を考慮した構造で、窒素雰囲気に保たれている。予備加熱ステージS3で予備加熱装置6にて成形型が予備加熱され、予備加熱終了後成形型は成形ステージS4に移送される。成形ステージS4上で成形可能温度まで型温が上げられた後、上ヒータブロック7でプリフォーム素材4を加圧する。レンズ肉厚は外胴型3の高さによって制御される。加圧一定時間経過後、上下ヒータの温度を下げ、ガラスが変形しない温度まで型温を下げる。その後、ヒータブロック7を上昇させ、続いて成形装置出口のシャッタ8を開けて成形型を取り出し、冷却ステージS5まで移送する。そして、取り出し可能温度まで成形型を冷却して取り出しステージS6に移送し、成形レンズ9を取り出す。   A general lens molding apparatus and molding process by conventional glass press molding will be described with reference to FIG. In FIG. 5, in the set stage S1, a cylindrical body mold 1, a lower mold 2b fixed in the body mold 1, and an upper portion arranged so as to be movable in the body mold 1 relative to the lower mold 2b. A preform material 4 made of a resin or glass material is supplied between the molds 2a, and the outer cylinder mold 3 adjusted to an arbitrary height dimension so as to have a predetermined lens thickness is set outside the cylinder mold 1. The preform material 4 is arbitrarily selected depending on the lens shape, such as a spherical shape as shown in FIG. 5, a cylindrical shape, or a shape molded to a shape close to the final lens shape. Next, the molding die composed of the barrel die 1, the upper and lower dies 2a, 2b and the outer barrel die 3 is moved to the charging stage S2, and the shutter 5 at the entrance of the molding apparatus is opened and transferred to the preheating stage S3. The inside of the molding apparatus is maintained in a nitrogen atmosphere with a structure that takes into account the degree of sealing so that the oxygen concentration can be controlled. In the preheating stage S3, the mold is preheated by the preheating device 6, and after completion of the preheating, the mold is transferred to the molding stage S4. After the mold temperature is raised to the moldable temperature on the molding stage S4, the preform material 4 is pressurized by the upper heater block 7. The lens thickness is controlled by the height of the outer shell mold 3. After a certain period of pressurization, the temperature of the upper and lower heaters is lowered and the mold temperature is lowered to a temperature at which the glass does not deform. Thereafter, the heater block 7 is raised, and then the shutter 8 at the outlet of the molding apparatus is opened, the molding die is taken out, and transferred to the cooling stage S5. Then, the mold is cooled to a temperature at which it can be taken out, transferred to the take-out stage S6, and the molded lens 9 is taken out.

プレス前後のレンズの搬送形態としては、プリフォーム素材4のセットから成形レンズ9の取り出しまで、胴型1と上下型2a、2bを含む成形型一式で搬送させる方式が主流である。こうして胴型1に対して上型2aと下型2bのクリアランス調整を行うことにより成形レンズ9の同軸度などの要求精度を確保している。また別に、胴型1にキャリア機能を持たせる方法も示されている(例えば、特許文献2参照。)。
特開平5−17168号公報 特開平5−270846号公報
As a form of conveyance of the lens before and after pressing, a system in which conveyance is performed by a set of molding dies including the body mold 1 and the upper and lower molds 2a and 2b from the setting of the preform material 4 to the removal of the molded lens 9 is the mainstream. In this way, by adjusting the clearance between the upper mold 2a and the lower mold 2b with respect to the body mold 1, required accuracy such as the coaxiality of the molded lens 9 is secured. Separately, a method of giving the body mold 1 a carrier function is also shown (for example, see Patent Document 2).
Japanese Patent Laid-Open No. 5-17168 Japanese Patent Application Laid-Open No. 5-270846

ところで、上述したようなプレス成形による光学素子の製造においては、多数の金型を用いてステージを循環させ、タクト短縮を図っている。繰り返される金型のステージ間移送により金型底面や外胴型の底面及び上面が摩耗し、個々の部材の高さにばらつきが生じてしまい、経時的に成形レンズ9の肉厚ばらつきを招くという問題がある。また、金型底面部の不均一な摩耗はヒータブロックに対する片当たりを生じ、昇温不良による成形レンズ9の精度不良なども発生させる。さらに、ひどい場合にはガラス材の体積ばらつきとの複合により、オーバーパックなどの事故を招くことがあるという問題がある。   By the way, in the manufacture of the optical element by press molding as described above, the stage is circulated by using a large number of dies to shorten the tact time. It is said that the mold bottom surface and the bottom surface and top surface of the outer body mold are worn by repeated transfer of the mold between the stages, and the height of each member varies, resulting in variations in the thickness of the molded lens 9 over time. There's a problem. In addition, uneven wear on the bottom surface of the mold causes contact with the heater block, resulting in poor accuracy of the molded lens 9 due to poor temperature rise. Further, in a severe case, there is a problem that an accident such as an overpack may be caused due to the combination with the volume variation of the glass material.

そこで、現在ではプリフォーム素材4の体積管理基準を厳しくして不適合プリフォーム素材4はラインに投入しないような形態で対応しており、そのため検査工程や、球や円柱やレンズ近似形状などの精度を上げる前処理のためにかなりのコストを割かざるを得ないという問題がある。また、外胴型3を使用しない場合でも、下型2bの底面部の摩耗はあるので、プレス後の成形レンズ9の肉厚のばらつきは大きな課題になっている。現状プロセスでは、成形レンズ9の肉厚不良や精度不良などは成形後の検査工程で確認されるので、歩留りを悪化させる要因の一つになっている。   Therefore, at present, the volume management standard of the preform material 4 is strict and the nonconforming preform material 4 is handled in such a way that it is not put into the line. Therefore, the accuracy of the inspection process, sphere, cylinder, approximate lens shape, etc. There is a problem that considerable cost must be spent for pre-processing to increase Even when the outer body mold 3 is not used, the bottom surface portion of the lower mold 2b is worn, so that the variation in the thickness of the molded lens 9 after pressing is a big problem. In the current process, the thickness failure and accuracy failure of the molded lens 9 are confirmed in the inspection process after molding, which is one of the factors that deteriorate the yield.

また、プレス前後のレンズの搬送形態について、上記何れの方法でも上下型2a、2bはセットで必要で、かつタクト短縮を図るために多数の金型を持つ必要があり、そのため初期投資の増大を招くという問題がある。また、そのため小ロット生産品等への対応はコスト的に大変厳しいという問題がある。   In addition, as for the lens conveyance form before and after pressing, the upper and lower molds 2a and 2b are necessary as a set in any of the above methods, and it is necessary to have a large number of molds in order to reduce tact time, which increases the initial investment. There is a problem of inviting. For this reason, there is a problem that it is very strict in terms of cost to deal with small-lot products.

本発明は、上記従来の問題点に鑑み、胴型を用いたプレス成形による光学素子の製造において、光学素子の肉厚ばらつきを抑えるとともに金型の寿命管理ができ、またプリフォーム素材の前処理コストの低廉化を図り、さらに初期投資の低減も実現できる光学素子成形方法及び装置を提供することを課題とする。   In view of the above-mentioned conventional problems, the present invention can suppress the variation in the thickness of the optical element and manage the life of the mold in the manufacture of the optical element by press molding using the body mold, and can also perform pretreatment of the preform material. It is an object of the present invention to provide an optical element molding method and apparatus that can reduce costs and reduce initial investment.

請求項1及び請求項7に記載の発明の光学素子成形方法及び装置は、筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置する工程と、胴型と上下型及びプリフォーム素材を加熱する工程と、上下型を移動させ光学素子をプレス成形する工程から成る成形方法であって、プリフォーム素材を配置する工程の前に型の高さを測定する工程を有し、また筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置し、胴型と上下型及びプリフォーム素材を加熱して上下型を移動させ光学素子をプレス成形する成形装置であって、プリフォーム素材を配置する前に型の高さを測定する手段を設けたものである。   The optical element molding method and apparatus according to the first and seventh aspects of the present invention include a step of placing a preform material between a cylindrical body mold and an upper and lower molds disposed therein, A molding method comprising a step of heating a mold and a preform material, and a step of press-molding an optical element by moving the upper and lower molds, the step of measuring the height of the mold before the step of placing the preform material In addition, a preform material is arranged between the cylindrical body mold and the upper and lower molds disposed therein, and the optical element is pressed by moving the upper and lower molds by heating the body mold, the upper and lower molds and the preform material. A molding apparatus for molding is provided with means for measuring the height of a mold before placing a preform material.

この構成によると、成形直前の型の高さ状態を管理でき、プレス時の押し込み量などの成形条件の最適化や型の摩耗状態の把握が可能となる。したがって、型高さのばらつきから発生する成形光学素子の肉厚ばらつきを低減することができ、また摩耗の激しい型の抽出ができ、ラインへの投入を防止して総合的な歩留りを改善することができる。   According to this configuration, the height state of the mold immediately before molding can be managed, optimization of molding conditions such as the indentation amount during pressing, and the wear state of the mold can be grasped. Therefore, it is possible to reduce the variation in the thickness of the molding optical element caused by the variation in the mold height, and to extract the mold with severe wear, thereby preventing the introduction to the line and improving the overall yield. Can do.

請求項2及び請求項8に記載の発明の光学素子成形方法及び装置は、プリフォーム素材の型内への配置時にプリフォーム素材の高さ及び大きさを測定する工程を有し、またプリフォーム素材の型内への配置時にプリフォーム素材の高さ及び大きさを測定する手段を設けたものである。   The optical element molding method and apparatus according to the invention described in claim 2 and claim 8 include a step of measuring the height and size of the preform material when the preform material is placed in the mold, and the preform. Means are provided for measuring the height and size of the preform material when the material is placed in the mold.

この構成によると、成形直前のプリフォーム素材の高さ及び大きさの管理ができ、プレス時の押し込み量などの成形条件の最適化が可能となる。したがって、プリフォーム素材のばらつきから発生する成形光学素子の肉厚ばらつきを低減することができ、またプリフォーム素材自体の体積管理幅に余裕を持たせることができ、プリフォーム素材の前処理コストも低減できる。   According to this configuration, the height and size of the preform material immediately before molding can be managed, and molding conditions such as the amount of pressing during pressing can be optimized. Therefore, it is possible to reduce the variation in the thickness of the molding optical element caused by the variation in the preform material, and to provide a margin for the volume management width of the preform material itself, and the pretreatment cost of the preform material is also increased. Can be reduced.

請求項3及び請求項9に記載の発明の光学素子成形方法及び装置は、プリフォーム素材を配置する工程の前に型の高さを測定しかつプリフォーム素材の型内への配置時にプリフォーム素材の高さ及び大きさを測定する工程を有し、またプリフォーム素材を配置する前に型の高さを測定する手段と、プリフォーム素材の型内への配置時にプリフォーム素材の高さ及び大きさを測定する手段を設けたものである。   The optical element molding method and apparatus according to the third and ninth aspects of the present invention include measuring the height of a mold before the step of placing the preform material and performing the preform when the preform material is placed in the mold. Means for measuring the height and size of the material, and means for measuring the height of the mold before placing the preform material, and the height of the preform material when placing the preform material in the mold. And means for measuring the size.

この構成によると、成形直前の型の高さ状態を管理でき、プレス時の押し込み量などの成形条件の最適化や型の摩耗状態の把握が可能となる。したがって、型高さのばらつきから発生する成形光学素子の肉厚ばらつきを低減することができ、また摩耗の激しい型の抽出ができ、ラインへの投入を防止して総合的な歩留りを改善することができる。さらに成形直前のプリフォーム素材の高さ及び大きさの管理ができ、プレス時の押し込み量などの成形条件の最適化が可能となる。したがって、プリフォーム素材のばらつきから発生する成形光学素子の肉厚ばらつきを低減することができ、またプリフォーム素材自体の体積管理幅に余裕を持たせることができ、プリフォーム素材の前処理コストも低減できる。   According to this configuration, the height state of the mold immediately before molding can be managed, optimization of molding conditions such as the indentation amount during pressing, and the wear state of the mold can be grasped. Therefore, it is possible to reduce the variation in the thickness of the molding optical element caused by the variation in the mold height, and to extract the mold with severe wear, thereby preventing the introduction to the line and improving the overall yield. Can do. Further, the height and size of the preform material immediately before molding can be managed, and the molding conditions such as the amount of pressing during pressing can be optimized. Therefore, it is possible to reduce the variation in the thickness of the molding optical element caused by the variation in the preform material, and to provide a margin for the volume management width of the preform material itself, and the pretreatment cost of the preform material is also increased. Can be reduced.

請求項4及び請求項10に記載の発明の光学素子成形方法及び装置は、型及びプリフォーム素材の測定に非接触の測定機構を用い、また型及びプリフォーム素材の測定手段が非接触の測定手段から成るものである。   The optical element molding method and apparatus according to the fourth and tenth aspects of the present invention use a non-contact measuring mechanism for measuring the mold and the preform material, and the measuring means for the mold and the preform material is a non-contact measurement. It consists of means.

この構成によると、プリフォーム素材や型に傷や打痕などをつけることなく測定できるので、成形光学素子に傷などの外観不良を発生させることがない。   According to this configuration, the preform material and the mold can be measured without scratches or dents, so that appearance defects such as scratches are not generated in the molded optical element.

請求項5及び請求項11に記載の発明の光学素子成形方法及び装置は、1つの上型に対して複数の下型を有し、これらの下型にプリフォーム素材やプレス後の光学素子を搬送するキャリア機能を持たせ、また1つの上型に対して複数の下型を設け、これらの下型にプリフォーム素材やプレス後の光学素子を搬送するキャリア機能を持たせたものである。   The optical element molding method and apparatus according to the fifth and eleventh aspects of the present invention have a plurality of lower molds with respect to one upper mold, and a preform material and an optical element after pressing are applied to these lower molds. A carrier function for transporting is provided, and a plurality of lower molds are provided for one upper mold, and these lower molds are provided with a carrier function for transporting preform materials and pressed optical elements.

この構成によると、成形システムに下型の高精度な繰り返し位置決め機構を装備し、1つの上型に対して複数の下型を循環させる成形プロセス構成にすることで、成形システムを構成する総金型数を従来の略半分に抑えることができ、初期投資を低減できる。また、プレス後の冷却工程において、胴型及び上型から離れるため、キャリア金型の熱容量が少なくなり、冷却効率が上がってトータルタクトの短縮も図れる。   According to this configuration, the molding system is equipped with a high-precision repeat positioning mechanism for the lower mold, and a molding process configuration in which a plurality of lower molds are circulated with respect to one upper mold, the total money constituting the molding system. The number of molds can be reduced to about half of the conventional type, and the initial investment can be reduced. Further, in the cooling process after pressing, the carrier mold and the upper mold are separated from each other, so that the heat capacity of the carrier mold is reduced, the cooling efficiency is increased, and the total tact can be shortened.

請求項6及び請求項12に記載の発明の光学素子成形方法及び装置は、1つの上型に対して複数の下型を有し、これらの下型にプリフォーム素材やプレス後の光学素子を搬送するキャリア機能を持たせ、かつオフラインまたはインラインで下型へプリフォーム素材を配置する工程時に、型やプリフォーム素材の測定工程を有し、また1つの上型に対して複数の下型を設け、これらの下型にプリフォーム素材やプレス後の光学素子を搬送するキャリア機能を持たせ、かつオフラインまたはインラインで下型へプリフォーム素材を配置する工程時に、型やプリフォーム素材の測定を行う測定手段を設けたものである。   The optical element molding method and apparatus of the invention described in claims 6 and 12 has a plurality of lower molds for one upper mold, and preform materials and pressed optical elements are provided in these lower molds. It has a carrier function to convey and has a measuring process of molds and preform materials during the process of placing preform materials on the lower mold offline or in-line, and multiple lower molds for one upper mold These lower molds are equipped with a carrier function to transport preform materials and optical elements after pressing, and measurements of molds and preform materials are performed during the process of placing preform materials on the lower mold offline or in-line. The measuring means to perform is provided.

この構成によると、成形システムに下型の高精度な繰り返し位置決め機構を装備し、1つの上型に対して複数の下型を循環させる成形プロセス構成にすることで、成形システムを構成する総金型数を従来の略半分に抑えることができ、初期投資を低減できる。また、プレス後の冷却工程において、胴型及び上型から離れるため、キャリア金型の熱容量が少なくなり、冷却効率が上がってトータルタクトの短縮も図れる。さらに、成形直前の型の高さ状態を管理でき、プレス時の押し込み量などの成形条件の最適化や型の摩耗状態の把握が可能となる。したがって、型高さのばらつきから発生する成形光学素子の肉厚ばらつきを低減することができ、また摩耗の激しい型の抽出ができ、ラインへの投入を防止して総合的な歩留りを改善することができる。それから、成形直前のプリフォーム素材の高さ及び大きさの管理ができ、プレス時の押し込み量などの成形条件の最適化が可能となる。したがって、プリフォーム素材のばらつきから発生する成形光学素子の肉厚ばらつきを低減することができ、またプリフォーム素材自体の体積管理幅に余裕を持たせることができ、プリフォーム素材の前処理コストも低減できる。   According to this configuration, the molding system is equipped with a high-precision repeat positioning mechanism for the lower mold, and a molding process configuration in which a plurality of lower molds are circulated with respect to one upper mold, the total money constituting the molding system. The number of molds can be reduced to about half of the conventional type, and the initial investment can be reduced. Further, in the cooling process after pressing, the carrier mold and the upper mold are separated from each other, so that the heat capacity of the carrier mold is reduced, the cooling efficiency is increased, and the total tact can be shortened. Furthermore, the height state of the mold immediately before molding can be managed, optimization of molding conditions such as the amount of pressing during pressing, and the wear state of the mold can be grasped. Therefore, it is possible to reduce the variation in the thickness of the molding optical element caused by the variation in the mold height, and to extract the mold with severe wear, thereby preventing the introduction to the line and improving the overall yield. Can do. Then, the height and size of the preform material immediately before molding can be managed, and the molding conditions such as the amount of pressing during pressing can be optimized. Therefore, it is possible to reduce the variation in the thickness of the molding optical element caused by the variation in the preform material, and to provide a margin for the volume management width of the preform material itself, and the pretreatment cost of the preform material is also increased. Can be reduced.

本発明の光学素子成形方法及び装置によれば、プレス前に型の高さや摩耗程度を測定する機能を設けることで、型の寿命や光学素子の成形条件の最適化が可能となり、肉厚ばらつきの少ない高精度な光学素子を得ることができる。また、プレス前にプリフォーム素材の高さ及び体積を測定する機能を設けることで、成形素子の肉厚ばらつきを抑えることができるのは勿論のこと、プリフォーム素材の体積管理幅を大きくできるので前処理にかかるコストを低減することができる。さらに、複数の下型を循環させることで金型面数の初期投資を抑えた光学素子成形装置を実現できる。そして、これらを複合することで、肉厚ばらつきが少なく、プリフォーム素材の前処理コストが低廉で、さらに初期投資の少ない光学素子成形方法及び装置を実現できる。   According to the optical element molding method and apparatus of the present invention, it is possible to optimize the mold life and molding conditions of the optical element by providing the function of measuring the mold height and the degree of wear before pressing, and variation in the thickness. It is possible to obtain a highly accurate optical element with little. In addition, by providing the function to measure the height and volume of the preform material before pressing, not only can the thickness variation of the molding element be suppressed, but the volume control range of the preform material can be increased. The cost for preprocessing can be reduced. Furthermore, by circulating a plurality of lower molds, it is possible to realize an optical element molding apparatus that suppresses the initial investment in the number of mold surfaces. By combining these, it is possible to realize an optical element molding method and apparatus with little variation in wall thickness, low pre-treatment cost of the preform material, and less initial investment.

以下、本発明の光学素子成形方法及び装置の一実施形態について、図1〜4を参照して説明する。なお、図5を参照して説明した従来例と同じ構成要素については、同じ参照符号を付して説明を省略する。   Hereinafter, an embodiment of an optical element molding method and apparatus according to the present invention will be described with reference to FIGS. In addition, about the same component as the prior art example demonstrated with reference to FIG. 5, the same referential mark is attached | subjected and description is abbreviate | omitted.

図1において、本実施形態の光学素子成形装置は、酸素濃度を管理できるように密閉度を考慮した構造で、窒素雰囲気に保つことが可能な成形チャンバ10を備えている。この成形チャンバ10内の下部にロータリテーブル11が配設され、その軸芯11aの一側に供給・排出ゾーン12が設けられ、他側にプレスゾーン13が設けられている。ロータリテーブル11上には複数の下型2bが周方向に等間隔に固定されることにより、ロータリテーブル11の間欠回転によって下型2bが供給・排出ゾーン12の所定位置とプレスゾーン13の所定位置の間で移動し、下型2bがキャリア機能を持つように構成されている。プレスゾーン13における下型2bが停止する所定位置の上部には、1つの上型2aと胴型1が昇降動作可能に配設され、プレス制御部14にてプレス動作を行うように構成されている。また、これら上型2aと胴型1の周囲には、誘導加熱方式や抵抗加熱方式で胴型1、上型2a及び下型2bを加熱するようにヒータ15が配設されている。なお、ロータリテーブル11に下型2bを固設せず、供給・排出ゾーン12でロータリテーブル11上に下型2bを供給して仮固定し、プレスゾーン13で上型2a及び胴型1との位置調整した後本固定するようにしてもよい。   In FIG. 1, the optical element molding apparatus according to the present embodiment includes a molding chamber 10 having a structure in which the degree of sealing is taken into consideration so that the oxygen concentration can be controlled and capable of being maintained in a nitrogen atmosphere. A rotary table 11 is disposed in the lower part of the molding chamber 10, a supply / discharge zone 12 is provided on one side of the shaft core 11a, and a press zone 13 is provided on the other side. A plurality of lower molds 2b are fixed on the rotary table 11 at equal intervals in the circumferential direction, so that the lower mold 2b is moved to a predetermined position in the supply / discharge zone 12 and a predetermined position in the press zone 13 by intermittent rotation of the rotary table 11. The lower mold 2b is configured to have a carrier function. In the press zone 13, one upper mold 2 a and a body mold 1 are disposed so as to be capable of moving up and down at a predetermined position where the lower mold 2 b stops, and the press control unit 14 performs a pressing operation. Yes. A heater 15 is disposed around the upper mold 2a and the trunk mold 1 so as to heat the trunk mold 1, the upper mold 2a, and the lower mold 2b by an induction heating method or a resistance heating method. The lower mold 2 b is not fixed to the rotary table 11, but the lower mold 2 b is supplied and temporarily fixed on the rotary table 11 in the supply / discharge zone 12, and the upper mold 2 a and the body mold 1 are fixed in the press zone 13. You may make it fix this after adjusting a position.

ロータリテーブル11は、図2に示すように、ガイド付きシリンダ16により上昇され、回転駆動手段17にて所定の回転角度回転移動した後、ガイド付きシリンダ16により下降され、テーパガイド18とテーパピン19が係合することにより所定位置に位置決めされる。このような構成により、胴型1と下型2bのクリアランスが6μm以下に設定されていても、1つの胴型1及び上型2aに対して複数の下型2bを繰り返し位置決めしてプレス成形できる位置精度が実現されている。   As shown in FIG. 2, the rotary table 11 is raised by a guided cylinder 16, moved by a predetermined rotational angle by a rotation driving means 17, and then lowered by a guided cylinder 16, so that a taper guide 18 and a taper pin 19 are moved. By being engaged, it is positioned at a predetermined position. With such a configuration, even if the clearance between the body mold 1 and the lower mold 2b is set to 6 μm or less, a plurality of lower molds 2b can be repeatedly positioned with respect to one body mold 1 and the upper mold 2a and press-molded. Position accuracy is realized.

供給・排出ゾーン12には、成形チャンバ10内の酸素濃度を抑えるためのシャッタ20が設置され、プリフォーム素材4と成形レンズ9の供給・排出時のみ開閉されるように構成されている。これらプリフォーム素材4と成形レンズ9の供給・排出にはマニピュレータ21がそれぞれのフォルダ22に対して出し入れするように構成されている。   The supply / discharge zone 12 is provided with a shutter 20 for suppressing the oxygen concentration in the molding chamber 10 and is opened and closed only when the preform material 4 and the molded lens 9 are supplied / discharged. The supply and discharge of the preform material 4 and the molded lens 9 are configured such that a manipulator 21 is taken in and out of each folder 22.

また、この供給・排出ゾーン12には高さ測定器23が設置されている。この高さ測定器23は、図3に示すように、下型2bの高さを毎回測定し、その高さデータをプレス制御部14へフィードバックしている。また、測定時に規格外の高さになった下型2bがあった場合は、次工程に進むことなく、取り除かれる。   Further, a height measuring device 23 is installed in the supply / discharge zone 12. As shown in FIG. 3, the height measuring instrument 23 measures the height of the lower mold 2 b every time and feeds back the height data to the press control unit 14. Further, if there is a lower mold 2b having a height outside the standard at the time of measurement, it is removed without proceeding to the next process.

また、高さ測定器23は、下型2bにプリフォーム素材4が供給された後、図4に示すように、プリフォーム素材4の高さや体積を測定する。例えば、球状のプリフォーム素材4の場合、下型2b上に配置した状態から高さ測定器23で毎回測定し、その高さから体積を計算し、そのデータをプレス制御部14ヘフィードバックしている。   Further, after the preform material 4 is supplied to the lower mold 2b, the height measuring device 23 measures the height and volume of the preform material 4 as shown in FIG. For example, in the case of the spherical preform material 4, it is measured every time with the height measuring device 23 from the state placed on the lower mold 2 b, the volume is calculated from the height, and the data is fed back to the press control unit 14. Yes.

このように、下型2bの高さデータとプリフォーム素材4の高さや体積データをプレス制御部14へフィードバックし、プレス制御部14でそれらのデータに基づいてプレス時の押し込み条件を毎回決定することにより、オーバーパックの発生なく、成形レンズ9の肉厚ばらつきを20μm以下に収める精度は問題なくクリアされる。また、これによりプリフォーム素材4の体積管理基準の余裕度が広がり、前処理コストに関わるコストの低減を図ることができる。また、プリフォーム素材4の体積が高さだけでは不明な場合には、カメラによる認識などを用いてその体積を測定する必要がある。   In this way, the height data of the lower mold 2b and the height and volume data of the preform material 4 are fed back to the press control unit 14, and the press control unit 14 determines the pressing condition at the time of pressing based on those data every time. As a result, the accuracy of keeping the thickness variation of the molded lens 9 to 20 μm or less can be cleared without causing any overpack. This also increases the margin of the volume management standard of the preform material 4 and can reduce the cost related to the pretreatment cost. If the volume of the preform material 4 is unknown only by its height, it is necessary to measure the volume using recognition by a camera or the like.

なお、図示例の高さ測定器23はマイクロメータを使用しているが、レーザ測長器などの非接触方式にすると、測定による打痕や傷の発生の心配がなくてより好ましい。   Although the micrometer is used for the height measuring device 23 in the illustrated example, it is more preferable to use a non-contact method such as a laser length measuring device because there is no fear of dents and scratches due to measurement.

次に、以上の構成による一連の成形プロセスを説明する。まず、供給・排出ゾーン12の所定位置に位置決めされた下型2bの高さデータ等を高さ測定器23で測定する。次に、マニピュレータ21により把持されたプリフォーム素材4が下型2bに供給される。その後、プリフォーム素材4の形状も高さ測定器23で測定され、下型2bの測定データと比較され、最適成形条件が設定される。   Next, a series of molding processes with the above configuration will be described. First, height data and the like of the lower mold 2 b positioned at a predetermined position in the supply / discharge zone 12 are measured by the height measuring device 23. Next, the preform material 4 gripped by the manipulator 21 is supplied to the lower mold 2b. Thereafter, the shape of the preform material 4 is also measured by the height measuring device 23 and compared with the measurement data of the lower mold 2b, and the optimum molding conditions are set.

次に、ロータリテーブル11が回転し、下型2bが入れ替わる。プレスゾーン13へ移送された下型2bに向けて、上型2aとそれに固定された胴型1とヒータ15が、上型2aがプリフォーム素材4に接触する寸前まで降下し、ヒータ15による昇温がスタートする。   Next, the rotary table 11 rotates and the lower mold 2b is replaced. The upper die 2a, the barrel die 1 fixed thereto, and the heater 15 are lowered toward the lower die 2b transferred to the press zone 13 to the point just before the upper die 2a contacts the preform material 4, and are raised by the heater 15. The temperature starts.

プレス可能温度に到達したら、上型2aがさらに降下してプリフォーム素材4をプレスし、最適条件でプレスを終える。その後ガラスが変形しない温度まで型温が下がった後、上型2aが上昇し、ロータリテーブル11が回転し、供給・排出ゾーン12にプレスされた成形レンズ9を保持した下型2bが移送される。その位置で更に取り出し可能温度まで成形レンズ9が降温された後、再びマニピュレータ21にて装置外に排出される。   When the pressable temperature is reached, the upper die 2a is further lowered to press the preform material 4, and the pressing is completed under the optimum conditions. Thereafter, after the mold temperature is lowered to a temperature at which the glass is not deformed, the upper mold 2a is raised, the rotary table 11 is rotated, and the lower mold 2b holding the molded lens 9 pressed in the supply / discharge zone 12 is transferred. . The molded lens 9 is further cooled to a temperature at which it can be taken out, and is then discharged out of the apparatus by the manipulator 21 again.

本発明の光学素子成形方法及び装置は、プレス前に型の高さや摩耗程度、プリフォーム素材の高さや体積などを測定することで、光学素子の成形条件を最適化して肉厚ばらつきの少ない高精度な光学素子を得ることができるので、DSCやビデオカメラなどの非球面レンズなどの高精度の各種光学素子の成形に有用である。   The optical element molding method and apparatus according to the present invention optimizes the molding conditions of the optical element by measuring the mold height and degree of wear, the height and volume of the preform material, etc. before pressing, and has a small thickness variation. Since an accurate optical element can be obtained, it is useful for molding various high-precision optical elements such as an aspherical lens such as a DSC or a video camera.

本発明の光学素子成形方法及び装置の一実施形態の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of one Embodiment of the optical element shaping | molding method and apparatus of this invention. 同実施形態におけるロータリテーブルの構成図である。It is a block diagram of the rotary table in the embodiment. 同実施形態における下型の高さの測定状態の説明図である。It is explanatory drawing of the measurement state of the height of the lower mold | type in the embodiment. 同実施形態におけるプリフォーム素材の高さの測定状態の説明図である。It is explanatory drawing of the measurement state of the height of the preform raw material in the embodiment. 従来例の光学素子成形方法及び装置の概略構成図である。It is a schematic block diagram of the optical element shaping | molding method and apparatus of a prior art example.

符号の説明Explanation of symbols

1 胴型
2a 上型
2b 下型
4 プリフォーム素材
11 ロータリテーブル
14 プレス制御部
23 高さ測定器
DESCRIPTION OF SYMBOLS 1 Body type | mold 2a Upper type | mold 2b Lower type | mold 4 Preform material 11 Rotary table 14 Press control part 23 Height measuring device

Claims (12)

筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置する工程と、胴型と上下型及びプリフォーム素材を加熱する工程と、上下型を移動させ光学素子をプレス成形する工程から成る成形方法であって、プリフォーム素材を配置する工程の前に型の高さを測定する工程を有することを特徴とする光学素子成形方法。 The process of placing the preform material between the cylindrical body mold and the upper and lower molds disposed therein, the process of heating the body mold, the upper and lower molds and the preform material, and moving the upper and lower molds to press the optical element An optical element molding method comprising a molding step comprising a step of measuring a mold height before a step of placing a preform material. 筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置する工程と、胴型と上下型及びプリフォーム素材を加熱する工程と、上下型を移動させ光学素子をプレス成形する工程から成る成形方法であって、プリフォーム素材の型内への配置時にプリフォーム素材の高さ及び大きさを測定する工程を有することを特徴とする光学素子成形方法。 The process of placing the preform material between the cylindrical body mold and the upper and lower molds disposed therein, the process of heating the body mold, the upper and lower molds and the preform material, and moving the upper and lower molds to press the optical element An optical element molding method comprising: a molding method comprising a molding step, the method comprising a step of measuring the height and size of a preform material when the preform material is placed in a mold. 筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置する工程と、胴型と上下型及びプリフォーム素材を加熱する工程と、上下型を移動させ光学素子をプレス成形する工程から成る成形方法であって、プリフォーム素材を配置する工程の前に型の高さを測定しかつプリフォーム素材の型内への配置時にプリフォーム素材の高さ及び大きさを測定する工程を有することを特徴とする光学素子成形方法。 The process of placing the preform material between the cylindrical body mold and the upper and lower molds disposed therein, the process of heating the body mold, the upper and lower molds and the preform material, and moving the upper and lower molds to press the optical element A molding method comprising a molding process, in which the height of the mold is measured before the preform material is placed and the height and size of the preform material is measured when the preform material is placed in the mold. An optical element molding method comprising the step of: 型及びプリフォーム素材の測定に非接触の測定機構を用いることを特徴とする請求項1〜3の何れかに記載の光学素子成形方法。 The optical element molding method according to claim 1, wherein a non-contact measuring mechanism is used for measuring the mold and the preform material. 筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置する工程と、胴型と上下型及びプリフォーム素材を加熱する工程と、上下型を移動させ光学素子をプレス成形する工程から成る成形方法であって、1つの上型に対して複数の下型を有し、これらの下型にプリフォーム素材やプレス後の光学素子を搬送するキャリア機能を持たせることを特徴とする光学素子成形方法。 The process of placing the preform material between the cylindrical body mold and the upper and lower molds disposed therein, the process of heating the body mold, the upper and lower molds and the preform material, and moving the upper and lower molds to press the optical element A molding method comprising a molding step, wherein a plurality of lower molds are provided for one upper mold, and these lower molds have a carrier function for transporting preform materials and optical elements after pressing. An optical element molding method. 1つの上型に対して複数の下型を有し、これらの下型にプリフォーム素材やプレス後の光学素子を搬送するキャリア機能を持たせ、かつオフラインまたはインラインで下型へプリフォーム素材を配置する工程時に、型やプリフォーム素材の測定工程を有することを特徴とする請求項1〜4の何れかに記載の光学素子成形方法。 There are multiple lower molds for one upper mold, these lower molds have a carrier function to transport preform materials and pressed optical elements, and preform materials can be transferred to the lower mold offline or in-line. The optical element molding method according to any one of claims 1 to 4, further comprising a step of measuring a mold or a preform material during the step of arranging. 筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置し、胴型と上下型及びプリフォーム素材を加熱して上下型を移動させ光学素子をプレス成形する成形装置であって、プリフォーム素材を配置する前に型の高さを測定する手段を設けたことを特徴とする光学素子成形装置。 A molding apparatus in which a preform material is disposed between a cylindrical body mold and an upper and lower molds disposed therein, and the upper and lower molds and the preform material are heated to move the upper and lower molds to press the optical element. An optical element molding apparatus comprising means for measuring a mold height before placing a preform material. 筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置し、胴型と上下型及びプリフォーム素材を加熱して上下型を移動させ光学素子をプレス成形する成形装置であって、プリフォーム素材の型内への配置時にプリフォーム素材の高さ及び大きさを測定する手段を設けたことを特徴とする光学素子成形装置。 A molding apparatus in which a preform material is disposed between a cylindrical body mold and an upper and lower molds disposed therein, and the upper and lower molds and the preform material are heated to move the upper and lower molds to press the optical element. An optical element molding apparatus comprising means for measuring the height and size of the preform material when the preform material is placed in the mold. 筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置し、胴型と上下型及びプリフォーム素材を加熱して上下型を移動させ光学素子をプレス成形する成形装置であって、プリフォーム素材を配置する前に型の高さを測定する手段と、プリフォーム素材の型内への配置時にプリフォーム素材の高さ及び大きさを測定する手段を設けたことを特徴とする光学素子成形装置。 A molding apparatus in which a preform material is disposed between a cylindrical body mold and an upper and lower molds disposed therein, and the upper and lower molds and the preform material are heated to move the upper and lower molds to press the optical element. That is, there is provided means for measuring the height of the mold before placing the preform material and means for measuring the height and size of the preform material when the preform material is placed in the mold. An optical element molding apparatus. 型及びプリフォーム素材の測定手段が非接触の測定手段から成ることを特徴とする請求項7〜9の何れかに記載の光学素子成形方法。 10. The optical element molding method according to claim 7, wherein the mold and the preform material measuring means are non-contact measuring means. 筒状の胴型とその内部に配置された上下型の間にプリフォーム素材を配置し、胴型と上下型及びプリフォーム素材を加熱して上下型を移動させ光学素子をプレス成形する成形装置であって、1つの上型に対して複数の下型を設け、これらの下型にプリフォーム素材やプレス後の光学素子を搬送するキャリア機能を持たせたことを特徴とする光学素子成形装置。 A molding apparatus in which a preform material is disposed between a cylindrical body mold and an upper and lower molds disposed therein, and the upper and lower molds and the preform material are heated to move the upper and lower molds to press the optical element. An optical element molding apparatus characterized in that a plurality of lower molds are provided for one upper mold, and these lower molds have a carrier function for transporting preform materials and optical elements after pressing. . 1つの上型に対して複数の下型を設け、これらの下型にプリフォーム素材やプレス後の光学素子を搬送するキャリア機能を持たせ、かつオフラインまたはインラインで下型へプリフォーム素材を配置する工程時に、型やプリフォーム素材の測定を行う測定手段を設けたことを特徴とする請求項7〜10の何れかに記載の光学素子成形装置。 A plurality of lower molds are provided for one upper mold, these lower molds have a carrier function to transport preform materials and pressed optical elements, and preform materials are placed on the lower mold offline or in-line. The optical element molding apparatus according to any one of claims 7 to 10, further comprising a measuring means for measuring a mold and a preform material during the step of performing.
JP2003349275A 2003-10-08 2003-10-08 Optical element molding method Expired - Fee Related JP4233972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349275A JP4233972B2 (en) 2003-10-08 2003-10-08 Optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349275A JP4233972B2 (en) 2003-10-08 2003-10-08 Optical element molding method

Publications (2)

Publication Number Publication Date
JP2005112673A true JP2005112673A (en) 2005-04-28
JP4233972B2 JP4233972B2 (en) 2009-03-04

Family

ID=34541185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349275A Expired - Fee Related JP4233972B2 (en) 2003-10-08 2003-10-08 Optical element molding method

Country Status (1)

Country Link
JP (1) JP4233972B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143483A (en) * 2004-11-16 2006-06-08 Hoya Corp Mold press-forming die, its production method, and method of producing optical element
JP2010514107A (en) * 2006-12-18 2010-04-30 ドクター・オプティクス・ゲーエムベーハー Headlight lens for automobile headlight
JP2012206873A (en) * 2011-03-29 2012-10-25 Fujifilm Corp Optical element molding apparatus
CN105216187A (en) * 2015-10-22 2016-01-06 昆山鸿志犀自动化机电设备有限公司 A kind of polishing hot pressing integrated apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742601B (en) 2020-04-08 2021-10-11 揚明光學股份有限公司 Glass molding system with multi-stations and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143483A (en) * 2004-11-16 2006-06-08 Hoya Corp Mold press-forming die, its production method, and method of producing optical element
JP4549820B2 (en) * 2004-11-16 2010-09-22 Hoya株式会社 Mold press mold, method for manufacturing the same, and method for manufacturing optical element
JP2010514107A (en) * 2006-12-18 2010-04-30 ドクター・オプティクス・ゲーエムベーハー Headlight lens for automobile headlight
US8414170B2 (en) 2006-12-18 2013-04-09 Doctor Optics Gmbh Production method for a headlight lens and headlight lens for a motor vehicle headlight
US8517582B1 (en) 2006-12-18 2013-08-27 Docter Optics Se Production method for a headlight lens and headlight lens for a motor vehicle headlight
KR101453116B1 (en) 2006-12-18 2014-10-27 독터 옵틱스 에스이 Production method for a headlight lens and headlight lens for a motor vehicle headlight
JP2012206873A (en) * 2011-03-29 2012-10-25 Fujifilm Corp Optical element molding apparatus
CN105216187A (en) * 2015-10-22 2016-01-06 昆山鸿志犀自动化机电设备有限公司 A kind of polishing hot pressing integrated apparatus

Also Published As

Publication number Publication date
JP4233972B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4666677B2 (en) Mold press mold and optical element manufacturing method
JP4233972B2 (en) Optical element molding method
JP4425233B2 (en) Precision press molding preform mass production method, preform molding apparatus and optical element manufacturing method
JP4150268B2 (en) Press molding body molding apparatus, molding method, and glass optical element molding method
TWI331987B (en) Press-molding apparatus, press-molding method and method of producing an optical element
JP2007070151A (en) Device for forming optical element
JPH0729777B2 (en) Method for forming optical element
JPS62292629A (en) Molding device for glass lens
JP2011132096A (en) Forming apparatus and forming method for optical element
JP2003073135A (en) Method and mold for forming optical element
JP2011184248A (en) Optical element molding device
JP2003321229A (en) Production apparatus for optical element
JP2005162547A (en) Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element
JP4951394B2 (en) Optical element molding method
JP2005281053A (en) Forming apparatus for mold press, method of manufacturing optical device, and optical device
JP4226916B2 (en) Optical element molding method and molding apparatus therefor
JP2011136882A (en) Molding device for optical element
CN109790057B (en) Optical element manufacturing apparatus and optical element manufacturing method
JP2016124767A (en) Method for manufacturing optical element
JP2019119628A (en) Molding method for optical element and molding equipment for optical element
JP2008083190A (en) Method for molding optical element
JP2005035859A (en) Method and apparatus for manufacturing optical element
JP4030799B2 (en) Optical element molding method
JPH06345463A (en) Optical element and production process thereof and unit for producing optical element
JP2013112592A (en) Apparatus and method for molding optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees