JP2005100947A - Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery Download PDF

Info

Publication number
JP2005100947A
JP2005100947A JP2004206622A JP2004206622A JP2005100947A JP 2005100947 A JP2005100947 A JP 2005100947A JP 2004206622 A JP2004206622 A JP 2004206622A JP 2004206622 A JP2004206622 A JP 2004206622A JP 2005100947 A JP2005100947 A JP 2005100947A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
positive electrode
salt
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004206622A
Other languages
Japanese (ja)
Inventor
Kanji Hisayoshi
完治 久芳
Yusuke Watarai
祐介 渡会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004206622A priority Critical patent/JP2005100947A/en
Publication of JP2005100947A publication Critical patent/JP2005100947A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a decrease in charging and discharge capacity when the charging and discharge is repeated. <P>SOLUTION: The nonaqueous secondary battery anode material includes a lithium manganese nickel cobalt oxide consisting of lithium, manganese, nickel, cobalt and oxygen. The lithium manganese nickel cobalt oxide having a layered structure designated by Li[Li<SB>[(1-2x-y)/3]</SB>Ni<SB>x</SB>Co<SB>y</SB>Mn<SB>[(2-x-2y)/3]</SB>]O<SB>2</SB>that satisfies the conditions of 0.2<x<0.5, 0<y<0.2, and 1<2x+y. The method of producing the lithium manganese nickel cobalt oxide includes a step of producing a Ni-Co-Mn composite hydroxide by the reaction of a solution comprising a nickel salt and a cobalt salt with a strong alkaline solution, a step of producing a Ni-Co-Mn oxyhydroxide by oxidizing the composite oxide, a step of producing a starting mixture by mixing the Ni-Co-Mn oxyhydroxide with the lithium compound, and a step of producing a lithium transition metal composite oxide by firing the starting mixture in air. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水二次電池に用いられる正極材料及びその製造方法と、この正極材料を用いた非水二次電池に関する。更に詳しくは、4V用の非水二次電池に適する非水二次電池に用いられる正極材料及びその製造方法並びにそれを用いた非水二次電池に関するものである。   The present invention relates to a positive electrode material used for a nonaqueous secondary battery, a method for producing the same, and a nonaqueous secondary battery using the positive electrode material. More specifically, the present invention relates to a positive electrode material used for a non-aqueous secondary battery suitable for a non-aqueous secondary battery for 4 V, a manufacturing method thereof, and a non-aqueous secondary battery using the same.

一般的に、非水二次電池の概念は、図4に示すように、内部がセパレータ1aにより第1室2a及び第2室2bに区画された容器2に電解液3が貯留され、第1室2aに正電極4が電解液3に浸漬した状態で収容され、更に第2室2bに負電極5が電解液3に浸漬した状態で収容される構造となっている。この非水二次電池1では、正電極4はアルミメッシュ板に活物質を含むスラリーを湿布又は含浸させた後に、この湿布物又は含浸物を加熱・乾燥してアルミメッシュ板に活物質を付着させることにより形成され、負電極5は黒鉛等に代表される炭素又は金属リチウム等により板状に形成される。
上記正電極4に付着させる活物質としては、従来よりLiCoO2等のリチウムコバルト複合酸化物、LiNiO2等のリチウムニッケル複合酸化物、LiMn24等のリチウムマンガン複合酸化物等の金属酸化物が一般に用いられる。
In general, as shown in FIG. 4, the concept of the non-aqueous secondary battery is that an electrolyte 3 is stored in a container 2 whose interior is partitioned into a first chamber 2a and a second chamber 2b by a separator 1a. The positive electrode 4 is accommodated in the chamber 2 a while being immersed in the electrolytic solution 3, and the negative electrode 5 is accommodated in the second chamber 2 b while being immersed in the electrolytic solution 3. In this non-aqueous secondary battery 1, the positive electrode 4 is obtained by pouring or impregnating a slurry containing an active material on an aluminum mesh plate, and then heating and drying the poultice or impregnated material to attach the active material to the aluminum mesh plate. The negative electrode 5 is formed in a plate shape with carbon or metal lithium typified by graphite or the like.
Examples of the active material to be attached to the positive electrode 4, lithium-cobalt composite oxide such as LiCoO 2 Conventionally, lithium nickel composite oxide such as LiNiO 2, a metal oxide such as lithium manganese composite oxide such as LiMn 2 O 4 Is generally used.

上記リチウムコバルト複合酸化物を用いた電池は、構造安定性が高いことから大半の電池で用いられる。しかしながら、複合酸化物に含まれるコバルトは、その材料コストが高価であること、埋蔵量が少ないこと、排気や排水における環境規制が厳しい等の諸問題があり、電池の更なる量産化及び大型化に伴い、上記問題が深刻化するおそれがある。
また、上記リチウムニッケル複合酸化物を用いた電池は、理論容量が大きく適度な放電電位が得られる反面、充放電過程で起きる結晶構造の変化に関係する充放電電位の変化や充放電サイクルの進行に伴う結晶構造の崩壊に起因する充放電容量の低下に対して抜本的な解決がなされておらず、電池の特性安定性及び信頼性が不十分であるという問題点があった。
Batteries using the lithium cobalt composite oxide are used in most batteries because of their high structural stability. However, cobalt contained in complex oxides has various problems such as high material costs, low reserves, and severe environmental regulations in exhaust and drainage, and further mass production and enlargement of batteries. As a result, the above problem may become serious.
In addition, a battery using the above lithium nickel composite oxide has a large theoretical capacity and an appropriate discharge potential, but on the other hand, a change in charge / discharge potential related to a change in crystal structure that occurs during the charge / discharge process and a progress of charge / discharge cycle. However, a drastic solution has not been made to the decrease in charge / discharge capacity due to the collapse of the crystal structure accompanying the above, and there has been a problem that the characteristic stability and reliability of the battery are insufficient.

更に、上記リチウムマンガン複合酸化物を用いた二次電池は、理論容量に近い容量の充放電が可能であるとともに、発火による爆発などの危険はなく、熱安全性が極めて高いという得難い利点を有しているけれども、他の2つの複合酸化物を用いた電池に比べ理論容量は若干劣るという問題点がある。
一方、上記3種類の従来から用いられている活物質における問題点を解消するものとして近年では、Li[Li[(1-2x)/3]NixMn[(2-x)/3]]O2のようなリチウムニッケルマンガン複合酸化物が実用化に向けて開発が進められている(例えば、非特許文献1参照。)。そして、このリチウムニッケルマンガン複合酸化物からなる活物質では、エネルギー密度が向上してコストが低減し、その安全性が高められるものとしている。
Journal of Power Sources,112,2002,634-638
Furthermore, the secondary battery using the above lithium manganese composite oxide can charge and discharge at a capacity close to the theoretical capacity, has no danger of explosion due to ignition, and has an unobtainable advantage of extremely high thermal safety. However, there is a problem that the theoretical capacity is slightly inferior to the battery using the other two composite oxides.
On the other hand, in recent years, Li [Li [(1-2x) / 3] Ni x Mn [(2-x) / 3] ] has been proposed as a solution for solving the above-described problems in the three types of conventionally used active materials. Development of a lithium nickel manganese composite oxide such as O 2 is underway for practical use (see, for example, Non-Patent Document 1). And in the active material consisting of this lithium nickel manganese composite oxide, the energy density is improved, the cost is reduced, and the safety is enhanced.
Journal of Power Sources, 112,2002,634-638

しかし、上記リチウムニッケルマンガン複合酸化物からなる活物質では、初期における放電容量は大きいけれども、充放電に伴う結晶の膨張及び収縮が十分に抑制されずに、また結晶の規則性も不十分であるため、充放電を繰返すと充放電容量が低下してサイクル特性を十分に向上させることができない不具合があった。
本発明の目的は、充放電の繰返しによる充放電容量の低下を抑制してサイクル特性を向上し得る非水二次電池用正極材料及びその製造方法並びにこれを用いた非水二次電池を提供することにある。
However, in the active material comprising the lithium nickel manganese composite oxide, although the discharge capacity in the initial stage is large, the expansion and contraction of the crystal accompanying charge / discharge is not sufficiently suppressed, and the regularity of the crystal is insufficient. For this reason, when charging / discharging is repeated, the charge / discharge capacity decreases, and the cycle characteristics cannot be sufficiently improved.
An object of the present invention is to provide a positive electrode material for a non-aqueous secondary battery capable of improving cycle characteristics by suppressing a decrease in charge / discharge capacity due to repeated charge / discharge, and a non-aqueous secondary battery using the same. There is to do.

請求項1に係る発明は、リチウム、マンガン、ニッケル、コバルト及び酸素からなるリチウムマンガンニッケルコバルト酸化物を用いた非水二次電池用正極材料の改良である。
その特徴ある構成は、リチウムマンガンニッケルコバルト酸化物が層状構造であってLi[Li[(1-2x-y)/3]NixCoyMn[(2-x-2y)/3]]O2と表され、0.2<x<0.5及び0<y<0.2の条件を満たし、かつ1<2x+yの条件を満たすところにある。
この請求項1に係る非水二次電池用正極材料では、コバルトを含むので酸化物の層状構造がきれいになり、ニッケルとコバルトにおけるx及びyの関係をこのようにすることにより充放電を繰返しても、充放電容量の低下を抑制することができるようになる。
The invention according to claim 1 is an improvement of a positive electrode material for a non-aqueous secondary battery using lithium manganese nickel cobalt oxide comprising lithium, manganese, nickel, cobalt and oxygen.
The characteristic structure is that lithium manganese nickel cobalt oxide has a layered structure and Li [Li [(1-2x-y) / 3] Ni x Co y Mn [(2-x-2y) / 3] ] O. 2 and satisfying the conditions of 0.2 <x <0.5 and 0 <y <0.2 and satisfying the condition of 1 <2x + y.
In the positive electrode material for a non-aqueous secondary battery according to claim 1, the layer structure of the oxide is clean because it contains cobalt, and charging and discharging are repeated by making the relationship between x and y in nickel and cobalt in this way. However, it is possible to suppress a decrease in charge / discharge capacity.

請求項2に係る発明は、組成式Li[Li[(1-2x-y)/3]NixCoyMn[(2-x-2y)/3]]O2で表されて層状構造を有する非水二次電池用正極材料の製造方法である。
その特徴ある点は、ニッケル塩とコバルト塩とマンガン塩との水溶液を強アルカリ水溶液と反応させてNi−Co−Mn複合水酸化物を得る複合水酸化物合成工程と、そのNi−Co−Mn複合水酸化物を酸化させてNi−Co−Mnオキシ水酸化物を得る酸化工程と、そのNi−Co−Mnオキシ水酸化物とリチウム化合物とを混合して原料混合物を得る原料混合工程と、その原料混合物を大気中で焼成してリチウム遷移金属複合酸化物を得る焼成工程とを含むところにある。
この請求項2に係る非水二次電池用正極材料の製造方法では、Li[Li[(1-2x-y)/3]NixCoyMn[(2-x-2y)/3]]O2と表され、0.2<x<0.5及び0<y<0.2の条件を満たし、かつ1<2x+yの条件を満たす層状構造のリチウムマンガンニッケルコバルト酸化物を比較的容易に得ることができる。
なお、原料混合物の大気中における焼成は900〜1100℃で行われることが好ましく、ニッケル塩、コバルト塩及びマンガン塩はそれぞれ硫酸塩、硝酸塩又は塩化物であることが好ましい。
The invention according to claim 2 represents a layered structure represented by the composition formula Li [Li [(1-2x-y) / 3] Ni x Co y Mn [(2-x-2y) / 3] ] O 2. It is a manufacturing method of the positive electrode material for non-aqueous secondary batteries which has.
The characteristic point is that a composite hydroxide synthesis step of reacting an aqueous solution of nickel salt, cobalt salt and manganese salt with a strong alkaline aqueous solution to obtain a Ni—Co—Mn composite hydroxide, and its Ni—Co—Mn An oxidation step of oxidizing a composite hydroxide to obtain a Ni-Co-Mn oxyhydroxide, a raw material mixing step of mixing the Ni-Co-Mn oxyhydroxide and a lithium compound to obtain a raw material mixture, And firing the raw material mixture in the atmosphere to obtain a lithium transition metal composite oxide.
In the method for producing a positive electrode material for a non-aqueous secondary battery according to claim 2, Li [Li [(1-2x-y) / 3] Ni x Co y Mn [(2-x-2y) / 3] ] A layered lithium manganese nickel cobalt oxide expressed as O 2 and satisfying the conditions of 0.2 <x <0.5 and 0 <y <0.2 and satisfying the condition of 1 <2x + y is relatively easy. Can be obtained.
The firing of the raw material mixture in the air is preferably performed at 900 to 1100 ° C., and the nickel salt, cobalt salt and manganese salt are preferably sulfate, nitrate or chloride, respectively.

請求項5に係る発明は、請求項1に記載の非水二次電池用正極材料を用いた非水二次電池である。
請求項6に係る発明は、請求項2ないし4いずれか1項に記載の方法で製造された非水二次電池用正極材料を用いた非水二次電池である。
The invention according to claim 5 is a non-aqueous secondary battery using the positive electrode material for non-aqueous secondary battery according to claim 1.
The invention according to claim 6 is a non-aqueous secondary battery using the positive electrode material for a non-aqueous secondary battery manufactured by the method according to any one of claims 2 to 4.

以上述べたように、本発明によれば、リチウム、マンガン、ニッケル、コバルト及び酸素からなる層状構造のリチウムマンガンニッケルコバルト酸化物を用いた非水二次電池用正極材料であって、Li[Li[(1-2x-y)/3]NixCoyMn[(2-x-2y)/3]]O2と表され、0.2<x<0.5及び0<y<0.2の条件を満たし、かつ1<2x+yの条件を満たすようにし、コバルトを含ませて酸化物の層状構造をきれいにして、充放電を繰返しても充放電容量の低下を抑制することができる非水二次電池用正極材料を得ることができる。
また、ニッケル塩とコバルト塩とマンガン塩との水溶液を強アルカリ水溶液と反応させてNi−Co−Mn複合水酸化物を得る複合水酸化物合成工程と、そのNi−Co−Mn複合水酸化物を酸化させてNi−Co−Mnオキシ水酸化物を得る酸化工程と、そのNi−Co−Mnオキシ水酸化物とリチウム化合物とを混合して原料混合物を得る原料混合工程と、その原料混合物を大気中で焼成してリチウム遷移金属複合酸化物を得る焼成工程とを含ませることにより、このような層状構造のリチウムマンガンニッケルコバルト酸化物を比較的容易に得ることができる。
As described above, according to the present invention, there is provided a positive electrode material for a non-aqueous secondary battery using a lithium manganese nickel cobalt oxide having a layered structure composed of lithium, manganese, nickel, cobalt and oxygen, and Li [Li [(1-2x-y) / 3] Ni x Co y Mn [(2-x-2y) / 3] ] O 2 , 0.2 <x <0.5 and 0 <y <0. 2 is satisfied and 1 <2x + y is satisfied, cobalt is included to clean the oxide layered structure, and a reduction in charge / discharge capacity can be suppressed even after repeated charge / discharge. A positive electrode material for a water secondary battery can be obtained.
Further, a composite hydroxide synthesis step of reacting an aqueous solution of a nickel salt, a cobalt salt and a manganese salt with a strong alkaline aqueous solution to obtain a Ni—Co—Mn composite hydroxide, and the Ni—Co—Mn composite hydroxide The oxidation step of oxidizing Ni to Co-Mn oxyhydroxide, the raw material mixing step of mixing the Ni-Co-Mn oxyhydroxide and a lithium compound to obtain a raw material mixture, and the raw material mixture A lithium manganese nickel cobalt oxide having such a layered structure can be obtained relatively easily by including a firing step of firing in the atmosphere to obtain a lithium transition metal composite oxide.

次に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、リチウム二次電池10はこの実施の形態ではシート状の積層体であり、正極集電板11と、正極活物質を含む正極12と、電解質シート13と、負極活物質を含む負極14と、負極集電板15とをこの順序で積層したものである。正極集電板11はアルミニウム板からなり、負極集電板15は銅板からなる。また正極12に含まれる正極活物質としては、その活物質本体にリチウム、マンガン、ニッケル、コバルト及び酸素からなるリチウムマンガンニッケルコバルト酸化物が用いられる。負極14に含まれる負極活物質としてはグラファイト系の活物質が用いられる。更に電解質シート13としては電解液が含まれるポリエチレンオキシド系のシートが用いられる。
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the lithium secondary battery 10 is a sheet-like laminate in this embodiment, and includes a positive electrode current collector plate 11, a positive electrode 12 including a positive electrode active material, an electrolyte sheet 13, and a negative electrode active material. And a negative electrode current collector plate 15 are laminated in this order. The positive electrode current collector plate 11 is made of an aluminum plate, and the negative electrode current collector plate 15 is made of a copper plate. Moreover, as a positive electrode active material contained in the positive electrode 12, lithium manganese nickel cobalt oxide which consists of lithium, manganese, nickel, cobalt, and oxygen is used for the active material main body. As the negative electrode active material contained in the negative electrode 14, a graphite-based active material is used. Furthermore, as the electrolyte sheet 13, a polyethylene oxide sheet containing an electrolytic solution is used.

上記正極材料として用いられるリチウムマンガンニッケルコバルト酸化物は層状構造であってLi[Li[(1-2x-y)/3]NixCoyMn[(2-x-2y)/3]]O2と表される。この場合におけるxは、0.2<x<0.5の条件を満たし、yは0<y<0.2の条件を満たす。即ち、xは0.2を超えて0.5未満であり、yは0を超えて0.2未満である。xの好ましい値は、0.2を超えて0.4未満であり、0.2を超えて0.3未満が更に好ましい。一方、yの好ましい値は0を超えて0.1未満であり、0.02を超えて0.08未満であることが更に好ましい。 The lithium manganese nickel cobalt oxide used as the positive electrode material has a layered structure and is Li [Li [(1-2x-y) / 3] Ni x Co y Mn [(2-x-2y) / 3] ] O. It is expressed as 2 . In this case, x satisfies the condition of 0.2 <x <0.5, and y satisfies the condition of 0 <y <0.2. That is, x is more than 0.2 and less than 0.5, and y is more than 0 and less than 0.2. A preferable value of x is more than 0.2 and less than 0.4, and more preferably more than 0.2 and less than 0.3. On the other hand, the preferred value of y is more than 0 and less than 0.1, and more preferably more than 0.02 and less than 0.08.

ここで、xが0.2を超えて0.5未満であることを必要とするのは、xが0.2以下であると、重放電に寄与するNiの量が不足して放電容量が低下するとともに、xが0.5以上であると主として結晶の層状構造を維持するMnとのバランスが崩れてサイクル特性が悪化するからである。また、yが0を超えて0.2未満であることを必要とするのは、yが0であることはコバルトが全くない状態を示し、コバルトにより結晶の層状構造をきれいにすることができずにサイクル特性を向上させることができない。また、yが0.2以上であると重放電に寄与するNiの量が不足して放電容量が低下するからである。   Here, x needs to be more than 0.2 and less than 0.5. When x is 0.2 or less, the amount of Ni contributing to heavy discharge is insufficient and the discharge capacity is reduced. This is because, when x is 0.5 or more, the balance with Mn, which mainly maintains the crystal layered structure, is lost, and the cycle characteristics deteriorate. In addition, y needs to be greater than 0 and less than 0.2. The fact that y is 0 indicates that no cobalt is present, and the layered structure of the crystal cannot be cleaned by cobalt. However, the cycle characteristics cannot be improved. Further, if y is 0.2 or more, the amount of Ni contributing to heavy discharge is insufficient and the discharge capacity is reduced.

また、正極材料として用いられるリチウムマンガンニッケルコバルト酸化物は、xとyとの関係において1<2x+yの条件を満たすことが必要とされる。即ち、この条件によりNiがMnより多いことが必要とされる。これは2x+yの値が1以下であるとNiがMnと等しいか、NiよりMnが多くなり、充放電を担うNiが不足して放電容量が低下するからである。また、これと同時に2x+y>1の条件を満たすことで、リチウム含有量が1.0以上となり、これにより結晶の構造安定性が増し、サイクル特性が向上する。   Further, the lithium manganese nickel cobalt oxide used as the positive electrode material is required to satisfy the condition of 1 <2x + y in the relationship between x and y. That is, this condition requires that Ni be greater than Mn. This is because if the value of 2x + y is 1 or less, Ni is equal to Mn or Mn is more than Ni, and Ni for charge / discharge is insufficient, resulting in a decrease in discharge capacity. At the same time, by satisfying the condition of 2x + y> 1, the lithium content becomes 1.0 or more, thereby increasing the structural stability of the crystal and improving the cycle characteristics.

このリチウムマンガンニッケルコバルト酸化物の製造方法は、複合水酸化物合成工程、酸化工程、原料混合工程、焼成工程とを含んで構成される。以下、各工程について説明する。
(1)複合水酸化物合成工程は、ニッケル塩、コバルト塩及びマンガン塩の水溶液を強アルカリ水溶液と反応させて、Ni−Co−Mn複合水酸化物を得る工程である。ニッケルを陽イオンとして含む塩としては、水溶性であることを考慮すると、例えば、硝酸ニッケル、硫酸ニッケル、塩化ニッケル等を用いることができる。また、コバルトを陽イオンとして含む塩としては、例えば、硝酸コバルト、硫酸コバルト、塩化コバルト等を用いることができる。更に、マンガンを陽イオンとして含む塩としては、例えば、硝酸マンガン、硫酸マンガン、塩化マンガン等を用いることができる。特に、生成する複合水酸化物中に残存しにくいという理由から、上記各塩は硝酸塩を用いることが望ましい。
This method for producing lithium manganese nickel cobalt oxide includes a composite hydroxide synthesis step, an oxidation step, a raw material mixing step, and a firing step. Hereinafter, each step will be described.
(1) The composite hydroxide synthesis step is a step of obtaining an Ni—Co—Mn composite hydroxide by reacting an aqueous solution of nickel salt, cobalt salt and manganese salt with a strong alkaline aqueous solution. As a salt containing nickel as a cation, considering that it is water-soluble, for example, nickel nitrate, nickel sulfate, nickel chloride and the like can be used. Examples of the salt containing cobalt as a cation include cobalt nitrate, cobalt sulfate, and cobalt chloride. Furthermore, as a salt containing manganese as a cation, for example, manganese nitrate, manganese sulfate, manganese chloride, or the like can be used. In particular, it is desirable to use a nitrate as each salt because it is difficult to remain in the resulting composite hydroxide.

ニッケル塩、コバルト塩及びマンガン塩の水溶液には、例えば、各塩の水溶液をそれぞれ調製し、それらを混合した水溶液を用いることができる。上記塩の水溶液は、反応性および収率を共に満足させるという観点から、その塩の濃度が0.5〜2Mとなるように調製することが望ましい。そして、得られるNi−Co−Mn複合水酸化物含まれるNi、Co及びMnの割合が、目的とするリチウム遷移金属複合酸化物の組成に応じたものとなるように調製すればよい。例えば、Ni:Co:Mo=2〜5:0〜2:4.3〜6のモル比になるようにニッケル塩、コバルト塩及びマンガン塩を混合する。   As an aqueous solution of nickel salt, cobalt salt and manganese salt, for example, an aqueous solution prepared by preparing an aqueous solution of each salt and mixing them can be used. The aqueous salt solution is preferably prepared so that the concentration of the salt is 0.5 to 2M from the viewpoint of satisfying both the reactivity and the yield. And what is necessary is just to prepare so that the ratio of Ni, Co, and Mn contained in the obtained Ni-Co-Mn composite hydroxide may become a thing according to the composition of the target lithium transition metal composite oxide. For example, a nickel salt, a cobalt salt, and a manganese salt are mixed so that a molar ratio of Ni: Co: Mo = 2 to 5: 0 to 2: 4.3 to 6 is obtained.

強アルカリ水溶液としては、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア水等を用いることができる。中でも、生成する複合水酸化物中に残存しにくく、安定した濃度を維持できるという点を考慮すれば、水酸化リチウム水溶液を用いることが望ましい。水酸化リチウム水溶液を用いる場合には、0.5〜2M程度の濃度のものを使用することが望ましい。上記反応を均一に行うために、例えば、上記塩を含む水溶液に強アルカリ水溶液を滴下して反応を行えばよい。また、反応は攪拌して行うことが望ましい。攪拌速度、強アルカリ水溶液のpH値、反応温度等の条件は、得られるNi−Co−Mn複合水酸化物の粒子径等に影響することから、所望の粒子径のものを得るために適宜設定すればよい。例えば、強アルカリ水溶液のpH値は、反応中略一定となるように調整することが望ましく、その値は、11〜12とすることが望ましい。また、反応温度は、適度な反応速度を得るため、20〜40℃とすることが望ましい。   As the strong alkaline aqueous solution, a lithium hydroxide aqueous solution, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, ammonia water or the like can be used. Among these, it is desirable to use a lithium hydroxide aqueous solution in view of the point that it is difficult to remain in the generated composite hydroxide and a stable concentration can be maintained. When using a lithium hydroxide aqueous solution, it is desirable to use one having a concentration of about 0.5 to 2M. In order to perform the above reaction uniformly, for example, a strong alkaline aqueous solution may be dropped into the aqueous solution containing the salt to perform the reaction. The reaction is preferably carried out with stirring. Conditions such as the stirring speed, the pH value of the strong alkaline aqueous solution, the reaction temperature, etc. affect the particle size of the resulting Ni—Co—Mn composite hydroxide. do it. For example, the pH value of the strong alkaline aqueous solution is desirably adjusted so as to be substantially constant during the reaction, and the value is desirably 11-12. The reaction temperature is preferably 20 to 40 ° C. in order to obtain an appropriate reaction rate.

(2)酸化工程は、前述した複合水酸化物合成工程で得られたNi−Co−Mn複合水酸化物を酸化させてNi−Co−Mnオキシ水酸化物を得る工程である。Ni−Co−Mn複合水酸化物の酸化方法は特に制限するものではない。なお、複合水酸化物合成工程において、Ni−Co−Mn複合水酸化物は水溶液中の沈殿物として得られる。したがって、例えば、複合水酸化物合成工程における反応後の懸濁液を大気中に保持することにより、Ni−Co−Mn複合水酸化物を酸化することができる。この場合、酸化反応を促進させるため、懸濁液に空気をバブリングしながら攪拌して保持することが望ましい。また、酸化反応は常温で進行するため、懸濁液は室温で保持すればよい。また、上記方法によれば、Ni−Co−Mnオキシ水酸化物は沈殿物として得られるため、これを濾別し、洗浄等を行って、次工程に供することができる。なお、得られるNi−Co−Mnオキシ水酸化物の粒子径が小さく、濾別することが困難な場合には、例えば、反応後の懸濁液を所定の温度で保持するエージングを行うことにより粒子を成長させ、その後に濾別等を行えばよい。エージングの条件は、特に限定されるものではないが、40〜90℃の温度で24時間程度行えばよい。また、もう一つの方法として、例えば、反応後の懸濁液を噴霧乾燥することにより、Ni−Co−Mnオキシ水酸化物を得ることもできる。   (2) The oxidation step is a step of obtaining Ni—Co—Mn oxyhydroxide by oxidizing the Ni—Co—Mn composite hydroxide obtained in the above-described composite hydroxide synthesis step. The oxidation method of the Ni—Co—Mn composite hydroxide is not particularly limited. In the composite hydroxide synthesis step, the Ni—Co—Mn composite hydroxide is obtained as a precipitate in an aqueous solution. Therefore, for example, the Ni—Co—Mn composite hydroxide can be oxidized by maintaining the suspension after the reaction in the composite hydroxide synthesis step in the atmosphere. In this case, in order to promote the oxidation reaction, it is desirable to hold the agitation while bubbling air into the suspension. Moreover, since the oxidation reaction proceeds at room temperature, the suspension may be kept at room temperature. Moreover, according to the said method, since a Ni-Co-Mn oxyhydroxide is obtained as a deposit, this can be filtered, wash | cleaned etc., and can use for the following process. In addition, when the particle diameter of the obtained Ni—Co—Mn oxyhydroxide is small and difficult to filter, for example, by performing aging to maintain the suspension after reaction at a predetermined temperature The particles may be grown and then filtered. The aging conditions are not particularly limited, but may be performed at a temperature of 40 to 90 ° C. for about 24 hours. As another method, for example, Ni-Co-Mn oxyhydroxide can be obtained by spray drying the suspension after the reaction.

(3)原料混合工程は、前述した酸化工程で得られたNi−Co−Mnオキシ水酸化物とリチウム化合物とを混合して原料混合物を得る工程である。リチウム化合物としては、水酸化リチウム、炭酸リチウム、硝酸リチウム等を用いることができる。特に、反応性が高いという理由から水酸化リチウムを用いることが望ましい。Ni−Co−Mnオキシ水酸化物とリチウム化合物との混合は、通常の粉体の混合に用いられている方法で行えばよい。具体的には、例えば、ボールミル、ミキサー、乳鉢等を用いて混合すればよい。また、Ni−Co−Mnオキシ水酸化物とリチウム化合物との混合割合は、目的とするリチウム遷移金属複合酸化物の組成、すなわち、Li:(Ni+Co+Mn)がモル比で略1〜1.3:1となるような割合とすればよい。   (3) The raw material mixing step is a step of obtaining a raw material mixture by mixing the Ni—Co—Mn oxyhydroxide obtained in the oxidation step described above and a lithium compound. As the lithium compound, lithium hydroxide, lithium carbonate, lithium nitrate, or the like can be used. In particular, it is desirable to use lithium hydroxide because of its high reactivity. The mixing of the Ni—Co—Mn oxyhydroxide and the lithium compound may be performed by a method used for mixing ordinary powders. Specifically, it may be mixed using, for example, a ball mill, a mixer, a mortar or the like. Further, the mixing ratio of the Ni—Co—Mn oxyhydroxide and the lithium compound is such that the composition of the target lithium transition metal composite oxide, that is, Li: (Ni + Co + Mn) is approximately 1 to 1.3: The ratio may be set to 1.

(4)焼成工程は、前述の原料混合工程で得られた原料混合物を大気中で焼成してリチウム遷移金属複合酸化物を得る工程である。焼成温度は、900〜1100℃の範囲内とすることが望ましい。焼成温度が900℃未満であると、反応が十分に進行せず、結晶性が低くなるからである。反対に、1100℃を超えると、リチウムが蒸発し、リチウムが欠損した組成になりやすいからである。なお、焼成時間は焼成が完了するのに十分な時間であればよく、通常、3〜10時間程度行えばよい。
このように製造された非水二次電池用正極材料では、充放電サイクルに伴う体積変化が小さく、充放電を繰返しても、充放電容量の低下を抑制することができる。よって、このリチウムマンガンニッケルコバルト酸化物からなる正極材料を用いて正電極を作製し、リチウムを含むグラファイトからなる負極活物質を用いて負電極を作製して、非水二次電池を製造すると、充放電を繰返しても、充放電容量の低下を抑制できる非水二次電池を得ることができる。
(4) The firing step is a step in which the raw material mixture obtained in the raw material mixing step is fired in the air to obtain a lithium transition metal composite oxide. The firing temperature is desirably in the range of 900 to 1100 ° C. This is because if the firing temperature is lower than 900 ° C., the reaction does not proceed sufficiently and the crystallinity is lowered. On the other hand, when the temperature exceeds 1100 ° C., lithium is evaporated, and the composition easily loses lithium. Note that the firing time may be a time sufficient to complete the firing, and is usually performed for about 3 to 10 hours.
In the positive electrode material for a non-aqueous secondary battery manufactured in this way, the volume change accompanying the charge / discharge cycle is small, and the reduction in charge / discharge capacity can be suppressed even when charge / discharge is repeated. Therefore, when producing a non-aqueous secondary battery by producing a positive electrode using a positive electrode material made of this lithium manganese nickel cobalt oxide, producing a negative electrode using a negative electrode active material made of graphite containing lithium, Even if charging / discharging is repeated, it is possible to obtain a nonaqueous secondary battery capable of suppressing a decrease in charge / discharge capacity.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
まず、1Mの水酸化リチウム水溶液2リットルを窒素ガスを充填した密閉容器に用意した。次に、1Mの硝酸ニッケル、硝酸コバルト、硝酸マンガンの各水溶液を、Ni:Co:Mnがモル比で35:5:52となるように混合し、1リットルの水溶液とした。この水溶液に、Li:(Ni+Co+Mn)がモル比で1.17:1となるように上記水酸化リチウム水溶液を滴下し、Ni−Co−Mn複合水酸化物を析出させた。反応温度は30℃、反応中のpH値は、11〜12とした。そして、このNi−Co−Mn複合水酸化物が析出した懸濁液を、空気をバブリングしながら攪拌して1日間、室温にて保持し、Ni−Co−Mn複合水酸化物を酸化させてNi−Co−Mnオキシ水酸化物とした。更に、その懸濁液を80℃で10時間保持することによりエージングを行った後、析出物を濾別、水洗してNi−Co−Mnオキシ水酸化物を得た。次いで、得られたNi−Co−Mnオキシ水酸化物と水酸化リチウムとをLi:(Ni+Co+Mn)がモル比で1:1となるように混合し、大気中、1000℃で5時間焼成を行い、リチウム遷移金属複合酸化物を得た。組成分析により、リチウム遷移金属複合酸化物の組成を確認したところ、組成式Li108Ni035Co005Mn0522で表されるリチウム遷移金属複合酸化物であった。このリチウム遷移金属複合酸化物を実施例1とした。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 2 liters of 1M lithium hydroxide aqueous solution was prepared in a sealed container filled with nitrogen gas. Next, 1M nickel nitrate, cobalt nitrate, and manganese nitrate aqueous solutions were mixed so that the molar ratio of Ni: Co: Mn was 35: 5: 52 to obtain a 1 liter aqueous solution. To this aqueous solution, the above lithium hydroxide aqueous solution was dropped so that the molar ratio of Li: (Ni + Co + Mn) was 1.17: 1, and Ni—Co—Mn composite hydroxide was precipitated. The reaction temperature was 30 ° C., and the pH value during the reaction was 11-12. Then, the suspension in which the Ni—Co—Mn composite hydroxide was precipitated was stirred while bubbling air and held at room temperature for 1 day to oxidize the Ni—Co—Mn composite hydroxide. Ni-Co-Mn oxyhydroxide was used. Further, the suspension was aged by holding at 80 ° C. for 10 hours, and then the precipitate was separated by filtration and washed with water to obtain Ni—Co—Mn oxyhydroxide. Next, the obtained Ni—Co—Mn oxyhydroxide and lithium hydroxide were mixed so that the molar ratio of Li: (Ni + Co + Mn) was 1: 1, and baked at 1000 ° C. for 5 hours in the air. As a result, a lithium transition metal composite oxide was obtained. When the composition of the lithium transition metal composite oxide was confirmed by composition analysis, the composition formula Li 1 . 08 Ni 0 . 35 Co 0 . 05 Mn 0 . It was a lithium transition metal composite oxide represented by 52 O 2 . This lithium transition metal composite oxide was taken as Example 1.

<実施例2〜5>
実施例1における方法において、硝酸ニッケル、硝酸コバルト、硝酸マンガンの各水溶液の混合比、すなわち、Ni−Co−Mn複合水酸化物に含まれるNiおよびCoの割合のみが異なるリチウム遷移金属複合酸化物を更に4種類製造した。得られたリチウム遷移金属複合酸化物の内、組成式Li107Ni035Co0.1Mn0.482で表されるリチウム遷移金属複合酸化物を実施例2とし、組成式Li105Ni035Co0.15Mn0.452で表されるリチウム遷移金属複合酸化物を実施例3とした。更に、得られたリチウム遷移金属複合酸化物の内、組成式Li1.15Ni0.25Co0.05Mn0.552で表されるリチウム遷移金属複合酸化物を実施例4とし、組成式Li105Ni0.4Co0.05Mn0.582で表されるリチウム遷移金属複合酸化物を実施例5とした。
<Examples 2 to 5>
Lithium transition metal composite oxide in which the mixing ratio of each aqueous solution of nickel nitrate, cobalt nitrate, and manganese nitrate, that is, only the ratio of Ni and Co contained in the Ni—Co—Mn composite hydroxide is different in the method in Example 1 Four more were produced. Among the obtained lithium transition metal composite oxides, the composition formula Li 1 . 07 Ni 0 . A lithium transition metal composite oxide represented by 35 Co 0.1 Mn 0.48 O 2 was taken as Example 2, and the composition formula Li 1 . 05 Ni 0 . Example 3 was a lithium transition metal composite oxide represented by 35 Co 0.15 Mn 0.45 O 2 . Furthermore, among the obtained lithium transition metal composite oxides, a lithium transition metal composite oxide represented by the composition formula Li 1.15 Ni 0.25 Co 0.05 Mn 0.55 O 2 was taken as Example 4, and the composition formula Li 1 . Example 5 was a lithium transition metal composite oxide represented by 05 Ni 0.4 Co 0.05 Mn 0.58 O 2 .

<比較例1〜5>
実施例1における方法において、硝酸ニッケル、硝酸コバルト、硝酸マンガンの各水溶液の混合比、すなわち、Ni−Co−Mn複合水酸化物に含まれるNiおよびCoの割合のみが異なるリチウム遷移金属複合酸化物を5種類製造した。得られたリチウム遷移金属複合酸化物の内、組成式Li1.22Ni0.15Co0.05Mn0.582で表されるリチウム遷移金属複合酸化物を比較例1とし、組成式Li1Ni0.55Co0.05Mn0.452で表されるリチウム遷移金属複合酸化物を比較例2とし、組成式Li1Ni0.3Co0.4Mn0.32で表されるリチウム遷移金属複合酸化物を比較例3とした。更に、得られたリチウム遷移金属複合酸化物の内、組成式Li1.1Ni0.35Mn0.552で表されるリチウム遷移金属複合酸化物を比較例4とし、組成式Li1Ni0.4Co0.3Mn0.32で表されるリチウム遷移金属複合酸化物を比較例5とした。
<Comparative Examples 1-5>
Lithium transition metal composite oxide in which the mixing ratio of each aqueous solution of nickel nitrate, cobalt nitrate, and manganese nitrate, that is, only the ratio of Ni and Co contained in the Ni—Co—Mn composite hydroxide is different in the method in Example 1 5 types were manufactured. Among the obtained lithium transition metal composite oxides, a lithium transition metal composite oxide represented by a composition formula Li 1.22 Ni 0.15 Co 0.05 Mn 0.58 O 2 was used as Comparative Example 1, and a composition formula Li 1 Ni 0.55 Co 0.05 Mn 0.45 was used. The lithium transition metal composite oxide represented by O 2 was used as Comparative Example 2, and the lithium transition metal composite oxide represented by the composition formula Li 1 Ni 0.3 Co 0.4 Mn 0.3 O 2 was used as Comparative Example 3. Further, among the obtained lithium transition metal composite oxides, a lithium transition metal composite oxide represented by the composition formula Li 1.1 Ni 0.35 Mn 0.55 O 2 was used as Comparative Example 4, and the composition formula Li 1 Ni 0.4 Co 0.3 Mn 0.3 was used. A lithium transition metal composite oxide represented by O 2 was used as Comparative Example 5.

<比較試験1及び評価>
実施例1〜5、比較例1〜5の二次電池用正極材料を用いて正電極を作製した。具体的には、実施例1〜5、比較例1〜5のリチウムマンガンニッケルコバルト酸化物(正極材料)をバインダ及び導電助剤と混合してスラリーを調製し、このスラリーをドクタブレード法により正極シートに引き伸ばして乾燥させた後に、この正極シートを正極集電体上に積層して正電極をそれぞれ作製した。
これらの正電極を図2に示すように、充放電サイクル試験装置21に取付けた。この装置21は容器22に電解液23(リチウム塩を有機溶媒に溶かしたもの)が貯留され、上記正電極12が負電極14(金属リチウム)及び参照極24(金属リチウム)とともに電解液23に浸され、更に正電極12、負電極14及び参照極24がポテンシオスタット25(ポテンショメータ)にそれぞれ電気的に接続された構成となっている。この装置を用いて充放電サイクル試験を行い、各正電極の初期放電容量と容量保持率を測定した。なお、容量保持率とは、20サイクル充放電を行った後の放電容量の初期放電容量に対する値を%で表した値をいう。上記正電極の初期放電容量と20サイクル後の放電容量と容量保持率を、リチウムマンガンニッケルコバルト酸化物の組成ととともに表1に示す。
<Comparative test 1 and evaluation>
Positive electrodes were produced using the positive electrode materials for secondary batteries of Examples 1 to 5 and Comparative Examples 1 to 5. Specifically, lithium manganese nickel cobalt oxide (positive electrode material) of Examples 1 to 5 and Comparative Examples 1 to 5 is mixed with a binder and a conductive auxiliary agent to prepare a slurry, and this slurry is positive electrode by a doctor blade method. After being stretched on a sheet and dried, this positive electrode sheet was laminated on a positive electrode current collector to produce positive electrodes.
These positive electrodes were attached to the charge / discharge cycle test apparatus 21 as shown in FIG. In this device 21, an electrolytic solution 23 (lithium salt dissolved in an organic solvent) is stored in a container 22, and the positive electrode 12 is added to the electrolytic solution 23 together with a negative electrode 14 (metallic lithium) and a reference electrode 24 (metallic lithium). Further, the positive electrode 12, the negative electrode 14, and the reference electrode 24 are electrically connected to a potentiostat 25 (potentiometer), respectively. A charge / discharge cycle test was performed using this apparatus, and the initial discharge capacity and capacity retention rate of each positive electrode were measured. In addition, a capacity | capacitance retention rate means the value which represented the value with respect to the initial stage discharge capacity of% after performing 20 cycles charge / discharge with%. Table 1 shows the initial discharge capacity of the positive electrode, the discharge capacity after 20 cycles, and the capacity retention together with the composition of lithium manganese nickel cobalt oxide.

Figure 2005100947
Figure 2005100947

表1から明らかなように、比較例1〜5では放電容量及びその保持率の双方において実施例1〜5に比較して劣ることが判る。一方、実施例1〜5では放電容量及びその保持率の双方において比較例1〜5より優れており、充放電を繰返しても、充放電容量の低下を抑制し得ることが判る。   As is apparent from Table 1, it can be seen that Comparative Examples 1-5 are inferior to Examples 1-5 in both discharge capacity and retention rate. On the other hand, in Examples 1-5, it is superior to Comparative Examples 1-5 in both discharge capacity and its retention rate, and it turns out that even if charging / discharging is repeated, the fall of charging / discharging capacity | capacitance can be suppressed.

<比較試験2及び評価>
実施例1〜5の正極活物質粉末を用いて非水二次電池を作製し、4.5Vを印加したときのこれらの二次電池の放電容量の変化に対する放電電位の変化を測定した。この結果を図3に示す。
図3から明らかなように、実施例1〜5の二次電池の放電容量と電位(vs. Li/Li+)の特性は実用上優れている範囲であることが判った。
<Comparative test 2 and evaluation>
Nonaqueous secondary batteries were produced using the positive electrode active material powders of Examples 1 to 5, and changes in discharge potential with respect to changes in discharge capacity of these secondary batteries when 4.5 V was applied were measured. The result is shown in FIG.
As is apparent from FIG. 3, it was found that the discharge capacity and potential (vs. Li / Li + ) characteristics of the secondary batteries of Examples 1 to 5 are in a range that is practically excellent.

本発明実施の形態の非水二次電池の要部断面構成図。The principal part cross-section block diagram of the nonaqueous secondary battery of embodiment of this invention. 実施例及び比較例の非水二次電池用正極材料の充放電サイクル試験に用いられる装置。The apparatus used for the charging / discharging cycle test of the positive electrode material for non-aqueous secondary batteries of an Example and a comparative example. 実施例1〜5の正極活物質粉末を用いて作製した4.5Vを印加したときの非水二次電池の放電容量と電位(vs. Li/Li+)の特性を示す図。The figure which shows the characteristic of the discharge capacity and electric potential (vs. Li / Li <+> ) of a non-aqueous secondary battery when 4.5V produced using the positive electrode active material powder of Examples 1-5 is applied. 非水二次電池の構造を模型的に示す断面拡大説明図。Cross-sectional expansion explanatory drawing which shows the structure of a non-aqueous secondary battery typically.

符号の説明Explanation of symbols

10 非水二次電池   10 Non-aqueous secondary battery

Claims (6)

リチウム、マンガン、ニッケル、コバルト及び酸素からなるリチウムマンガンニッケルコバルト酸化物を用いた非水二次電池用正極材料において、
前記リチウムマンガンニッケルコバルト酸化物が層状構造であってLi[Li[(1-2x-y)/3]NixCoyMn[(2-x-2y)/3]]O2と表され、
0.2<x<0.5及び0<y<0.2の条件を満たし、
かつ1<2x+yの条件を満たす
ことを特徴とする非水二次電池用正極材料。
In the positive electrode material for non-aqueous secondary battery using lithium manganese nickel cobalt oxide consisting of lithium, manganese, nickel, cobalt and oxygen,
The lithium manganese nickel cobalt oxide has a layered structure and is represented as Li [Li [(1-2x-y) / 3] Ni x Co y Mn [(2-x-2y) / 3] ] O 2 ,
Satisfy the conditions of 0.2 <x <0.5 and 0 <y <0.2;
And the condition of 1 <2x + y is satisfy | filled. The positive electrode material for nonaqueous secondary batteries characterized by the above-mentioned.
組成式Li[Li[(1-2x-y)/3]NixCoyMn[(2-x-2y)/3]]O2で表されて層状構造を有する非水二次電池用正極材料の製造方法であって、
ニッケル塩とコバルト塩とマンガン塩との水溶液を強アルカリ水溶液と反応させてNi−Co−Mn複合水酸化物を得る複合水酸化物合成工程と、
前記Ni−Co−Mn複合水酸化物を酸化させてNi−Co−Mnオキシ水酸化物を得る酸化工程と、
前記Ni−Co−Mnオキシ水酸化物とリチウム化合物とを混合して原料混合物を得る原料混合工程と、
前記原料混合物を大気中で焼成してリチウム遷移金属複合酸化物を得る焼成工程と
を含む非水二次電池用正極材料の製造方法。
Composition formula Li [Li [(1-2x-y ) / 3] Ni x Co y Mn [(2-x-2y) / 3]] positive electrode for nonaqueous secondary battery having represented by layered structure O 2 A method of manufacturing a material,
A composite hydroxide synthesis step in which an aqueous solution of nickel salt, cobalt salt and manganese salt is reacted with a strong alkaline aqueous solution to obtain a Ni-Co-Mn composite hydroxide;
An oxidation step of oxidizing the Ni-Co-Mn composite hydroxide to obtain a Ni-Co-Mn oxyhydroxide;
A raw material mixing step of mixing the Ni-Co-Mn oxyhydroxide and a lithium compound to obtain a raw material mixture;
A method for producing a positive electrode material for a non-aqueous secondary battery, comprising: calcining the raw material mixture in the air to obtain a lithium transition metal composite oxide.
原料混合物の大気中における焼成が900〜1100℃で行われる請求項2記載の非水二次電池用正極材料の製造方法。   The method for producing a positive electrode material for a non-aqueous secondary battery according to claim 2, wherein the raw material mixture is baked in the atmosphere at 900 to 1100 ° C. ニッケル塩、コバルト塩及びマンガン塩がそれぞれ硫酸塩、硝酸塩又は塩化物である請求項2又は3記載の非水二次電池用正極材料の製造方法。   The method for producing a positive electrode material for a non-aqueous secondary battery according to claim 2 or 3, wherein the nickel salt, cobalt salt and manganese salt are sulfate, nitrate or chloride, respectively. 請求項1に記載の非水二次電池用正極材料を用いた非水二次電池。   A non-aqueous secondary battery using the positive electrode material for a non-aqueous secondary battery according to claim 1. 請求項2ないし4いずれか1項に記載の方法で製造された非水二次電池用正極材料を用いた非水二次電池。
The non-aqueous secondary battery using the positive electrode material for non-aqueous secondary batteries manufactured by the method of any one of Claims 2 thru | or 4.
JP2004206622A 2003-08-21 2004-07-14 Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery Withdrawn JP2005100947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206622A JP2005100947A (en) 2003-08-21 2004-07-14 Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003208171 2003-08-21
JP2004206622A JP2005100947A (en) 2003-08-21 2004-07-14 Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2005100947A true JP2005100947A (en) 2005-04-14

Family

ID=34466679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206622A Withdrawn JP2005100947A (en) 2003-08-21 2004-07-14 Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2005100947A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220475A (en) * 2006-02-16 2007-08-30 Mitsubishi Chemicals Corp Lithium-nickel-manganese-cobalt-based composite oxide powder for positive electrode material of lithium secondary batter, its producing method, positive electrode for lithium secondary battery and lithium secondary battery using it
EP1909346A1 (en) * 2005-07-21 2008-04-09 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
WO2009063838A1 (en) * 2007-11-12 2009-05-22 Gs Yuasa Corporation Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
JP2009123400A (en) * 2007-11-12 2009-06-04 Gs Yuasa Corporation:Kk Active material for lithium secondary battery, and lithium secondary battery
JP2009152114A (en) * 2007-12-21 2009-07-09 Gs Yuasa Corporation Active material for lithium secondary battery, lithium secondary battery, and manufacturing method thereof
JP2009536437A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド Method for preparing high performance lithium secondary battery material
JP2010015959A (en) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2010086690A (en) * 2008-09-30 2010-04-15 Gs Yuasa Corporation Active material for lithium secondary battery, lithium secondary battery, and manufacturing method of thereof
US7887721B2 (en) * 2005-10-27 2011-02-15 Byd Company Limited Process for preparing a positive electrode material for lithium ion battery
JP2011066000A (en) * 2010-10-05 2011-03-31 Gs Yuasa Corp Method of manufacturing lithium secondary battery
JP2011108664A (en) * 2011-02-28 2011-06-02 Gs Yuasa Corp Active material for lithium secondary battery, and lithium secondary battery and manufacturing method thereof
JP2011146392A (en) * 2011-02-28 2011-07-28 Gs Yuasa Corp Active material for lithium secondary battery, lithium secondary battery, and method for manufacturing the same
WO2012091015A1 (en) 2010-12-27 2012-07-05 株式会社Gsユアサ Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
JP2012151084A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012151083A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012151085A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing the positive electrode active material, and nonaqueous electrolyte secondary battery
JP2012221945A (en) * 2011-04-07 2012-11-12 Lico Technology Corp C2/m-structured cathode material for lithium-ion battery
JP2013069583A (en) * 2011-09-22 2013-04-18 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2013146723A1 (en) * 2012-03-27 2013-10-03 Tdk株式会社 Active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2015023746A1 (en) * 2013-08-14 2015-02-19 Board Of Regents, The University Of Texas System Lithium-rich layered oxide cathodes and rechargeable batteries containing lithium-rich layered oxides
JP2016103486A (en) * 2016-01-06 2016-06-02 株式会社Gsユアサ Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
WO2020019920A1 (en) * 2018-07-24 2020-01-30 眉山顺应动力电池材料有限公司 Method for preparing ternary cathode material from laterite nickel ore nitric acid leaching solution
JP2021002432A (en) * 2019-06-19 2021-01-07 株式会社Gsユアサ Non-aqueous electrolyte power storage element, usage method thereof, and manufacturing method thereof
JP2021506727A (en) * 2017-12-18 2021-02-22 ダイソン・テクノロジー・リミテッド Compound
US11489158B2 (en) 2017-12-18 2022-11-01 Dyson Technology Limited Use of aluminum in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
US11616229B2 (en) 2017-12-18 2023-03-28 Dyson Technology Limited Lithium, nickel, manganese mixed oxide compound and electrode comprising the same
US11658296B2 (en) 2017-12-18 2023-05-23 Dyson Technology Limited Use of nickel in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
US11769911B2 (en) 2017-09-14 2023-09-26 Dyson Technology Limited Methods for making magnesium salts
US11817558B2 (en) 2017-09-14 2023-11-14 Dyson Technology Limited Magnesium salts

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
EP1909346A1 (en) * 2005-07-21 2008-04-09 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
EP1909346A4 (en) * 2005-07-21 2010-01-27 Sumitomo Chemical Co Positive electrode active material for nonaqueous electrolyte secondary battery
US7887721B2 (en) * 2005-10-27 2011-02-15 Byd Company Limited Process for preparing a positive electrode material for lithium ion battery
JP2007220475A (en) * 2006-02-16 2007-08-30 Mitsubishi Chemicals Corp Lithium-nickel-manganese-cobalt-based composite oxide powder for positive electrode material of lithium secondary batter, its producing method, positive electrode for lithium secondary battery and lithium secondary battery using it
JP2009536437A (en) * 2006-05-10 2009-10-08 エルジー・ケム・リミテッド Method for preparing high performance lithium secondary battery material
JP2010015959A (en) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method, and nonaqueous electrolyte secondary battery using the same
US8551659B2 (en) 2007-11-12 2013-10-08 Gs Yuasa International Ltd. Active material for lithium secondary battery, lithium secondary battery, and method for producing the same
US9825281B2 (en) * 2007-11-12 2017-11-21 Gs Yusa International Ltd. Method for producing active material for lithium secondary battery and method of using lithium secondary battery
WO2009063838A1 (en) * 2007-11-12 2009-05-22 Gs Yuasa Corporation Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
JP2009123400A (en) * 2007-11-12 2009-06-04 Gs Yuasa Corporation:Kk Active material for lithium secondary battery, and lithium secondary battery
US20140059845A1 (en) * 2007-11-12 2014-03-06 Gs Yuasa International Ltd. Method for producing active material for lithium secondary battery and method of using litium secondary battery
US8382860B2 (en) * 2007-11-12 2013-02-26 Gs Yuasa International Ltd. Process for producing lithium secondary battery
JP2009152114A (en) * 2007-12-21 2009-07-09 Gs Yuasa Corporation Active material for lithium secondary battery, lithium secondary battery, and manufacturing method thereof
JP2010086690A (en) * 2008-09-30 2010-04-15 Gs Yuasa Corporation Active material for lithium secondary battery, lithium secondary battery, and manufacturing method of thereof
JP2011066000A (en) * 2010-10-05 2011-03-31 Gs Yuasa Corp Method of manufacturing lithium secondary battery
CN103283066A (en) * 2010-12-27 2013-09-04 株式会社杰士汤浅国际 Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of
JP2012151085A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing the positive electrode active material, and nonaqueous electrolyte secondary battery
JP2012151084A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9543055B2 (en) 2010-12-27 2017-01-10 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
EP2660907A4 (en) * 2010-12-27 2016-12-21 Gs Yuasa Int Ltd Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
US10297822B2 (en) 2010-12-27 2019-05-21 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
JP2012151083A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012091015A1 (en) 2010-12-27 2012-07-05 株式会社Gsユアサ Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
JP2011108664A (en) * 2011-02-28 2011-06-02 Gs Yuasa Corp Active material for lithium secondary battery, and lithium secondary battery and manufacturing method thereof
JP2011146392A (en) * 2011-02-28 2011-07-28 Gs Yuasa Corp Active material for lithium secondary battery, lithium secondary battery, and method for manufacturing the same
JP2012221945A (en) * 2011-04-07 2012-11-12 Lico Technology Corp C2/m-structured cathode material for lithium-ion battery
JP2013069583A (en) * 2011-09-22 2013-04-18 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2013146723A1 (en) * 2012-03-27 2015-12-14 Tdk株式会社 Active material for lithium ion secondary battery and lithium ion secondary battery
WO2013146723A1 (en) * 2012-03-27 2013-10-03 Tdk株式会社 Active material for lithium ion secondary batteries, and lithium ion secondary battery
CN105580168A (en) * 2013-08-14 2016-05-11 得克萨斯州大学系统董事会 Lithium-rich layered oxide cathodes and rechargeable batteries containing lithium-rich layered oxides
WO2015023746A1 (en) * 2013-08-14 2015-02-19 Board Of Regents, The University Of Texas System Lithium-rich layered oxide cathodes and rechargeable batteries containing lithium-rich layered oxides
JP2016103486A (en) * 2016-01-06 2016-06-02 株式会社Gsユアサ Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11817558B2 (en) 2017-09-14 2023-11-14 Dyson Technology Limited Magnesium salts
US11769911B2 (en) 2017-09-14 2023-09-26 Dyson Technology Limited Methods for making magnesium salts
JP2021506727A (en) * 2017-12-18 2021-02-22 ダイソン・テクノロジー・リミテッド Compound
JP7101802B2 (en) 2017-12-18 2022-07-15 ダイソン・テクノロジー・リミテッド Compound
US11489158B2 (en) 2017-12-18 2022-11-01 Dyson Technology Limited Use of aluminum in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
US11616229B2 (en) 2017-12-18 2023-03-28 Dyson Technology Limited Lithium, nickel, manganese mixed oxide compound and electrode comprising the same
US11658296B2 (en) 2017-12-18 2023-05-23 Dyson Technology Limited Use of nickel in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
US11967711B2 (en) 2017-12-18 2024-04-23 Dyson Technology Limited Lithium, nickel, cobalt, manganese oxide compound and electrode comprising the same
WO2020019920A1 (en) * 2018-07-24 2020-01-30 眉山顺应动力电池材料有限公司 Method for preparing ternary cathode material from laterite nickel ore nitric acid leaching solution
JP2021002432A (en) * 2019-06-19 2021-01-07 株式会社Gsユアサ Non-aqueous electrolyte power storage element, usage method thereof, and manufacturing method thereof
JP7318344B2 (en) 2019-06-19 2023-08-01 株式会社Gsユアサ NON-AQUEOUS ELECTROLYTE STORAGE ELEMENT, METHOD FOR USING THE SAME, AND METHOD FOR MANUFACTURING THE SAME

Similar Documents

Publication Publication Date Title
JP2005100947A (en) Nonaqueous secondary battery anode material, method for manufacturing same and nonaqueous secondary battery
CN102782911B (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2011108598A1 (en) Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JPWO2011108596A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6848249B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP6408097B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2006269308A (en) Positive electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP6329311B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
JP5181482B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2014203509A (en) Positive electrode active material particle powder, and manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2015153551A (en) Positive electrode active material particle powder, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2019094256A (en) Lithium metal complex oxide and preparation method of the same
JP6919250B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, its precursor, and their manufacturing method
JPH0878006A (en) Lithium secondary battery
JP2003017049A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP3057755B2 (en) Method for producing lithium manganese composite oxide and use thereof
JP5691159B2 (en) Manganese oxyhydroxide, process for producing the same, and lithium manganese composite oxide using the same
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same
JP6961955B2 (en) Non-aqueous electrolyte Positive electrode active material for secondary batteries

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002