JP2005097057A - Method and apparatus for molding quartz glass - Google Patents

Method and apparatus for molding quartz glass Download PDF

Info

Publication number
JP2005097057A
JP2005097057A JP2003334970A JP2003334970A JP2005097057A JP 2005097057 A JP2005097057 A JP 2005097057A JP 2003334970 A JP2003334970 A JP 2003334970A JP 2003334970 A JP2003334970 A JP 2003334970A JP 2005097057 A JP2005097057 A JP 2005097057A
Authority
JP
Japan
Prior art keywords
quartz glass
molding
mold
side plates
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003334970A
Other languages
Japanese (ja)
Other versions
JP4374964B2 (en
Inventor
Eiko Suzuki
瑛子 鈴木
Shoji Yajima
昭司 矢島
Tetsuya Abe
哲也 阿邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003334970A priority Critical patent/JP4374964B2/en
Priority to KR1020040023657A priority patent/KR101096477B1/en
Priority to TW093109546A priority patent/TW200502183A/en
Publication of JP2005097057A publication Critical patent/JP2005097057A/en
Application granted granted Critical
Publication of JP4374964B2 publication Critical patent/JP4374964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/50Structural details of the press-mould assembly
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for molding quartz glass for improving productivity in the hot press molding of the quartz glass. <P>SOLUTION: The method uses the molding apparatus provided with a mold 15 having a hollow part 21, a press part 23 arranged movably inside the hollow part 21 and a heating means 13 for heating pieces of quartz glass 25a and 25b housed in the hollow part 21. The quartz glass pieces 25a and 25b housed in the hollow part 21 is pressed in the press part 23 while being heated with the heating means 13 and molded. The hollow part 21 is divided into a plurality of divided hollow parts 21a and 21b by arranging a movable partition part 27 inside the hollow part 21, and the quartz glass pieces 25a and 25b are housed in each of the divided hollow parts 21a and 21b and pressed with the press part 23 to simultaneously form a plurality of moldings. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、石英ガラスをモールド内に収容して加熱加圧成形することにより、所定形状に成形する方法に係り、特に、複数の石英ガラスを成形するのに好適な石英ガラスの成形方法及び成形装置に関する。   The present invention relates to a method of forming quartz glass into a predetermined shape by accommodating the quartz glass in a mold and heating and pressing, and in particular, a method and a molding method of quartz glass suitable for forming a plurality of quartz glasses. Relates to the device.

i線より短波長の光源を用いた投影露光装置の照明光学系あるいは投影光学系
のレンズ、ミラー、レチクル等の光学部材では、材料として石英ガラスが多用されている。この石英ガラスは、例えば、火炎加水分解により透明石英ガラスを製造する直接法などの方法で合成されている。
Quartz glass is often used as a material for optical members such as lenses, mirrors, and reticles of illumination optical systems or projection optical systems of a projection exposure apparatus using a light source having a wavelength shorter than the i-line. This quartz glass is synthesized by, for example, a direct method for producing transparent quartz glass by flame hydrolysis.

直接法では、石英ガラス製バーナにて支燃性ガス(酸素含有ガス、例えば、酸素ガス)及び可燃性ガス(水素含有ガス、例えば、水素ガスあるいは天然ガス)を混合・燃焼させ、前記バーナの中心部から原料ガスとして高純度のケイ素化合物(例えば、四塩化ケイ素ガス)をキャリアガス(通常酸素ガス)で希釈して噴出させ、前記原料ガスを周囲の前記酸素ガス及び水素ガスの燃焼により反応(加水分解反応)させて石英ガラス微粒子を発生させ、その前記石英ガラス微粒子を、前記バーナ下方に配置され、回転および揺動および引き下げ運動を行う不透明石英ガラス板からなるターゲット上に堆積させ、同時に前記酸素ガス及び水素ガスの燃焼熱により溶融・ガラス化して石英ガラスインゴットを得ている。   In the direct method, a combustion-supporting gas (oxygen-containing gas, for example, oxygen gas) and a combustible gas (hydrogen-containing gas, for example, hydrogen gas or natural gas) are mixed and burned in a quartz glass burner. A high purity silicon compound (for example, silicon tetrachloride gas) is diluted as a source gas from the center with a carrier gas (usually oxygen gas) and ejected, and the source gas reacts by combustion of the surrounding oxygen gas and hydrogen gas (Hydrolysis reaction) to generate quartz glass fine particles, and the quartz glass fine particles are deposited on a target made of an opaque quartz glass plate disposed below the burner and performing rotation, swinging and pulling down movements, A quartz glass ingot is obtained by melting and vitrification by the combustion heat of the oxygen gas and hydrogen gas.

この方法によると、比較的大きな径の石英ガラスインゴットを得易いため、インゴットからブロックを切り出して所望の形状、大きさの光学部材を製造することができる。   According to this method, since it is easy to obtain a quartz glass ingot having a relatively large diameter, an optical member having a desired shape and size can be manufactured by cutting out a block from the ingot.

また、近年、大型のレンズやレチクル、或いは大型の液晶ディスプレイ等、広い面を有する光学部材を得るため、予め形成されたインゴット等の石英ガラス塊を加熱加圧成形することにより扁平形状にして面積を拡大する成形方法が利用されている。   In recent years, in order to obtain an optical member having a large surface, such as a large lens or reticle, or a large liquid crystal display, a quartz glass lump such as a pre-formed ingot is formed into a flat shape by heating and pressing. The molding method which expands is utilized.

この成形方法では、石英ガラス塊をモールド内に収容して加熱した状態で、加圧部により加圧することにより成形を行い、その後モールド内で徐冷するなど、更にアニール処理を行い、1対向面の面積が拡大された所定形状の成形体を得ている。   In this molding method, the quartz glass lump is accommodated in a mold and heated, and then molded by pressing with a pressure unit, and then annealed, such as slowly cooling in the mold. A molded body having a predetermined shape with an enlarged area is obtained.

このような加熱加圧成形を行うものとしては、例えば、グラファイト製のモールド内で、絶対圧が 0.1Torr以上大気圧以下のヘリウムガス雰囲気下に、1700℃以上の温度に加熱加圧成形し、ついで1100〜1300℃まで急冷する方法が知られている。また、石英ガラスとモールドの型材との熱膨張率差に起因する応力を緩和する構造を有するグラファイト製のモールドを用いて1600℃〜1700℃で加圧成形する方法(下記、特許文献1参照)や、そのグラファイト製のモールドが2分割以上の縦型構造である成型装置が提案されている(下記、特許文献2及び3参照)。更には、黒鉛製のモールド内面に石英粉末からなる被覆層を設けて、1550℃〜1700℃で加圧成形する方法(下記、特許文献4参照)も知られている。
特公平4−54626号公報。 特開昭56−129621号公報。 特開昭57−67031号公報。 特開2002−22020号公報。
For example, such pressure molding is performed by heating and molding at a temperature of 1700 ° C. or more in a helium gas atmosphere having an absolute pressure of 0.1 Torr or more and atmospheric pressure in a graphite mold. Then, a method of rapidly cooling to 1100 to 1300 ° C. is known. Also, a method of pressure molding at 1600 ° C. to 1700 ° C. using a graphite mold having a structure that relieves stress caused by a difference in thermal expansion coefficient between quartz glass and a mold mold (see Patent Document 1 below). There has also been proposed a molding apparatus in which the graphite mold has a vertical structure with two or more divisions (see Patent Documents 2 and 3 below). Furthermore, a method of forming a coating layer made of quartz powder on the inner surface of a graphite mold and performing pressure molding at 1550 ° C. to 1700 ° C. (see Patent Document 4 below) is also known.
Japanese Patent Publication No. 4-54626. JP-A-56-129621. JP-A-57-67031. Japanese Patent Application Laid-Open No. 2002-22020.

石英ガラスの加熱加圧成形は、モールド内に収容した石英ガラスをモールドと共に極めて高い温度に昇温して行われるが、その昇温時には、石英ガラスの内部まで出来るだけ均一な温度となるように昇温速度を調整して昇温しなければならず、また、冷却時には、熱的な残留歪を出来るだけ小さくするために冷却速度を調整して冷却しなければならない。そのため、昇温及び冷却に長時間を要し、一回の成形に半日程度を費やすなど、生産性が悪いという問題点があった。   Quartz glass heating and pressing are performed by raising the quartz glass contained in the mold together with the mold to an extremely high temperature. At that temperature, the temperature inside the quartz glass is as uniform as possible. The temperature must be increased by adjusting the temperature increase rate, and at the time of cooling, the cooling rate must be adjusted to reduce the thermal residual strain as much as possible. For this reason, there is a problem in that productivity is poor, such as requiring a long time for temperature rise and cooling and spending about half a day for one molding.

また、モールドとして、不純物の混入を防止して耐熱強度を確保するためにグラファイトからなるものが使用されるが、成形時には、昇温された石英ガラスを高い成形圧力でモールド内面に押し付けて成形するため、モールドは強固な構造である必要があり、その一方で、モールドの材料の膨張係数が石英ガラスの膨張係数より著しく大きいため、成形後の冷却時に熱膨張率差に起因して生じる各種の応力を緩和できる構造である必要がある。ところが、これらの条件を同時に満足することは容易でなく、成形途中にモールドが分解したり、冷却時にモールドの収縮量が大きくてモールドや石英ガラスが圧迫されて歪や割れが生じるなどの問題点もあった。   In addition, a mold made of graphite is used as a mold in order to prevent impurities from being mixed and to secure heat resistance strength. At the time of molding, the heated quartz glass is pressed against the inner surface of the mold with a high molding pressure. Therefore, the mold needs to have a strong structure. On the other hand, the expansion coefficient of the mold material is significantly larger than that of quartz glass. The structure must be able to relieve stress. However, it is not easy to satisfy these conditions at the same time, and the mold is decomposed during molding, or the mold shrinkage is large during cooling, and the mold and quartz glass are pressed to cause distortion and cracking. There was also.

そこで、この発明は、石英ガラスの加熱加圧成形において、生産性を向上することが可能な成形方法及び成形装置を提供することを課題とし、更に、成形時や冷却時にモールドや石英ガラスの歪や割れが生じ難い石英ガラスの成形方法及び成形装置を提供することを他の課題とする。   Accordingly, an object of the present invention is to provide a molding method and a molding apparatus capable of improving productivity in the heat and pressure molding of quartz glass, and further, distortion of the mold or quartz glass during molding or cooling. Another object is to provide a method and apparatus for forming quartz glass that is less prone to cracking.

上記課題を解決する請求項1に記載の石英ガラスの成形方法は、モールドの中空部内に石英ガラスを収容し、該石英ガラスを加熱しつつ、加圧部により加圧することにより所望形状に成形する方法であって、前記中空部の内部に移動可能に仕切部を配置して該中空部を複数の分割中空部に区画するとともに、該複数の分割中空部のそれぞれに前記石英ガラスを収容して前記加圧部により複数の前記石英ガラスを同時に成形することを特徴とする。   The method for molding quartz glass according to claim 1, which solves the above-mentioned problem, accommodates the quartz glass in a hollow portion of the mold, and molds the quartz glass into a desired shape by applying pressure to the pressing portion while heating the quartz glass. A method is provided, wherein a partition portion is movably arranged inside the hollow portion to partition the hollow portion into a plurality of divided hollow portions, and the quartz glass is accommodated in each of the plurality of divided hollow portions. A plurality of the quartz glasses are simultaneously formed by the pressurizing unit.

請求項2に記載の石英ガラスの成形方法は、請求項1に記載の構成に加え、前記モールドが、前記石英ガラスより膨張係数の大きい材料からなり、互いに当接した状態で組合されて前記中空部を形成する複数の側板と、該組合された複数の側板の周囲に嵌合される嵌合手段とを備え、成形時には嵌合状態を維持するとともに、成形後の冷却時には前記モールドと前記石英ガラスとの膨張係数の相違に基づいて前記複数の側板に与えられる外方向の力により嵌合状態を解除して前記複数の側板を離間するように、前記複数の側板と嵌合手段との嵌合面にテーパ形状を有するものであり、前記成形時に前記複数の石英ガラスによる前記各側板に対する押圧力が所定値以下となるように、前記加圧部による最大加圧力を調整して前記複数の石英ガラスを成形することを特徴とする。   According to a second aspect of the present invention, there is provided a method for forming a quartz glass. In addition to the structure of the first aspect, the mold is made of a material having a larger expansion coefficient than that of the quartz glass, A plurality of side plates forming a portion and a fitting means fitted around the combined side plates, maintaining the fitted state during molding, and at the time of cooling after molding, the mold and the quartz The fitting between the plurality of side plates and the fitting means so as to release the fitting state by an outward force applied to the plurality of side plates based on the difference in expansion coefficient from the glass to separate the plurality of side plates. The mating surface has a tapered shape, and at the time of molding, the plurality of quartz glasses adjust the maximum pressurizing force by the pressurizing unit so that the pressing force against each side plate is equal to or less than a predetermined value. Quartz glass Characterized by forming a.

請求項3に記載の石英ガラスの成形装置は、石英ガラスを収容可能な中空部を有するモールドと、前記中空部の内部に移動可能に配置された加圧部と、前記中空部に収容された前記石英ガラスを加熱する加熱手段とを備え、前記中空部内に前記石英ガラスを収容して前記加熱手段で加熱しつつ前記加圧部により加圧することにより前記石英ガラスを所望形状に成形する成形装置であって、前記中空部の内部に移動可能に仕切部を配置して該中空部を複数の分割中空部に区画するとともに、該複数の分割中空部のそれぞれに前記石英ガラスを収容して前記加圧部により複数の前記石英ガラスを同時に成形可能に構成したことを特徴とする。   The quartz glass molding apparatus according to claim 3 is housed in a mold having a hollow part capable of accommodating quartz glass, a pressure part movably disposed inside the hollow part, and the hollow part. A heating device that heats the quartz glass, and the molding glass is molded into a desired shape by accommodating the quartz glass in the hollow portion and applying pressure by the pressure unit while being heated by the heating device. The partition portion is movably disposed inside the hollow portion to divide the hollow portion into a plurality of divided hollow portions, and the quartz glass is accommodated in each of the plurality of divided hollow portions. A plurality of the quartz glasses can be simultaneously molded by the pressurizing unit.

請求項4に記載の石英ガラスの成形装置は、請求項3に記載の構成に区加え、前記モールドが、前記石英ガラスより膨張係数の大きい材料からなり、互いに当接した状態で組合されて前記中空部を形成する複数の側板と、該組合された複数の側板の周囲に嵌合される嵌合手段とを備え、成形時には嵌合状態を維持するとともに、成形後の冷却時には前記モールドと前記石英ガラスとの膨張係数の相違に基づいて前記複数の側板に与えられる外方向の力により嵌合状態を解除して前記複数の側板を離間するように、前記複数の側板と嵌合手段との嵌合面にテーパ形状を有するものであり、異なる成形工程において、前記成形時に前記複数の石英ガラスによる前記各側板に対する押圧力が所定値以下となるように、前記加圧部による最大加圧力を調整可能であることを特徴とする。   According to a fourth aspect of the present invention, there is provided the quartz glass molding apparatus according to the third aspect, wherein the mold is made of a material having an expansion coefficient larger than that of the quartz glass, and is combined in a state of being in contact with each other. A plurality of side plates forming a hollow portion, and fitting means fitted around the plurality of combined side plates, maintaining a fitted state during molding, and the mold and the above during cooling after molding The plurality of side plates and the fitting means are arranged so as to release the fitting state by an outward force applied to the plurality of side plates based on a difference in expansion coefficient from the quartz glass to separate the plurality of side plates. The fitting surface has a tapered shape, and in different molding processes, the maximum pressing force by the pressurizing unit is set so that the pressing force against each side plate by the plurality of quartz glasses is not more than a predetermined value during the molding. Characterized in that it is a possible integer.

請求項1又は請求項3に記載の発明によれば、中空部の内部に移動可能な仕切部を配置して複数の分割中空部に区画し、その分割中空部のそれぞれに石英ガラスを収容して加圧するので、一つのモールドで複数の石英ガラスを纏めて成形することができ、複数個の石英ガラスを成形する際、別々に昇温、加圧、冷却等を行う必要がなく、これらに要する時間を短縮することができる。そのため、生産性を向上することが可能である。   According to invention of Claim 1 or Claim 3, the partition part which can be moved inside a hollow part is arrange | positioned, it divides into a some division | segmentation hollow part, and quartz glass is accommodated in each of the division | segmentation hollow part. Therefore, it is possible to mold a plurality of quartz glasses together in a single mold, and when molding a plurality of quartz glasses, there is no need to separately raise the temperature, pressurize, cool, etc. The time required can be shortened. Therefore, productivity can be improved.

また、請求項2又は請求項4に記載の発明によれば、モールドの複数の側板と嵌合手段との嵌合面に、成形時には嵌合状態が維持されるとともに、成形後の冷却時には、モールドと石英ガラスとの膨張係数の相違に基づいて側板に与えられる外方向の力により嵌合状態が解除されるテーパ形状が形成されているので、冷却時にモールドが圧迫されることがなく、モールドや石英ガラスの歪や割れを防止しすることができる。   Further, according to the invention of claim 2 or claim 4, the fitting state between the plurality of side plates of the mold and the fitting means is maintained in the fitting state at the time of molding, and at the time of cooling after molding, Based on the difference in expansion coefficient between the mold and quartz glass, the taper shape is released so that the fitting state is released by the outward force applied to the side plate. Further, distortion and cracking of quartz glass can be prevented.

しかも、モールドの嵌合状態を解除できる構成にしていても、成形時の加圧部による最大加圧力を、各側板に対する押圧力が所定値以下となるように調整して成形するので、成形中に中空部の形状が変化するようなことを確実に防止することができ、石英ガラスの成形不良を防止することが可能である。   In addition, even if the mold can be released, the maximum pressure applied by the pressure unit during molding is adjusted so that the pressing force on each side plate is below a predetermined value. Thus, it is possible to reliably prevent the shape of the hollow portion from changing, and it is possible to prevent defective molding of quartz glass.

以下、この発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1及び図2はこの実施の形態の成形装置を示す。   1 and 2 show a molding apparatus according to this embodiment.

この成形装置10は、四塩化ケイ素、シラン、有機ケイ素等のケイ素化合物を原料して製造される合成石英ガラスのインゴットやその一部、または、Ge、Ti、B、F、Al等の屈折率を変化させる成分を添加した合成石英ガラスのインゴットやその一部等の石英ガラスから、例えば、大型の液晶用マスク、半導体用マスク等のレチクル(フォトマスク)用基板、結像光学系に用いる大型のレンズ材料などのように広い面を有する板状体やその他の大型ガラスブロックの成形に用いられる。   This molding apparatus 10 is composed of an ingot of synthetic quartz glass or a part thereof manufactured from a silicon compound such as silicon tetrachloride, silane, or organic silicon, or a refractive index of Ge, Ti, B, F, Al, or the like. From quartz glass such as synthetic quartz glass ingots and parts thereof, to which components that change the temperature are added, for example, large liquid crystal masks, reticles for photomasks such as semiconductor masks, and large-scale optical systems used for imaging optics It is used for molding of a plate-like body having a wide surface such as a lens material and other large glass blocks.

この成形装置10では、金属製の真空チャンバー11の内壁に、全面にわたって設けられた断熱材12と、断熱材12の縦壁内に設けられた加熱手段としてのカーボンヒータ13とが設けられ、更に、真空チャンバー11内部の略中央部に中空部21を有するモールド15が収容されている。   In this molding apparatus 10, a heat insulating material 12 provided over the entire surface and a carbon heater 13 as a heating means provided in the vertical wall of the heat insulating material 12 are provided on the inner wall of a metal vacuum chamber 11, and A mold 15 having a hollow portion 21 is accommodated in a substantially central portion inside the vacuum chamber 11.

このモールド15は、底板16及び受板17を備えた底部18と、この底部18の上部に配置された側壁部20とを備え、この側壁部20の内側に中空部21が形成されている。   The mold 15 includes a bottom portion 18 including a bottom plate 16 and a receiving plate 17, and a side wall portion 20 disposed above the bottom portion 18, and a hollow portion 21 is formed inside the side wall portion 20.

側壁部20は、複数の側板19と、嵌合手段としての支持リング24とから組立てられたものである。側板19は、一方の面が中空部21の壁面を構成する内面19aとなり、他方の面が側壁部20の外表面を構成する外面19bとなる4角形状の板材である。この側板19の両側には、内面19a側に配向する傾斜側面19cを有し、上端部19d及び下端部19eには、それぞれ外面19b側に配向するテーパ形状の嵌合面19f、19gを有している。   The side wall portion 20 is assembled from a plurality of side plates 19 and a support ring 24 as a fitting means. The side plate 19 is a rectangular plate material in which one surface becomes an inner surface 19 a constituting the wall surface of the hollow portion 21 and the other surface becomes an outer surface 19 b constituting the outer surface of the side wall portion 20. Both sides of the side plate 19 have inclined side surfaces 19c oriented toward the inner surface 19a, and upper end portions 19d and lower end portions 19e have tapered fitting surfaces 19f and 19g oriented toward the outer surface 19b, respectively. ing.

支持リング24は、中空に形成された4角形状の枠であり、側板19の嵌合面19fと一致するテーパ形状の嵌合面24aを内側に有している。   The support ring 24 is a quadrangular frame formed in a hollow shape, and has a tapered fitting surface 24 a that coincides with the fitting surface 19 f of the side plate 19 on the inner side.

そして、側壁部20は、傾斜側面19c同士を面接触させて当接させて4枚の側板19を四角筒状に組合わせ、この状態で4枚の側板19の周囲に支持リング24を装着して、側板19の嵌合面19fに支持リング24の嵌合面24aを嵌合させることにより形成されている。   Then, the side wall portion 20 is brought into contact with the inclined side surfaces 19c so that the four side plates 19 are combined in a square tube shape, and the support ring 24 is mounted around the four side plates 19 in this state. The fitting surface 24 a of the support ring 24 is fitted to the fitting surface 19 f of the side plate 19.

また、底部18の底板16には、側壁部20の下端部19gを挿入可能に嵌合手段としての凹部16aが形成されている。この凹部16aには、4枚の側板19の嵌合面19gと一致するテーパ形状の嵌合面16bが形成されている。   The bottom plate 16 of the bottom portion 18 is formed with a recess 16a as a fitting means so that the lower end portion 19g of the side wall portion 20 can be inserted. A tapered fitting surface 16b that coincides with the fitting surfaces 19g of the four side plates 19 is formed in the recess 16a.

そして、前記のように組立てられた状態の側板19の下端部19e側をこの凹部16aに挿入することにより、嵌合面19gの周囲に凹部16の嵌合面16bを嵌合させ、更に、中空部21内の下端部19g側に受板17を配置することにより、モールド15が形成されている。   Then, by inserting the lower end portion 19e side of the side plate 19 in the assembled state into the concave portion 16a, the fitting surface 16b of the concave portion 16 is fitted around the fitting surface 19g, and the hollow plate is further hollow. The mold 15 is formed by arranging the receiving plate 17 on the lower end 19 g side in the portion 21.

モールド15の中空部21の内部には、加圧部としての天板23が上下動可能に配置されているとともに、この天板23と底部18との間に仕切部としての中板27が上下動可能に配置され、中板27の上下に複数の分割中空部21a、21bが形成されている。   Inside the hollow portion 21 of the mold 15, a top plate 23 as a pressurizing portion is disposed so as to be movable up and down, and an intermediate plate 27 as a partitioning portion is vertically disposed between the top plate 23 and the bottom portion 18. A plurality of divided hollow portions 21 a and 21 b are formed above and below the middle plate 27 so as to be movable.

天板23は、押圧面23b(上面)を、真空チャンバー11の外部に配設された成形手段としての油圧シリンダのシリンダロッド26で押圧することにより下降するように構成されている。なお、シリンダロッド26を備えた油圧シリンダは、外部から供給する油圧を調整することにより加圧されて移動するように構成されているが、詳細な図示は省略されている。   The top plate 23 is configured to be lowered by pressing the pressing surface 23 b (upper surface) with a cylinder rod 26 of a hydraulic cylinder as molding means disposed outside the vacuum chamber 11. The hydraulic cylinder provided with the cylinder rod 26 is configured to be pressurized and moved by adjusting the hydraulic pressure supplied from the outside, but the detailed illustration is omitted.

中板27は、平面視において受板17及び天板23と同一の形状を有しており、側面が中空部21の内壁面に当接した状態で摺動することにより、受板17及び天板23と平行状態を維持したまま、上下動可能に構成されている。また、側壁部20の内壁面に加圧方向に延長する溝を設け、天板23及び中板27に溝に対応した凸部を設けることにより、天板23及び中板27を受板17と平行に保ったまま上下動することができる。 これらの底板16、受板17、側板19、支持リング24、天板23、及び中板は、何れも石英ガラス25の成形時の温度及び圧力に対する耐熱性及び強度を有し、且つ、成形時に石英ガラス25と接触しても不純物を混入しにくい材料から形成されており、ここでは全て、石英ガラスの膨張係数より大きい膨張係数を有するグラファイトにより形成されている。   The middle plate 27 has the same shape as the receiving plate 17 and the top plate 23 in plan view, and slides in a state in which the side surface is in contact with the inner wall surface of the hollow portion 21, so It is configured to be movable up and down while maintaining a parallel state with the plate 23. Further, a groove extending in the pressurizing direction is provided on the inner wall surface of the side wall portion 20, and a convex portion corresponding to the groove is provided on the top plate 23 and the middle plate 27, so that the top plate 23 and the middle plate 27 are connected to the receiving plate 17. It can move up and down while keeping it parallel. These bottom plate 16, receiving plate 17, side plate 19, support ring 24, top plate 23, and intermediate plate all have heat resistance and strength against the temperature and pressure at the time of forming the quartz glass 25, and at the time of forming It is made of a material that hardly mixes impurities even when it comes into contact with the quartz glass 25, and here, it is all made of graphite having an expansion coefficient larger than that of quartz glass.

成形時には、このようなモールド15の中空部21に、最上部の天板23がモールドの側板19の上端を超えない高さで、塊状の石英ガラス25a、25bと中板27とが交互に積み上げられて収容される。そして、最上部の天板23をシリンダロッド26で押圧すると、分割中空部21a内の石英ガラス25aが加圧され、この石英ガラス25aを介して中板27が加圧され、更に、中板27により分割中空部21b内の石英ガラス25bが加圧されるようになっている。   At the time of molding, massive quartz glass 25a, 25b and intermediate plate 27 are alternately stacked on the hollow portion 21 of the mold 15 so that the uppermost top plate 23 does not exceed the upper end of the side plate 19 of the mold. Be housed. When the uppermost top plate 23 is pressed by the cylinder rod 26, the quartz glass 25a in the divided hollow portion 21a is pressurized, and the intermediate plate 27 is pressurized through the quartz glass 25a. Thus, the quartz glass 25b in the divided hollow portion 21b is pressurized.

更に、このモールド15では、側板19と底板16との間の嵌合面19g、16b、並びに側板19と支持リング24との間の嵌合面19f、24aが、成形時に石英ガラス25a、25bが天板23及び中板27により加圧されて変形することにより生じる側板19の外方向の力に対して、摩擦力により嵌合状態を維持できるテーパ形状となっている。   Further, in this mold 15, the fitting surfaces 19 g and 16 b between the side plate 19 and the bottom plate 16 and the fitting surfaces 19 f and 24 a between the side plate 19 and the support ring 24 are formed by quartz glass 25 a and 25 b at the time of molding. It has a tapered shape capable of maintaining the fitted state by frictional force against the outward force of the side plate 19 generated by being pressed and deformed by the top plate 23 and the middle plate 27.

また、この嵌合面19f、24a並びに嵌合面19g、16bのテーパ形状は、成形後の冷却時に、モールド15と石英ガラス25との膨張係数の相違による収縮量の差から各側板19に支持リング24及び凹部16aに対して外方向となる力が作用した場合には、各嵌合面19f、24a間、並びに嵌合面19g、16b間が摺動して、嵌合状態が解除される形状となっている。   Further, the tapered shapes of the fitting surfaces 19f and 24a and the fitting surfaces 19g and 16b are supported by the side plates 19 due to the difference in shrinkage due to the difference in expansion coefficient between the mold 15 and the quartz glass 25 during cooling after molding. When an outward force is applied to the ring 24 and the recess 16a, the mating surfaces 19f and 24a and the mating surfaces 19g and 16b slide to release the mating state. It has a shape.

このようなテーパ形状は、各嵌合面の性状等により適宜傾斜角度を選択することが可能である。   Such a taper shape can select an inclination angle as appropriate depending on the properties of each fitting surface.

次に、以上のような構成の成形装置10を用いて、複数の塊状の石英ガラス25a、25bを加熱加圧成形する方法について説明する。まず、図1に示すように、真空チャンバー11内に底板16、受板17、側板19及び支持リング24を組み合わせてモールド15を形成する。そして、モールド15の中空部21内に塊状の石英ガラス25a、25bと中板27を交互に配置し、その上部に天板23を配置し、更に、天板23の押圧面23bに油圧シリンダのシリンダロッド26の押圧部位26aを当接させてセットする。この実施の形態では、塊状の石英ガラス25a、25bとして合成石英ガラスインゴットを用いている。   Next, a method of heat-pressing a plurality of massive quartz glasses 25a and 25b using the molding apparatus 10 having the above configuration will be described. First, as shown in FIG. 1, the mold 15 is formed by combining the bottom plate 16, the receiving plate 17, the side plate 19 and the support ring 24 in the vacuum chamber 11. Then, massive quartz glass 25a, 25b and an intermediate plate 27 are alternately arranged in the hollow portion 21 of the mold 15, a top plate 23 is arranged on the upper portion thereof, and further, a hydraulic cylinder is placed on the pressing surface 23b of the top plate 23. The pressing part 26a of the cylinder rod 26 is set in contact with it. In this embodiment, synthetic quartz glass ingots are used as the massive quartz glasses 25a and 25b.

そして、真空チャンバー11内を不活性ガスで置換し、カーボンヒータ13により中空部21内の塊状の石英ガラス25を加熱して成形を行う。   Then, the inside of the vacuum chamber 11 is replaced with an inert gas, and the massive quartz glass 25 in the hollow portion 21 is heated by the carbon heater 13 to perform molding.

成形時には、各油圧シリンダのシリンダロッド26を油圧で下方へ移動させて、シリンダロッド26の押圧部位26aで天板23の押圧面23bを押圧する。これにより、天板23が底部側の加圧方向に移動し、天板23の加圧面23aにより分割中空部21a内の石英ガラス25aが加圧されるとともに、中板27を介して、分割中空部21b内の石英ガラス25bが加圧され、天板23の加圧力により複数の石英ガラス25a、25bが変形させられる。   At the time of molding, the cylinder rod 26 of each hydraulic cylinder is moved downward by hydraulic pressure, and the pressing surface 23b of the top plate 23 is pressed by the pressing portion 26a of the cylinder rod 26. Thereby, the top plate 23 moves in the pressurizing direction on the bottom side, the quartz glass 25a in the divided hollow portion 21a is pressurized by the pressurizing surface 23a of the top plate 23, and the divided hollow through the middle plate 27. The quartz glass 25b in the part 21b is pressurized, and the plurality of quartz glasses 25a and 25b are deformed by the pressure of the top plate 23.

天板23により石英ガラス25a、25bを加圧する間、複数の側板19には、石英ガラス25a、25bを介して天板23の押圧力が外方向の力として与えられる。成形の最終段階では、図4に示すように、予め設定された所定量分シリンダロッド26及び天板23が移動するとともに中板27が移動することにより、分割中空部21a、21bの体積が石英ガラス25a、25bの体積となり、内部に空隙が無くなる。このとき、複数の側板19には、石英ガラス25a、25bの接触する面積に応じて、天板23からの圧力が負荷される。   While the quartz glass 25a, 25b is pressed by the top plate 23, the pressing force of the top plate 23 is applied to the plurality of side plates 19 as an outward force via the quartz glass 25a, 25b. In the final stage of molding, as shown in FIG. 4, the cylinder rod 26 and the top plate 23 are moved by a predetermined amount and the middle plate 27 is moved, so that the volume of the divided hollow portions 21a and 21b is changed to quartz. It becomes the volume of the glass 25a, 25b, and there are no voids inside. At this time, the pressure from the top plate 23 is applied to the plurality of side plates 19 according to the area in which the quartz glasses 25a and 25b come into contact.

ここでは、成形初期の段階で天板23の圧力を小さくし、最終段階で最大加圧力となるようにしており、成形時の側板19に対する押圧力が、側板19と受板16との嵌合状態や側板19と支持リンク24との嵌合状態を維持できる所定値以下となるように天板23の最大加圧力を調整している。   Here, the pressure of the top plate 23 is reduced at the initial stage of molding, and the maximum pressing force is set at the final stage, and the pressing force against the side plate 19 at the time of molding is a fit between the side plate 19 and the receiving plate 16. The maximum pressurizing force of the top plate 23 is adjusted so as to be equal to or less than a predetermined value at which the state and the fitted state between the side plate 19 and the support link 24 can be maintained.

この天板23の最大加圧力の調整は、異なる数の石英ガラスを成形したり、異なる厚さや形状の石英ガラスを成形する際においても、同様に行う必要があり、何れの成形工程であっても、側板19に対する押圧力が所定値以下に維持されるように調整する必要がある。この実施の形態では、具体的には、複数の石英ガラス25a、25bと各側板19との接触面積の増減に対応して、天板23の最大加圧力を反比例するように調整している。   The adjustment of the maximum pressing force of the top plate 23 must be performed in the same manner when molding different numbers of quartz glass or molding quartz glass having different thicknesses and shapes. However, it is necessary to adjust so that the pressing force with respect to the side plate 19 is maintained below a predetermined value. Specifically, in this embodiment, the maximum pressing force of the top plate 23 is adjusted to be inversely proportional to the increase or decrease of the contact area between the plurality of quartz glasses 25 a and 25 b and the side plates 19.

例えば、一つの石英ガラス25aを初期の段階では天板23の加圧面23aの単位面積当りに換算した圧力を0.1〜0.2kg/cm程度とし、成形の最終段階では0.6〜1.0kg/cmとして成形していた場合、同じ大きさの2つの石英ガラス25a、25bを成形するには、最終段階で0.3〜0.5kg/cmとする。即ち、石英ガラス25a、25bからモールド15の側板19に荷重が与えられる接触面積が2倍であるため、天板23から加える単位面積あたりの圧力を半分にすることにより、側板19全体に負荷される圧力を同じにしている。 For example, in the initial stage of one quartz glass 25a, the pressure converted per unit area of the pressing surface 23a of the top plate 23 is about 0.1 to 0.2 kg / cm 2, and in the final stage of molding 0.6 to In the case of molding at 1.0 kg / cm 2 , in order to mold two quartz glasses 25 a and 25 b having the same size, the final stage is 0.3 to 0.5 kg / cm 2 . That is, since the contact area where the load is applied from the quartz glass 25a, 25b to the side plate 19 of the mold 15 is doubled, the pressure per unit area applied from the top plate 23 is halved so that the entire side plate 19 is loaded. The pressure is the same.

このような調整により、側板19全体が石英ガラス25a、25bより受ける圧力を所定値以下にして、側板19と支持リンク24及び底板16の凹部16aとの嵌合部分に負荷される力を所定の力以下にすることができる。そのため、嵌合状態を維持して側板19の上昇を防いで、中空部21の形状を保つことが可能となり、複数個を成形する場合であっても、成形不良を防止することが可能となるのである。   By such adjustment, the pressure applied to the entire side plate 19 from the quartz glass 25a, 25b is set to a predetermined value or less, and the force applied to the fitting portion between the side plate 19, the support link 24, and the recess 16a of the bottom plate 16 is set to a predetermined value. Can be less than force. Therefore, it is possible to maintain the fitting state and prevent the side plate 19 from rising, so that the shape of the hollow portion 21 can be maintained, and even when a plurality of moldings are formed, it is possible to prevent molding defects. It is.

次に、このようにして所定形状に成形された石英ガラス25a、25bを冷却する。この成形直後の石英ガラス25a、25bはモールド15の中空部21の内壁に密着した状態で配置されており、この状態から温度が低下すると、温度変化に応じた石英ガラス25及びモールド15とが熱収縮を起こす。このときの収縮量はそれぞれの膨張係数に応じたものとなるため、モールド15の収縮量が石英ガラス25より大きくなる。   Next, the quartz glass 25a, 25b thus formed into a predetermined shape is cooled. The quartz glasses 25a and 25b immediately after the molding are arranged in close contact with the inner wall of the hollow portion 21 of the mold 15. When the temperature is lowered from this state, the quartz glass 25 and the mold 15 corresponding to the temperature change are heated. Causes contraction. Since the shrinkage at this time is in accordance with the respective expansion coefficients, the shrinkage of the mold 15 is larger than that of the quartz glass 25.

そのため、枠状の支持リング24が収縮すると、その内周の嵌合面24aに当接する側板19の上端部19dの嵌合面19fを内側に圧迫する。しかし、石英ガラス25の収縮が少ないため、側板19の上端部19dは内側に移動できず、その結果、支持リング24に側板19から外方向の力が負荷される。これにより、側板19の嵌合面19fと支持リング24の嵌合面24aとの嵌合状態が解除されて、支持リング24が側板19から上側の抜け方向に移動する。   Therefore, when the frame-shaped support ring 24 contracts, the fitting surface 19f of the upper end portion 19d of the side plate 19 that abuts on the inner circumferential fitting surface 24a is pressed inward. However, since the quartz glass 25 is less contracted, the upper end portion 19 d of the side plate 19 cannot move inward, and as a result, an outward force is applied to the support ring 24 from the side plate 19. Thereby, the fitting state of the fitting surface 19f of the side plate 19 and the fitting surface 24a of the support ring 24 is released, and the support ring 24 moves from the side plate 19 in the upward removal direction.

以上のようにして石英ガラス25a、25bを成形すれば、中空部21の内部に移動可能に中板27を配置して複数の分割中空部21a、21bに区画し、その分割中空部21a、21bのそれぞれに石英ガラス25a、25bを収容して加圧することにより複数個を同時に成形するので、複数の石英ガラス25a、25bの昇温及び冷却の作業を纏めて行うことができるとともに、天板23により纏めて加圧することができ、生産性を向上することが可能である。   When the quartz glass 25a, 25b is formed as described above, the intermediate plate 27 is disposed so as to be movable inside the hollow portion 21, and is divided into a plurality of divided hollow portions 21a, 21b, and the divided hollow portions 21a, 21b. Since quartz glass 25a, 25b is accommodated in each of the glass plates and pressed, a plurality of them are simultaneously formed, so that the temperature raising and cooling operations of the plurality of quartz glasses 25a, 25b can be performed together, and the top plate 23 Thus, it is possible to pressurize all together, and productivity can be improved.

また、モールド15が、互いに当接した状態で組合されて中空部21を形成する複数の側板19と、この複数の側板19の外側に嵌合する底板16の凹部16aまたは支持リング24とを有し、これらが成形時に嵌合状態を維持するとともに、成形後の冷却時に嵌合状態を解除できるように構成されているため、成形時には、中空部21の形状を維持して、成形することが容易であり、成形後の冷却時には、複数の側板19が離間されて応力を解放することができ、モールド15や石英ガラス25a、25bの歪や割れなどを抑制することができる。   In addition, the mold 15 has a plurality of side plates 19 that are combined to form a hollow portion 21 in contact with each other, and a recess 16 a or a support ring 24 of the bottom plate 16 that fits outside the plurality of side plates 19. In addition, these are configured so that the fitted state can be maintained during molding and the fitted state can be released during cooling after molding, so that the shape of the hollow portion 21 can be maintained and molded during molding. It is easy, and at the time of cooling after molding, the plurality of side plates 19 can be separated to release stress, and distortion and cracking of the mold 15 and the quartz glass 25a and 25b can be suppressed.

同時に、モールド15のサイズと、側板の自重と、成形後の石英ガラス25a、25bの厚さから、側板19が上昇しない圧力を算出することができるため、成形圧力の設定が容易であり、意図しないモールド15の嵌合状態の解除を無くして生産性を向上することができる。   At the same time, since the pressure at which the side plate 19 does not rise can be calculated from the size of the mold 15, the weight of the side plate, and the thickness of the quartz glass 25a, 25b after molding, it is easy to set the molding pressure. It is possible to improve productivity by eliminating the release of the fitted state of the mold 15 that is not performed.

なお、上記の実施の形態では、板状の石英ガラス25a、25bを成形する例について説明したが、板状体以外の成形体であっても、この発明は適宜適用可能である。   In the above-described embodiment, an example of forming the plate-like quartz glass 25a, 25b has been described. However, the present invention can be appropriately applied to a molded body other than the plate-like body.

また、上記では、2つの石英ガラス25a、25bを成形する例について説明したが、仕切板27を複数用いることにより分割中空部を3個以上設けて、3個以上の石英ガラスを成形することも可能である。その場合、天板23の加圧力を側板19と石英ガラス25a、25bとの接触面積の増加分に反比例するように少なくすれば、モールド15の中空部21の形状を維持して、成形を行うことが可能である。   Moreover, although the example which shape | molds two quartz glass 25a, 25b was demonstrated above, three or more division | segmentation hollow parts can be provided by using two or more partition plates 27, and three or more quartz glass can also be shape | molded. Is possible. In that case, if the pressing force of the top plate 23 is decreased so as to be in inverse proportion to the increase in the contact area between the side plate 19 and the quartz glass 25a, 25b, the shape of the hollow portion 21 of the mold 15 is maintained and molding is performed. It is possible.

更に、上記では、天板23を1本の油圧シリンダのシリンダロッド26で押圧する例について説明したが、複数のシリンダロッド26を用いて天板23を押圧してもよく、更に、油圧シリンダでなく、他の機械的な成形手段を用いることも可能である。   Furthermore, in the above description, the example in which the top plate 23 is pressed by the cylinder rod 26 of one hydraulic cylinder has been described. However, the top plate 23 may be pressed by using a plurality of cylinder rods 26, and further, It is also possible to use other mechanical forming means.

また、上記では、結晶化温度以上軟化点温度以下の温度で成形する例について説明したが、石英ガラス25a、25bの結晶化温度以上で成形すればよく、例えば軟化点より高い温度であってもよい。   In the above description, the example of forming at a temperature not lower than the crystallization temperature and not higher than the softening point temperature has been described. However, it may be formed at a temperature higher than the crystallization temperature of the quartz glass 25a, 25b. Good.

[実施例1]
図1に示すような成形装置10を用い、四塩化ケイ素を原料として直接法により製造された直径400mm、長さ216.5mm、重さ59.8kgの2つの合成石英インゴットの成形を行った。このインゴットを500mm×590mmの四方形状を有する四つ割のグラファイト製モールド15に入れ、成形装置10にセットした。インゴットの下面に厚さ30mmの底板16を置き、インゴット25aの上面に厚さ30mmの中板27を置いた。そして、2つ目のインゴット25bを中板27の上に置き、その上面に中板27と同形の30mmの天板23を置いた。更に、天板23にシリンダロッド26を配置した。
[Example 1]
Using a molding apparatus 10 as shown in FIG. 1, two synthetic quartz ingots having a diameter of 400 mm, a length of 216.5 mm, and a weight of 59.8 kg manufactured by a direct method using silicon tetrachloride as a raw material were molded. This ingot was placed in a quadrilateral graphite mold 15 having a square shape of 500 mm × 590 mm and set in the molding apparatus 10. A bottom plate 16 having a thickness of 30 mm was placed on the lower surface of the ingot, and an intermediate plate 27 having a thickness of 30 mm was placed on the upper surface of the ingot 25a. Then, the second ingot 25b was placed on the middle plate 27, and a 30 mm top plate 23 having the same shape as the middle plate 27 was placed on the upper surface thereof. Further, a cylinder rod 26 is disposed on the top plate 23.

この後、真空ポンプにて、真空チャンバー11内の圧力を2Pa程度まで減圧し、純粋な窒素ガスを常圧まで充填させた。   Thereafter, the pressure in the vacuum chamber 11 was reduced to about 2 Pa with a vacuum pump, and pure nitrogen gas was filled to normal pressure.

そして、昇温を開始し、2.5時間で1605℃まで昇温させ、30分保持した。   Then, the temperature increase was started, the temperature was increased to 1605 ° C. in 2.5 hours, and held for 30 minutes.

その後、シリンダロッド26により、初期荷重0.5ton、最大荷重1.25tonにて天板23を押圧し、インゴットの成形を行った。シリンダロッド26の変位ストロークが最上部の天板23より下側の中空部21aと21bに空隙が無くなる計算上の位置に達したところで加圧を終了し、カーボンヒータ13での加熱を停止し、室温まで炉冷した。   Thereafter, the top plate 23 was pressed by the cylinder rod 26 with an initial load of 0.5 ton and a maximum load of 1.25 ton to form an ingot. When the displacement stroke of the cylinder rod 26 reaches a calculated position where there is no gap in the hollow portions 21a and 21b below the uppermost top plate 23, the pressurization is terminated, and the heating in the carbon heater 13 is stopped, The furnace was cooled to room temperature.

この後、モールド15を成形装置10から搬出・解体し、成形品を取り出した。モールド15の嵌合構造により若干側板の上昇が見られたが、成形品を観察したところ、四隅に割れは確認できず、上下の石英ガラスの形状に違いはなかった。   Thereafter, the mold 15 was unloaded from the molding apparatus 10 and disassembled, and the molded product was taken out. Although the side plate slightly rose due to the fitting structure of the mold 15, when the molded product was observed, cracks could not be confirmed at the four corners, and there was no difference in the shapes of the upper and lower quartz glasses.

成形品は500mm×590mmで、1枚あたりの石英ガラスの高さは92.25mmの板状体が2ヶ採取できた。   The molded product was 500 mm × 590 mm, and two plate-like bodies having a quartz glass height of 92.25 mm could be collected.

この実施例では、2枚の石英ガラスを成形しており、後述する参考例に比べて石英ガラス25a、25bと側板19との接触面積は2倍となっているが、成形時の天板23からの荷重を半分程度に設定しているため、各側板19全体に負荷される荷重は参考例と同様の値となっている。そのため、成形時には、モールド15の中空部21の形状を確実に維持して成形することができた。
[参考例]
In this embodiment, two pieces of quartz glass are molded, and the contact area between the quartz glass 25a, 25b and the side plate 19 is doubled as compared with a reference example described later. The load applied to each side plate 19 is the same value as in the reference example. Therefore, at the time of shaping | molding, it was able to shape | mold, maintaining the shape of the hollow part 21 of the mold 15 reliably.
[Reference example]

実施例と同一の成形装置10を用い、直径400mm、長さ216.5mm、重さ59.8kgの、四塩化ケイ素を原料として直接法により製造された1つの合成石英インゴットの成形を行った。この成形では、500mm×590mmの四方形状を有する四つ割のグラファイト製モールド15に入れ、底板16、石英ガラス25、天板23を置いた。更に天板23にシリンダロッド26を配置した。   Using the same molding apparatus 10 as in the example, one synthetic quartz ingot having a diameter of 400 mm, a length of 216.5 mm, and a weight of 59.8 kg was manufactured by a direct method using silicon tetrachloride as a raw material. In this molding, the base plate 16, the quartz glass 25, and the top plate 23 were placed in a quadrilateral graphite mold 15 having a square shape of 500 mm × 590 mm. Further, a cylinder rod 26 is disposed on the top plate 23.

昇温後の保持時間は20分とし、初期荷重は1.20ton、最大荷重2.50tonで成形した。その他の運転は実施例1と同様の条件で行った。   The holding time after the temperature increase was 20 minutes, the initial load was 1.20 ton, and the maximum load was 2.50 ton. Other operations were performed under the same conditions as in Example 1.

この後、モールド15を成形装置10から搬出して、成形品を取り出した。成形品は500mm×590mm、高さ92.25mmの板状体の石英ガラスが採取できた。   Thereafter, the mold 15 was unloaded from the molding apparatus 10 and the molded product was taken out. As the molded product, a plate-like quartz glass having a size of 500 mm × 590 mm and a height of 92.25 mm could be collected.

成形品を観察したところ、四隅に割れや20mm/cm以上の大きな歪は確認できなかった。この成形品からは有効角材として最大460mm×550mm、厚さ92.25mmの板状体が採取できた。   When the molded product was observed, cracks at the four corners and large strains of 20 mm / cm or more could not be confirmed. From this molded product, a plate-like body having a maximum of 460 mm × 550 mm and a thickness of 92.25 mm was collected as an effective square.

この発明の実施の形態の成形装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the shaping | molding apparatus of embodiment of this invention. 同実施の形態の成形装置に用いられるモールドの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the mold used for the shaping | molding apparatus of the embodiment. 同実施の形態の成形装置の側壁部の横端面図である。It is a horizontal end view of the side wall part of the shaping | molding apparatus of the embodiment. 同実施の形態の成形装置の成形後の状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state after shaping | molding of the shaping | molding apparatus of the embodiment.

符号の説明Explanation of symbols

10 成形装置
11 真空チャンバー
12 断熱材
13 カーボンヒータ
15 モールド
16 底板
17 受板
18 底部
19 側板
20 側壁部
21 中空部
23 天板(加圧部)
24 支持リング(嵌合部)
25 石英ガラス
26 シリンダロッド(成形手段)
27 中板(仕切部)
DESCRIPTION OF SYMBOLS 10 Molding apparatus 11 Vacuum chamber 12 Heat insulating material 13 Carbon heater 15 Mold 16 Bottom plate 17 Receiving plate 18 Bottom portion 19 Side plate 20 Side wall portion 21 Hollow portion 23 Top plate (Pressure portion)
24 Support ring (fitting part)
25 Quartz glass 26 Cylinder rod (Molding means)
27 Middle plate (partition)

Claims (4)

モールドの中空部内に石英ガラスを収容し、該石英ガラスを加熱しつつ、加圧部により加圧することにより所望形状に成形する方法であって、
前記中空部の内部に移動可能に仕切部を配置して該中空部を複数の分割中空部に区画するとともに、該複数の分割中空部のそれぞれに前記石英ガラスを収容して前記加圧部により複数の前記石英ガラスを同時に成形することを特徴とする石英ガラスの成形方法。
A method of forming quartz glass into a desired shape by accommodating quartz glass in a hollow portion of a mold and heating the quartz glass while pressing the quartz glass,
A partition portion is arranged movably inside the hollow portion to partition the hollow portion into a plurality of divided hollow portions, and the quartz glass is accommodated in each of the plurality of divided hollow portions by the pressurizing portion. A method for molding quartz glass, comprising molding the plurality of quartz glasses simultaneously.
前記モールドが、前記石英ガラスより膨張係数の大きい材料からなり、互いに当接した状態で組合されて前記中空部を形成する複数の側板と、該組合された複数の側板の周囲に嵌合される嵌合手段とを備え、成形時には嵌合状態を維持するとともに、成形後の冷却時には前記モールドと前記石英ガラスとの膨張係数の相違に基づいて前記複数の側板に与えられる外方向の力により嵌合状態を解除して前記複数の側板を離間するように、前記複数の側板と前記嵌合手段との嵌合面にテーパ形状を有するものであり、
前記成形時に前記複数の石英ガラスによる前記各側板に対する押圧力が所定値以下となるように、前記加圧部による最大加圧力を調整して前記複数の石英ガラスを成形することを特徴とする請求項1に記載の石英ガラスの成形方法。
The mold is made of a material having a larger expansion coefficient than the quartz glass, and is fitted around a plurality of side plates that are combined in contact with each other to form the hollow portion, and around the combined side plates. A fitting means for maintaining the fitted state during molding and fitting by an outward force applied to the plurality of side plates based on a difference in expansion coefficient between the mold and the quartz glass during cooling after molding. In order to release the combined state and separate the plurality of side plates, the fitting surfaces of the plurality of side plates and the fitting means have a tapered shape,
The plurality of quartz glasses are formed by adjusting a maximum pressure applied by the pressurizing unit so that a pressing force of the plurality of quartz glasses against the side plates is not more than a predetermined value during the molding. Item 2. A method for molding quartz glass according to Item 1.
石英ガラスを収容可能な中空部を有するモールドと、前記中空部の内部に移動可能に配置された加圧部と、前記中空部に収容された前記石英ガラスを加熱する加熱手段とを備え、前記中空部内に前記石英ガラスを収容して前記加熱手段で加熱しつつ前記加圧部により加圧することにより前記石英ガラスを所望形状に成形する成形装置であって、
前記中空部の内部に移動可能に仕切部を配置して該中空部を複数の分割中空部に区画するとともに、該複数の分割中空部のそれぞれに前記石英ガラスを収容して前記加圧部により複数の前記石英ガラスを同時に成形可能に構成したことを特徴とする石英ガラスの成形装置。
A mold having a hollow part capable of accommodating quartz glass, a pressurizing part arranged movably inside the hollow part, and a heating means for heating the quartz glass accommodated in the hollow part, A molding apparatus that molds the quartz glass into a desired shape by accommodating the quartz glass in a hollow portion and applying pressure by the pressure unit while heating by the heating means,
A partition portion is arranged movably inside the hollow portion to partition the hollow portion into a plurality of divided hollow portions, and the quartz glass is accommodated in each of the plurality of divided hollow portions by the pressurizing portion. A quartz glass molding apparatus, wherein a plurality of the quartz glasses can be molded simultaneously.
前記モールドが、前記石英ガラスより膨張係数の大きい材料からなり、互いに当接した状態で組合されて前記中空部を形成する複数の側板と、該組合された複数の側板の周囲に嵌合される嵌合手段とを備え、成形時には嵌合状態を維持するとともに、成形後の冷却時には前記モールドと前記石英ガラスとの膨張係数の相違に基づいて前記複数の側板に与えられる外方向の力により嵌合状態を解除して前記複数の側板を離間するように、前記複数の側板と嵌合手段との嵌合面にテーパ形状を有するものであり、
異なる成形工程において、前記成形時に前記複数の石英ガラスによる前記各側板に対する押圧力が所定値以下となるように、前記加圧部による最大加圧力を調整可能としたことを特徴とする請求項3に記載の石英ガラスの成形装置。
The mold is made of a material having a larger expansion coefficient than the quartz glass, and is fitted around a plurality of side plates that are combined in contact with each other to form the hollow portion, and around the combined side plates. A fitting means for maintaining the fitted state during molding and fitting by an outward force applied to the plurality of side plates based on a difference in expansion coefficient between the mold and the quartz glass during cooling after molding. The mating surfaces of the plurality of side plates and the fitting means have a tapered shape so as to release the combined state and separate the plurality of side plates.
4. The maximum pressing force by the pressurizing unit can be adjusted so that the pressing force of the plurality of quartz glasses on the side plates is not more than a predetermined value during the molding in different molding steps. The apparatus for forming quartz glass as described in 1.
JP2003334970A 2003-04-07 2003-09-26 Quartz glass molding method and molding apparatus Expired - Fee Related JP4374964B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003334970A JP4374964B2 (en) 2003-09-26 2003-09-26 Quartz glass molding method and molding apparatus
KR1020040023657A KR101096477B1 (en) 2003-04-07 2004-04-07 Method and apparatus for forming a quartz glass
TW093109546A TW200502183A (en) 2003-04-07 2004-04-07 Molding apparatus and method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334970A JP4374964B2 (en) 2003-09-26 2003-09-26 Quartz glass molding method and molding apparatus

Publications (2)

Publication Number Publication Date
JP2005097057A true JP2005097057A (en) 2005-04-14
JP4374964B2 JP4374964B2 (en) 2009-12-02

Family

ID=34462491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334970A Expired - Fee Related JP4374964B2 (en) 2003-04-07 2003-09-26 Quartz glass molding method and molding apparatus

Country Status (1)

Country Link
JP (1) JP4374964B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014108912A (en) * 2012-12-03 2014-06-12 Tosoh Quartz Corp Mold material, and production method of quartz glass molding using mold material
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN112830666A (en) * 2021-01-19 2021-05-25 中天科技精密材料有限公司 Vacuum furnace and quartz glass preparation method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2014108912A (en) * 2012-12-03 2014-06-12 Tosoh Quartz Corp Mold material, and production method of quartz glass molding using mold material
CN112830666A (en) * 2021-01-19 2021-05-25 中天科技精密材料有限公司 Vacuum furnace and quartz glass preparation method

Also Published As

Publication number Publication date
JP4374964B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP4281397B2 (en) Quartz glass molding equipment
JP4374964B2 (en) Quartz glass molding method and molding apparatus
JP4419701B2 (en) Quartz glass molding equipment
JP4341277B2 (en) Method of forming quartz glass
JP4288413B2 (en) Quartz glass molding method and molding apparatus
JP4465974B2 (en) Quartz glass molding equipment
EP1783103B1 (en) Method for forming quartz glass
JP4760137B2 (en) Method of forming quartz glass
JP4415367B2 (en) Method of forming quartz glass
JP5292994B2 (en) Method and apparatus for forming quartz glass
KR101096477B1 (en) Method and apparatus for forming a quartz glass
JPS6183638A (en) Quartz glass forming
JP2000219523A (en) Forming method of quartz glass, forming device and quartz glass produced by the method
JP2006169033A (en) Forming method and forming apparatus for quartz glass
JPS632421Y2 (en)
JP3778250B2 (en) Method of forming quartz glass
JP3128007B2 (en) Quartz glass mold
JP4655761B2 (en) Pretreatment method of quartz glass and molding method of quartz glass
JP5387036B2 (en) Glass mold and method for producing glass molded body
JP2002053332A (en) Method and device for molding synthetic quartz glass
JP6532269B2 (en) Method of manufacturing synthetic quartz glass
JP2004123439A (en) Process for manufacturing optical glass
JP2008156164A (en) Fluorite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Ref document number: 4374964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees