JP2005096595A - Tire tread surface state measurement device and measurement method - Google Patents

Tire tread surface state measurement device and measurement method Download PDF

Info

Publication number
JP2005096595A
JP2005096595A JP2003332755A JP2003332755A JP2005096595A JP 2005096595 A JP2005096595 A JP 2005096595A JP 2003332755 A JP2003332755 A JP 2003332755A JP 2003332755 A JP2003332755 A JP 2003332755A JP 2005096595 A JP2005096595 A JP 2005096595A
Authority
JP
Japan
Prior art keywords
tire
load
measurement
road surface
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003332755A
Other languages
Japanese (ja)
Other versions
JP4367613B2 (en
Inventor
Naoyuki Katsura
直之 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003332755A priority Critical patent/JP4367613B2/en
Publication of JP2005096595A publication Critical patent/JP2005096595A/en
Application granted granted Critical
Publication of JP4367613B2 publication Critical patent/JP4367613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire tread surface state measurement device and a measurement method capable of exactly and quickly measuring a ground-contact shape and load distribution at traveling of a vehicle in detail in the ground-contact state of the tire closing to the traveling state of an actual road surface even at high speed traveling and wetting. <P>SOLUTION: In the tire tread surface state measurement device 1A for measuring the ground-contact shape and the ground-contact force of the tire 10, a load detector 21 is constituted using an integral piezoelectric element type load cell 11a. The load detection band area 20 is constituted such that an apex surface becomes the same height as a surface 11f of a measurement road surface 11 and regarding the crossing direction of the measurement road surface 11, they are aligned and buried in a broader range than ground-contact width B1 of the stopped tire 10. Projection detectors 30 are arranged at the outside of both ends and a speed measurement device 40 for measuring traveling speed V of the tire 10 and a measurement value record device 50 for recording the measurement value in time series are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両走行時のタイヤ接地路面内の力の分布を正確に測定するためのタイヤ踏面状態測定装置及び測定方法に関する。   The present invention relates to a tire tread surface state measuring device and a measuring method for accurately measuring a force distribution in a tire ground contact surface during traveling of a vehicle.

タイヤのパターン開発や構造開発において、高速走行時、制動時、駆動時、旋回時、更に、これらの湿潤時等における車両走行時のタイヤ接地路面内での力の分布を検出することが重要であり、幾つかの装置が開発されている。   In tire pattern development and structure development, it is important to detect the distribution of force on the tire contact surface during high-speed driving, braking, driving, turning, and when driving the vehicle during wet conditions. There are several devices being developed.

そのうちの一つに、ガラス路面を設けて、タイヤがこの上を通過する際に、地下ピット等の裏側から観察して、タイヤ回転中の接地形状を知る装置がある。しかしながら、この装置は、タイヤの接地形状を知るには有効であるが、踏面(接地路面)内での力の分布がどうなっているかは分からないという問題がある。   One of them is a device for providing a glass road surface and observing from the back side of an underground pit or the like when the tire passes over it to know the ground contact shape during tire rotation. However, although this device is effective for knowing the ground contact shape of the tire, there is a problem that it is not possible to know the distribution of force in the tread (ground road surface).

また、室内の平板上の試験機である低速路面観察装置では、タイヤの接地圧によって色が変化する検知手段を用いて、観察された接地部分の色の濃さから垂直方向の力を算出し、力の分布を求めているが、前後方向や横方向の力の分布は分からず、また、湿潤状態や実用速度における測定はできないという問題がある。   In addition, in a low-speed road surface observation device that is a testing machine on an indoor flat plate, the vertical force is calculated from the darkness of the color of the observed ground contact portion using a detecting means whose color changes depending on the tire contact pressure. Although the force distribution is obtained, there is a problem that the force distribution in the front-rear direction and the lateral direction is not known, and measurement in a wet state or a practical speed cannot be performed.

なお、車両走行時のタイヤの状態を知る手段として、感圧導電ゴムの加圧に応じて変化する抵抗値変化から接地荷重を測定する感圧導電ゴム方式や、感圧フィルムが加圧に応じて色や濃度を変化することを利用した感圧フィルム方式もあるが、これらは接地面内における分布を求めることができないという問題がある。   In addition, as a means to know the state of the tire when the vehicle is running, a pressure-sensitive conductive rubber method that measures the ground load from a change in resistance value that changes according to the pressure of the pressure-sensitive conductive rubber, or a pressure-sensitive film that responds to the pressure There are also pressure-sensitive film systems that use changes in color and density, but these have the problem that the distribution in the ground plane cannot be obtained.

そのため、感圧部と、接地荷重に対応して変形する中実円柱状のセンサ本体の側部に埋設された歪ゲージによって3分力荷重を検出する荷重検出計を備えると共に、この荷重検出計で検出した3分力荷重を時系列的に記録する記録計とを備えたタイヤ接地面荷重計測装置が提案されている(例えば、特許文献1参照。)。   For this purpose, a load detector that detects a three-component force load with a pressure gauge and a strain gauge embedded in the side of a solid cylindrical sensor body that deforms in response to the ground load is provided. There has been proposed a tire contact surface load measuring device including a recorder that records the three-component force load detected in Step 1 in time series (see, for example, Patent Document 1).

しかしながら、この測定方法によれば、荷重検出を中実円柱状のセンサ本体の変形を歪ゲージで検出することで行っており、そのため、応答が遅く、高速走行における測定精度が著しく低下するという問題がある。   However, according to this measurement method, the load is detected by detecting the deformation of the solid cylindrical sensor body with a strain gauge, and therefore, the response is slow and the measurement accuracy in high-speed running is significantly reduced. There is.

また、センサ本体が自由に変形できるように、感圧部が頂部に固着されたセンサ本体の周囲を弾性質のコーティング材等を充填して構成する必要があるため、タイヤが乗り上げた時に、弾性体が変形してしまうため、感圧部が突出し、感圧部の円柱状の点突起を乗り越す状態となって、実際の路面との接地状態とは異なってしまい、前後力や横方向力の計測が不正確になり易く、結局のところ、各点突起(感圧部)における圧力が分かるだけで、車両走行時のタイヤ接地部の実現象を捉えることができないという問題がある。   In addition, it is necessary to fill the circumference of the sensor body with the pressure sensitive part fixed to the top so that the sensor body can be freely deformed, so that it is elastic when the tire rides. Since the body is deformed, the pressure-sensitive part protrudes and rides over the cylindrical point protrusion of the pressure-sensitive part, which is different from the ground contact state with the actual road surface. Measurement tends to be inaccurate, and ultimately, there is a problem that only the pressure at each point protrusion (pressure-sensitive portion) is known, and the actual phenomenon of the tire ground contact portion during vehicle travel cannot be captured.

また、時系列で収録するだけであるので、接地路面内の力の分布を求めることができないという問題がある。また、センサ本体とセンサ取付台板との間に隙間を設け、この間に弾性体を配置する必要があるため、センサ本体を密着して配設することができず、測定点の分布が粗くなるという問題がある。   In addition, since only time-series recording is performed, there is a problem that the distribution of force within the ground contact surface cannot be obtained. Further, since it is necessary to provide a gap between the sensor main body and the sensor mounting base plate and to dispose an elastic body between them, the sensor main body cannot be disposed in close contact, and the distribution of measurement points becomes rough. There is a problem.

その上、タイヤが感圧部の配置部分から、はみ出したか否かを正確に検知することができないので、正確な測定ができたか否かの判定が、計測値の解析が終了してからでないと
判定できないため、必要なデータを得るための測定実験を迅速に行うことができないという問題がある。
特開平11−142265号公報
In addition, since it is not possible to accurately detect whether or not the tire has protruded from the arrangement portion of the pressure-sensitive portion, it is not until the analysis of the measurement value is finished whether or not the accurate measurement has been completed. Since it cannot be determined, there is a problem that a measurement experiment for obtaining necessary data cannot be performed quickly.
JP 11-142265 A

本発明の目的は、実際の路面の走行状態に近いタイヤの接地状態で正確にかつ詳細に計測できると共に、各走行実験時のタイヤが荷重検出帯域をはみ出して走行したか否かを迅速に検出でき、車両走行時のタイヤ接地路面内での力分布、接地形状、特に、高速走行時の接地形状の変化や荷重分布、制動・駆動時の荷重分布や前後力分布、旋回時の接地形状、横力分布、及び、湿潤時の接地形状、荷重分布、前後力分布を正確にかつ詳細に測定することができるタイヤ踏面状態測定装置及び測定方法を提供することにある。   The object of the present invention is to accurately and precisely measure the ground contact state of the tire close to the actual road surface traveling condition, and quickly detect whether or not the tire has traveled beyond the load detection band during each traveling experiment. Force distribution on the tire ground contact surface during vehicle travel, contact shape, especially change in contact shape and load distribution during high speed traveling, load distribution and longitudinal force distribution during braking and driving, contact shape during turning, An object of the present invention is to provide a tire tread surface state measuring device and a measuring method capable of accurately and in detail measuring a lateral force distribution and a contact shape, load distribution, and longitudinal force distribution when wet.

上記目的を達成するための本発明のタイヤ踏面状態測定装置は、タイヤの接地形状と踏面における接地力を、計測用路面に埋設した荷重検出器で測定するタイヤ踏面状態測定装置において、
前記荷重検出器を垂直、前後、横方向の内の少なくとも1方向の力を検出する一体型圧電素子式のロードセルを用いて構成すると共に、前記荷重検出器を、その頂面が周囲の計測用路面の表面と高さが同じになるように、かつ、車両走行方向と略直交する計測用路面の横断方向に関して、車両が静止している状態におけるタイヤの接地幅より広い範囲に並べて埋設して荷重検出帯域を構成し、
該荷重検出帯域の両端の外側に、計測用路面を走行したタイヤが前記荷重検出帯域をはみ出したことを検出するはみ出し検出器を配置すると共に、タイヤが前記荷重検出帯域を通過する時の走行速度を測定する速度測定装置と、前記荷重検出器で検出した測定値を時系列で記録する測定値記録装置を備えたことを特徴とする。
In order to achieve the above object, the tire tread state measuring device of the present invention is a tire tread state measuring device that measures the ground contact shape of the tire and the contact force on the tread with a load detector embedded in a measurement road surface.
The load detector is configured using an integrated piezoelectric element type load cell that detects a force in at least one of vertical, front-rear, and lateral directions, and the load detector is used for measuring the top surface of the load detector. The surface of the road surface is the same as the height of the road surface, and with respect to the transverse direction of the measurement road surface that is substantially perpendicular to the vehicle running direction, it is embedded in a range wider than the ground contact width of the tire when the vehicle is stationary. Configure the load detection band,
A run-out detector that detects that the tire that has traveled on the measurement road surface has protruded from the load detection band is disposed outside both ends of the load detection band, and the traveling speed when the tire passes the load detection band. And a measurement value recording device for recording the measurement values detected by the load detector in time series.

本発明によれば、荷重検出器を、一体型圧電素子式のロードセルを用いて構成したので、応答が早く、非常に短い時間間隔でタイヤの接地力を測定できるので、特に高速走行において、タイヤ進行方向に関するデータをきめ細かく得ることができる。また、ロードセルの周囲に弾性部材を配置する必要が無くなるので、実際の路面の接地状態に近い状態でタイヤの接地力を計測できる。ロードセルを密着して配設することができるので、測定点の分布を細かくすることができる。   According to the present invention, since the load detector is configured using an integrated piezoelectric element type load cell, the tire contact force can be measured quickly and at a very short time interval. Detailed data on the direction of travel can be obtained. In addition, since it is not necessary to dispose an elastic member around the load cell, the ground contact force of the tire can be measured in a state close to the actual ground contact state of the road surface. Since the load cells can be arranged in close contact with each other, the distribution of measurement points can be made fine.

また、本発明によれば、荷重検出器で検出し測定値記録装置に時系列で収録した測定値を、速度測定装置で測定した走行速度を用いて、時間的変化をタイヤ進行方向の空間座標変化に換算することができるようになり、タイヤの接地形状と踏面の接地力を得ることができるようになる。   Further, according to the present invention, the measurement values detected by the load detector and recorded in time series in the measurement value recording device are used as the travel coordinates measured by the speed measurement device, and the temporal change is spatially coordinated in the tire traveling direction. It becomes possible to convert it into a change, and the ground contact shape of the tire and the ground contact force of the tread can be obtained.

そして、上記のタイヤ踏面状態測定装置において、荷重検出器の頂面を車両走行方向と略直交する計測用路面の横断方向に関して隙間無く並べることにより、横断方向に関してより精度良く、タイヤの接地形状と踏面の接地力を得ることができる。   In the tire tread surface state measuring apparatus, the top surface of the load detector is arranged without gaps in the transverse direction of the measurement road surface substantially orthogonal to the vehicle traveling direction, so that the tire ground contact shape is more accurate in the transverse direction. The ground contact force of the tread can be obtained.

また、上記のタイヤ踏面状態測定装置において、荷重検出器の頂部に、矩形状に形成された、実際の路面を模擬した疑似路面又は切り出した実路面を備えて、荷重検出器を構成すると、より実路面の走行状態に近い状態で、タイヤの踏面の状態を測定することができる。   Further, in the tire tread surface state measuring apparatus, when the load detector is configured with a pseudo road surface or a cut actual road surface that simulates an actual road surface formed in a rectangular shape at the top of the load detector, The state of the tread of the tire can be measured in a state close to the running state on the actual road surface.

また、はみ出し検出器を、荷重検出器と同じ荷重検出器、又は、タッチパネルで形成すると、比較的簡単にはみ出し検出器を構成できる。   Further, when the protrusion detector is formed of the same load detector as the load detector or a touch panel, the protrusion detector can be configured relatively easily.

更に、計測用路面に、荷重検出器に接したタイヤの位置が分かるように、通過時にタイヤの一部に印を付けるマーカー器を設けると、実際に荷重検出帯域を通過したタイヤのトレッドパターン部分を特定できるようになる。   Furthermore, if a marker device is provided on the measurement road surface to mark a part of the tire when passing so that the position of the tire in contact with the load detector can be seen, the tread pattern portion of the tire that actually passed the load detection band Can be identified.

また、はみ出し検出器を設ける代わりに、計測用路面に、車両又はタイヤの走行位置を規制するガイドレールを設けると、走行方向や走行条件が制限されるが、確実にタイヤが荷重検出帯域内を通過するようにすることができる。   In addition, if a guide rail that restricts the vehicle or tire travel position is provided on the measurement road surface instead of providing an overhang detector, the travel direction and travel conditions will be limited, but the tire will surely stay within the load detection band. Can pass through.

そして、上記目的を達成するための本発明のタイヤ踏面状態測定方法は、上記のタイヤ踏面状態測定装置において、
前記はみ出し検出器の検出値を基に、計測用路面を走行したタイヤが前記荷重検出帯域をはみ出したことを検出したか否かを判定する第1ステップと、
前記速度測定装置で測定したタイヤ走行速度から、前記荷重検出器で検出し測定値記録装置で記録する測定時間間隔の間に、タイヤが進む距離を求める第2ステップと、
前記荷重検出器の各々で測定した時系列測定値の各計測時期を、車両走行方向のタイヤの進行位置に換算する第3ステップと、
前記荷重検出器の各々における、横断方向の位置と、前記時系列測定値の各計測時期に対応する前記進行位置と、前記時系列測定値とから、タイヤの接地形状、タイヤ踏面内における力の分布を求める第4ステップを有し、
前記第1ステップで前記はみ出し検出器がタイヤのはみ出しを検出した場合には、その測定を無効にすることを特徴とする方法である。
And the tire tread surface state measuring method of the present invention for achieving the above object, in the tire tread surface state measuring apparatus,
A first step of determining whether or not it has been detected that a tire that has traveled on a measurement road surface has protruded the load detection band, based on a detection value of the protrusion detector;
A second step of determining a distance traveled by the tire during a measurement time interval detected by the load detector and recorded by the measurement value recording device from the tire running speed measured by the speed measuring device;
A third step of converting each measurement timing of the time-series measurement values measured by each of the load detectors into a traveling position of the tire in the vehicle traveling direction;
From each of the load detectors, the position in the transverse direction, the advance position corresponding to each measurement time of the time series measurement value, and the time series measurement value, the contact shape of the tire, the force in the tire tread A fourth step for determining the distribution,
In the first step, when the protrusion detector detects a protrusion of a tire, the measurement is invalidated.

本発明によれば、この走行速度から荷重検出器のサンプリング時間をタイヤの移動位置に換算して、荷重検出器で計測した時系列の測定値を、接地位置系列に変換することができ、車両走行時のタイヤ接地路面内での力分布、接地形状、特に、高速走行時の接地形状の変化や荷重分布、制動・駆動時の荷重分布や前後力分布、旋回時の接地形状、横力分布、及び、湿潤時の接地形状、荷重分布、前後力分布を測定することができるようになる。   According to the present invention, it is possible to convert the sampling time of the load detector into the moving position of the tire from this traveling speed, and to convert the time series measurement values measured by the load detector into the ground contact position series. Force distribution on the ground contact road surface during running, contact shape, especially change in contact shape and load distribution during high speed running, load distribution and longitudinal force distribution during braking and driving, contact shape during turning, lateral force distribution It is possible to measure the ground contact shape, load distribution, and longitudinal force distribution when wet.

また、はみ出し検出器がタイヤのはみ出しを検出した場合に測定を無効にするので、詳細な解析無しでも測定の成否を判定でき、測定全体を迅速に進めることができるようになる。   In addition, since the measurement is invalidated when the protrusion detector detects the protrusion of the tire, the success or failure of the measurement can be determined without detailed analysis, and the entire measurement can be advanced promptly.

そして、タイヤ踏面状態測定方法において、荷重検出器が、タイヤ走行方向にずれて配設されている場合に、このずれの分だけ、前記時系列測定値の各計測時期に対応する前記進行位置を補正する補正ステップを備えて構成することにより、荷重検出器が、タイヤ進行方向にずれて配置する場合にも対応できるようになる。   In the tire tread surface measurement method, when the load detector is disposed so as to be shifted in the tire traveling direction, the travel position corresponding to each measurement timing of the time-series measurement value is determined by this shift. By configuring with a correction step for correcting, it is possible to cope with a case where the load detector is arranged to be shifted in the tire traveling direction.

本発明のタイヤ踏面状態測定装置及び測定方法によれば、荷重検出器を、一体型圧電素子式のロードセルを用いて構成したので、応答が早く、非常に短い時間間隔でタイヤの接地力を測定できるので、特に高速走行において、タイヤ進行方向に関するデータをきめ細かく得ることができる。また、ロードセルの周囲に弾性部材を配置する必要が無くなるので、実際の路面の接地状態に近い状態でタイヤの接地力を計測できる。そして、ロードセルを密着して配設することができるので、測定点の分布を細かくすることができる。   According to the tire tread surface state measuring apparatus and the measuring method of the present invention, since the load detector is configured using an integrated piezoelectric element type load cell, the response of the tire is fast and the contact force of the tire is measured at a very short time interval. As a result, it is possible to obtain detailed data on the tire traveling direction, particularly in high-speed traveling. In addition, since it is not necessary to dispose an elastic member around the load cell, the ground contact force of the tire can be measured in a state close to the actual ground contact state of the road surface. And since a load cell can be arrange | positioned closely, distribution of a measurement point can be made fine.

また、荷重検出器で検出し測定値記録装置に時系列で収録した測定値を、速度測定装置で測定した走行速度を用いて、時間的変化をタイヤ進行方向の空間座標変化に換算することができるようになり、タイヤの接地形状と踏面の接地力を得ることができるようになる。   In addition, the measurement value detected by the load detector and recorded in time series in the measurement value recording device can be converted into a temporal coordinate change in the tire traveling direction using the traveling speed measured by the speed measuring device. It becomes possible to obtain the ground contact shape of the tire and the ground contact force of the tread.

従って、実際の路面の走行状態に近いタイヤの接地状態で正確にかつ詳細に計測できると共に、各走行実験時のタイヤが荷重検出帯域をはみ出して走行したか否かを迅速に検出でき、車両走行時のタイヤ接地路面内での力分布、接地形状、特に、高速走行時の接地形状の変化や荷重分布、制動・駆動時の荷重分布や前後力分布、旋回時の接地形状、横力分布、及び、湿潤時の接地形状、荷重分布、前後力分布を正確にかつ詳細に測定することができ、これらの測定結果をタイヤのパターン開発や構造開発に役立てることができる。   Therefore, it is possible to measure accurately and in detail in the ground contact state of the tire that is close to the actual road surface traveling condition, and it is possible to quickly detect whether or not the tire during each traveling experiment has traveled beyond the load detection band. Force distribution on the tire ground contact surface at the time, contact shape, in particular, change and load distribution of the contact shape during high speed driving, load distribution and longitudinal force distribution during braking and driving, contact shape during turning, lateral force distribution, In addition, the contact shape, load distribution, and longitudinal force distribution when wet can be measured accurately and in detail, and these measurement results can be used for tire pattern development and structure development.

以下、本発明のタイヤ路面状態測定装置及び測定方法について、図に示す実施の形態を参照しながら説明する。図1及び図2に、荷重検出器の構成を示し、図3〜図7に、本発明のタイヤ路面状態測定装置の第1〜第5の実施の形態を示す。   Hereinafter, a tire road surface state measuring device and a measuring method according to the present invention will be described with reference to the embodiments shown in the drawings. 1 and 2 show the configuration of the load detector, and FIGS. 3 to 7 show the first to fifth embodiments of the tire road surface condition measuring device of the present invention.

図1〜図7に示すように、本発明のタイヤ路面状態測定装置1A〜1Fは、タイヤ(被験タイヤ)10の接地形状と踏面における接地力を、計測用路面11に埋設した荷重検出器21で測定するタイヤ踏面状態測定装置であり、計測用路面11に、1〜3分力を計測する荷重検出器21を埋設して構成した荷重検出帯域20と、タイヤ10のはみ出し検出器30と、速度測定装置40と、測定値記録装置50とを有して構成される。   As shown in FIGS. 1 to 7, the tire road surface state measuring devices 1 </ b> A to 1 </ b> F of the present invention are load detectors 21 in which the ground contact shape of the tire (test tire) 10 and the ground contact force on the tread are embedded in the measurement road surface 11. Is a tire tread surface state measuring device that measures the load on the road surface 11 for measurement, embedded in the load detector 21 for measuring 1 to 3 component forces, and an overhang detector 30 for the tire 10; A velocity measuring device 40 and a measured value recording device 50 are included.

この荷重検出帯域20は、測定の目的に応じて、垂直(Z方向)、前後(X方向)、横方向(Y方向)の内の少なくとも1方向の力を検出する一体型圧電素子式のロードセルを用いて構成された荷重検出器21を計測用路面11に埋設して構成する。   This load detection band 20 is an integrated piezoelectric element type load cell that detects force in at least one of vertical (Z direction), front and rear (X direction), and lateral (Y direction) depending on the purpose of measurement. The load detector 21 configured using the above is embedded in the measurement road surface 11.

この荷重検出器21は、図1や図2に示すように、ロードセル本体21aの周囲を鉄等の設置枠21bで補強すると共に、アルミ製のレプリカ路面21c(図1)や実路面を切り出した路面(切り出し実路面)21d(図2)を上部にプリローディングボルト21eで固定して構成される。つまり、荷重検出器21の頂部に、矩形状に形成された、実際の路面を模擬した疑似路面21c又は切り出した実路面21dを備えて、荷重検出器21を構成する。これにより、より実路面の走行状態に近い状態で、タイヤ10の踏面の状態を測定することができるようになる。なお、このロードセル本体21aと設置枠21bの間には空隙21fが設けられる。   As shown in FIGS. 1 and 2, the load detector 21 reinforces the periphery of the load cell main body 21a with an installation frame 21b such as iron, and cuts out an aluminum replica road surface 21c (FIG. 1) and an actual road surface. A road surface (cut-out actual road surface) 21d (FIG. 2) is fixed to the upper portion with a preloading bolt 21e. In other words, the load detector 21 is configured by including a pseudo road surface 21 c simulating an actual road surface or a cut actual road surface 21 d formed in a rectangular shape at the top of the load detector 21. Thereby, the state of the tread surface of the tire 10 can be measured in a state closer to the traveling state on the actual road surface. A gap 21f is provided between the load cell main body 21a and the installation frame 21b.

この荷重検出器21は、密粒アスファルトコンクリート等で形成される路面11に、プリローディングボルト21eで固定して埋設される。このロードセル21の検出出力は、測定値記録装置50に入力される。そして、荷重検出器21の表面、即ち、アルミ製のレプリカ路面21cの表面や切り出し実路面21dの表面が、この荷重検出器21の周りの路面表面11fと高さが同じになるように配設する。   The load detector 21 is fixed and embedded in a road surface 11 formed of dense-grained asphalt concrete or the like with a preloading bolt 21e. The detection output of the load cell 21 is input to the measured value recording device 50. The surface of the load detector 21, that is, the surface of the replica road surface 21c made of aluminum or the surface of the cut actual road surface 21d is disposed so as to have the same height as the road surface 11f around the load detector 21. To do.

本発明においては、このロードセル本体21aに、応答性が良く、構造面では周囲に柔軟な弾性要素を必要としない、ピエゾや水晶等の圧電式ロードセルを使用して、車両走行時のタイヤ接地部の実際の現象に近い状態で、荷重を計測できるようにする。この圧電式ロードセルとしては、例えば、スイス連邦のKISTLER社製(日本キスラー株式会社販売)の水晶圧電素子3成分力センサー(ロードセル)等を採用することができる。   In the present invention, this load cell main body 21a uses a piezoelectric load cell such as piezo or crystal that has good responsiveness and does not require a flexible elastic element around the structure surface. The load can be measured in a state close to the actual phenomenon. As this piezoelectric load cell, for example, a quartz piezoelectric element three-component force sensor (load cell) manufactured by KISTLER (sold by Nippon Kistler Co., Ltd.) in Switzerland can be used.

そして、荷重検出帯域20は、この荷重検出器21を、その頂面が周囲の計測用路面11の表面11fと高さが同じになるように、かつ、車両走行方向(X方向)と略直交する計測用路面11の横断方向(Y方向)に関して隙間が無くなるように、かつ、車両が静止している状態におけるタイヤ10の接地幅B1より広い範囲に並べて配設して構成する。この荷重検出器21の配列は、前後方向に関しては一列であっても複数列であってもよい。この荷重検出帯域20には、多くの個数の荷重検出器21が必要になるが、より正確で
詳細な計測をするためには、タイヤ10に接触する面が小さい荷重検出器21を配置することが好ましい。
The load detection band 20 is configured so that the top surface of the load detector 21 has the same height as the surface 11f of the surrounding measurement road surface 11 and is substantially orthogonal to the vehicle traveling direction (X direction). The measurement road surface 11 is arranged side by side in a range wider than the ground contact width B1 of the tire 10 so that there is no gap in the transverse direction (Y direction) of the measurement road surface 11 and the vehicle is stationary. The arrangement of the load detectors 21 may be a single row or a plurality of rows in the front-rear direction. A large number of load detectors 21 are required in the load detection zone 20, but in order to perform more accurate and detailed measurement, the load detector 21 having a small surface in contact with the tire 10 should be arranged. Is preferred.

そして、この荷重検出帯域20の両端の外側に、計測用路面11を走行したタイヤ10が荷重検出帯域20をはみ出さずに走行できたか否かを判断するために、タイヤ10の荷重検出帯域20からのはみ出しを検出するはみ出し検出器30を配置する。実際の車両走行では、タイヤ10が正確に荷重検出帯域20内の荷重検出器21の上を通過するとは限らず、また、高速走行時にはタイヤ10の接地幅が小さくなることも考えられるので、荷重検出器21をタイヤ10の接地幅分だけに配置した場合には、タイヤ10が荷重検出帯域20の何処を通過しているか判断できない場合が生じる恐れがある。そこで、はみ出し検出器30をタイヤ10の接地幅Bよりも外側に配置しておく。   In order to determine whether or not the tire 10 that has traveled on the measurement road surface 11 has traveled outside the load detection zone 20 without protruding from the load detection zone 20, the load detection zone 20 of the tire 10 is detected. An overhang detector 30 for detecting the overhang is provided. In actual vehicle travel, the tire 10 does not necessarily pass over the load detector 21 in the load detection band 20 accurately, and the ground contact width of the tire 10 may be reduced during high speed travel. When the detector 21 is arranged only for the contact width of the tire 10, there may be a case where it cannot be determined where the tire 10 passes through the load detection band 20. Therefore, the protrusion detector 30 is arranged outside the ground contact width B of the tire 10.

このはみ出し検出器30は、図3〜図5に示すように、荷重検出器21と同じ荷重検出器を用いても形成してよく、垂直方向だけを検出する1軸の荷重検出器で構成してもよい。また、図6に示すように、タイヤ10が接触したことが分かるタッチセンサ32を用いて形成してもよい。この両側のはみ出し検出器30の接触面は、大きい程よく、小さ過ぎると、タイヤ10の周溝と接地端の区別ができなくなる。   As shown in FIGS. 3 to 5, the protrusion detector 30 may be formed by using the same load detector as the load detector 21, and is constituted by a uniaxial load detector that detects only the vertical direction. May be. Moreover, as shown in FIG. 6, you may form using the touch sensor 32 which understands that the tire 10 contacted. The contact surfaces of the protrusion detectors 30 on both sides are preferably as large as possible, and if they are too small, it is impossible to distinguish between the circumferential groove and the ground contact edge of the tire 10.

そして、この両側のはみ出し検出器30がタイヤ10の押圧力やタイヤ10のタッチを検出した時には、タイヤ10が荷重検出帯域20の外側を走行した可能性があるので、総横力、総前後力、総垂直荷重を正確に求めることができないと判断し、この走行試験のデータは使用しない。   When the protrusion detectors 30 on both sides detect the pressing force of the tire 10 or the touch of the tire 10, there is a possibility that the tire 10 has traveled outside the load detection band 20. Therefore, it is judged that the total vertical load cannot be obtained accurately, and the data of this running test is not used.

また、速度測定装置40は、タイヤ10が荷重検出帯域20を乗り越して通過する時の走行速度Vを測定する手段であり、図3,図5、図6、図7に示すように、レーザー測定器41aと反射鏡41bを走行路面11の両脇に配置した通過検知センサ41を、荷重検出帯域20の前後を挟むように2組、車両進行方向(X方向)に対して測定距離L1(例えば、0.5m)だけ離して設けて、この通過検知センサ41,41における、レーザー光線がタイヤ10により遮られた時刻(又は、この遮りが終了した時刻)t1,t2と、この測定距離L1とから、図示しない演算器で車両及びタイヤ10の走行速度(V=L1/(t2−t1))を算出するように構成される。   Further, the speed measuring device 40 is a means for measuring the traveling speed V when the tire 10 passes over the load detection band 20, and as shown in FIGS. 3, 5, 6, and 7, laser measurement is performed. Two sets of passage detection sensors 41 having a container 41a and a reflecting mirror 41b arranged on both sides of the traveling road surface 11 so as to sandwich the front and rear of the load detection band 20, and a measurement distance L1 with respect to the vehicle traveling direction (X direction) (for example, , 0.5 m) apart from the time t1 and t2 when the laser beam was blocked by the tire 10 in the passage detection sensors 41 and 41 (or the time when this blocking ended) and the measurement distance L1. The travel speed of the vehicle and the tire 10 (V = L1 / (t2-t1)) is calculated by a calculator (not shown).

また、レーザー測定器41aを用いる代りに、図4に示すように、タッチパネルで形成される通過検知センサ42,42を、2組、荷重検出帯域20の後方に測定距離L2だけ離して設けて、この通過検知センサ42,42における、タイヤ10がタッチした時刻t3,t4と、この測定距離L2とから、車両及びタイヤの走行速度(V=L2/(t4−t2))を算出するように構成される。この場合、荷重検出帯域20を挟むように配置するのが好ましいが、図4に示すように荷重検出帯域20の前方又は後方(図4)のどちらか一方側にだけ配置してもよい。但し、荷重検出帯域20とこの速度検出装置40の位置が離れると、走行速度Vの計測誤差が大きくなるので好ましくない。   Further, instead of using the laser measuring instrument 41a, as shown in FIG. 4, two sets of passage detection sensors 42, 42 formed by a touch panel are provided at a distance behind the load detection band 20 by a measurement distance L2, The passage detection sensors 42 and 42 are configured to calculate the vehicle and tire travel speeds (V = L2 / (t4-t2)) from the times t3 and t4 when the tire 10 touches and the measurement distance L2. Is done. In this case, the load detection band 20 is preferably disposed so as to sandwich the load detection band 20, but as shown in FIG. 4, it may be disposed only on either the front side or the rear side (FIG. 4) of the load detection band 20. However, if the load detection band 20 and the position of the speed detection device 40 are separated from each other, a measurement error of the traveling speed V increases, which is not preferable.

そして、図8は速度測定装置40がはみ出し検出器30を兼ねる場合であり、図8(a)に示すように、タッチパネルで形成する通過センサ42,42の幅B2と位置を、タイヤ10が荷重検出帯域20を通過した場合にのみ両方の通過センサ42,42がタイヤ10の通過を検知するように設定する。従って、何方か一方の通過センサ42がタイヤ10の通過を検知しなかった場合には、タイヤ10が荷重検出帯域20を外れたものと判断する。   8 shows a case where the speed measuring device 40 also serves as the protrusion detector 30. As shown in FIG. 8A, the tire 10 is loaded with the width B2 and the position of the passage sensors 42, 42 formed by the touch panel. Only when the detection band 20 is passed, both the passage sensors 42 and 42 are set so as to detect the passage of the tire 10. Therefore, if any one of the passage sensors 42 does not detect the passage of the tire 10, it is determined that the tire 10 is out of the load detection band 20.

この測定値記録装置50は、荷重検出帯域20を構成する荷重検出器21で検出した測定値を時系列で記録すると共に、はみ出し検出器30で検出した測定値、速度測定装置4
0で測定した走行速度等を記録する手段である。この測定値記録装置50は、コンピュータのメモリ等で構成されるデータ記憶装置であり、タイヤ10と荷重検出器21が接触している間に、少なくとも5点以上記録ができる装置が好ましい。
The measurement value recording device 50 records the measurement values detected by the load detector 21 constituting the load detection band 20 in time series, and the measurement values detected by the protrusion detector 30 and the velocity measurement device 4.
It is a means for recording the running speed measured at zero. The measured value recording device 50 is a data storage device composed of a computer memory or the like, and is preferably a device capable of recording at least five points while the tire 10 and the load detector 21 are in contact.

例えば、車両が100km/hの走行速度で走行し、接地長さが120mmである場合に、5点測定できるためのには、120/5=24mm毎に計測する必要があるが、この場合には、0.864msより短い時間間隔で計測及び測定値の記録ができることが必要となる。   For example, when the vehicle travels at a speed of 100 km / h and the contact length is 120 mm, it is necessary to measure every 120/5 = 24 mm in order to be able to measure 5 points. Needs to be able to measure and record measurement values at time intervals shorter than 0.864 ms.

更に、図8に示すように、計測用路面11に、荷重検出器21に接したタイヤ10の位置が分かるように、通過時にタイヤ10の一部、例えば、タイヤトレッド部又はサイド部に印を付けるマーカー器43を設けると、実際に荷重検出帯域を通過したタイヤのトレッドパターン部分を特定できるようになる。図8の構成では、タッチパネルで形成する通過センサ42,42の一方の上面に、塗料を付けたブラシを設けてマーカー器43を構成している。   Furthermore, as shown in FIG. 8, a part of the tire 10, for example, a tire tread portion or a side portion is marked when passing so that the position of the tire 10 in contact with the load detector 21 can be seen on the measurement road surface 11. When the marker device 43 to be attached is provided, the tread pattern portion of the tire that has actually passed through the load detection band can be specified. In the configuration of FIG. 8, the marker unit 43 is configured by providing a brush with paint on one upper surface of the passage sensors 42, 42 formed by a touch panel.

次に、図3〜図8の第1〜第6の実施の形態のタイヤ路面状態測定装置1A〜1Fについて説明する。   Next, the tire road surface state measuring apparatuses 1A to 1F according to the first to sixth embodiments of FIGS. 3 to 8 will be described.

そして、図3の第1の実施の形態のタイヤ路面状態測定装置1Aの構成では、上下、前後の2方向の力を検出する荷重検出器21を10個、横方向(方向)に1列で隙間無く並べて配置し、8個の荷重検出器21で荷重検出帯域20を構成し、両端の荷重検出器21でタイヤのはみ出し検出器30を構成している。また、速度検出装置40は、レーザー測定器41aと反射鏡41bとからなる通過検知センサ41の2組のセンサと演算器で構成している。   In the configuration of the tire road surface state measuring apparatus 1A according to the first embodiment shown in FIG. 3, ten load detectors 21 for detecting forces in two directions, up and down and front and rear, are arranged in a row in the lateral direction (direction). They are arranged side by side without a gap, and the load detection band 20 is constituted by the eight load detectors 21, and the tire protrusion detector 30 is constituted by the load detectors 21 at both ends. Further, the speed detection device 40 includes two sets of sensors, that is, a passage detection sensor 41 including a laser measuring instrument 41a and a reflecting mirror 41b, and an arithmetic unit.

図4の第2の実施の形態のタイヤ路面状態測定装置1Bの構成では、上下、前後の2方向の力を検出する荷重検出器21を10個、横方向(方向)二列に互い違いに距離L3離して並べて配置し、8個の荷重検出器21で荷重検出帯域20を構成し、両端の荷重検出器21でタイヤのはみ出し検出器30を構成している。なお、速度検出装置40は、荷重検出帯域20の後方に測定距離L2だけ離して設けた2組のタッチパネル42と演算器で構成している。   In the configuration of the tire road surface state measuring device 1B according to the second embodiment in FIG. 4, ten load detectors 21 for detecting forces in two directions, up and down and front and rear, are alternately arranged in two lateral (direction) rows. L8 is arranged side by side, the load detection zone 20 is configured by the eight load detectors 21, and the tire protrusion detector 30 is configured by the load detectors 21 at both ends. The speed detection device 40 is composed of two sets of touch panels 42 and a computing unit provided behind the load detection band 20 by a measurement distance L2.

図5の第3の実施の形態のタイヤ路面状態測定装置1Cの構成では、上下、前後、横の3方向の力を検出する荷重検出器21を10個、横方向(方向)二列に互い違いに距離L4離して並べて配置し、8個の荷重検出器21で荷重検出帯域20を構成し、両端の上下1方向の荷重検出器21でタイヤのはみ出し検出器30を構成している。なお、速度検出装置40は、図3と同様に、レーザー測定器41aと反射鏡41bとからなる通過検知センサ41の2組のセンサと演算器で構成している。   In the configuration of the tire road surface state measuring device 1C according to the third embodiment shown in FIG. 5, ten load detectors 21 for detecting forces in the three directions of up, down, front, back, and side are alternately arranged in two rows in the horizontal direction (direction). Are arranged side by side at a distance L4, the load detector band 20 is constituted by the eight load detectors 21, and the tire protrusion detector 30 is constituted by the load detectors 21 in the vertical direction at both ends. In addition, the speed detection apparatus 40 is comprised with two sets of sensors and the calculator of the passage detection sensor 41 which consists of the laser measuring device 41a and the reflective mirror 41b similarly to FIG.

図6の第4の実施の形態のタイヤ路面状態測定装置1Dの構成は、レプリカ路面21cや切り出し実路面21dをロードセル本体11aよりも小さく形成した場合の構成であり、このタイヤ10の力を受ける部分を連続して配設することができないので、路面部分が小さな面積の荷重検出器21を数多く横方向(Y方向)に配置する。この場合に、位置のずれ量L5は既知であるので、この距離L5を走行速度Vを考慮し、時間軸をずらすことにより同時性を保つことができる。   The configuration of the tire road surface condition measuring device 1D of the fourth embodiment in FIG. 6 is a configuration in which the replica road surface 21c and the cut actual road surface 21d are formed smaller than the load cell body 11a, and receives the force of the tire 10. Since the portions cannot be continuously arranged, a large number of load detectors 21 having a small road surface area are arranged in the lateral direction (Y direction). In this case, since the positional shift amount L5 is known, simultaneity can be maintained by shifting the distance L5 in consideration of the traveling speed V and the time axis.

つまり、3方向の力を検出する荷重検出器21を16個、横方向(方向)に5列で距離L5(例えば、5mm)づつ離して並べて配置し、16個の荷重検出器21で荷重検出帯域20を構成し、この荷重検出帯域20の両端にタッチパネル32を設けてタイヤのはみ
出し検出器30を構成している。なお、速度検出装置40は、図3と同様に、レーザー測定器41aと反射鏡41bとからなる通過検知センサ41の2組のセンサと演算器で構成している。
In other words, 16 load detectors 21 for detecting force in three directions are arranged side by side by a distance L5 (for example, 5 mm) in five rows in the lateral direction (direction), and load detection is performed by the 16 load detectors 21. A band 20 is configured, and a touch panel 32 is provided at both ends of the load detection band 20 to configure a tire protrusion detector 30. In addition, the speed detection apparatus 40 is comprised with two sets of sensors and the calculator of the passage detection sensor 41 which consists of the laser measuring device 41a and the reflective mirror 41b similarly to FIG.

図7の第5の実施の形態のタイヤ路面状態測定装置1Eの構成は、レプリカ路面21cや切り出し実路面21dをロードセル本体11aよりも大きく形成した場合の構成であり、この部分を連続して配設することができるので、横方向(Y方向)に連続して配置する。   The configuration of the tire road surface state measuring device 1E according to the fifth embodiment of FIG. 7 is a configuration in which the replica road surface 21c and the cut actual road surface 21d are formed larger than the load cell main body 11a. Therefore, it arrange | positions continuously in a horizontal direction (Y direction).

つまり、3方向の力を検出する荷重検出器21を16個、横方向(方向)一列に並べて配置し、16個の荷重検出器21で荷重検出帯域20を構成し、この荷重検出帯域20の両端にタッチパネル32を設けてタイヤのはみ出し検出器30を構成している。なお、速度検出装置40は、図3と同様に、レーザー測定器41aと反射鏡41bとからなる通過検知センサ41の2組のセンサと演算器で構成している。   That is, 16 load detectors 21 that detect forces in three directions are arranged in a row in the lateral direction (direction), and the load detection band 20 is configured by the 16 load detectors 21. A touch panel 32 is provided at both ends to constitute a tire protrusion detector 30. In addition, the speed detection apparatus 40 is comprised with two sets of sensors and the calculator of the passage detection sensor 41 which consists of the laser measuring device 41a and the reflective mirror 41b similarly to FIG.

図8の第6の実施の形態のタイヤ路面状態測定装置1Fの構成は、速度測定装置がはみ出し検出器を兼ねる場合であり、図8(a)に示すように、タッチパネルで形成する通過センサ42,42の幅Bと位置を、タイヤ10が荷重検出帯域20を通過した場合にのみ両方の通過センサ42,42がタイヤ10の通過を検知するように設定される。   The configuration of the tire road surface state measuring device 1F of the sixth embodiment in FIG. 8 is a case where the speed measuring device also serves as a protrusion detector, and as shown in FIG. 8A, a passage sensor 42 formed by a touch panel. , 42 is set so that both the passage sensors 42, 42 detect the passage of the tire 10 only when the tire 10 passes through the load detection band 20.

また、この実施の形態では、図8(b)に示すように、タッチパネルで形成する通過センサ42,42の一方の上面に、塗料を付けたブラシを設けてマーカー器43を構成し、このマーカー器43の上を通過したタイヤ10に塗料の印が付くようにしている。この塗料はタイヤ10のタイヤトレッド部の幅方向に付着し、タイヤ10の踏面部分の塗料は消えるが、溝部分に付着した塗料は残るので、マーカー器43と荷重検出帯域20との距離L6と走行速度Vとから、実際に荷重検出帯域20を通過したタイヤ10のトレッドパターン部分を特定できる。   Further, in this embodiment, as shown in FIG. 8B, a marker device 43 is configured by providing a brush with paint on one upper surface of the passage sensors 42, 42 formed by a touch panel. The tire 10 that has passed over the vessel 43 is marked with paint. This paint adheres in the width direction of the tire tread portion of the tire 10 and the paint on the tread portion of the tire 10 disappears, but the paint adhered to the groove portion remains, so the distance L6 between the marker device 43 and the load detection band 20 From the traveling speed V, the tread pattern portion of the tire 10 that has actually passed through the load detection band 20 can be specified.

なお、特に図示しないが、はみ出し検出器30を設ける代わりに、計測用路面11に、車両又はタイヤ10の走行位置を規制するガイドレールを設けると、走行方向や走行条件が制限されるが、確実にタイヤ10が荷重検出帯域20内を通過するようにすることができる。   Although not particularly shown, if a guide rail that restricts the travel position of the vehicle or the tire 10 is provided on the measurement road surface 11 instead of providing the overhang detector 30, the travel direction and travel conditions are limited. In addition, the tire 10 can pass through the load detection zone 20.

次に、上記の構成のタイヤ路面状態測定装置1A〜1Fにおけるタイヤ路面状態測定方法について説明する。   Next, a tire road surface state measuring method in the tire road surface state measuring apparatuses 1A to 1F having the above-described configuration will be described.

車両を走行させて、タイヤ10が走行路面11上を通過するようにすると共に、その時の荷重検出器21、はみ出し検出器30、速度測定装置の各出力を測定値記録装置で記録する。   The vehicle is caused to travel so that the tire 10 passes on the traveling road surface 11, and the outputs of the load detector 21, the protrusion detector 30, and the speed measuring device at that time are recorded by the measured value recording device.

そして、データ解析の第1ステップでは、はみ出し検出器30の検出値を基に、計測用路面11を走行したタイヤ10が荷重検出帯域20をはみ出したことを検出したか否かを判定する。この判定において、はみ出し検出器30が力又はタイヤ10のタッチを検出し、タイヤ10のはみ出しを検出した場合には、その測定を無効にする。この場合は、この測定は無効であるとして第2ステップ以下の分析作業を行わない。   In the first step of data analysis, it is determined based on the detection value of the protrusion detector 30 whether or not it has been detected that the tire 10 traveling on the measurement road surface 11 has protruded from the load detection band 20. In this determination, when the overhang detector 30 detects a force or a touch of the tire 10 and detects the overhang of the tire 10, the measurement is invalidated. In this case, this measurement is invalid and the analysis work after the second step is not performed.

そして、第1ステップの判定において、はみ出し検出器30が力及びタイヤ10のタッチを検出せず、タイヤ10のはみ出しを検出しなかった場合には、イヤ20が荷重検出帯域20を通過していると判断し、この測定を有効とし、次の第2ステップから第4ステップを実行する。   In the determination of the first step, when the protrusion detector 30 does not detect the force and the touch of the tire 10 and does not detect the protrusion of the tire 10, the ear 20 passes through the load detection band 20. The measurement is validated, and the following second to fourth steps are executed.

第2ステップでは、速度測定装置40で測定したタイヤ走行速度Vから、荷重検出器21で検出し測定値記録装置50で記録する測定時間間隔の間に、タイヤ10が進む距離を求める。   In the second step, the distance traveled by the tire 10 is obtained from the tire running speed V measured by the speed measuring device 40 during the measurement time interval detected by the load detector 21 and recorded by the measured value recording device 50.

また、第3ステップでは、荷重検出器21の各々で測定した時系列測定値の各計測時期を、車両走行方向のタイヤ10の進行位置に換算する。つまり、走行速度Vから荷重検出器のサンプリング時間をタイヤ10の移動位置に換算して、荷重検出器21で計測した時系列の測定値を、接地位置系列に変換する。   Further, in the third step, each measurement time of the time series measurement value measured by each of the load detectors 21 is converted into a traveling position of the tire 10 in the vehicle traveling direction. That is, the sampling time of the load detector is converted into the moving position of the tire 10 from the traveling speed V, and the time series measurement values measured by the load detector 21 are converted into the ground contact position series.

そして、荷重検出器21が、前後方向、即ち、タイヤ走行方向にずれて配設されている場合には、第3ステップに続けて設けられる補正ステップで、荷重検出器21の配置のずれの分だけ、時系列測定値の各計測時期に対応する進行位置を補正する。つまり、測定値をそのずれている距離ずらして車両の走行方向と直交する方向に同時性を持つように補正する。この補正ステップを備えて構成することにより、荷重検出器21を、タイヤ進行方向にずれて配置した場合でも対応できる。   And when the load detector 21 is displaced in the front-rear direction, that is, in the tire traveling direction, a correction step provided subsequent to the third step is the amount of displacement of the load detector 21. Only the travel position corresponding to each measurement time of the time series measurement value is corrected. In other words, the measured value is shifted by the shifted distance so that the measurement value is corrected so as to have simultaneity in the direction orthogonal to the vehicle traveling direction. By configuring with this correction step, it is possible to cope with the case where the load detector 21 is arranged shifted in the tire traveling direction.

第4ステップでは、荷重検出器21の各々における、横断方向の位置と、時系列測定値の各計測時期に対応する進行位置とから、接地位置系列の平面座標位置が定まり、この平面座標と時系列測定値とから、タイヤの接地形状、タイヤ踏面内における力の分布を求める。接地形状は荷重検出器21が垂直方向の力を検知した部分はタイヤが接地しているところであるので、その輪郭線を結ぶことで求めることができる。また、タイヤ踏面内の力の分布やベクトルは、平面座標で時系列測定値の力やベクトルを表示することにより求められる。   In the fourth step, the plane coordinate position of the ground contact position series is determined from the position in the transverse direction in each of the load detectors 21 and the advance position corresponding to each measurement time of the time series measurement value. From the series measurement values, the ground contact shape of the tire and the force distribution in the tire tread are obtained. The ground contact shape can be obtained by connecting the contour line since the portion where the load detector 21 detects the force in the vertical direction is where the tire is grounded. Also, the force distribution and the vector in the tire tread are obtained by displaying the force and the vector of the time series measurement value in the plane coordinates.

これらの各ステップの実行により、車両走行時のタイヤ接地路面内での力分布、接地形状、特に、高速走行時の接地形状の変化や荷重分布、制動・駆動時の荷重分布や前後力分布、旋回時の接地形状、横力分布、及び、湿潤時の接地形状、荷重分布、前後力分布を測定することができるようになる。   By executing each of these steps, the force distribution on the tire ground contact surface during vehicle travel, the contact shape, especially the change in the contact shape and load distribution during high speed travel, the load distribution and front / rear force distribution during braking and driving, It is possible to measure the ground contact shape, lateral force distribution during turning, and the contact shape, load distribution, and longitudinal force distribution during wetness.

また、第1ステップで、はみ出し検出器30がタイヤ10のはみ出しを検出した場合に測定を無効にするので、詳細な解析無しでも測定の成否を判定でき、測定全体を迅速に進めることができるようになる。   Further, in the first step, the measurement is invalidated when the protrusion detector 30 detects the protrusion of the tire 10, so that the success or failure of the measurement can be determined without detailed analysis, and the entire measurement can be advanced promptly. become.

図3の第1の実施の形態のタイヤ路面状態測定装置1Aで、10kHz(0.1ms)で測定値のサンプリングをし、2つの通過検知センサ41,41の間(L1=0.5m)をΔt、例えば0.018sで通過したとすれば、走行速度V(=L1/Δt)は、27.778m/s、即ち、100km/hと計算できる。従って、0.1msの間に、タイヤ10は2.78mm(ΔL)走行したことになるので、ある荷重検出器21が荷重を検知した時間、即ち、タイヤ10が接地していた時間が、Δt2、例えば、14.5msであった場合には、接地長さLs(=ΔL×Δt2)は、125mmとなる。   In the tire road surface state measuring apparatus 1A according to the first embodiment shown in FIG. 3, the measurement value is sampled at 10 kHz (0.1 ms), and the distance between the two passage detection sensors 41 and 41 (L1 = 0.5 m) is measured. If the vehicle passes at Δt, for example, 0.018 s, the traveling speed V (= L1 / Δt) can be calculated as 27.778 m / s, that is, 100 km / h. Accordingly, since the tire 10 has traveled 2.78 mm (ΔL) within 0.1 ms, the time when a certain load detector 21 detects the load, that is, the time when the tire 10 is in contact with the ground is Δt2. For example, in the case of 14.5 ms, the ground contact length Ls (= ΔL × Δt2) is 125 mm.

これを、各荷重検出器21に対して演算し、タイヤ幅方向(Y方向)に展開していくと、同時性も加味して、時間波形を,タイヤ踏面内の位置に換算し直すことにより、タイヤ踏面部分の荷重分布を得ることができる。この走行中の踏面内荷重分布(上下力)の結果を図9に示す。また、前後方向力についても同様にして荷重分布を得ることができる。   When this is calculated for each load detector 21 and deployed in the tire width direction (Y direction), the time waveform is converted back to the position within the tire tread, taking into account the simultaneity. The load distribution on the tire tread surface can be obtained. FIG. 9 shows the result of the load distribution (vertical force) in the tread during traveling. Similarly, the load distribution can be obtained for the longitudinal force.

更に、駆動走行、制動走行も、区間内で定常走行しているとして、制動力分布、駆動力分布を得ることができる。   Furthermore, it is possible to obtain the braking force distribution and the driving force distribution, assuming that the driving traveling and the braking traveling are also steady traveling in the section.

図4の第2の実施の形態のタイヤ路面状態測定装置1Bで、10kHz(0.1ms)で測定値のサンプリングをし、タッチセンサ42,42の間(L2=0.3m)をΔt、例えば0.0108sで通過したとすれば、走行速度V(=L2/Δt)は、27.778m/s、即ち、100km/hと計算できる。   In the tire road surface state measuring apparatus 1B of the second embodiment shown in FIG. 4, the measured value is sampled at 10 kHz (0.1 ms), and Δt, for example, between the touch sensors 42 and 42 (L2 = 0.3 m) If the vehicle passes at 0.0108 s, the traveling speed V (= L2 / Δt) can be calculated as 27.778 m / s, that is, 100 km / h.

この第2の実施の形態のタイヤ路面状態測定装置1Bでは、荷重検出帯域20の荷重検出器21は、前後方向にL3(例えば、20mm)ずらして配設されているので、0.0007sのずれが生じ、これを補正することにより、同時性を保つことができる。   In the tire road surface state measuring apparatus 1B according to the second embodiment, the load detector 21 in the load detection zone 20 is disposed by being shifted by L3 (for example, 20 mm) in the front-rear direction. By correcting this, simultaneity can be maintained.

この旋回中の踏面内横力分布の結果を図10に示す。また、上下方向力についても同様にして荷重分布を得ることができる。また,湿潤路面でも同様である。   The result of the lateral force distribution in the tread during turning is shown in FIG. Similarly, the load distribution can be obtained for the vertical force. The same applies to wet road surfaces.

図5の第3の実施の形態のタイヤ路面状態測定装置1Cで、10kHz(0.1ms)で測定値のサンプリングをし、2つの通過検知センサ41,41の間(L1=0.5m)をΔt、例えば0.018sで通過したとすれば、走行速度V(=L1/Δt)は、27.778m/s、即ち、100km/hと計算できる。従って、0.1msの間に、タイヤ10は2.78mm(ΔL)走行したことになる。   In the tire road surface state measuring apparatus 1C according to the third embodiment of FIG. 5, the measured value is sampled at 10 kHz (0.1 ms), and the distance between the two passage detection sensors 41 and 41 (L1 = 0.5 m) is measured. If the vehicle passes at Δt, for example, 0.018 s, the traveling speed V (= L1 / Δt) can be calculated as 27.778 m / s, that is, 100 km / h. Therefore, the tire 10 traveled 2.78 mm (ΔL) during 0.1 ms.

この第3の実施の形態のタイヤ路面状態測定装置1Cでは、荷重検出帯域20の荷重検出器21は、前後方向にL4(例えば、30mm)ずらして配設されているので、0.0011sのずれが生じ、これを補正することにより、同時性を保つことができる。   In the tire road surface state measuring device 1C according to the third embodiment, the load detector 21 in the load detection zone 20 is disposed by being shifted by L4 (for example, 30 mm) in the front-rear direction, so that a deviation of 0.0011 s is achieved. By correcting this, simultaneity can be maintained.

この制動中の踏面内前後力分布の結果を図11に示す。また、上下方向力についても同様にして荷重分布を得ることができる。また,湿潤路面でも同様である。   The result of the longitudinal force distribution in the tread during braking is shown in FIG. Similarly, the load distribution can be obtained for the vertical force. The same applies to wet road surfaces.

図12に、図8の第6の実施の形態のタイヤ路面状態測定装置1Fで得た、タイヤ進行方向(X方向)と横方向(Y方向)の力の分布をベクトル表示した結果を示す。このタイヤ路面状態測定装置1Fでは、通過センサ42の上面に設けたブラシ43で、この上を通過したタイヤ10に塗料の印を付着させて、ブラシ43と荷重検出帯域20との距離L6と走行速度Vとから、実際に荷重検出帯域20を通過したタイヤ10の部分を特定できる。   FIG. 12 shows the results of vector display of the force distribution in the tire traveling direction (X direction) and the lateral direction (Y direction) obtained by the tire road surface condition measuring apparatus 1F of the sixth embodiment in FIG. In the tire road surface state measuring apparatus 1F, a brush 43 provided on the upper surface of the passage sensor 42 is used to attach a mark of paint to the tire 10 that has passed thereabove, so that the distance L6 between the brush 43 and the load detection band 20 and travel From the speed V, the portion of the tire 10 that has actually passed through the load detection zone 20 can be identified.

従って、図12の路面上のタイヤ接地部分と、タイヤ10の接地部分のトレッドパターンとを重ね合わせることができるので、タイヤのパターン開発や構造開発に役立つより詳細な情報を得ることができる。   Accordingly, since the tire contact portion on the road surface in FIG. 12 and the tread pattern of the contact portion of the tire 10 can be overlapped, more detailed information useful for tire pattern development and structure development can be obtained.

本発明の実施の形態の荷重検出器の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the load detector of embodiment of this invention. 本発明の他の実施の形態の荷重検出器の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the load detector of other embodiment of this invention. 本発明の第1の実施の形態のタイヤ路面状態測定装置の構成を示す平面図である。It is a top view which shows the structure of the tire road surface state measuring apparatus of the 1st Embodiment of this invention. 本発明の第2の実施の形態のタイヤ路面状態測定装置の構成を示す平面図である。It is a top view which shows the structure of the tire road surface state measuring apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態のタイヤ路面状態測定装置の構成を示す平面図である。It is a top view which shows the structure of the tire road surface state measuring apparatus of the 3rd Embodiment of this invention. 本発明の第4の実施の形態のタイヤ路面状態測定装置の構成を示す平面図である。It is a top view which shows the structure of the tire road surface state measuring apparatus of the 4th Embodiment of this invention. 本発明の第5の実施の形態のタイヤ路面状態測定装置の構成を示す平面図である。It is a top view which shows the structure of the tire road surface state measuring apparatus of the 5th Embodiment of this invention. 本発明の第6の実施の形態のタイヤ路面状態測定装置の構成を示す平面図である。It is a top view which shows the structure of the tire road surface state measuring apparatus of the 6th Embodiment of this invention. 走行中の踏面内荷重分布(上下力)の結果を示す図である。It is a figure which shows the result of the load distribution (up-down force) in the tread during driving | running | working. 旋回中の踏面内横力分布の結果を示す図である。It is a figure which shows the result of lateral force distribution in the tread during turning. 制動中の踏面内前後力分布の結果を示す図である。It is a figure which shows the result of the longitudinal force distribution in the tread during braking. タイヤ進行方向と横方向の力の分布をベクトル表示した結果を示す図である。It is a figure which shows the result of carrying out the vector display of the distribution of force of a tire advancing direction and a horizontal direction.

符号の説明Explanation of symbols

1A〜1F タイヤ路面状態測定装置
10 タイヤ
11 走行路面
11f 路面表面
20 荷重検出帯域
21 荷重検出器
21a ロードセル本体
21b 設置枠
21c レプリカ路面
21d 切り出し実路面
21e プリローディングボルト
21f 空隙
30 はみ出し検出器
31 荷重検出センサ
32 タッチセンサ
41a レーザー測定器
41b 反射鏡
41 通過検知センサ(レーザー測定器)
42 通過検知センサ(タッチパネル)
50 測定値記録装置
DESCRIPTION OF SYMBOLS 1A-1F Tire road surface state measuring apparatus 10 Tire 11 Traveling road surface 11f Road surface 20 Load detection zone 21 Load detector 21a Load cell main body 21b Installation frame 21c Replica road surface 21d Cutout actual road surface 21e Preloading bolt 21f Air gap 30 Projection detector 31 Load detection Sensor 32 Touch sensor 41a Laser measuring instrument 41b Reflector 41 Passing detection sensor (laser measuring instrument)
42 Passage detection sensor (touch panel)
50 Measurement value recording device

Claims (8)

タイヤの接地形状と踏面における接地力を、計測用路面に埋設した荷重検出器で測定するタイヤ踏面状態測定装置において、
前記荷重検出器を垂直、前後、横方向の内の少なくとも1方向の力を検出する一体型圧電素子式のロードセルを用いて構成すると共に、前記荷重検出器を、その頂面が周囲の計測用路面の表面と高さが同じになるように、かつ、車両走行方向と略直交する計測用路面の横断方向に関して、車両が静止している状態におけるタイヤの接地幅より広い範囲に並べて埋設して荷重検出帯域を構成し、
該荷重検出帯域の両端の外側に、計測用路面を走行したタイヤが前記荷重検出帯域をはみ出したことを検出するはみ出し検出器を配置すると共に、タイヤが前記荷重検出帯域を通過する時の走行速度を測定する速度測定装置と、前記荷重検出器で検出した測定値を時系列で記録する測定値記録装置を備えたことを特徴とするタイヤ踏面状態測定装置。
In the tire tread condition measurement device that measures the ground contact shape of the tire and the contact force on the tread with a load detector embedded in the road surface for measurement,
The load detector is configured using an integrated piezoelectric element type load cell that detects a force in at least one of vertical, front-rear, and lateral directions, and the load detector is used for measuring the top surface of the load detector. The surface of the road surface is the same as the height of the road surface, and with respect to the transverse direction of the measurement road surface that is substantially perpendicular to the vehicle running direction, it is embedded in a range wider than the ground contact width of the tire when the vehicle is stationary. Configure the load detection band,
A run-out detector that detects that the tire that has traveled on the measurement road surface has protruded from the load detection band is disposed outside both ends of the load detection band, and the traveling speed when the tire passes the load detection band. A tire tread surface state measuring device, comprising: a speed measuring device for measuring the tire pressure; and a measured value recording device for recording the measured value detected by the load detector in time series.
前記荷重検出器の頂面を車両走行方向と略直交する計測用路面の横断方向に関して隙間無く並べたことを特徴とする請求項1記載のタイヤ踏面状態測定装置。   2. The tire tread surface state measuring apparatus according to claim 1, wherein the top surfaces of the load detectors are arranged without a gap in a transverse direction of a measurement road surface substantially orthogonal to the vehicle traveling direction. 前記荷重検出器の頂部に、矩形状に形成された、実際の路面を模擬した疑似路面又は切り出した実路面を備えて、前記荷重検出器を構成したことを特徴とする請求項1又は2記載のタイヤ踏面状態測定装置。   The load detector is configured to include a pseudo road surface or a cut out actual road surface that is formed in a rectangular shape and that simulates an actual road surface at the top of the load detector. Tire tread condition measuring device. 前記はみ出し検出器を、前記荷重検出器と同じ荷重検出器、又は、タッチパネルで形成したことを特徴とする請求項1〜3のいずれか1項に記載のタイヤ踏面状態測定装置。   The tire tread surface state measuring apparatus according to any one of claims 1 to 3, wherein the protrusion detector is formed of the same load detector as the load detector or a touch panel. 前記計測用路面に、荷重検出器に接したタイヤの位置が分かるように、通過時にタイヤの一部に印を付けるマーカー器を設けたことを特徴とする請求項1〜4のいずれか1項に記載のタイヤ踏面状態測定装置。   The marker device for marking a part of the tire when passing so that the position of the tire in contact with the load detector can be understood on the road surface for measurement. The tire tread surface state measuring device according to 1. 前記はみ出し検出器を設ける代わりに、前記計測用路面に、車両又はタイヤの走行位置を規制するガイドレールを設けたことを特徴とする請求項1,2,3又は5のいずれか1項に記載のタイヤ踏面状態測定装置。   The guide rail which regulates the running position of a vehicle or a tire was provided in the measurement road surface instead of providing the protrusion detector, The above-mentioned any one of Claims 1, 2, 3 or 5 characterized by the above-mentioned. Tire tread condition measuring device. 前記請求項1〜5のいずれか1項に記載のタイヤ踏面状態測定装置において、
前記はみ出し検出器の検出値を基に、計測用路面を走行したタイヤが前記荷重検出帯域をはみ出したことを検出しなかったか否かを判定する第1ステップと、
前記速度測定装置で測定したタイヤ走行速度から、前記荷重検出器で検出し測定値記録装置で記録する測定時間間隔の間に、タイヤが進む距離を求める第2ステップと、
前記荷重検出器の各々で測定した時系列測定値の各計測時期を、車両走行方向のタイヤの進行位置に換算する第3ステップと、
前記荷重検出器の各々における、横断方向の位置と、前記時系列測定値の各計測時期に対応する前記進行位置と、前記時系列測定値とから、タイヤの接地形状、タイヤ踏面内における力の分布を求める第4ステップを有するタイヤ踏面状態測定方法。
In the tire tread surface state measuring device according to any one of claims 1 to 5,
A first step of determining whether or not a tire that has traveled on a measurement road surface has protruded from the load detection band based on a detection value of the protrusion detector;
A second step of determining a distance traveled by the tire during a measurement time interval detected by the load detector and recorded by the measurement value recording device from the tire running speed measured by the speed measuring device;
A third step of converting each measurement timing of the time-series measurement values measured by each of the load detectors into a traveling position of the tire in the vehicle traveling direction;
From each of the load detectors, the position in the transverse direction, the advance position corresponding to each measurement time of the time series measurement value, and the time series measurement value, the contact shape of the tire, the force in the tire tread A tire tread surface state measuring method including a fourth step for obtaining a distribution.
前記荷重検出器が、タイヤ走行方向にずれて配設されている場合に、このずれの分だけ、前記時系列測定値の各計測時期に対応する前記進行位置を補正する補正ステップを備えた請求項7記載のタイヤ踏面状態測定方法。
And a correction step of correcting the traveling position corresponding to each measurement time of the time-series measurement value by an amount corresponding to the deviation when the load detector is arranged to be shifted in the tire traveling direction. Item 8. The tire tread surface state measuring method according to Item 7.
JP2003332755A 2003-09-25 2003-09-25 Tire tread surface measuring device and measuring method Expired - Lifetime JP4367613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332755A JP4367613B2 (en) 2003-09-25 2003-09-25 Tire tread surface measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332755A JP4367613B2 (en) 2003-09-25 2003-09-25 Tire tread surface measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2005096595A true JP2005096595A (en) 2005-04-14
JP4367613B2 JP4367613B2 (en) 2009-11-18

Family

ID=34460964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332755A Expired - Lifetime JP4367613B2 (en) 2003-09-25 2003-09-25 Tire tread surface measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP4367613B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111691A (en) * 2006-10-30 2008-05-15 Kamacho Scale Co Ltd Vehicle weight measuring apparatus
JP2009516838A (en) * 2005-11-22 2009-04-23 シェーファー・フランク・ハー Detecting device for tire depth and shape, vehicle speed and ground clearance during running
JP2013238565A (en) * 2012-05-17 2013-11-28 Bridgestone Corp Tire tread grounding part measuring instrument, and tire tread grounding part measurement method
JP2013246008A (en) * 2012-05-24 2013-12-09 Bridgestone Corp Device for measuring contact patch of tire tread and method for measuring contact patch of tire tread
JP2015168362A (en) * 2014-03-07 2015-09-28 株式会社ブリヂストン Method for estimating road surface state
JP2016537639A (en) * 2013-08-19 2016-12-01 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Ground consolidation image
JP2017513003A (en) * 2014-03-31 2017-05-25 アンスティテュ フランセ デ シアンス エ テクノロジ デ トランスポール, ドゥ ラメナジュマン エ デ レゾ Acquirer, Acquiring Device Manufacturing Method and Force Measuring Method
JP2018031688A (en) * 2016-08-25 2018-03-01 株式会社エー・アンド・デイ Grounding force measurement device and method of tire
JP2018031689A (en) * 2016-08-25 2018-03-01 株式会社エー・アンド・デイ Grounding force measuring method of tire
JP2018054492A (en) * 2016-09-29 2018-04-05 株式会社Subaru Load distribution measurement device of vehicle
JP2018080974A (en) * 2016-11-15 2018-05-24 東洋ゴム工業株式会社 Grounding characteristics measuring method, and measuring device, for tire
KR101907495B1 (en) * 2016-11-04 2018-10-12 넥센타이어 주식회사 Apparatus for evaluating tire through piezoelectric thin-film
JP2019113511A (en) * 2017-12-26 2019-07-11 住友ゴム工業株式会社 Tire evaluation method
CN116358760A (en) * 2023-06-01 2023-06-30 深圳亿维锐创科技股份有限公司 Method, device, equipment and storage medium for measuring load distribution of vehicle tyre

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095079B1 (en) * 2015-10-01 2017-03-15 株式会社エー・アンド・デイ Tire testing equipment

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516838A (en) * 2005-11-22 2009-04-23 シェーファー・フランク・ハー Detecting device for tire depth and shape, vehicle speed and ground clearance during running
JP2008111691A (en) * 2006-10-30 2008-05-15 Kamacho Scale Co Ltd Vehicle weight measuring apparatus
JP2013238565A (en) * 2012-05-17 2013-11-28 Bridgestone Corp Tire tread grounding part measuring instrument, and tire tread grounding part measurement method
JP2013246008A (en) * 2012-05-24 2013-12-09 Bridgestone Corp Device for measuring contact patch of tire tread and method for measuring contact patch of tire tread
JP2016537639A (en) * 2013-08-19 2016-12-01 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー Ground consolidation image
JP2015168362A (en) * 2014-03-07 2015-09-28 株式会社ブリヂストン Method for estimating road surface state
JP2017513003A (en) * 2014-03-31 2017-05-25 アンスティテュ フランセ デ シアンス エ テクノロジ デ トランスポール, ドゥ ラメナジュマン エ デ レゾ Acquirer, Acquiring Device Manufacturing Method and Force Measuring Method
US10989612B2 (en) 2014-03-31 2021-04-27 Institut Francais Des Sciences Et Technologies Des Transport, De L'amenagement Et Des Reseaux Sensor with a plurality of acquisition devices that measure force using impedance
JP2018031689A (en) * 2016-08-25 2018-03-01 株式会社エー・アンド・デイ Grounding force measuring method of tire
JP2018031688A (en) * 2016-08-25 2018-03-01 株式会社エー・アンド・デイ Grounding force measurement device and method of tire
JP2018054492A (en) * 2016-09-29 2018-04-05 株式会社Subaru Load distribution measurement device of vehicle
KR101907495B1 (en) * 2016-11-04 2018-10-12 넥센타이어 주식회사 Apparatus for evaluating tire through piezoelectric thin-film
JP2018080974A (en) * 2016-11-15 2018-05-24 東洋ゴム工業株式会社 Grounding characteristics measuring method, and measuring device, for tire
WO2018092334A1 (en) * 2016-11-15 2018-05-24 東洋ゴム工業株式会社 Method and device for measuring tire ground contact properties
JP2019113511A (en) * 2017-12-26 2019-07-11 住友ゴム工業株式会社 Tire evaluation method
CN116358760A (en) * 2023-06-01 2023-06-30 深圳亿维锐创科技股份有限公司 Method, device, equipment and storage medium for measuring load distribution of vehicle tyre
CN116358760B (en) * 2023-06-01 2023-08-25 深圳亿维锐创科技股份有限公司 Method, device, equipment and storage medium for measuring load distribution of vehicle tyre

Also Published As

Publication number Publication date
JP4367613B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4367613B2 (en) Tire tread surface measuring device and measuring method
JP5098092B2 (en) System for detecting pressure in vehicle tires and / or vehicle speed
KR101212584B1 (en) Tire wear analysis method
US6804998B2 (en) Method of wear testing a tire
US6545750B2 (en) System for determining the dynamic orientation of a vehicle wheel plane
CN102607502B (en) Automatic detection device and method for size of automobile rear axle assembly
TR201909485T4 (en) Vehicle tire control system.
US10168245B2 (en) Optically-based interstory drift meter system for rapid assessment of the earthquake response of building structures
US20100138185A1 (en) Device for three-dimensionally measuring block and system having the device
CN104005324B (en) A kind of detection system of pavement structure information
DE60206527D1 (en) EVALUATE THE ACCURACY OF ROAD-SIDED SYSTEMS
JP2018004469A (en) Structure changed state detection system, structure changed state detection method, and program
CN104049103A (en) Method and device for measuring running speed of magnetic-levitation train
JP6657045B2 (en) Tire contact force measuring device and method
JP2020094823A (en) Vehicle operation simulation method and vehicle operation simulation system
JP5112730B2 (en) Tire durability performance prediction method, tire durability performance prediction device, and tire durability performance prediction program
JP5162962B2 (en) Object detection device
JPH0668391A (en) Vehicle travel guidance device
CN104390587B (en) Linear detection method based on rigid carrier running orbit analytical algorithm and device
US20220034755A1 (en) Tire ground contact characteristic measuring method, tire ground contact characteristic measuring portion, and tire ground contact characteristic measuring system
CN111776009B (en) Detection method and system for long bridge track, readable storage medium and detection device
CN106687795A (en) Tire testing device
CZ2021106A3 (en) Method of non-contact measurement of tyre tread deformation and the equipment for this
KR20050097593A (en) Structure diagnostic system by lidar and diagnosing method by it
Scott et al. Shed Light on Vehicle Structural Integrity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

R150 Certificate of patent or registration of utility model

Ref document number: 4367613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250