JP2005091206A - Instrument and method for measuring pulse width - Google Patents

Instrument and method for measuring pulse width Download PDF

Info

Publication number
JP2005091206A
JP2005091206A JP2003326114A JP2003326114A JP2005091206A JP 2005091206 A JP2005091206 A JP 2005091206A JP 2003326114 A JP2003326114 A JP 2003326114A JP 2003326114 A JP2003326114 A JP 2003326114A JP 2005091206 A JP2005091206 A JP 2005091206A
Authority
JP
Japan
Prior art keywords
pulse
time width
digital value
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003326114A
Other languages
Japanese (ja)
Inventor
Akira Shinomori
公 篠森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003326114A priority Critical patent/JP2005091206A/en
Publication of JP2005091206A publication Critical patent/JP2005091206A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive instrument and method for measuring a pulse width excellent in maintainability requiring no special calibration work for environmental fluctuation factors represented by a temperature change. <P>SOLUTION: This pulse duration measuring instrument of the present invention has a pulse generation part for generating a predetermined duration of reference signal, a switch input with the reference signal and a measured signal that is a pulse having an optional duration, and for selecting one of the signals to be output, a time voltage conversion part input with the signal selected by the switch and for outputting a voltage in response to the duration of the pulse thereof, an analog/digital converter for converting the voltage output from the time voltage conversion means into a digital value, and a control part for controlling the switch to measure the first digital value in response to the duration of the reference signal and the second digital value in response to the duration of the measured signal, and for drawing out information of the duration of the measured signal, based on the first digital value and the second digital value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パルス時間幅測定装置及びパルス時間幅測定方法に関する。   The present invention relates to a pulse time width measuring apparatus and a pulse time width measuring method.

種々の電子装置において、入力するパルスの時間幅を測定する。図3及び図4を用いて、従来例のパルス時間幅測定装置を説明する。図3は、従来例のパルス時間幅測定装置の構成を示すブロック図を示し、図4はその各部信号の波形を示す図である。図3において、従来例の時間電圧変換は、定電流回路3、電流制限用抵抗4、コンデンサ5、スイッチ6、サンプルホールド部7、アナログ/デジタル変換器(A/D変換器と略す。)8、制御部9を有する。従来例において、制御部9はマイクロコンピュータである。図4において、12は被測定信号であるパルス信号、13はパルス信号を入力した時の抵抗4とコンデンサ5との接続点の電圧波形を示す。14は、同一の被測定信号(パルス信号)12を入力した時、環境温度の変化に応じて、抵抗4とコンデンサ5との接続点の電圧波形が変化する様子を模式的に示す図である。   In various electronic devices, the time width of an input pulse is measured. A conventional pulse time width measuring apparatus will be described with reference to FIGS. FIG. 3 is a block diagram showing a configuration of a conventional pulse time width measuring apparatus, and FIG. 4 is a diagram showing waveforms of respective signals. In FIG. 3, the time-voltage conversion of the conventional example is a constant current circuit 3, a current limiting resistor 4, a capacitor 5, a switch 6, a sample hold unit 7, and an analog / digital converter (abbreviated as A / D converter) 8. And a control unit 9. In the conventional example, the control unit 9 is a microcomputer. In FIG. 4, reference numeral 12 denotes a pulse signal which is a signal under measurement, and 13 denotes a voltage waveform at a connection point between the resistor 4 and the capacitor 5 when the pulse signal is input. 14 is a diagram schematically showing how the voltage waveform at the connection point between the resistor 4 and the capacitor 5 changes according to the change in the environmental temperature when the same signal under measurement (pulse signal) 12 is input. .

定電流源3は、一定の電流Iを出力する。コンデンサ5は抵抗4を通じて一定の電流Iにより充電される。スイッチ6は、被測定信号12がLowレベルであれば両端を接続し、被測定信号12がHighレベルであれば両端を開放する。コンデンサ5は、被測定信号12がHighレベルである期間、定電流源3により充電される。被測定信号12がHighレベルである期間の後エッジにおけるコンデンサ5の両端電圧V(抵抗4とコンデンサ5との接続点の電圧)は、その時点でコンデンサ5に蓄えられる電気量をQ、定電流源3が出力する定電流値をI、コンデンサ5の容量をC、パルス信号の時間幅(Highレベルである期間)をTとすると、下記の式で表せる。
Q=I・T=C・V (1)
The constant current source 3 outputs a constant current I. The capacitor 5 is charged with a constant current I through the resistor 4. The switch 6 connects both ends when the signal under measurement 12 is Low level, and opens both ends when the signal under measurement 12 is High level. The capacitor 5 is charged by the constant current source 3 while the signal under measurement 12 is at a high level. The voltage V across the capacitor 5 (the voltage at the connection point between the resistor 4 and the capacitor 5) at the trailing edge of the period when the signal under measurement 12 is at the high level is Q, the amount of electricity stored in the capacitor 5 at that time is Q, and the constant current Assuming that the constant current value output from the source 3 is I, the capacitance of the capacitor 5 is C, and the time width of the pulse signal (period of high level) is T, it can be expressed by the following equation.
Q = I ・ T = C ・ V (1)

サンプルホールド部7は、被測定信号12がHighレベルである期間の後エッジにおけるコンデンサ5の両端電圧Vをサンプルホールドする。サンプルホールド部7はコンデンサ5の両端電圧Vのピーク値を保持し出力する。A/D変換器8は、サンプルホールド部7がサンプルホールドした電圧を例えば8ビットのデジタル信号に変換する。
T=(C/I)・V (2)
IとCとは固定値である故、被測定信号であるパルス信号がHighレベルである期間Tはデジタル変換された電圧値Vに比例する。工場においてパルス時間幅測定装置を製造した時、比例定数K=C/Iを所定値に設定する。制御部9は、電圧値Vを測定することにより式(2)に基づいて正確な時間幅Tを導出することが出来る。制御部9は、導出した時間幅Tに基づいて所定の処理を実行する。
The sample hold unit 7 samples and holds the voltage V across the capacitor 5 at the trailing edge of the period in which the signal under measurement 12 is at the high level. The sample hold unit 7 holds and outputs the peak value of the voltage V across the capacitor 5. The A / D converter 8 converts the voltage sampled and held by the sample hold unit 7 into, for example, an 8-bit digital signal.
T = (C / I) · V (2)
Since I and C are fixed values, the period T during which the pulse signal as the signal under measurement is at a high level is proportional to the digitally converted voltage value V. When the pulse time width measuring device is manufactured at the factory, the proportionality constant K = C / I is set to a predetermined value. The controller 9 can derive an accurate time width T based on the equation (2) by measuring the voltage value V. The control unit 9 executes a predetermined process based on the derived time width T.

特開平7−280857号公報に、抵抗及びコンデンサを使用した従来例の時間電圧変換回路が開示されている。
特開平7−280857号公報 特開昭59−97077号公報
Japanese Patent Laid-Open No. 7-280857 discloses a conventional time-voltage conversion circuit using resistors and capacitors.
JP 7-280857 A JP 59-97077 A

しかしながら上記の式は、各素子が一定の周囲環境にて安定動作した場合にのみ適用される。現実には主として動作状態における温度変化により、抵抗4の抵抗値及びコンデンサ5の静電容量、さらには定電流回路3を構成するトランジスタの特性が変化する。これらの影響により供給電流量Iが変化し、電圧値Vは環境温度に応じて変動する。この様子を図4の14に示す。   However, the above formula is applied only when each element operates stably in a constant ambient environment. Actually, the resistance value of the resistor 4 and the capacitance of the capacitor 5 as well as the characteristics of the transistors constituting the constant current circuit 3 change mainly due to temperature changes in the operating state. Due to these influences, the supply current amount I changes, and the voltage value V varies according to the environmental temperature. This is shown at 14 in FIG.

抵抗4及びコンデンサ5の近傍に測温素子を配置し、パルス時間幅測定装置に測温素子の検出温度と各温度における比例定数Kとの対応テーブルを記憶させることも出来る。動作時に、制御部9は、測温素子から検出温度の情報を取得し、その温度に対応する比例定数Kを記憶部から選択する。制御部9は、A/D変換器8の出力値に選択した比例定数Kを掛けて、被計測信号(1つ又は周期的である。)がHighレベルである期間の時間幅を求める。コンデンサの容量の経時劣化については、所定の期間毎にパルス時間幅測定装置が記憶比例定数を更新するくらいしか適切な対策がなかった。   It is also possible to arrange a temperature measuring element in the vicinity of the resistor 4 and the capacitor 5 and store a correspondence table between the detected temperature of the temperature measuring element and the proportional constant K at each temperature in the pulse time width measuring device. During operation, the control unit 9 acquires information about the detected temperature from the temperature measuring element, and selects a proportional constant K corresponding to the temperature from the storage unit. The control unit 9 multiplies the output value of the A / D converter 8 by the selected proportionality constant K to obtain the time width of the period during which the signal under measurement (one or periodic) is at the high level. As for the deterioration of the capacitance of the capacitor over time, there was only an appropriate measure for the pulse time width measuring device to update the storage proportionality constant every predetermined period.

しかしながら従来例のパルス時間幅測定装置及びパルス時間幅測定方法においては、製造時に時間をかけて精密な調整・校正作業を行う必要があった。そのことは、パルス時間幅測定装置の原価を押し上げていた。又、調整・校正作業時において厳密な環境温度管理及びそのための専用設備を必要とした。更に、定期的な再校正が必要であり、著しく保守性の悪いものであった。
本発明は、上記の課題を解決し、測温素子等が不要であり、製造時及びメンテナンス時の校正作業が不要であり、安価で保守性に優れた環境温度の影響を受けにくいパルス時間幅測定装置及びパルス時間幅測定方法を提供することを目的とする。
However, in the conventional pulse time width measuring apparatus and pulse time width measuring method, it has been necessary to perform precise adjustment and calibration work over time during manufacturing. This pushed up the cost of the pulse duration measuring device. In addition, strict environmental temperature control and dedicated equipment for it were required during adjustment and calibration. Furthermore, periodic recalibration is necessary, and the maintainability is extremely poor.
The present invention solves the above-mentioned problems, does not require a temperature measuring element, etc., does not require calibration work during manufacturing and maintenance, is inexpensive and has excellent maintainability, and is a pulse time width that is not easily affected by environmental temperature. It is an object to provide a measuring apparatus and a pulse time width measuring method.

上記問題を解決するために、本発明は以下の構成を有する。請求項1に記載の発明は、予め定められた時間幅の単一の又は周期性を有するパルスである基準信号を生成するパルス生成部と、前記基準信号と任意の時間幅の単一の又は周期性を有するパルスである被測定信号とを入力し、それらのうちのいずれか1つの信号を選択して出力するスイッチと、前記スイッチにより選択された信号を入力し、そのパルスの時間幅に応じた電圧を出力する時間電圧変換部と、前記時間電圧変換手段が出力した電圧をデジタル値に変換するアナログ/デジタル変換器と、前記スイッチを制御して、前記基準信号の時間幅に応じた第1のデジタル値と前記被測定信号の時間幅に応じた第2のデジタル値とを測定し、前記第1のデジタル値と前記第2のデジタル値とに基づいて、前記被測定信号の時間幅の情報を導出する制御部と、を有することを特徴とするパルス時間幅測定装置である。
本発明は、測温素子等が不要であり、製造時及びメンテナンス時の校正作業が不要であり、安価で保守性に優れた環境温度の影響を受けにくいパルス時間幅測定装置を実現できるという作用を有する。
In order to solve the above problems, the present invention has the following configuration. According to the first aspect of the present invention, there is provided a pulse generator that generates a reference signal that is a single pulse having a predetermined time width or a pulse having periodicity, and a single or an arbitrary time width of the reference signal. A signal to be measured that is a pulse having periodicity is input, a switch that selects and outputs any one of the signals, a signal selected by the switch is input, and the time width of the pulse is input. A time voltage converter that outputs a voltage corresponding to the voltage, an analog / digital converter that converts the voltage output from the time voltage converter to a digital value, and the switch to control the time width of the reference signal. A first digital value and a second digital value corresponding to a time width of the signal under measurement are measured, and the time of the signal under measurement is measured based on the first digital value and the second digital value. Deriving width information A control unit that is a pulse time width measuring apparatus characterized by having a.
The present invention does not require a temperature measuring element or the like, does not require calibration work during manufacturing and maintenance, and can realize a pulse time width measuring device that is inexpensive and excellent in maintainability and is not easily affected by environmental temperature. Have

請求項2に記載の発明は、予め定められた時間幅の単一の又は周期性を有するパルスである基準信号の時間幅に応じた第1の電圧を生成する第1の時間電圧変換ステップと、前記第1の電圧を第1のデジタル値に変換する第1のアナログ/デジタル変換ステップと、任意の時間幅の単一の又は周期性を有するパルスである被測定信号の時間幅に応じた第2の電圧を生成する第2の時間電圧変換ステップと、前記第2の電圧を第2のデジタル値に変換する第2のアナログ/デジタル変換ステップと、前記第1のデジタル値と前記第2のデジタル値とに基づいて、前記被測定信号の時間幅の情報を導出する時間幅情報生成ステップと、を有することを特徴とするパルス時間幅測定方法である。
本発明は、測温素子等が不要であり、製造時及びメンテナンス時の校正作業が不要であり、安価で保守性に優れた環境温度の影響を受けにくいパルス時間幅測定方法を実現できるという作用を有する。
According to a second aspect of the present invention, there is provided a first time-voltage conversion step for generating a first voltage corresponding to a time width of a reference signal which is a single pulse having a predetermined time width or a pulse having periodicity. A first analog / digital conversion step for converting the first voltage into a first digital value, and a time width of a signal under measurement which is a single or periodic pulse having an arbitrary time width. A second time voltage conversion step for generating a second voltage; a second analog / digital conversion step for converting the second voltage into a second digital value; the first digital value and the second And a time width information generating step for deriving information on the time width of the signal under measurement based on the digital value of the pulse time width.
The present invention does not require a temperature measuring element or the like, does not require calibration work during manufacturing and maintenance, and can realize a pulse time width measurement method that is inexpensive and excellent in maintainability and is not easily affected by environmental temperature. Have

本発明によれば、測温素子等が不要であり、製造時及びメンテナンス時の校正作業が不要であり、安価で保守性に優れた環境温度の影響を受けにくいパルス時間幅測定装置及びパルス時間幅測定方法を実現できるという有利な効果が得られる。   According to the present invention, a temperature measuring element and the like are unnecessary, calibration work at the time of manufacture and maintenance is unnecessary, and a pulse time width measuring device and a pulse time that are inexpensive and excellent in maintainability and are not easily affected by environmental temperature. The advantageous effect that the width measuring method can be realized is obtained.

以下本発明の実施をするための最良の形態を具体的に示した実施の形態について、図面とともに記載する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments that specifically show the best mode for carrying out the present invention will be described below with reference to the drawings.

《実施の形態》
図1及び図2を用いて、本発明の実施の形態のパルス時間幅測定装置及びパルス時間幅測定方法を説明する。図1は本発明のパルス幅時間測定装置の構成を示すブロック図であり、図2はその各部信号の波形を示す図である。実施の形態のパルス時間幅測定装置は、被測定信号がHighレベルである期間Tを測定する。
<< Embodiment >>
A pulse time width measuring apparatus and a pulse time width measuring method according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a pulse width time measuring apparatus according to the present invention, and FIG. 2 is a diagram showing waveforms of respective signals. The pulse time width measuring apparatus according to the embodiment measures a period T in which a signal under measurement is at a high level.

本発明の実施の形態のパルス時間幅測定装置は、基準信号発生部1、スイッチ2、定電流源3、電流制限用抵抗4、コンデンサ5、スイッチ6、サンプルホールド部7、アナログ/デジタル変換器8、制御部9を有する。実施の形態において、制御部9はマイクロコンピュータである。例えば、マイクロコンピュータが内蔵するパルス時間幅測定回路(入力信号がHighレベルである期間をパルスカウントする機能を有する。)を他のパルス信号の時間幅を測定するのに使用しているため、それを被測定信号12のパルス幅(被測定信号12がHighレベルである期間)を測定するのに使用できず、一方、マイクロコンピュータが内蔵するA/D変換器8を被測定信号12のパルス幅を測定するのに使用できる場合を想定する。   The pulse time width measuring apparatus according to the embodiment of the present invention includes a reference signal generator 1, a switch 2, a constant current source 3, a current limiting resistor 4, a capacitor 5, a switch 6, a sample hold unit 7, and an analog / digital converter. 8 and a control unit 9. In the embodiment, the control unit 9 is a microcomputer. For example, a pulse time width measuring circuit (having a function of counting pulses during a period when the input signal is at a high level) used in a microcomputer is used to measure the time width of another pulse signal. Cannot be used to measure the pulse width of the signal under measurement 12 (the period during which the signal under measurement 12 is at a high level), while the A / D converter 8 incorporated in the microcomputer is connected to the pulse width of the signal under measurement 12. Assume that it can be used to measure

図1において、基準信号発生部1は一定の時間幅を有する単一の又は周期性を有するパルス信号を出力する。パルス信号の時間幅T0は、環境温度及び経時的な影響を受けにくいものとする。例えば、基準信号発生部1は、安定して一定周波数で発振する水晶発振器の出力信号を所定の分周比で分周した基準信号を生成し、出力する。好ましくは、基準信号発生部1はマイクロコンピュータに内蔵される。   In FIG. 1, a reference signal generator 1 outputs a single or periodic pulse signal having a certain time width. The time width T0 of the pulse signal is not easily affected by the environmental temperature and the time. For example, the reference signal generator 1 generates and outputs a reference signal obtained by dividing the output signal of a crystal oscillator that stably oscillates at a constant frequency by a predetermined frequency division ratio. Preferably, the reference signal generator 1 is built in a microcomputer.

スイッチ2は基準信号発生部1が出力した基準信号11と、被測定信号12とを入力し、制御部9の指令に応じていずれか一方を出力する。図2において、11は基準信号、12は被測定信号であるパルス信号、13は2つの環境温度において、基準信号11及び被測定信号12を入力した時の抵抗4とコンデンサ5との接続点の電圧V(13)の波形を模式的に示す。スイッチ2の出力信号は、スイッチ6の制御端子及びサンプルホールド部7のサンプルホールドタイミング信号入力端子に入力される。   The switch 2 receives the reference signal 11 output from the reference signal generator 1 and the signal under measurement 12 and outputs either one according to a command from the controller 9. In FIG. 2, 11 is a reference signal, 12 is a pulse signal which is a signal under measurement, 13 is a connection point between the resistor 4 and the capacitor 5 when the reference signal 11 and the signal under measurement 12 are input at two environmental temperatures. The waveform of voltage V (13) is shown typically. The output signal of the switch 2 is input to the control terminal of the switch 6 and the sample hold timing signal input terminal of the sample hold unit 7.

定電流源3は、一定の電流Iを出力する。コンデンサ5は抵抗4を通じて一定の電流Iにより充電される。スイッチ6は、基準信号11又は被測定信号12がLowレベルであれば両端を接続し、基準信号11又は被測定信号12がHighレベルであれば両端を開放する。コンデンサ5は、基準信号11又は被測定信号12がHighレベルである期間、定電流源3により充電される。基準信号11又は被測定信号12がHighレベルである期間の後エッジにおけるコンデンサ5の両端電圧V(抵抗4とコンデンサ5との接続点の電圧)は、その時点でコンデンサ5に蓄えられる電気量をQ、定電流源3が出力する定電流値をI、コンデンサ5の容量をC、パルス信号の時間幅(Highレベルである期間)をTとすると、式(1)で表される。
Q=I・T=C・V (1)
The constant current source 3 outputs a constant current I. The capacitor 5 is charged with a constant current I through the resistor 4. The switch 6 connects both ends when the reference signal 11 or the signal under measurement 12 is Low level, and opens both ends when the reference signal 11 or the signal under measurement 12 is High level. The capacitor 5 is charged by the constant current source 3 while the reference signal 11 or the signal under measurement 12 is at a high level. The voltage V across the capacitor 5 (the voltage at the connection point between the resistor 4 and the capacitor 5) at the trailing edge of the period in which the reference signal 11 or the signal under measurement 12 is at the high level is the amount of electricity stored in the capacitor 5 at that time. When Q is a constant current value output from the constant current source 3, C is a capacitance of the capacitor 5, and T is a time width of the pulse signal (high-level period), the following equation (1) is obtained.
Q = I ・ T = C ・ V (1)

サンプルホールド部7は、基準信号11又は被測定信号12がHighレベルである期間の後エッジにおけるコンデンサ5の両端電圧Vをサンプルホールドする。サンプルホールド部7はコンデンサ5の両端電圧Vのピーク値を保持し出力する。A/D変換器8は、サンプルホールド部7がサンプルホールドした電圧を例えば8ビットのデジタル信号に変換する。制御部9はデジタル値を入力する。
制御部9は、スイッチ2を制御して、基準信号11のデジタル値V0と被測定信号12のデジタル値Vとを続けて測定し、入力する。
T=(C/I)・V (2)
T0=(C/I)・V0 (3)
式(2)及び(3)より、式(4)が導出される。
T=(T0/V0)・V (4)
The sample hold unit 7 samples and holds the voltage V across the capacitor 5 at the trailing edge of the period in which the reference signal 11 or the signal under measurement 12 is at the high level. The sample hold unit 7 holds and outputs the peak value of the voltage V across the capacitor 5. The A / D converter 8 converts the voltage sampled and held by the sample hold unit 7 into, for example, an 8-bit digital signal. The control unit 9 inputs a digital value.
The controller 9 controls the switch 2 to continuously measure and input the digital value V0 of the reference signal 11 and the digital value V of the signal under measurement 12.
T = (C / I) · V (2)
T0 = (C / I) · V0 (3)
Equation (4) is derived from equations (2) and (3).
T = (T0 / V0) · V (4)

T0は既知であり且つ環境温度に対して及び経時的に安定である故、デジタル値V0を測定することにより、制御部9は正確な比例定数K=T0/V0を算出できる。制御部9は、比例定数Kを用いてデジタル値Vから正確な時間幅Tを算出できる。制御部9は、デジタル値V0及びVを続けて測定するので、2つの測定値はほとんど同一の環境温度において測定される。従って、環境温度の影響は排除される。2つの測定値はコンデンサ5を用いて測定される故、式(4)において、コンデンサ5の経時的な劣化の影響は排除されている。
T0は工場における調整作業を行わなくてもほぼ一定である故、比例定数Kを決定するために、工場において精密な調整・校正作業を行う必要もない。
制御部9は、デジタル信号に変換された電圧値Vに基づいて所定の処理を実行する。
Since T0 is known and is stable with respect to the environmental temperature and with time, the control unit 9 can calculate an accurate proportionality constant K = T0 / V0 by measuring the digital value V0. The control unit 9 can calculate an accurate time width T from the digital value V using the proportionality constant K. Since the control unit 9 continuously measures the digital values V0 and V, the two measured values are measured at almost the same ambient temperature. Therefore, the influence of environmental temperature is eliminated. Since the two measured values are measured using the capacitor 5, the influence of the deterioration of the capacitor 5 with time is eliminated in the equation (4).
Since T0 is substantially constant without adjustment work in the factory, it is not necessary to perform precise adjustment / calibration work in the factory to determine the proportionality constant K.
The control unit 9 performs a predetermined process based on the voltage value V converted into a digital signal.

図2の13を用いて、制御部9が導出した時間幅Tが環境温度の影響を受けないことを説明する。図2の13において、環境温度aにおいて、基準信号11から得られるデジタル値をV0a、被測定信号12から得られるデジタル値をVa、制御部9が式(4)を用いて導出する時間幅をTaとする。環境温度bにおいて、基準信号11から得られるデジタル値をV0b、被測定信号12から得られるデジタル値をVb、制御部9が式(4)を用いて導出する時間幅をTbとする。式(4)より、下記の式(5)、(6)が成立する。
なお、時間幅T0は安定である。
Ta=(T0/V0a)・Va (5)
Tb=(T0/V0b)・Vb (6)
図2の13から明らかなように、Va/V0a=Vb/V0bが成立する。従って、Ta=Tbが成立する。即ち、制御部9が導出した時間幅Tは環境温度の影響をほとんど受けない。
実施の形態の構成は例示であって、本発明の着想に基づく他の任意の構成であっても良い。
Using FIG. 2 of FIG. 2, it will be described that the time width T derived by the control unit 9 is not affected by the environmental temperature. In FIG. 2, at the environmental temperature a, the digital value obtained from the reference signal 11 is V0a, the digital value obtained from the signal under measurement 12 is Va, and the time width that the control unit 9 derives using Equation (4) is shown. Ta. At the environmental temperature b, the digital value obtained from the reference signal 11 is V0b, the digital value obtained from the signal under measurement 12 is Vb, and the time width that the control unit 9 derives using Equation (4) is Tb. From the formula (4), the following formulas (5) and (6) are established.
The time width T0 is stable.
Ta = (T0 / V0a) · Va (5)
Tb = (T0 / V0b) · Vb (6)
As is apparent from 13 in FIG. 2, Va / V0a = Vb / V0b is established. Therefore, Ta = Tb is established. That is, the time width T derived by the control unit 9 is hardly affected by the environmental temperature.
The configuration of the embodiment is an exemplification, and may be any other configuration based on the idea of the present invention.

本発明の実施の形態におけるパルス幅時間測定装置の構成を示すブロック図The block diagram which shows the structure of the pulse width time measuring apparatus in embodiment of this invention 本発明の実地の形態におけるパルス幅時間測定装置の各部信号波形を示す図The figure which shows each part signal waveform of the pulse width time measuring apparatus in the form of the practice of this invention 従来例のパルス時間幅測定装置の構成を示すブロック図Block diagram showing the configuration of a conventional pulse time width measuring apparatus 従来例のパルス時間幅測定装置の各部信号波形を示す図The figure which shows each part signal waveform of the pulse time width measuring apparatus of a prior art example

符号の説明Explanation of symbols

1 基準信号発生部
2、6 スイッチ
3 定電流源
4 抵抗
5 コンデンサ
7 サンプルホールド部
8 アナログ/デジタル変換器
9 制御部(マイクロコンピュータ)
DESCRIPTION OF SYMBOLS 1 Reference signal generation part 2, 6 Switch 3 Constant current source 4 Resistance 5 Capacitor 7 Sample hold part 8 Analog / digital converter 9 Control part (microcomputer)

Claims (2)

予め定められた時間幅の単一の又は周期性を有するパルスである基準信号を生成するパルス生成部と、
前記基準信号と、任意の時間幅の単一の又は周期性を有するパルスである被測定信号とを入力し、それらのうちのいずれか1つの信号を選択して出力するスイッチと、
前記スイッチにより選択された信号を入力し、そのパルスの時間幅に応じた電圧を出力する時間電圧変換部と、
前記時間電圧変換手段が出力した電圧をデジタル値に変換するアナログ/デジタル変換器と、
前記スイッチを制御して、前記基準信号の時間幅に応じた第1のデジタル値と、前記被測定信号の時間幅に応じた第2のデジタル値と、を測定し、前記第1のデジタル値と前記第2のデジタル値とに基づいて、前記被測定信号の時間幅の情報を導出する制御部と、
を有することを特徴とするパルス時間幅測定装置。
A pulse generation unit that generates a reference signal that is a single or periodic pulse having a predetermined time width;
A switch that inputs the reference signal and a signal under measurement that is a single or periodic pulse having an arbitrary time width, and selects and outputs any one of the signals;
A time voltage converter that inputs a signal selected by the switch and outputs a voltage corresponding to the time width of the pulse;
An analog / digital converter that converts the voltage output by the time voltage conversion means into a digital value;
The switch is controlled to measure a first digital value corresponding to the time width of the reference signal and a second digital value corresponding to the time width of the signal under measurement, and the first digital value And a control unit for deriving time width information of the signal under measurement based on the second digital value;
A pulse time width measuring apparatus comprising:
予め定められた時間幅の単一の又は周期性を有するパルスである基準信号の時間幅に応じた第1の電圧を生成する第1の時間電圧変換ステップと、
前記第1の電圧を第1のデジタル値に変換する第1のアナログ/デジタル変換ステップと、
任意の時間幅の単一の又は周期性を有するパルスである被測定信号の時間幅に応じた第2の電圧を生成する第2の時間電圧変換ステップと、
前記第2の電圧を第2のデジタル値に変換する第2のアナログ/デジタル変換ステップと、
前記第1のデジタル値と前記第2のデジタル値とに基づいて、前記被測定信号の時間幅の情報を導出する時間幅情報生成ステップと、
を有することを特徴とするパルス時間幅測定方法。
A first time-voltage conversion step for generating a first voltage corresponding to a time width of a reference signal which is a single pulse having a predetermined time width or a pulse having periodicity;
A first analog / digital conversion step of converting the first voltage into a first digital value;
A second time-voltage conversion step of generating a second voltage according to the time width of the signal under measurement, which is a single or periodic pulse having an arbitrary time width;
A second analog / digital conversion step of converting the second voltage into a second digital value;
A time width information generating step for deriving time width information of the signal under measurement based on the first digital value and the second digital value;
A pulse time width measuring method characterized by comprising:
JP2003326114A 2003-09-18 2003-09-18 Instrument and method for measuring pulse width Pending JP2005091206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326114A JP2005091206A (en) 2003-09-18 2003-09-18 Instrument and method for measuring pulse width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326114A JP2005091206A (en) 2003-09-18 2003-09-18 Instrument and method for measuring pulse width

Publications (1)

Publication Number Publication Date
JP2005091206A true JP2005091206A (en) 2005-04-07

Family

ID=34456386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326114A Pending JP2005091206A (en) 2003-09-18 2003-09-18 Instrument and method for measuring pulse width

Country Status (1)

Country Link
JP (1) JP2005091206A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306555A (en) * 2006-05-01 2007-11-22 Internatl Business Mach Corp <Ibm> Method and apparatus for correcting digital signal duty cycle
WO2008062719A1 (en) * 2006-11-22 2008-05-29 Advantest Corporation Test device and test module
JP2011209214A (en) * 2010-03-30 2011-10-20 Hamamatsu Photonics Kk Time measuring device and distance measuring device
JP2013003114A (en) * 2011-06-21 2013-01-07 Yamaha Motor Co Ltd Distance measuring instrument and transportation apparatus including the same
WO2015174166A1 (en) * 2014-05-15 2015-11-19 株式会社 東芝 Amplification circuit, analog/digital conversion circuit, and voltage/time converter
US9606511B2 (en) 2015-03-16 2017-03-28 Kabushiki Kaisha Toshiba Analog/digital conversion circuit
CN112269068A (en) * 2020-10-13 2021-01-26 成都天奥电子股份有限公司 Method for analyzing pulse width

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306555A (en) * 2006-05-01 2007-11-22 Internatl Business Mach Corp <Ibm> Method and apparatus for correcting digital signal duty cycle
WO2008062719A1 (en) * 2006-11-22 2008-05-29 Advantest Corporation Test device and test module
US7508217B2 (en) 2006-11-22 2009-03-24 Advantest Corporation Test apparatus and test module
JP5137844B2 (en) * 2006-11-22 2013-02-06 株式会社アドバンテスト Test apparatus and test module
JP2011209214A (en) * 2010-03-30 2011-10-20 Hamamatsu Photonics Kk Time measuring device and distance measuring device
JP2013003114A (en) * 2011-06-21 2013-01-07 Yamaha Motor Co Ltd Distance measuring instrument and transportation apparatus including the same
WO2015174166A1 (en) * 2014-05-15 2015-11-19 株式会社 東芝 Amplification circuit, analog/digital conversion circuit, and voltage/time converter
US9606511B2 (en) 2015-03-16 2017-03-28 Kabushiki Kaisha Toshiba Analog/digital conversion circuit
CN112269068A (en) * 2020-10-13 2021-01-26 成都天奥电子股份有限公司 Method for analyzing pulse width
CN112269068B (en) * 2020-10-13 2023-11-03 成都天奥电子股份有限公司 Pulse width analysis method

Similar Documents

Publication Publication Date Title
KR100425851B1 (en) Method for measuring three-phase current with single current sensor
JP4298075B2 (en) RMS value measuring method and apparatus
JP4950922B2 (en) Time device and portable electronic device
US5642300A (en) Precision voltage/current/power source
US20150077101A1 (en) Magnetic element control device, magnetic element control method and magnetic detection device
JP2005091206A (en) Instrument and method for measuring pulse width
US7813885B2 (en) Method and apparatus for measurement of AC voltages in an HVAC system
JPH06333328A (en) Timing signal generating circuit
JP4538268B2 (en) Digital power meter
JP2001255948A (en) Adjustment device for comparator reference voltage
JPH09178820A (en) Test device for electronic circuit
JP2010096634A (en) Voltage detecting device
JP3604408B2 (en) Burn-in method and apparatus
JP4445836B2 (en) Sampling circuit and test apparatus
JPH08220261A (en) Correction method for time measuring device and time and distanc measuring devices using the method
RU2272996C1 (en) Immersible telemetry device
KR100240450B1 (en) Linear output characteristics control apparatus and method of automatic gain control
JPS62153779A (en) Proper compensation indicator for compensating network
JP3239338B2 (en) Ripple noise voltage measuring device
KR20070031998A (en) Actuator drive circuit for shutter and actuator for shutter
JP3238867B2 (en) Battery voltage measuring method and device
SU1272316A1 (en) A.c.voltage stabilizer
JP2004510987A (en) RF power measurement
KR960018591A (en) Current / voltage measurement circuit of input current tester
JPS5999368A (en) Method and apparatus for measuring inverse voltage of semiconductor element

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050527

A621 Written request for application examination

Effective date: 20060913

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060913

A977 Report on retrieval

Effective date: 20080710

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111