JP2005086148A - Extreme ultraviolet ray optical system and exposure device - Google Patents

Extreme ultraviolet ray optical system and exposure device Download PDF

Info

Publication number
JP2005086148A
JP2005086148A JP2003319560A JP2003319560A JP2005086148A JP 2005086148 A JP2005086148 A JP 2005086148A JP 2003319560 A JP2003319560 A JP 2003319560A JP 2003319560 A JP2003319560 A JP 2003319560A JP 2005086148 A JP2005086148 A JP 2005086148A
Authority
JP
Japan
Prior art keywords
optical system
stray light
extreme ultraviolet
stop
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003319560A
Other languages
Japanese (ja)
Other versions
JP4218475B2 (en
Inventor
Tetsuya Oshino
哲也 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003319560A priority Critical patent/JP4218475B2/en
Publication of JP2005086148A publication Critical patent/JP2005086148A/en
Application granted granted Critical
Publication of JP4218475B2 publication Critical patent/JP4218475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70941Stray fields and charges, e.g. stray light, scattered light, flare, transmission loss

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extreme ultraviolet ray optical system capable of improving image formation performance by reducing the adverse effects of stray light, and an exposure device provided with such optical system. <P>SOLUTION: The projection optical system of an exposure device is provided with a total of six mirrors (multilayer mirrors) M1 to M6. Each of the mirrors M1 to M6 is held by a holding mechanism, respectively, and can be finely positioned by a position adjusting mechanism. In this optical system, a total of six stray light stops 41 to 46 are arranged. Each of the stray light stops 41 to 46 is for preventing the stray light from an EUV luminous flux E from reaching a wafer W located at the downstream of the optical system. According to this exposure device, stray light can be intercepted by the stray light stops 41 to 46. Thus, the adverse effects of the stray light to exposure are reduced, and the contrast of an exposure pattern can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多層膜反射鏡を備える極端紫外線(Extreme Ultra Violet線:EUV線)光学系と、そのような光学系を備える露光装置に関する。   The present invention relates to an extreme ultraviolet (Extreme Ultra Violet line: EUV ray) optical system including a multilayer film reflecting mirror and an exposure apparatus including such an optical system.

近年、半導体集積回路の微細化に伴い、光の回折限界によって制限される光学系の解像力を向上させるために、13nm程度の波長を有するEUV光を使用した投影リソグラフィー技術が開発されている。このようなEUV光を用いる露光装置においては、一般に、反射鏡(ミラー)を組み合わせた反射光学系が用いられる。一例の光学系は、多層膜がコーティングされた4枚又は6枚のEUV反射鏡を備えている。これらの反射鏡は、多層膜の各界面における反射光の位相を一致させ、干渉効果によって高い反射率を実現するものである。   In recent years, with the miniaturization of semiconductor integrated circuits, a projection lithography technique using EUV light having a wavelength of about 13 nm has been developed in order to improve the resolution of an optical system limited by the diffraction limit of light. In such an exposure apparatus using EUV light, generally, a reflection optical system in which a reflecting mirror (mirror) is combined is used. An example optical system includes four or six EUV reflectors coated with a multilayer film. These reflecting mirrors achieve a high reflectance by the interference effect by matching the phases of reflected light at each interface of the multilayer film.

以下、図6及び図7を参照しつつ、EUV露光装置の一例について説明する。
図6は、EUV露光装置の一例を示す概略構成図である。
図7は、図6のEUV露光装置の投影光学系のミラー配置を示す図である。
図6に示すEUV露光装置は、光源を含む照明系ILを備えている。照明系ILから放射されたEUV光(一般に波長5〜20nmが用いられ、具体的には13nmや11nmの波長が用いられる)は、折り返しミラー1で反射してレチクル2に照射される。
Hereinafter, an example of the EUV exposure apparatus will be described with reference to FIGS. 6 and 7.
FIG. 6 is a schematic block diagram showing an example of an EUV exposure apparatus.
FIG. 7 is a view showing a mirror arrangement of the projection optical system of the EUV exposure apparatus of FIG.
The EUV exposure apparatus shown in FIG. 6 includes an illumination system IL including a light source. EUV light radiated from the illumination system IL (generally, a wavelength of 5 to 20 nm is used, specifically, a wavelength of 13 nm or 11 nm is used) is reflected by the folding mirror 1 and applied to the reticle 2.

レチクル2は、レチクルステージ3に保持されている。このレチクルステージ3は、走査方向(Y軸)に100mm以上のストロークを持ち、レチクル面内の走査方向と直交する方向(X軸)に微小ストロークを持ち、光軸方向(Z軸)にも微小ストロークを持っている。XY方向の位置は図示せぬレーザ干渉計によって高精度にモニタされ、Z方向はレチクルフォーカス送光系4とレチクルフォーカス受光系5からなるレチクルフォーカスセンサでモニタされている。   The reticle 2 is held on the reticle stage 3. The reticle stage 3 has a stroke of 100 mm or more in the scanning direction (Y axis), has a minute stroke in the direction (X axis) perpendicular to the scanning direction in the reticle surface, and is also minute in the optical axis direction (Z axis). Have a stroke. The position in the XY direction is monitored with high accuracy by a laser interferometer (not shown), and the Z direction is monitored by a reticle focus sensor including a reticle focus light transmission system 4 and a reticle focus light reception system 5.

レチクル2で反射したEUV光は、図中下側の光学鏡筒14内に入射する。このEUV光は、レチクル2に描かれた回路パターンの情報を含んでいる。レチクル2にはEUV光を反射する多層膜(例えばMo/SiやMo/Be)が形成されており、この多層膜の上に吸収層(例えばNiやAl)の有無でパターニングされている。   The EUV light reflected by the reticle 2 enters the lower optical barrel 14 in the drawing. This EUV light includes information on a circuit pattern drawn on the reticle 2. The reticle 2 is formed with a multilayer film (for example, Mo / Si or Mo / Be) that reflects EUV light, and is patterned on the multilayer film with or without an absorption layer (for example, Ni or Al).

光学鏡筒14内には、図7に示すように6枚のミラーM1〜M6が配置されている。各ミラーM1〜M6は、図示はしないが、それぞれホールド機構に保持されており、位置調整機構で微動可能となっている。レチクル2で反射して光学鏡筒14内に入射したEUV光は、第1ミラーM1で反射した後に、第2ミラーM2、第3ミラーM3、第4ミラーM4、第5ミラーM5、第6ミラーM6と順次反射し、最終的にはウェハ10に対して垂直に入射する。投影系の縮小倍率は、例えば1/4や1/5である。この例ではミラーは6枚であるが、ミラーが4枚あるいは8枚のものもある。第1ミラーM1と第2ミラーM2の間には、開口数(N.A.)を規定する開口絞り6が配置されている。   In the optical barrel 14, six mirrors M1 to M6 are arranged as shown in FIG. Although not shown, each of the mirrors M1 to M6 is held by a hold mechanism and can be finely moved by the position adjusting mechanism. The EUV light reflected by the reticle 2 and entering the optical barrel 14 is reflected by the first mirror M1, and then the second mirror M2, the third mirror M3, the fourth mirror M4, the fifth mirror M5, and the sixth mirror. M6 is sequentially reflected, and finally enters the wafer 10 perpendicularly. The reduction magnification of the projection system is, for example, 1/4 or 1/5. In this example, there are 6 mirrors, but there are also 4 or 8 mirrors. An aperture stop 6 that defines the numerical aperture (NA) is disposed between the first mirror M1 and the second mirror M2.

図6に戻って、ウェハ10は、ウェハステージ11上に載せられている。ウェハステージ11は、光軸と直交する面内(XY平面)を自由に移動することができ、ストロークは例えば300〜400mmである。同ウェハステージ11は、光軸方向(Z軸)にも微小ストロークの上下が可能で、Z方向の位置はウェハオートフォーカス送光系12とウェハオートフォーカス受光系13からなるウェハフォーカスセンサでモニタされている。ウェハステージ11のXY方向の位置は図示せぬレーザ干渉計によって高精度にモニタされている。露光動作において、レチクルステージ3とウェハステージ11は、投影系の縮小倍率と同じ速度比、すなわち、4:1あるいは5:1で同期走査する。光学鏡筒14の近傍には、アライメント用のオフアクシス顕微鏡15が配置されている。   Returning to FIG. 6, the wafer 10 is placed on the wafer stage 11. The wafer stage 11 can freely move in a plane (XY plane) orthogonal to the optical axis, and the stroke is, for example, 300 to 400 mm. The wafer stage 11 can move up and down a minute stroke also in the optical axis direction (Z axis), and the position in the Z direction is monitored by a wafer focus sensor comprising a wafer autofocus light transmission system 12 and a wafer autofocus light reception system 13. ing. The position of the wafer stage 11 in the XY direction is monitored with high accuracy by a laser interferometer (not shown). In the exposure operation, the reticle stage 3 and the wafer stage 11 perform synchronous scanning at the same speed ratio as the reduction magnification of the projection system, that is, 4: 1 or 5: 1. An alignment off-axis microscope 15 is disposed in the vicinity of the optical barrel 14.

前述したEUV露光装置は、紫外線を用いる露光装置に比べて、通常の表面を有する物体の表面反射率が桁違いに小さい。そのため、EUV露光装置は、紫外線露光装置に比べて迷光が発生しにくいとされている。しかしながら、EUV露光装置においても、物体の表面に入射する角度が非常に小さい場合(いわゆる斜入射の場合)には、全反射現象によりガラス表面や金属表面による反射率が比較的大きくなる。すると、このような状態で反射したEUV光の一部が、迷光となってウェハ10まで到達することがある。そして、迷光がウェハ10まで到達するとなると、光学系の結像性能が悪化してしまう。   The EUV exposure apparatus described above has an orderly smaller surface reflectance of an object having a normal surface than an exposure apparatus using ultraviolet rays. For this reason, the EUV exposure apparatus is less likely to generate stray light than the ultraviolet exposure apparatus. However, even in the EUV exposure apparatus, when the incident angle on the surface of the object is very small (so-called oblique incidence), the reflectance by the glass surface or metal surface becomes relatively large due to the total reflection phenomenon. Then, part of the EUV light reflected in such a state may reach the wafer 10 as stray light. When stray light reaches the wafer 10, the imaging performance of the optical system is deteriorated.

このような迷光の悪影響を抑制するため、光学鏡筒14内に迷光を遮る板(迷光絞り)を設けることが考えられている。しかしながら、EUV光学系は、EUV光が複数のミラー(図7では6枚)で反射する反射光学系であり、EUV光の光路が錯綜し易い。そのため、光学系内部においてEUV光路を確保しつつ、迷光絞りを適切に配置するのが困難であった。   In order to suppress such adverse effects of stray light, it is considered to provide a plate (stray light aperture) for blocking stray light in the optical barrel 14. However, the EUV optical system is a reflective optical system in which EUV light is reflected by a plurality of mirrors (six in FIG. 7), and the optical paths of the EUV light are likely to be complicated. For this reason, it is difficult to appropriately arrange the stray light aperture while securing the EUV optical path inside the optical system.

本発明は、前記の課題に鑑みてなされたものであって、迷光の悪影響を低減して結像性能を向上することのできる極端紫外線光学系と、そのような光学系を備える露光装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an extreme ultraviolet optical system capable of reducing the adverse effects of stray light and improving imaging performance, and an exposure apparatus including such an optical system. The purpose is to do.

本発明の第1の極端紫外線光学系は、極端紫外線を反射する複数の多層膜反射鏡(ミラー)と、 該複数のミラー間又はその近傍に配置された迷光絞りと、を備える極端紫外線光学系であって、 該光学系の光軸に交差する面のうち、光学系の光束が1回のみ通過する面に沿って前記迷光絞りが配置されていることを特徴とする。   A first extreme ultraviolet optical system according to the present invention includes a plurality of multilayer film reflecting mirrors (mirrors) that reflect extreme ultraviolet light, and a stray light stop disposed between or in the vicinity of the plurality of mirrors. The stray light stop is arranged along a surface that intersects the optical axis of the optical system and through which the light beam of the optical system passes only once.

この極端紫外線光学系では、光学系の光軸に交差する面のうち、光学系の光束が1回のみ通過する面に沿って迷光絞りが配置されている。迷光は、基本的には光学系中の1箇所で充分に遮ることができるので、より少ない数の迷光絞りで迷光を遮る方が、光学系中の構成が複雑化しないため好ましい。   In this extreme ultraviolet optical system, a stray light stop is arranged along a surface through which the light beam of the optical system passes only once among the surfaces intersecting the optical axis of the optical system. Since stray light can be sufficiently blocked basically at one place in the optical system, it is preferable to block stray light with a smaller number of stray light stops because the configuration in the optical system is not complicated.

本発明の第1の極端紫外線光学系においては、前記迷光絞りが、前記光学系の光軸に交差する面のうち、光学系の光束の断面積が極小値となる面に沿って配置されているものとすることができる。
光束の断面積が極小値となる面に沿っていることで、迷光絞り自体のサイズを小さくすることができる。そのため、迷光絞りと、光学系中のミラー近傍の部材(例えばミラーのホールド機構や位置調整機構等)との共存配置が容易となる。
In the first extreme ultraviolet optical system of the present invention, the stray light stop is disposed along a surface where a cross-sectional area of the light beam of the optical system is a minimum value among surfaces intersecting the optical axis of the optical system. Can be.
The size of the stray light diaphragm itself can be reduced by being along the surface where the cross-sectional area of the light beam is minimized. Therefore, the coexistence arrangement of the stray light stop and a member in the vicinity of the mirror in the optical system (for example, a mirror holding mechanism or a position adjusting mechanism) is facilitated.

本発明の第1の極端紫外線光学系においては、前記光学系が少なくとも1つの中間結像面を有し、該中間結像面に沿って前記迷光絞りが配置されているものとすることができる。
中間結像面は、物体面(レチクル)及び像面(ウェハ)との概共役位置に相当し、ここでは光束が一時的に絞り込まれる。そこで、中間結像面に迷光絞りを配置することで、迷光を効率よく遮ることが可能となる。
In the first extreme ultraviolet optical system of the present invention, the optical system may have at least one intermediate imaging plane, and the stray light stop may be disposed along the intermediate imaging plane. .
The intermediate image plane corresponds to an approximate conjugate position between the object plane (reticle) and the image plane (wafer), and here, the light beam is temporarily focused. In view of this, it is possible to efficiently block stray light by arranging a stray light stop on the intermediate image plane.

本発明の第1の極端紫外線光学系のより具体的な態様においては、前記光学系が前記ミラーを6枚備える6枚光学系であり、該6枚光学系の結像面側から光路に沿って第2番目と第3番目のミラーの間に前記迷光絞りが配置されているものとすることができる。   In a more specific aspect of the first extreme ultraviolet optical system of the present invention, the optical system is a six-lens optical system including six mirrors, and follows the optical path from the imaging plane side of the six-optical system. Thus, the stray light stop may be disposed between the second and third mirrors.

本発明の第1の極端紫外線光学系においては、前記複数のミラーのうちの2枚のミラー間に開口絞りが配置されており、該開口絞りに隣接して前記迷光絞りが配置されているものとすることができる。
この場合、開口絞りに極端紫外線が照射することによって発生した迷光を効率よく除去することができるという利点がある。
In the first extreme ultraviolet optical system of the present invention, an aperture stop is disposed between two of the plurality of mirrors, and the stray light aperture is disposed adjacent to the aperture stop. It can be.
In this case, there is an advantage that stray light generated by irradiating the aperture stop with extreme ultraviolet rays can be efficiently removed.

本発明の第1の極端紫外線光学系のより具体的な態様においては、前記光学系が前記ミラーを6枚備える6枚光学系であり、該6枚光学系の結像面側から光路に沿って第1番目と第2番目のミラーからなるミラー群と、第3番目から第6番目のミラーからなるミラー群との間に前記迷光絞りが配置されているものとすることができる。   In a more specific aspect of the first extreme ultraviolet optical system of the present invention, the optical system is a six-lens optical system including six mirrors, and follows the optical path from the imaging plane side of the six-optical system. Thus, the stray light stop may be arranged between a mirror group composed of the first and second mirrors and a mirror group composed of the third to sixth mirrors.

本発明の第1の極端紫外線光学系においては、前記結像面と、前記複数のミラーのうち前記結像面に最も近いミラーとの間に、前記迷光絞りが配置されているものとすることができる。
この場合、光束が結像される直前において迷光を遮断することができる。
In the first extreme ultraviolet optical system of the present invention, the stray light stop is disposed between the imaging surface and a mirror closest to the imaging surface among the plurality of mirrors. Can do.
In this case, stray light can be blocked immediately before the light beam is imaged.

また、前記極端紫外線が照射される物体面と、前記複数のミラーのうち前記物体面に最も近いミラーとの間に、前記迷光絞りが配置されているものとすることができる。
この場合、光束がミラーに入射される前段階において迷光を遮断することができる。
Further, the stray light stop may be disposed between the object plane irradiated with the extreme ultraviolet rays and a mirror closest to the object plane among the plurality of mirrors.
In this case, stray light can be blocked before the light beam enters the mirror.

本発明の第2の極端紫外線光学系においては、極端紫外線を反射する複数の多層膜反射鏡(ミラー)と、 該複数のミラー間又はその近傍に配置された迷光絞りと、を備える極端紫外線光学系であって、 前記極端紫外線光束と、該光束に隣接して配置された前記ミラーの端面との間に、前記迷光絞りが配置されていることを特徴とする。   In the second extreme ultraviolet optical system of the present invention, an extreme ultraviolet optical system comprising: a plurality of multilayer film reflecting mirrors (mirrors) that reflect extreme ultraviolet light; and a stray light stop disposed between or in the vicinity of the plurality of mirrors. A stray light stop is disposed between the extreme ultraviolet light beam and an end face of the mirror disposed adjacent to the light beam.

迷光絞りは、迷光が発生しやすい場所に配置するのが効果的である。例えば、迷光は、光束の一部が光路に隣接配置された部材に当って反射又は散乱することで発生する場合がある。そのため、ミラーの端面が光束の進行方向と概ね平行となるように配置されている場合は、光束の一部がミラーの端面に斜入射して反射することにより、迷光が発生する場合がある。本発明のこの態様によれば、入射角を大きく設定して反射率を下げる効果と、反射光の向きと有効光束の向きとを乖離させる効果が生じるので、迷光の悪影響を低減できる。   It is effective to arrange the stray light aperture in a place where stray light is likely to be generated. For example, stray light may be generated when a part of a light beam is reflected or scattered upon a member disposed adjacent to the optical path. For this reason, when the end face of the mirror is arranged so as to be substantially parallel to the traveling direction of the light beam, stray light may be generated when a part of the light beam is obliquely incident on the end face of the mirror and reflected. According to this aspect of the present invention, the effect of lowering the reflectance by setting the incident angle large and the effect of deviating the direction of the reflected light from the direction of the effective light beam are produced, so that the adverse effect of stray light can be reduced.

本発明の第2の極端紫外線光学系においては、前記迷光絞りが円錐台面を有する筒状体からなるものとすることができる。
このような迷光絞りは、円錐の断面直径が光束の下流側に向けて大きくなるように(つまり、大きい方の口が光束の下流側に向くように)配置する。すると、光束の上流側からは、迷光絞りの表面積が徐々に広くなる形態となるので、迷光を遮断・吸収する面積が広くなるとともに、迷光の反射光の一部を光路外へ排除することも可能となる。さらに、このような円錐台状の迷光絞りは、隣り合う光路間が狭いような場所でも設置し易いという利点もある。
In the second extreme ultraviolet optical system of the present invention, the stray light stop may be formed of a cylindrical body having a truncated cone surface.
Such a stray light stop is arranged so that the cross-sectional diameter of the cone increases toward the downstream side of the light beam (that is, the larger mouth faces the downstream side of the light beam). Then, from the upstream side of the luminous flux, the surface area of the stray light diaphragm gradually increases, so that the area for blocking and absorbing stray light is widened, and part of the reflected light of stray light can be excluded from the optical path. It becomes possible. Furthermore, such a truncated cone shaped stray light stop has an advantage that it can be easily installed even in a place where the distance between adjacent optical paths is narrow.

本発明の第2の極端紫外線光学系においては、前記迷光絞りが前記光学系の光軸に沿って複数段に配列されているものとすることができる。
この場合、迷光絞りの段数は、光学系中の配置スペースや迷光の遮断効率等によって異なる。
In the second extreme ultraviolet optical system of the present invention, the stray light stops may be arranged in a plurality of stages along the optical axis of the optical system.
In this case, the number of stages of the stray light aperture varies depending on the arrangement space in the optical system, the stray light blocking efficiency, and the like.

本発明の第2の極端紫外線光学系においては、前記迷光絞りに温度調整機構が付設されているものとすることができる。
極端紫外線光学系は、真空中で使用されるため、迷光絞りは断熱状態に近い環境下に配置されることとなる。この迷光絞りは、極端紫外線が照射されることで温度上昇し、熱変形をきたすことも想定される。本発明のこの態様では、迷光絞りに温度調整機構(例えば電子冷却素子等)が付設されていることで、迷光絞りの温度上昇を抑制できる。
In the second extreme ultraviolet optical system of the present invention, a temperature adjusting mechanism may be attached to the stray light diaphragm.
Since the extreme ultraviolet optical system is used in a vacuum, the stray light diaphragm is disposed in an environment close to a heat insulation state. It is also assumed that the stray light diaphragm rises in temperature by being irradiated with extreme ultraviolet rays and is thermally deformed. In this aspect of the present invention, a temperature adjustment mechanism (for example, an electronic cooling element) is attached to the stray light aperture, so that an increase in the temperature of the stray light aperture can be suppressed.

本発明の露光装置は、極端紫外線を選択的に感応基板上に照射してパターン形成する露光装置であって、 前記請求項1〜12いずれか1項記載の極端紫外線光学系を備えることを特徴とする。   An exposure apparatus of the present invention is an exposure apparatus that selectively irradiates extreme ultraviolet rays onto a sensitive substrate to form a pattern, and comprises the extreme ultraviolet optical system according to any one of claims 1 to 12. And

このような露光装置によれば、迷光絞りによって迷光を遮断できるので、露光への迷光の悪影響を低減し、露光パターンのコントラストを向上させることができる。   According to such an exposure apparatus, since the stray light can be blocked by the stray light aperture, the adverse effect of the stray light on the exposure can be reduced and the contrast of the exposure pattern can be improved.

本発明の露光装置においては、感応基板上に転写すべきパターンの形成された原版を極端紫外線照明する照明光学系をさらに具備し、 前記請求項1〜12いずれか1項記載の迷光絞りに、前記照明光学系の光路を確保するための開口が開けられているものとすることができる。   In the exposure apparatus of the present invention, further comprising an illumination optical system for illuminating the original on which the pattern to be transferred on the sensitive substrate is irradiated with extreme ultraviolet rays, the stray light stop according to any one of claims 1 to 12, The opening for ensuring the optical path of the said illumination optical system shall be opened.

本発明の露光装置においては、 前記感応基板を移動・位置決めする感応基板ステージと、 前記原版を載置して移動・位置決めする原版ステージと、 これらステージの位置・姿勢を検出する光学センサと、をさらに具備し、 前記請求項1〜12いずれか1項記載の迷光絞りに、前記光学センサの光路を確保するための開口が開けられているものとすることができる。   In the exposure apparatus of the present invention, a sensitive substrate stage for moving / positioning the sensitive substrate, an original stage for placing and moving / positioning the original plate, and an optical sensor for detecting the position / posture of these stages, The stray light diaphragm according to any one of claims 1 to 12, further comprising an opening for securing an optical path of the optical sensor.

本発明によれば、迷光の悪影響を低減して結像性能を向上することのできる極端紫外線光学系等を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the extreme ultraviolet optical system etc. which can reduce the bad influence of stray light and can improve imaging performance can be provided.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
図1は、本発明の一実施例に係るEUV露光装置の投影光学系を模式的に示す図である。
なお、EUV露光装置全体の基本的構成は、前述した図6と同様のものを用いることができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram schematically showing a projection optical system of an EUV exposure apparatus according to an embodiment of the present invention.
The basic configuration of the entire EUV exposure apparatus can be the same as that shown in FIG.

図1に示す露光装置の投影光学系は、計6枚のミラーM1〜M6を備えている。各ミラーM1〜M6は、図示はしないが、それぞれホールド機構に保持されており、位置調整機構で微動可能となっている。各ミラーM1〜M6に付した符号は、数字が大きくなるに連れてEUV光束Eの上流側から下流側に位置することを意味する。各ミラーM1〜M6は、低熱膨張ガラス等の基板の表面(ミラー反射面)に、一例でMo/Siを交互に積層してなる多層膜がコーティングされた多層膜ミラーである。   The projection optical system of the exposure apparatus shown in FIG. 1 includes a total of six mirrors M1 to M6. Although not shown, each of the mirrors M1 to M6 is held by a hold mechanism and can be finely moved by the position adjusting mechanism. The code | symbol attached | subjected to each mirror M1-M6 means that it is located in the downstream from the upstream of the EUV light beam E as a number becomes large. Each of the mirrors M1 to M6 is a multilayer mirror in which a multilayer film formed by alternately laminating Mo / Si, for example, is coated on the surface (mirror reflection surface) of a substrate such as low thermal expansion glass.

図1の光学系中、第1ミラーM1と第2ミラーM2との間には、開口数(N.A.)を規定する開口絞り20が配置されている。この例の開口絞り20は、有効光束を通す開口20aを備えた板体である。このような開口絞り20としては、他に例えば特願2003−012306号に開示されたもの等を用いることができる。   In the optical system of FIG. 1, an aperture stop 20 that defines the numerical aperture (NA) is disposed between the first mirror M1 and the second mirror M2. The aperture stop 20 in this example is a plate having an opening 20a through which an effective light beam passes. As such an aperture stop 20, for example, the one disclosed in Japanese Patent Application No. 2003-012306 can be used.

図1の光学系には、この例では計6個の迷光絞り41〜46が配置されている。各迷光絞り41〜46は、EUV光束Eからの迷光が光学系下流のウェハW(図6の符号10と同様のもの)に到達するのを防ぐためのものである。
以下、これらの迷光絞り41〜46について詳細に説明する。なお、各迷光絞りの具体的な態様については、後に図2〜図5を参照しつつ説明する。
In this example, a total of six stray light stops 41 to 46 are arranged in the optical system of FIG. Each of the stray light stops 41 to 46 is for preventing stray light from the EUV light flux E from reaching the wafer W downstream of the optical system (same as reference numeral 10 in FIG. 6).
Hereinafter, these stray light stops 41 to 46 will be described in detail. In addition, the specific aspect of each stray light stop is demonstrated later, referring FIGS.

迷光絞り41は、第4ミラーM4と第5ミラーM5との間の中間結像面に配置されている。中間結像面は、レチクルR(物体面)及びウェハW(像面)との共役位置に相当し、EUV光束Eが一時的に絞り込まれる面である。この中間結像面に配置された迷光絞り41により、第4ミラーM4で反射し、中間結像面を通って第5ミラーM5に至る際に生じる迷光が効率よく遮断される。   The stray light stop 41 is disposed on the intermediate image plane between the fourth mirror M4 and the fifth mirror M5. The intermediate imaging plane corresponds to a conjugate position between the reticle R (object plane) and the wafer W (image plane), and is a plane on which the EUV light beam E is temporarily focused. The stray light stop 41 disposed on the intermediate imaging plane efficiently blocks stray light that is reflected by the fourth mirror M4 and generated when reaching the fifth mirror M5 through the intermediate imaging plane.

迷光絞り42は、第1ミラーM1と第2ミラーM2との間において、開口絞り20に隣接して配置されている。この迷光絞り42により、第1ミラーM1で反射して第2ミラーM2に至る際に生じる迷光が遮断される。この迷光絞り42の構成については、後に図4を参照しつつ詳述する。   The stray light stop 42 is disposed adjacent to the aperture stop 20 between the first mirror M1 and the second mirror M2. The stray light stop 42 blocks stray light that is reflected when the light is reflected by the first mirror M1 and reaches the second mirror M2. The configuration of the stray light stop 42 will be described in detail later with reference to FIG.

迷光絞り43は、レチクルR(図6の符号2と同様のもの)と光学系上端との間に配置されている。この迷光絞り43には、照明光学系(図6の符号IL)から放射されてレチクルRに照射する間のEUV光束を通す孔43aと、レチクルRで反射して投影光学系に入射する間のEUV光束を通す孔43bとが開けられている。EUV光束がこれらの孔43a、43bを通る際に、投影光学系に入射する前段階で、大部分の迷光が遮断される。   The stray light stop 43 is disposed between the reticle R (same as reference numeral 2 in FIG. 6) and the upper end of the optical system. The stray light stop 43 includes a hole 43a through which an EUV light beam is emitted while being emitted from the illumination optical system (symbol IL in FIG. 6) and irradiating the reticle R, and while being reflected by the reticle R and incident on the projection optical system. A hole 43b through which the EUV light beam passes is formed. When the EUV light beam passes through the holes 43a and 43b, most of stray light is blocked before entering the projection optical system.

迷光絞り44は、第1ミラーM1背面と第6ミラーM6背面との間に配置されている。この迷光絞り44により、上流側の迷光絞り41(中間結像面)を通って第5ミラーM5に至る際に生じる迷光が遮断される。この迷光絞り44は、光学系の光軸Cに交差する面のうち、光学系の光束が1回のみ通過する面に沿って配置されている。迷光は、基本的には光学系中の1箇所で充分に遮ることができるので、場合によってはこの迷光絞り44のみを配置しても、充分な遮断効果を得ることができる。   The stray light stop 44 is disposed between the back surface of the first mirror M1 and the back surface of the sixth mirror M6. The stray light stop 44 blocks stray light generated when reaching the fifth mirror M5 through the upstream stray light stop 41 (intermediate imaging plane). The stray light stop 44 is arranged along a surface through which the light beam of the optical system passes only once among the surfaces intersecting the optical axis C of the optical system. Since stray light can be sufficiently blocked basically at one place in the optical system, a sufficient blocking effect can be obtained even if only this stray light stop 44 is provided.

迷光絞り45は、ウェハWと光学系下端との間に配置されている。この迷光絞り45により、第6ミラーM6で反射してウェハWに至る際に生じる迷光が遮断される。なお、この迷光絞り45も、前述の迷光絞り44と同様に、光学系の光軸Cに交差する面のうち、光学系の光束が1回のみ通過する面に沿って配置されている。そのため、場合によってはこの迷光絞り45のみを配置する形態でも、充分な遮断効果を得ることができる。この迷光絞り45近傍の構成については、後に図5を参照しつつ詳述する。   The stray light stop 45 is disposed between the wafer W and the lower end of the optical system. The stray light diaphragm 45 blocks stray light that is reflected when reaching the wafer W by being reflected by the sixth mirror M6. The stray light stop 45 is also arranged along the surface through which the light beam of the optical system passes only once among the surfaces intersecting the optical axis C of the optical system, like the stray light stop 44 described above. Therefore, even if only the stray light diaphragm 45 is disposed in some cases, a sufficient blocking effect can be obtained. The configuration near the stray light stop 45 will be described in detail later with reference to FIG.

迷光絞り46は、第3ミラーM3の端面近傍に配置されている。迷光は、光束の一部がミラー端面に当って反射又は散乱することで発生する場合がある。この迷光絞り46によれば、特に第3ミラーM3の端面に当って反射又は散乱するような迷光を遮断することができる。この迷光絞り46については、後に図3を参照しつつ詳述する。   The stray light stop 46 is disposed in the vicinity of the end face of the third mirror M3. The stray light may be generated when a part of the light beam hits the mirror end face and is reflected or scattered. According to the stray light stop 46, it is possible to block stray light that is reflected or scattered especially on the end face of the third mirror M3. The stray light stop 46 will be described in detail later with reference to FIG.

これらの各迷光絞り41〜46には、ペルチエ素子等の温度調整機構Hが付設されている(図1中では迷光絞り41の温度調整機構Hのみを示す)。EUV露光装置の投影光学系内部は真空とされるため、各迷光絞り41〜46は断熱状態に近い環境下に配置されることとなる。そのため、迷光絞り41〜46にEUV光束Eの一部が照射されると温度上昇をきたし易く、熱変形が起こることも想定されるが、この温度調整機構Hで冷却することで、迷光絞り41〜46の温度上昇が抑制できる。   Each of these stray light stops 41 to 46 is provided with a temperature adjustment mechanism H such as a Peltier element (only the temperature adjustment mechanism H of the stray light stop 41 is shown in FIG. 1). Since the inside of the projection optical system of the EUV exposure apparatus is evacuated, the stray light stops 41 to 46 are arranged in an environment close to a heat insulation state. For this reason, when a part of the EUV light flux E is irradiated on the stray light stops 41 to 46, the temperature easily rises and thermal deformation is assumed to occur. However, by cooling with the temperature adjusting mechanism H, the stray light stop 41 is cooled. The temperature rise of -46 can be suppressed.

次に、各迷光絞りの具体例について説明する。
図2(A)〜(C)は、それぞれ本発明に係る迷光絞りの例を示す図である。
図2(A)に示す迷光絞り51は、方形の板体の中央に孔51aが形成されたものである。この迷光絞り51においては、中央の孔51aを有効光束Eが通過し、孔51aの周囲で迷光E′が遮断される。この迷光絞り51は、最も標準的な形態であって、図1中の迷光絞り41や44等に適用できる。
Next, specific examples of each stray light stop will be described.
2A to 2C are diagrams showing examples of the stray light diaphragm according to the present invention.
The stray light stop 51 shown in FIG. 2A has a hole 51a formed at the center of a rectangular plate. In the stray light stop 51, the effective light beam E passes through the central hole 51a, and the stray light E ′ is blocked around the hole 51a. The stray light stop 51 is the most standard form, and can be applied to the stray light stops 41 and 44 in FIG.

図2(B)に示す迷光絞り53は、円錐台面53aを有する筒状体からなるものである。このような迷光絞り53は、円錐の断面直径が有効光束Eの下流側に向けて大きくなるように(つまり、大開口53b側が有効光束Eの下流側、小開口53cが有効光束Eの上流側を向くように)配置する。すると、有効光束Eの上流側からは、迷光絞り53の円錐台面53aの面積が徐々に広くなる形態となるので、迷光E′を遮断・吸収する面積が広くなるとともに、迷光E′の反射光の一部を光路外へ排除することも可能となる。このような迷光絞り53は、隣り合う光路間が狭いような場所(例えば図1中の迷光絞り42が配置される場所)であっても設置し易いという利点もある。   The stray light stop 53 shown in FIG. 2B is a cylindrical body having a truncated cone surface 53a. In such a stray light stop 53, the cone has a cross-sectional diameter that increases toward the downstream side of the effective light beam E (that is, the large opening 53b is on the downstream side of the effective light beam E, and the small opening 53c is on the upstream side of the effective light beam E). So that it faces). Then, since the area of the truncated cone surface 53a of the stray light stop 53 gradually increases from the upstream side of the effective light beam E, the area for blocking / absorbing the stray light E ′ is increased and the reflected light of the stray light E ′ is increased. It is also possible to exclude a part of the optical path outside the optical path. Such a stray light stop 53 has an advantage that it is easy to install even in a place where the distance between adjacent optical paths is narrow (for example, a place where the stray light stop 42 in FIG. 1 is disposed).

図2(C)に示す迷光絞り55は、前述した図2(A)の迷光絞り51が有効光束Eの向きに沿って複数段(この例では3段)に配列されているものである。この段数は、光学系中の配置スペースや迷光E′の遮断効率等によって、適宜選択することができる。   The stray light stop 55 shown in FIG. 2C is a structure in which the stray light stop 51 shown in FIG. 2A is arranged in a plurality of stages (in this example, three stages) along the direction of the effective light beam E. The number of stages can be appropriately selected according to the arrangement space in the optical system, the blocking efficiency of stray light E ′, and the like.

図3(A)はミラー端面近傍に迷光絞りを設けていない従来の場合の迷光の挙動を説明する模式図であり、図3(B)はミラー端面近傍に迷光絞りを設けた本発明に係る場合の迷光の挙動を説明する模式図である。
図3(A)に示すように、光学系中のミラーMの端面M′が有効光束Eの進行方向と概ね平行となるように配置されている場合は、有効光束Eの一部がミラー端面M′に斜入射して反射することにより、迷光E′が発生する場合がある。そこで、図3(B)に示すように、有効光束Eと、これに隣接して配置されたミラーMの端面M′との間に、迷光絞り57を配置する。すると、迷光E′の入射角を大きく(斜入射角を大きく)設定して反射率を下げる効果と、迷光E′の反射光の向きと有効光束Eの向きとを乖離させる効果が生じるので、迷光E′の悪影響を低減できる。前述した図1の迷光絞り46は、この図3(B)の迷光絞り57が採用されている。
FIG. 3A is a schematic diagram for explaining the behavior of stray light in the conventional case where no stray light stop is provided near the mirror end face, and FIG. 3B relates to the present invention in which the stray light stop is provided near the mirror end face. It is a schematic diagram explaining the behavior of the stray light in the case.
As shown in FIG. 3A, when the end surface M ′ of the mirror M in the optical system is arranged so as to be substantially parallel to the traveling direction of the effective light beam E, a part of the effective light beam E is part of the mirror end surface. The stray light E ′ may be generated by obliquely incident on M ′ and reflected. Therefore, as shown in FIG. 3B, a stray light stop 57 is disposed between the effective light beam E and the end face M ′ of the mirror M disposed adjacent thereto. Then, the effect of lowering the reflectance by setting the incident angle of the stray light E ′ to be large (increase the oblique incident angle) and the effect of deviating the direction of the reflected light of the stray light E ′ from the direction of the effective light flux E are generated. The adverse effect of stray light E ′ can be reduced. The stray light stop 46 of FIG. 1 employs the stray light stop 57 of FIG. 3B.

図4(A)、(B)は、それぞれ本発明に係る迷光絞りの他の例を示す図である。
図4には、図1中の迷光絞り42の具体例が示されている。図4(A)の半円筒面板状の迷光絞り61、62は、開口絞り20の上下それぞれに、開口絞り20中心に点対称的に一体形成されているものである。各迷光絞り61、62の背面には、ペルチエ素子等の温度調整機構Hが設けられている。一方、図4(B)の半円筒面板状の迷光絞り61、62は、開口絞り20の上下それぞれに、開口絞り20中心に点対称的に近接配置されており、且つ、各迷光絞り61、62の端部に半リング状の端板61a、62aが設けられているものである。
4A and 4B are views showing other examples of the stray light diaphragm according to the present invention, respectively.
FIG. 4 shows a specific example of the stray light stop 42 in FIG. 4A are semi-cylindrical plate-like stray light stops 61 and 62 that are integrally formed point-symmetrically with respect to the center of the aperture stop 20 above and below the aperture stop 20, respectively. A temperature adjustment mechanism H such as a Peltier element is provided on the back surface of each of the stray light apertures 61 and 62. On the other hand, the semi-cylindrical plate-like stray light stops 61 and 62 in FIG. 4B are arranged close to the center of the aperture stop 20 in a point-symmetrical manner above and below the aperture stop 20, and each stray light stop 61, Semi-ring shaped end plates 61 a and 62 a are provided at the end of 62.

図4(A)の迷光絞りは、迷光E′を遮断することはできるが、迷光E″のような挙動を示すものは遮断できない可能性がある。これに対し、図4(B)の迷光絞りは、このような迷光E″も端板61a、62aで遮断することができる。そのため、実際には図4(A)よりも図4(B)の方が好ましく、図1中の迷光絞り42としてもこれを用いるのが好ましい。   4A can block the stray light E ′, but it may not be able to block the stray light E ″. The stray light in FIG. 4B may not be blocked. The diaphragm can also block such stray light E ″ by the end plates 61a and 62a. Therefore, in practice, FIG. 4B is preferable to FIG. 4A, and this is preferably used as the stray light stop 42 in FIG.

図5は、本発明に係る露光装置のウェハステージ近傍の構成を示す模式図である。
図5には、図1中の迷光絞り45の具体例が示されている。この図5においては、図6を用いて前述したウェハステージ11、ウェハオートフォーカス送光系12、ウェハオートフォーカス受光系13、アライメント用のオフアクシス顕微鏡15が示されている。ウェハステージ11上には、ウェハW(10)が載置されている。
FIG. 5 is a schematic diagram showing a configuration in the vicinity of the wafer stage of the exposure apparatus according to the present invention.
FIG. 5 shows a specific example of the stray light stop 45 in FIG. In FIG. 5, the wafer stage 11, the wafer autofocus light transmission system 12, the wafer autofocus light reception system 13, and the off-axis microscope 15 for alignment described above with reference to FIG. 6 are shown. On the wafer stage 11, a wafer W (10) is placed.

第5ミラーM5とウェハW間に配置された迷光絞り45には、光学センサの光路を確保する開口が開けられているものとすることができる。オートフォーカス送光系12、オートフォーカス受光系13、オフアクシス顕微鏡15の各光路を確保するための孔45a、45b、45cが開けられている。これらの孔45a、45b、45cを設けることで、オートフォーカス送光系12、オートフォーカス受光系13、オフアクシス顕微鏡15の性能を損なうことなく、EUV光束Eからの迷光を遮断することができる。   The stray light stop 45 disposed between the fifth mirror M5 and the wafer W may have an opening that secures the optical path of the optical sensor. Holes 45a, 45b, and 45c for securing the optical paths of the autofocus light transmission system 12, the autofocus light reception system 13, and the off-axis microscope 15 are formed. By providing these holes 45a, 45b, and 45c, stray light from the EUV light beam E can be blocked without impairing the performance of the autofocus light transmission system 12, the autofocus light receiving system 13, and the off-axis microscope 15.

このように、本実施例に係る迷光絞りを用いたところ、所見によれば、ウェハに到達する迷光の強度を従来と比較して1/50以下に低減させることができた。その結果、露光への迷光の悪影響が低減され、露光パターンのコントラストが向上できる。   As described above, when the stray light stop according to the present embodiment was used, according to the findings, the intensity of the stray light reaching the wafer could be reduced to 1/50 or less compared to the conventional case. As a result, the adverse effect of stray light on the exposure is reduced, and the contrast of the exposure pattern can be improved.

本発明の一実施例に係るEUV露光装置の投影光学系を模式的に示す図である。It is a figure which shows typically the projection optical system of the EUV exposure apparatus which concerns on one Example of this invention. 本発明に係る迷光絞りの例を示す図である。It is a figure which shows the example of the stray-light stop which concerns on this invention. 図3(A)はミラー端面近傍に迷光絞りを設けていない従来の場合の迷光の挙動を説明する模式図であり、図3(B)はミラー端面近傍に迷光絞りを設けた本発明に係る場合の迷光の挙動を説明する模式図である。FIG. 3A is a schematic diagram for explaining the behavior of stray light in the conventional case where no stray light stop is provided near the mirror end face, and FIG. 3B relates to the present invention in which the stray light stop is provided near the mirror end face. It is a schematic diagram explaining the behavior of the stray light in the case. 本発明に係る迷光絞りの他の例を示す図である。It is a figure which shows the other example of the stray light aperture_diaphragm | restriction based on this invention. 本発明に係る露光装置のウェハステージ近傍の構成を示す模式図である。It is a schematic diagram which shows the structure of the wafer stage vicinity of the exposure apparatus which concerns on this invention. EUV露光装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of EUV exposure apparatus. 図6のEUV露光装置の投影光学系のミラー配置を示す図である。It is a figure which shows the mirror arrangement | positioning of the projection optical system of the EUV exposure apparatus of FIG.

符号の説明Explanation of symbols

M1〜M6 ミラー IL 照明系
2(R) レチクル 3 レチクルステージ
4 レチクルフォーカス送光系 5 レチクルフォーカス受光系
14 光学鏡筒
10(W) ウェハ 11 ウェハステージ
12 ウェハオートフォーカス送光系 13 ウェハオートフォーカス受光系
15 オフアクシス顕微鏡
20 開口絞り 20a 開口
41〜46、51、53、57、61、62 迷光絞り
43a、43b、45a、45b、45c、51a 孔
53a 円錐台面 53b 大開口
53c 小開口 61a、62a 端板
M1 to M6 Mirror IL Illumination system 2 (R) Reticle 3 Reticle stage 4 Reticle focus light transmission system 5 Reticle focus light reception system 14 Optical barrel 10 (W) Wafer 11 Wafer stage 12 Wafer autofocus light transmission system 13 Wafer autofocus light reception System 15 Off-axis microscope 20 Aperture stop 20a Apertures 41 to 46, 51, 53, 57, 61, 62 Stray light stops 43a, 43b, 45a, 45b, 45c, 51a Hole 53a Frustum surface 53b Large aperture 53c Small aperture 61a, 62a End Board

Claims (15)

極端紫外線を反射する複数の多層膜反射鏡(ミラー)と、
該複数のミラー間又はその近傍に配置された迷光絞りと、
を備える極端紫外線光学系であって、
該光学系の光軸に交差する面のうち、光学系の光束が1回のみ通過する面に沿って前記迷光絞りが配置されていることを特徴とする極端紫外線光学系。
A plurality of multilayer mirrors that reflect extreme ultraviolet radiation;
A stray light stop disposed between or near the plurality of mirrors;
An extreme ultraviolet optical system comprising:
An extreme ultraviolet optical system, wherein the stray light stop is disposed along a surface through which a light beam of the optical system passes only once among surfaces intersecting the optical axis of the optical system.
前記迷光絞りが、前記光学系の光軸に交差する面のうち、光学系の光束の断面積が極小値となる面に沿って配置されていることを特徴とする請求項1記載の極端紫外線光学系。   2. The extreme ultraviolet light according to claim 1, wherein the stray light stop is disposed along a surface where a cross-sectional area of a light beam of the optical system becomes a minimum value among surfaces intersecting the optical axis of the optical system. Optical system. 前記光学系が少なくとも1つの中間結像面を有し、該中間結像面に沿って前記迷光絞りが配置されていることを特徴とする請求項1又は2記載の極端紫外線光学系。   The extreme ultraviolet optical system according to claim 1, wherein the optical system has at least one intermediate imaging plane, and the stray light stop is disposed along the intermediate imaging plane. 前記光学系が前記ミラーを6枚備える6枚光学系であり、該6枚光学系の結像面側から光路に沿って第2番目と第3番目のミラーの間に前記迷光絞りが配置されていることを特徴とする請求項1、2又は3記載の極端紫外線光学系。   The optical system is a six-lens optical system including six of the mirrors, and the stray light diaphragm is disposed between the second and third mirrors along the optical path from the imaging plane side of the six-optical system. The extreme ultraviolet optical system according to claim 1, 2, or 3. 前記複数のミラーのうちの2枚のミラー間に開口絞りが配置されており、該開口絞りに隣接して前記迷光絞りが配置されていることを特徴とする請求項1〜4いずれか1項記載の極端紫外線光学系。   5. The aperture stop is disposed between two of the plurality of mirrors, and the stray light stop is disposed adjacent to the aperture stop. 6. The extreme ultraviolet optical system described. 前記光学系が前記ミラーを6枚備える6枚光学系であり、該6枚光学系の結像面側から光路に沿って第1番目と第2番目のミラーからなるミラー群と、第3番目から第6番目のミラーからなるミラー群との間に前記迷光絞りが配置されていることを特徴とする請求項1〜5いずれか1項記載の極端紫外線光学系。   The optical system is a six-lens optical system including six of the mirrors, a mirror group including a first and a second mirror along the optical path from the imaging plane side of the six-optical system, and a third The extreme ultraviolet optical system according to any one of claims 1 to 5, wherein the stray light stop is disposed between the first to sixth mirror groups. 前記結像面と、前記複数のミラーのうち前記結像面に最も近いミラーとの間に、前記迷光絞りが配置されていることを特徴とする請求項1〜6いずれか1項記載の極端紫外線光学系。   7. The extreme according to claim 1, wherein the stray light stop is disposed between the imaging plane and a mirror closest to the imaging plane among the plurality of mirrors. UV optical system. 前記極端紫外線が照射される物体面と、前記複数のミラーのうち前記物体面に最も近いミラーとの間に、前記迷光絞りが配置されていることを特徴とする請求項1〜7いずれか1項記載の極端紫外線光学系。   The stray light diaphragm is arranged between the object surface irradiated with the extreme ultraviolet light and the mirror closest to the object surface among the plurality of mirrors. The extreme ultraviolet optical system according to item. 極端紫外線を反射する複数の多層膜反射鏡(ミラー)と、
該複数のミラー間又はその近傍に配置された迷光絞りと、
を備える極端紫外線光学系であって、
前記極端紫外線光束と、該光束に隣接して配置された前記ミラーの端面との間に、前記迷光絞りが配置されていることを特徴とする極端紫外線光学系。
A plurality of multilayer mirrors that reflect extreme ultraviolet radiation;
A stray light stop disposed between or near the plurality of mirrors;
An extreme ultraviolet optical system comprising:
The extreme ultraviolet optical system, wherein the stray light stop is disposed between the extreme ultraviolet light beam and an end face of the mirror disposed adjacent to the light beam.
前記迷光絞りが円錐台面を有する筒状体からなることを特徴とする請求項1〜9いずれか1項記載の極端紫外線光学系。   The extreme ultraviolet optical system according to any one of claims 1 to 9, wherein the stray light stop is formed of a cylindrical body having a truncated cone surface. 前記迷光絞りが前記光学系の光軸に沿って複数段に配列されていることを特徴とする請求項1〜10いずれか1項記載の極端紫外線光学系。   The extreme ultraviolet optical system according to claim 1, wherein the stray light diaphragm is arranged in a plurality of stages along an optical axis of the optical system. 前記迷光絞りに温度調整機構が付設されていることを特徴とする請求項1〜11いずれか1項記載の極端紫外線光学系。   The extreme ultraviolet optical system according to claim 1, wherein a temperature adjusting mechanism is attached to the stray light diaphragm. 極端紫外線を選択的に感応基板上に照射してパターン形成する露光装置であって、
前記請求項1〜12いずれか1項記載の極端紫外線光学系を備えることを特徴とする露光装置。
An exposure apparatus that selectively irradiates extreme ultraviolet rays onto a sensitive substrate to form a pattern,
An exposure apparatus comprising the extreme ultraviolet optical system according to claim 1.
感応基板上に転写すべきパターンの形成された原版を極端紫外線照明する照明光学系をさらに具備し、
前記請求項1〜12いずれか1項記載の迷光絞りに、前記照明光学系の光路を確保するための開口が開けられていることを特徴とする請求項13記載の露光装置。
Further comprising an illumination optical system for illuminating the original on which the pattern to be transferred on the sensitive substrate is irradiated with extreme ultraviolet rays,
14. The exposure apparatus according to claim 13, wherein the stray light stop according to any one of claims 1 to 12 is provided with an opening for securing an optical path of the illumination optical system.
前記感応基板を移動・位置決めする感応基板ステージと、
前記原版を載置して移動・位置決めする原版ステージと、
これらステージの位置・姿勢を検出する光学センサと、
をさらに具備し、
前記請求項1〜12いずれか1項記載の迷光絞りに、前記光学センサの光路を確保するための開口が開けられていることを特徴とする請求項14又は15記載の露光装置。
A sensitive substrate stage for moving and positioning the sensitive substrate;
An original stage for placing and moving and positioning the original;
An optical sensor for detecting the position and orientation of these stages;
Further comprising
The exposure apparatus according to claim 14 or 15, wherein an opening for securing an optical path of the optical sensor is formed in the stray light stop according to any one of claims 1 to 12.
JP2003319560A 2003-09-11 2003-09-11 Extreme ultraviolet optical system and exposure apparatus Expired - Lifetime JP4218475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319560A JP4218475B2 (en) 2003-09-11 2003-09-11 Extreme ultraviolet optical system and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319560A JP4218475B2 (en) 2003-09-11 2003-09-11 Extreme ultraviolet optical system and exposure apparatus

Publications (2)

Publication Number Publication Date
JP2005086148A true JP2005086148A (en) 2005-03-31
JP4218475B2 JP4218475B2 (en) 2009-02-04

Family

ID=34418471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319560A Expired - Lifetime JP4218475B2 (en) 2003-09-11 2003-09-11 Extreme ultraviolet optical system and exposure apparatus

Country Status (1)

Country Link
JP (1) JP4218475B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310520A (en) * 2005-04-28 2006-11-09 Ushio Inc Extreme ultraviolet light exposure device and extreme ultraviolet light source device
WO2007086557A1 (en) * 2006-01-30 2007-08-02 Nikon Corporation Optical member holding apparatus, method for adjusting position of optical member, and exposure apparatus
JP2008028369A (en) * 2006-06-21 2008-02-07 Canon Inc Projection optical system
JP2008130895A (en) * 2006-11-22 2008-06-05 Nikon Corp Exposure equipment, method for fabricating device, and exposure method
JP2008205377A (en) * 2007-02-22 2008-09-04 Nikon Corp Aligner and device manufacturing method
JP2008270568A (en) * 2007-04-20 2008-11-06 Canon Inc Exposure and device manufacturing method
WO2009081702A1 (en) * 2007-12-25 2009-07-02 Renesas Technology Corp. Scanning exposure apparatus and method for manufacturing semiconductor device
JP2010050372A (en) * 2008-08-25 2010-03-04 Nikon Corp Optical system, exposure device, and method of manufacturing electronic device
CN101802717A (en) * 2007-09-21 2010-08-11 卡尔蔡司Smt股份公司 Projection objective with obscurated pupil for microlithography
WO2011057906A1 (en) 2009-11-13 2011-05-19 Carl Zeiss Smt Gmbh Imaging optics
KR20120031056A (en) * 2009-06-09 2012-03-29 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and method for reducing stray radiation
WO2012137699A1 (en) * 2011-04-05 2012-10-11 株式会社ニコン Optical apparatus, exposure apparatus, and method of manufacturing device
US8421998B2 (en) 2008-09-18 2013-04-16 Nikon Corporation Optical system, exposure apparatus, and method of manufacturing electronic device
US8436982B2 (en) 2007-10-02 2013-05-07 Carl Zeiss Smt Gmbh Projection objective for microlithography
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
DE102012212753A1 (en) 2012-07-20 2014-01-23 Carl Zeiss Smt Gmbh Projection optics for forming object field of optics plane in projection exposure system for microlithography, has blinding unit presetting outer boundary of optics with respect to diaphragm direction that is set parallel to planes
JP2014143445A (en) * 2005-06-02 2014-08-07 Carl Zeiss Smt Gmbh Microlithography projection objective
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
KR20180013933A (en) * 2015-06-01 2018-02-07 칼 짜이스 에스엠테 게엠베하 Optical system of microlithographic projection exposure apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2021001311A1 (en) * 2019-07-04 2021-01-07 Carl Zeiss Smt Gmbh Stop, optical system and lithography apparatus
CN115980968A (en) * 2022-12-13 2023-04-18 深圳昇旸光学科技有限公司 Optical lens module and projection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017215544A1 (en) * 2017-09-05 2017-10-19 Carl Zeiss Smt Gmbh OPTICAL SYSTEM, OPTICAL ARRANGEMENT AND LITHOGRAPHY SYSTEM

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4710406B2 (en) * 2005-04-28 2011-06-29 ウシオ電機株式会社 Extreme ultraviolet light exposure device and extreme ultraviolet light source device
JP2006310520A (en) * 2005-04-28 2006-11-09 Ushio Inc Extreme ultraviolet light exposure device and extreme ultraviolet light source device
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097984B2 (en) 2005-06-02 2015-08-04 Carl Zeiss Smt Gmbh Microlithography projection objective
US10281824B2 (en) 2005-06-02 2019-05-07 Carl Zeiss Smt Gmbh Microlithography projection objective
JP2014143445A (en) * 2005-06-02 2014-08-07 Carl Zeiss Smt Gmbh Microlithography projection objective
JPWO2007086557A1 (en) * 2006-01-30 2009-06-25 株式会社ニコン Optical member holding device, optical member position adjusting method, and exposure apparatus
US8576375B2 (en) 2006-01-30 2013-11-05 Nikon Corporation Optical member-holding apparatus, method for adjusting position of optical member, and exposure apparatus
WO2007086557A1 (en) * 2006-01-30 2007-08-02 Nikon Corporation Optical member holding apparatus, method for adjusting position of optical member, and exposure apparatus
KR101470650B1 (en) * 2006-01-30 2014-12-08 가부시키가이샤 니콘 Optical member holding apparatus, method for adjusting position of optical member, and exposure apparatus
JP2008028369A (en) * 2006-06-21 2008-02-07 Canon Inc Projection optical system
JP2008130895A (en) * 2006-11-22 2008-06-05 Nikon Corp Exposure equipment, method for fabricating device, and exposure method
JP2008205377A (en) * 2007-02-22 2008-09-04 Nikon Corp Aligner and device manufacturing method
JP2008270568A (en) * 2007-04-20 2008-11-06 Canon Inc Exposure and device manufacturing method
US8035804B2 (en) 2007-04-20 2011-10-11 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
JP2015084454A (en) * 2007-09-21 2015-04-30 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective having hidden pupil for microlithography
CN101802717A (en) * 2007-09-21 2010-08-11 卡尔蔡司Smt股份公司 Projection objective with obscurated pupil for microlithography
JP2010539717A (en) * 2007-09-21 2010-12-16 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective with obscured pupil for microlithography
US20180164474A1 (en) * 2007-09-21 2018-06-14 Carl Zeiss Smt Gmbh Projection objective for microlithography
KR101433424B1 (en) * 2007-09-21 2014-08-26 칼 짜이스 에스엠티 게엠베하 Projection objective with obscurated pupil for microlithography
US8436982B2 (en) 2007-10-02 2013-05-07 Carl Zeiss Smt Gmbh Projection objective for microlithography
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2009081702A1 (en) * 2007-12-25 2009-07-02 Renesas Technology Corp. Scanning exposure apparatus and method for manufacturing semiconductor device
JP2010050372A (en) * 2008-08-25 2010-03-04 Nikon Corp Optical system, exposure device, and method of manufacturing electronic device
US8421998B2 (en) 2008-09-18 2013-04-16 Nikon Corporation Optical system, exposure apparatus, and method of manufacturing electronic device
KR101719219B1 (en) * 2009-06-09 2017-03-23 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and method for reducing stray radiation
JP2012529758A (en) * 2009-06-09 2012-11-22 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method for reducing stray radiation
US9188881B2 (en) 2009-06-09 2015-11-17 Asml Netherlands B.V. Lithographic apparatus and method for reducing stray radiation
KR20120031056A (en) * 2009-06-09 2012-03-29 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and method for reducing stray radiation
US9201226B2 (en) 2009-11-13 2015-12-01 Carl Zeiss Smt Gmbh Imaging optics
WO2011057906A1 (en) 2009-11-13 2011-05-19 Carl Zeiss Smt Gmbh Imaging optics
WO2012137699A1 (en) * 2011-04-05 2012-10-11 株式会社ニコン Optical apparatus, exposure apparatus, and method of manufacturing device
DE102012212753A1 (en) 2012-07-20 2014-01-23 Carl Zeiss Smt Gmbh Projection optics for forming object field of optics plane in projection exposure system for microlithography, has blinding unit presetting outer boundary of optics with respect to diaphragm direction that is set parallel to planes
KR20180013933A (en) * 2015-06-01 2018-02-07 칼 짜이스 에스엠테 게엠베하 Optical system of microlithographic projection exposure apparatus
KR102559786B1 (en) 2015-06-01 2023-07-26 칼 짜이스 에스엠테 게엠베하 Optical system of microlithographic projection exposure equipment
WO2021001311A1 (en) * 2019-07-04 2021-01-07 Carl Zeiss Smt Gmbh Stop, optical system and lithography apparatus
CN115980968A (en) * 2022-12-13 2023-04-18 深圳昇旸光学科技有限公司 Optical lens module and projection system
CN115980968B (en) * 2022-12-13 2024-01-16 深圳昇旸光学科技有限公司 Optical lens module and projection system

Also Published As

Publication number Publication date
JP4218475B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4218475B2 (en) Extreme ultraviolet optical system and exposure apparatus
US8129702B2 (en) Radiation system with contamination barrier
JP3720788B2 (en) Projection exposure apparatus and device manufacturing method
EP1260871A2 (en) Position detecting method and apparatus, exposure apparatus and device manufacturing method
US20090141356A1 (en) Optical element, and light source unit and exposure apparatus having the same
US20050236584A1 (en) Exposure method and apparatus
JPH09330878A (en) X-ray reduction aligner and method for manufacturing device using the same
TWI574099B (en) Flash measurement mask, flash measurement method, and exposure method
JPH11345761A (en) Scanning type aligner
JP2011523782A (en) Method for forming a spectral purity filter
JP5223921B2 (en) Illumination optical system, exposure apparatus, and exposure method
US20080143987A1 (en) Exposure apparatus and device fabrication method
JP5689461B2 (en) Lithographic apparatus, method for controlling reflection of extreme ultraviolet light, and masking device
JP3605055B2 (en) Illumination optical system, exposure apparatus and device manufacturing method
TW201017345A (en) Collector assembly, radiation source, lithographic apparatus, and device manufacturing method
JP4202996B2 (en) Lithographic apparatus and device manufacturing method
JP2004343082A (en) Lithographic projection apparatus with condenser including concave face and convex face
EP1116072A1 (en) Low thermal distortion extreme-uv lithography reticle
US7110084B2 (en) Illumination optical system and exposure apparatus
JP4496782B2 (en) Reflective optical system and exposure apparatus
JP5953656B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
US7102734B2 (en) Exposure apparatus
JP2006253486A (en) Illuminator, projection aligning method, projection aligner, and process for fabricating microdevice
JP4378140B2 (en) Illumination optical system and exposure apparatus
TWI245324B (en) Projection optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4218475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term