JP2005085819A - Photoelectric composite board, optical waveguide, and optical waveguide with optical element - Google Patents

Photoelectric composite board, optical waveguide, and optical waveguide with optical element Download PDF

Info

Publication number
JP2005085819A
JP2005085819A JP2003313045A JP2003313045A JP2005085819A JP 2005085819 A JP2005085819 A JP 2005085819A JP 2003313045 A JP2003313045 A JP 2003313045A JP 2003313045 A JP2003313045 A JP 2003313045A JP 2005085819 A JP2005085819 A JP 2005085819A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
electronic circuit
optical element
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003313045A
Other languages
Japanese (ja)
Inventor
Takeshi Ono
大野  猛
Toshikatsu Takada
俊克 高田
Toshifumi Kojima
敏文 小嶋
Masaki Ono
正樹 大野
Ayako Kawamura
彩子 川村
Toshikazu Horio
俊和 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003313045A priority Critical patent/JP2005085819A/en
Publication of JP2005085819A publication Critical patent/JP2005085819A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a fault to be easily repaired when the fault occurs in an photoelectric composite board composed of an optical waveguide mounted with optical elements and electronic circuit boards bonded thereto. <P>SOLUTION: A light emitting device 14 and a light receiving device 15 are mounted on the one side of the optical waveguide 10, and electronic circuit boards 30a and 30b are laminated on the other side of the optical waveguide 10. The light emitting device 14 and the electronic circuit board 30a are electrically connected together with via interconnect lines 22a, and the light receiving device 15 and the electronic circuit board 30b are electrically connected together with via interconnect lines 22b for the formation of the photoelectric composite board. A pair of connectors 20a and 20b which are used for electrically connecting the via interconnect lines 22a and 22b at the side of the optical waveguide 10 to the electric interconnect lines of the electronic circuit boards 30a and 30b are provided to the optical waveguide 10 and the electronic circuit boards 30a and 30b. As the result, the optical waveguide 10 and the electronic circuit boards 30a, 30b can be made detachable, these components are detached when a fault occurs, and the fault can be repaired. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子回路基板と光信号伝送用の光導波路をコネクタによって一体化してなる光電気複合基板及び、この光電気複合基板を作製するのに好適な光導波路並びに光学素子付光導波路に関する。   The present invention relates to an optoelectric composite substrate in which an electronic circuit board and an optical waveguide for optical signal transmission are integrated by a connector, an optical waveguide suitable for manufacturing the optoelectric composite substrate, and an optical waveguide with an optical element.

これから普及が本格化する画像を含む光通信システムでは、伝送容量の飛躍的増大とそれに伴う情報処理装置の処理速度の飛躍的な向上が求められている。このような環境の中、大容量高速通信を担う電子機器内の配線基板間での接続、配線基板内の半導体チップ間での接続あるいは半導体チップ内での接続など、比較的短い距離における信号伝達に関しても、従来一般的であった金属ケーブルや金属配線を用いた信号伝送に代わり、光導波路を用いた光伝送が用いられるようになってきている。   In optical communication systems including images that are becoming increasingly popular in the future, a dramatic increase in transmission capacity and a dramatic improvement in processing speed of information processing apparatuses are required. In such an environment, signal transmission over a relatively short distance, such as connections between wiring boards in electronic devices that are responsible for high-capacity high-speed communication, connections between semiconductor chips in a wiring board, or connections within a semiconductor chip With regard to the above, in place of the conventional signal transmission using a metal cable or metal wiring, optical transmission using an optical waveguide has come to be used.

このような光伝送を支える重要な技術として、光導波路を垂直面発光ダイオード(VCSEL)やフォトダイオード(PD)のような光学素子と接続する技術がある。
光導波路を光学素子と接続する方法としては、従来より、光学素子を実装した電子回路基板上に集光レンズを嵌め込んだケースを被せ、そのケースに反射ミラー付ハウジングをガイドピンで一体化し光導波路を反射ミラーの前面に固定する方法が提案されている。(例えば、非特許文献1等参照)。
As an important technique for supporting such optical transmission, there is a technique for connecting an optical waveguide to an optical element such as a vertical surface light emitting diode (VCSEL) or a photodiode (PD).
As a method of connecting an optical waveguide to an optical element, conventionally, a case in which a condensing lens is fitted on an electronic circuit board on which the optical element is mounted is covered, and a housing with a reflecting mirror is integrated with the case with a guide pin. A method for fixing the waveguide to the front surface of the reflection mirror has been proposed. (For example, refer nonpatent literature 1 etc.).

しかし、この方法では、ケースとハウジングをガイドピンで嵌合しているため、反射ミラーと光学素子間の距離が大きくなり、集光用のレンズが必要となる。また、レンズで焦点を合わせる構造であるため、光学素子−レンズ−反射面−光導波路の間の光軸のアライメントを、受光素子を作動させた状態で受光エネルギーが最大となるように光学素子から光導波路に至る構成品の位置を調整するアクティブアライメント方式で行う必要がある。さらに、このアクティブアライメント操作を行う際には、該構成品間に静電気が発生する場合があり、その静電気のために光学素子を劣化させ易いといった問題点があった。   However, in this method, since the case and the housing are fitted with the guide pins, the distance between the reflection mirror and the optical element is increased, and a condensing lens is required. In addition, since the lens is focused, the optical axis alignment between the optical element-lens-reflecting surface-optical waveguide is adjusted from the optical element so that the received light energy becomes maximum when the light receiving element is operated. It is necessary to use an active alignment method that adjusts the position of the component that reaches the optical waveguide. Further, when this active alignment operation is performed, static electricity may be generated between the components, and there is a problem that the optical element is easily deteriorated due to the static electricity.

一方、こうした問題を解決する方法として、光学素子を光導波路に直接実装することにより光学素子と光導波路の接続精度を向上させる方式が提案されている(例えば、非特許文献2等参照)。   On the other hand, as a method for solving such a problem, a method of improving the connection accuracy between the optical element and the optical waveguide by directly mounting the optical element on the optical waveguide has been proposed (see, for example, Non-Patent Document 2).

即ち、この提案の方法では、光導波路の端面をコアの軸方向に対して45度の角度で切断して反射面を形成し、該反射面によって光学素子からのレーザ光が90度反射され、光導波路のコア部分に入射されるように光学素子を光導波路に直接実装するようにしている。 さらに、この方法では、光学素子に電源又は電気信号を供給するために、光学素子を実装した光導波路を電子回路基板に実装して、光導波路を貫通するビア配線を介して、該電子回路基板の電気配線部分から光導波路に実装されている光学素子に電源又は電気信号を供給するように電子回路基板と光導波路を一体化している。   That is, in the proposed method, the end face of the optical waveguide is cut at an angle of 45 degrees with respect to the axial direction of the core to form a reflecting surface, and the laser light from the optical element is reflected by 90 degrees by the reflecting surface, The optical element is directly mounted on the optical waveguide so as to be incident on the core portion of the optical waveguide. Further, in this method, in order to supply power or an electric signal to the optical element, an optical waveguide on which the optical element is mounted is mounted on the electronic circuit board, and the electronic circuit board is connected via via wiring penetrating the optical waveguide. The electronic circuit board and the optical waveguide are integrated so as to supply power or an electric signal from the electrical wiring portion to the optical element mounted on the optical waveguide.

この方法によると、光導波路と光学素子を接合するためのケースやハウジングが不要となり、反射面と光学素子間の距離が小さくなって、集光用のレンズが不要となる。また。アライメントもパッシブアライメント方式で可能となり、アクティブアライメント操作の際、該構成品間に発生する静電気のために光学素子を劣化させるといった問題点が解消される。
エレクトロニクス実装学会誌Vol.5 No.5 AUG.2002 光回路実装技術の現状と今後(畠山意知郎他) H15年、超先端電子技術開発機構主催、第4回電子SI研究報告会、報告会資料 P.106(熊井晃一)
According to this method, a case or a housing for joining the optical waveguide and the optical element becomes unnecessary, the distance between the reflecting surface and the optical element becomes small, and a condensing lens becomes unnecessary. Also. Alignment is also possible with the passive alignment method, and the problem of deteriorating the optical element due to static electricity generated between the components during the active alignment operation is solved.
Electronics Packaging Society Journal Vol. 5 No. 5 AUG. 2002 Present state and future of optical circuit packaging technology (Ichiro Hiyama et al.) H15, sponsored by the Japan Advanced Technology Development Organization, 4th Electronic SI Research Report Meeting, Report Meeting Material 106 (Keiichi Kumai)

ところで、上記の実装方法では、光導波路と光学素子あるいは光導波路と電子回路基板を電気的に接続するためには、光導波路を貫通するビア配線の端の部分に導電性の薄膜を形成して、該薄膜上で半田リフロー又はフリップチップボンディング等によって、光導波路と光学素子あるいは光導波路と電子回路基板を接続する必要がある。   By the way, in the above mounting method, in order to electrically connect the optical waveguide and the optical element or the optical waveguide and the electronic circuit board, a conductive thin film is formed on the end portion of the via wiring that penetrates the optical waveguide. It is necessary to connect the optical waveguide and the optical element or the optical waveguide and the electronic circuit board by solder reflow or flip chip bonding on the thin film.

しかし、光導波路上へ薄膜を形成して半田リフロー又はフロップチップボンディング等で光導波路と光学素子、あるいは光導波路と電子回路基板とを接合させることは、光導波路と光学素子あるいは光導波路と電子回路基板との密着性が得られない場合があり、接合面が剥れ易い等の問題点があり、光導波路と光学素子あるいは光導波路と電子回路基板の接合面で断線の恐れがある。   However, forming a thin film on an optical waveguide and bonding the optical waveguide and the optical element or the optical waveguide and the electronic circuit board by solder reflow or flop chip bonding or the like means that the optical waveguide and the optical element or the optical waveguide and the electronic circuit are joined. In some cases, adhesion to the substrate may not be obtained, and there is a problem that the joint surface is easily peeled off, and there is a risk of disconnection at the joint surface between the optical waveguide and the optical element or between the optical waveguide and the electronic circuit substrate.

すなわち、光導波路による光伝送中に、振動や衝撃又は機械的な曲げ力あるいは熱等によって、光導波路と光学素子あるいは光導波路と電子回路基板の接合面が剥れる、あるいは、クラックが入る等により接合面で断線し、光学素子の受発光が不能となって光伝送ができなくなる恐れがあるのである。   That is, during optical transmission through the optical waveguide, due to vibration, impact, mechanical bending force, heat, etc., the joint surface between the optical waveguide and the optical element or between the optical waveguide and the electronic circuit board may be peeled off or cracked. There is a possibility that the optical element cannot receive and emit light and light transmission cannot be performed due to disconnection at the joint surface.

このように光伝送ができなくなって、不良部分の修理が必要となった際、従来の方法では、光導波路と電子回路基板が導電性薄膜やバンプ等で接合されているため、光導波路と電子回路基板の接合部分を加熱する等により分解する必要がある。   In this way, when optical transmission becomes impossible and repair of the defective part is necessary, the optical waveguide and the electronic circuit board are joined by a conductive thin film or a bump in the conventional method. It is necessary to disassemble the circuit board by heating or the like.

従って、従来の方法を産業用のみならず、オフィスや家庭で広く使われる装置内部に利用するには、保守性の観点で問題点が大きく、その解決が望まれていた。
すなわち、光伝送が不能となった場合に、その原因となっている不良部分の修理に要する時間とコストを低減するということが望まれていたのである。
Therefore, in order to use the conventional method not only in industrial use but also in apparatuses widely used in offices and homes, there are significant problems from the viewpoint of maintainability, and a solution has been desired.
That is, it has been desired to reduce the time and cost required for repairing the defective portion that causes the optical transmission when the optical transmission becomes impossible.

本発明は、こうした問題に鑑みなされたもので、上述した、光学素子を光導波路に実装し、さらに電子回路基板上に該光導波路を積層し、光導波路を貫通するビア配線を介して電子回路基板から電気信号を送受するようにした光電気複合基板において、不良箇所が生じた場合に、その不良箇所を容易に修理することができるようにすることを目的とする。   The present invention has been made in view of such a problem. The above-described optical element is mounted on an optical waveguide, the optical waveguide is stacked on an electronic circuit board, and the electronic circuit is connected via via wiring penetrating the optical waveguide. An object of the present invention is to make it possible to easily repair a defective portion when a defective portion occurs in an opto-electric composite substrate that transmits and receives electrical signals from the substrate.

かかる目的を達成するためになされた請求項1に記載の光電気複合基板の発明は、
光信号を送受信するための光学素子と、
該光学素子が実装され、該光学素子から出射されるか又は該光学素子に入射すべき光信号を伝送するための光路を有する光導波路と、
前記光学素子を介して電気信号を送信又は受信するための電子回路が組み込まれ、前記光導波路が前記光学素子の実装面とは反対側の面を介して積層された電子回路基板と、
該電子回路基板と前記光学素子とを電気的に接続するために、前記光導波路に、前記電子回路基板への積層面(換言すれば、光学素子の実装面とは反対の面)から前記光学素子の実装面へと貫通するように設けられた複数のビア配線と、
を備えた光電気複合基板であって、
前記光導波路と前記電子回路基板とに、それぞれ、前記光導波路側の各ビア配線と前記電子回路基板側の電気配線とを電気的に接続し、且つ、互いに嵌合可能な一対のコネクタを設けたことを特徴とする。
The invention of the optoelectric composite substrate according to claim 1, which has been made to achieve the above object,
An optical element for transmitting and receiving optical signals;
An optical waveguide mounted with the optical element and having an optical path for transmitting an optical signal to be emitted from or incident on the optical element;
An electronic circuit board in which an electronic circuit for transmitting or receiving an electrical signal via the optical element is incorporated, and the optical waveguide is laminated via a surface opposite to the mounting surface of the optical element;
In order to electrically connect the electronic circuit board and the optical element, the optical waveguide is connected to the optical waveguide from a laminated surface on the electronic circuit board (in other words, a surface opposite to the mounting surface of the optical element). A plurality of via wirings provided so as to penetrate to the mounting surface of the element;
A photoelectric composite substrate comprising:
Provided to the optical waveguide and the electronic circuit board are a pair of connectors that electrically connect the respective via wirings on the optical waveguide side and the electric wirings on the electronic circuit board side and can be fitted to each other. It is characterized by that.

このように構成された光電気複合基板では、光導波路と電子回路基板とが互いに嵌合する一対のコネクタを介して着脱可能となるため、光電気複合基板の製造時に、従来の方法のように、光学素子を搭載した光導波路と電子回路基板とをバンブ等によって直接接合して一体化する必要がなくなる。   In the photoelectric composite substrate configured as described above, since the optical waveguide and the electronic circuit board can be attached and detached through a pair of connectors, the conventional method is used when manufacturing the photoelectric composite substrate. Therefore, it is not necessary to directly join and integrate the optical waveguide carrying the optical element and the electronic circuit board by a bump or the like.

従って、光学素子を実装した光導波路と電子回路基板とを各々に最も適した製造工程で製造することが可能となり、製造工程が容易化され、コストの低減が図られる。
さらに、光学素子の不良、あるいは、光導波路と光学素子の接合面の剥れ等による不良等が発生し、光伝送ができなくなって、その不良部分の修理が必要となった際にも、光導波路と電子回路基板をコネクタの部分で外して修理することができるので、従来の方法のように、修理の際に光導波路と電子回路基板の接合部分を加熱する等により分解する必要がなくなり、修理が容易となって、修理コストの低減が可能となるのである。
Therefore, the optical waveguide on which the optical element is mounted and the electronic circuit board can be manufactured by manufacturing processes most suitable for each, and the manufacturing process is simplified and the cost is reduced.
Furthermore, when a defect in the optical element or a defect such as peeling of the joint surface between the optical waveguide and the optical element occurs, it becomes impossible to transmit light and the defective part needs to be repaired. Since the waveguide and the electronic circuit board can be removed and repaired at the connector portion, it is not necessary to disassemble the heating portion of the joint between the optical waveguide and the electronic circuit board at the time of repair as in the conventional method. The repair becomes easy and the repair cost can be reduced.

なお、ビア配線及びコネクタの接続端子は、電子回路基板の電気配線と接続できればよく、1本の導体にて構成してもよいが、特に、高速パルス信号などの高周波成分を有する信号を送受信する場合には、コネクタの接続端子、及びビア配線を同軸形状にしてもよい。つまり、このようにすれば、ノイズ等の影響を受けることなく、高速パルス信号等の送受信が可能となる。   Note that the via wiring and the connection terminal of the connector need only be connected to the electrical wiring of the electronic circuit board, and may be configured by a single conductor. In particular, a signal having a high-frequency component such as a high-speed pulse signal is transmitted and received. In this case, the connector connection terminal and the via wiring may be coaxial. In other words, this makes it possible to transmit and receive a high-speed pulse signal and the like without being affected by noise or the like.

また、このように、光導波路と電子回路基板とを互いに嵌合する一対のコネクタで着脱可能となるようにすると、着脱の際等に、光導波路に、振動や衝撃又は機械的な曲げ等の力が加わり易くなる。そして、この場合、光導波路がガラス等の無機系の材料で製造されていると、光導波路は、比較的硬くなるため、光導波路に加わった振動や衝撃又は機械的な曲げ等の力が光導波路とコネクタの接合部分あるいは電子回路基板とコネクタの接合部分に応力として直接加わることになり、その接合部分が剥れ易くなるという問題が生じる。   In addition, when the optical waveguide and the electronic circuit board can be attached and detached as described above, the optical waveguide can be subjected to vibration, impact, mechanical bending, etc. It becomes easy to apply force. In this case, if the optical waveguide is made of an inorganic material such as glass, the optical waveguide becomes relatively hard, so that a force such as vibration or impact applied to the optical waveguide or mechanical bending is applied to the light. A stress is directly applied to the joint between the waveguide and the connector or the joint between the electronic circuit board and the connector, causing a problem that the joint is easily peeled off.

そこで、こうした問題を防止するためには、請求項2に記載のように、光導波路を可撓性を有するものとして光電気複合基板を構成するとよい。
つまり、光導波路を、例えば、高分子材料系の可撓性を有するものとすることで、光導波路に加わる振動や衝撃又は機械的な曲げ等の力が光導波路とコネクタの接合部分あるいは電子回路基板とコネクタの接合部分に応力として直接に加わることを緩和することができ、その接合部分の剥れを防止することができるようになる。
Therefore, in order to prevent such a problem, as described in claim 2, it is preferable to configure the photoelectric composite substrate with the optical waveguide having flexibility.
In other words, by making the optical waveguide have, for example, a polymer material-based flexibility, a force such as vibration, impact, or mechanical bending applied to the optical waveguide causes a joint between the optical waveguide and the connector or an electronic circuit. It is possible to alleviate the direct application of stress as a stress to the joint between the board and the connector, and to prevent the joint from peeling off.

一方、請求項3に記載の発明は、請求項1に記載の光電気複合基板を作製するのに好適な光導波路に関するものであり、光信号を送受信するための光学素子を実装可能で、しかも、その実装された光学素子に電気信号を入出力するための複数のビア配線が、光学素子の実装面から裏面へと貫通するように形成され、更に、裏面には、ビア配線と電気的接続をなすようにコネクタを取付けたことを特徴としている。   On the other hand, the invention according to claim 3 relates to an optical waveguide suitable for producing the optoelectric composite substrate according to claim 1, and can mount an optical element for transmitting and receiving an optical signal. A plurality of via wirings for inputting and outputting electrical signals to the mounted optical element are formed so as to penetrate from the mounting surface of the optical element to the back surface, and further, the via wiring is electrically connected to the back surface. The connector is attached so as to form

また、同様に請求項4に記載の発明は、請求項1に記載の光電気複合基板を作製するのに好適な光学素子付光導波路に関するものであり、光信号を送受信するための複数の光学素子が実装され、その実装された光学素子に電気信号を入出力するための複数のビア配線が、光学素子の実装面から裏面へと貫通するように形成され、しかも、裏面には、ビア配線と電気的接続をなすようにコネクタを取付けたことを特徴としている。   Similarly, the invention according to claim 4 relates to an optical waveguide with an optical element suitable for producing the optoelectric composite substrate according to claim 1, and a plurality of optical elements for transmitting and receiving optical signals. An element is mounted, and a plurality of via wirings for inputting and outputting electrical signals to the mounted optical element are formed so as to penetrate from the mounting surface of the optical element to the back surface. The connector is attached so as to make an electrical connection.

従って、請求項3に記載の光導波路、若しくは、請求項4に記載の光学素子付光導波路を使用すれば、当該光導波路に設けられたコネクタと互いに嵌合可能なコネクタを装着した電子回路基板を直接接続して、本発明(請求項1、2)の光電気複合基板を簡単に実現できることになる。   Therefore, if the optical waveguide according to claim 3 or the optical waveguide with an optical element according to claim 4 is used, an electronic circuit board on which a connector provided in the optical waveguide and a connector that can be fitted to each other are mounted. Are directly connected, and the photoelectric composite substrate of the present invention (Claims 1 and 2) can be easily realized.

また、前記光導波路及び前記光学素子付導波路は、コネクタを有しているため、例えば、一端に、そのコネクタと互いに嵌合可能なコネクタを有するハーネス等を介して外部の電子回路基板と接続することもできる。   In addition, since the optical waveguide and the waveguide with an optical element have a connector, for example, it is connected to an external electronic circuit board via a harness or the like having a connector that can be fitted to the connector at one end. You can also

以下に、本発明の実施形態を図面に基づき説明する。
図1は本発明が適用された実施例の光電気複合基板を光導波路の光軸に沿って切断した断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view of an optoelectric composite substrate according to an embodiment to which the present invention is applied, cut along the optical axis of an optical waveguide.

図1に示すように、本実施例の光電気複合基板1は、例えば、VCSEL等の発光素子14、例えば、PD等の受光素子15、それらの光学素子を搭載した光導波路10、IC31aを搭載した電子回路基板30a及びIC31bを搭載した電子回路基板30bから構成されている。   As shown in FIG. 1, the optoelectric composite substrate 1 of the present embodiment includes a light emitting element 14 such as a VCSEL, a light receiving element 15 such as a PD, an optical waveguide 10 mounting these optical elements, and an IC 31a. The electronic circuit board 30a and the electronic circuit board 30b on which the IC 31b is mounted.

ここで、光導波路10は、長尺状で、光路となる屈折率の高いコア11を屈折率の低いクラッドで覆って形成されている。
そして、光導波路10の長手方向の一端に発光素子14、又、反対端に受光素子15が搭載されている。そして、発光素子14の搭載面と反対の面には、電子回路基板30aが接続され、同様に受光素子15搭載面の反対面に電子回路基板30bが接続されている。
Here, the optical waveguide 10 is long and is formed by covering a core 11 having a high refractive index serving as an optical path with a clad having a low refractive index.
A light emitting element 14 is mounted on one end of the optical waveguide 10 in the longitudinal direction, and a light receiving element 15 is mounted on the opposite end. The electronic circuit board 30a is connected to the surface opposite to the mounting surface of the light emitting element 14, and similarly, the electronic circuit board 30b is connected to the opposite surface of the light receiving element 15 mounting surface.

そして、光導波路10には、発光素子14の搭載面から電子回路基板30aの搭載面へと貫通する複数のビア配線22a(理解が容易となるように切断面の手前にあるビア配線は、図1中に記入してある)が設けられているおり、このビア配線22aによって発光素子14と電子回路基板30aは電気的に接続されている。   The optical waveguide 10 includes a plurality of via wirings 22a penetrating from the mounting surface of the light emitting element 14 to the mounting surface of the electronic circuit board 30a (the via wiring in front of the cut surface is shown in FIG. 1 is provided, and the light emitting element 14 and the electronic circuit board 30a are electrically connected by the via wiring 22a.

同様に、受光素子15も光導波路10を受光素子15の搭載面から電子回路基板30bの搭載面へ貫通する複数のビア配線22bによって、電子回路基板30bと電気的に接続されている。   Similarly, the light receiving element 15 is also electrically connected to the electronic circuit board 30b by a plurality of via wirings 22b penetrating the optical waveguide 10 from the mounting surface of the light receiving element 15 to the mounting surface of the electronic circuit board 30b.

また、光導波路10には、搭載されている発光素子14の光軸上に、光路変換部16aが形成されている。この光路変換部16aは非特許文献2に記載のように、光導波路10をコアの光軸方向に対して45度の角度でブレード加工等によって切り欠くことで形成され、コアの光軸と垂直方向から入射されるレーザ光を反射してコアに入射する機能と、コアを伝搬してきたレーザ光をコアの光軸に垂直方向に反射する機能とを有するものである。   In the optical waveguide 10, an optical path conversion unit 16 a is formed on the optical axis of the mounted light emitting element 14. As described in Non-Patent Document 2, the optical path changing unit 16a is formed by cutting the optical waveguide 10 by blade machining or the like at an angle of 45 degrees with respect to the optical axis direction of the core, and is perpendicular to the optical axis of the core. The laser beam incident from the direction is reflected and incident on the core, and the laser beam propagating through the core is reflected in the direction perpendicular to the optical axis of the core.

そして、発光素子14は非特許文献2に記載のように発光素子14と光路変換部16aの各々の光軸が合致するようにアライメント調整されて、光導波路10にバンプ23によって半田リフロー又はフリップチップボンディング等により接合される。   Then, as described in Non-Patent Document 2, the light-emitting element 14 is aligned so that the optical axes of the light-emitting element 14 and the optical path changing unit 16a coincide with each other. Bonded by bonding or the like.

そして、電子回路基板30aにはIC31aが搭載され、さらにIC31aを作動させるために必要となる電源その他の電子回路(図示省略)が実装されている。
また、同様に、受光素子15も光導波路10に形成された光路変換部16bとの光軸が合致するようにアライメント調整されて、光導波路10に接合される。
An IC 31a is mounted on the electronic circuit board 30a, and further, a power supply and other electronic circuits (not shown) necessary for operating the IC 31a are mounted.
Similarly, the light receiving element 15 is also adjusted in alignment so that the optical axis of the light receiving element 15 coincides with the optical path changing unit 16 b formed in the optical waveguide 10, and is joined to the optical waveguide 10.

そして、電子回路基板30bにはIC31bが搭載され、さらにIC31bを作動させるために必要となる電源その他の電子回路(図示省略)が実装されている。
そして、電子回路基板30a側では、IC31aからの送信信号が電子回路基板30aの電気配線を通じてビア配線22aを介し、発光素子14に入力される。発光素子14は、入力された送信信号を電−光変換してレーザ光を出射する。出射されたレーザ光は、光路変換部16aで反射されて、光導波路10のコア11に入射され、電子回路基板30b側へと伝送される。
An IC 31b is mounted on the electronic circuit board 30b, and further, a power source and other electronic circuits (not shown) necessary for operating the IC 31b are mounted.
On the electronic circuit board 30a side, a transmission signal from the IC 31a is input to the light emitting element 14 through the electrical wiring of the electronic circuit board 30a and the via wiring 22a. The light emitting element 14 performs electro-optical conversion on the input transmission signal and emits laser light. The emitted laser light is reflected by the optical path conversion unit 16a, enters the core 11 of the optical waveguide 10, and is transmitted to the electronic circuit board 30b side.

電子回路基板30b側では、伝送されてきたレーザ光が光路変換部16bで反射されて、受光素子15に入射される。受光素子15は入射されたレーザ光を光−電変換して受信信号を出力する。受信信号は、ビア配線22bを介して、電子回路基板30bの電気配線を通じIC31bに入力される。   On the electronic circuit board 30 b side, the transmitted laser light is reflected by the optical path conversion unit 16 b and is incident on the light receiving element 15. The light receiving element 15 photoelectrically converts the incident laser light and outputs a reception signal. The reception signal is input to the IC 31b through the electrical wiring of the electronic circuit board 30b through the via wiring 22b.

このようにして、IC31aとIC31b間で信号の入出力が行われることとなる。
ここで、光導波路10と電子回路基板30a、及び、光導波路10と電子回路基板30bは、夫々一対のコネクタ20a、20bを介して接続されている。以下、これら各コネクタ20a、20bの構成を、コネクタ20aを例にとり詳しく説明する。
In this way, signals are input / output between the IC 31a and the IC 31b.
Here, the optical waveguide 10 and the electronic circuit board 30a, and the optical waveguide 10 and the electronic circuit board 30b are connected via a pair of connectors 20a and 20b, respectively. Hereinafter, the configuration of each of the connectors 20a and 20b will be described in detail by taking the connector 20a as an example.

図2は、図1の発光素子14の実装部分の拡大図である。
図2に示すように、発光素子14と電子回路基板30aとを接続する一対のコネクタ20aは、アダプタ40aとソケット41aとから構成される。そして、光導波路10の発光素子14が実装されている面と反対の面には、アダプタ40aがバンプ23によって接合される。このアダプタ40aのピンはバンプ23によってビア配線22aに電気的に接続される。
FIG. 2 is an enlarged view of a mounting portion of the light emitting element 14 of FIG.
As shown in FIG. 2, the pair of connectors 20a for connecting the light emitting element 14 and the electronic circuit board 30a are composed of an adapter 40a and a socket 41a. The adapter 40 a is bonded to the surface of the optical waveguide 10 opposite to the surface on which the light emitting element 14 is mounted by the bumps 23. The pins of the adapter 40a are electrically connected to the via wiring 22a by the bumps 23.

また、電子回路基板30aの面上には、アダプタ40aと嵌合するソケット41aが装着される。このソケット41aのプラグは、電子回路基板30aの電気配線(図示省略)とバンプ23によって電気的に接合される。   A socket 41a that fits with the adapter 40a is mounted on the surface of the electronic circuit board 30a. The plug of the socket 41a is electrically joined to the electric wiring (not shown) of the electronic circuit board 30a by the bumps 23.

ここで、アダプタ40aとソケット41aのピン配列は、電気的に対応付けられ(換言すると、アダプタ40aを通じて送受される電気信号とソケット41aを通じて送受される電気信号の対応がとれるようにされ)て、夫々、ビア配線22aと、電子回路基板30aの電気配線とに電気的に接合される。   Here, the pin arrangement of the adapter 40a and the socket 41a is electrically associated (in other words, the electrical signal transmitted / received through the adapter 40a and the electrical signal transmitted / received through the socket 41a can be taken), Each is electrically connected to the via wiring 22a and the electric wiring of the electronic circuit board 30a.

尚、受光素子15と電子回路基板30bとを接続する一対のコネクタ20bも、コネクタ20aと同様に、アダプタとソケットから構成されている。
このように構成された光電気複合基板1では、IC31aから出力された電気信号が電子回路基板30aの電気配線を通り、ソケット41a、アダプタ40aを通って、ビア配線22aを介して発光素子14に入力される。そして、発光素子14によって電−光変換されて、レーザ光として出射され、光路変換部16aで反射されて、コア11に入射され、伝送されることになる。
Note that the pair of connectors 20b that connect the light receiving element 15 and the electronic circuit board 30b also includes an adapter and a socket, like the connector 20a.
In the photoelectric composite substrate 1 configured as described above, the electrical signal output from the IC 31a passes through the electrical wiring of the electronic circuit board 30a, passes through the socket 41a and the adapter 40a, and passes through the via wiring 22a to the light emitting element 14. Entered. Then, it is electro-optically converted by the light emitting element 14 and emitted as laser light, reflected by the optical path changing unit 16a, incident on the core 11, and transmitted.

また、光導波路10の反対端では、伝送されたレーザ光が光路変換部16bで反射されて、受光素子15に入射される。そして、受光素子15によって、光−電変換されて、電気信号として出力され、ビア配線22b、コネクタ20bを構成するアダプタ及びソケット、電子回路基板30bの電気配線、を介して、IC31bに入力される。   At the opposite end of the optical waveguide 10, the transmitted laser light is reflected by the optical path changing unit 16 b and is incident on the light receiving element 15. Then, the light receiving element 15 performs photoelectric conversion, and is output as an electrical signal, and is input to the IC 31b via the via wiring 22b, the adapter and socket constituting the connector 20b, and the electrical wiring of the electronic circuit board 30b. .

ここで、この光伝送が行われている際に、例えば、発光素子14、又は受光素子15の不良、あるいは、光導波路10と発光素子14の接合面での断線、もしくは、光導波路10と受光素子15の接合面での断線、が発生して、光伝送が不能となった場合には修理が必要となる。   Here, when this optical transmission is performed, for example, a defect in the light emitting element 14 or the light receiving element 15, a disconnection at the joint surface between the optical waveguide 10 and the light emitting element 14, or a light reception with the optical waveguide 10. If disconnection occurs at the joint surface of the element 15 and optical transmission becomes impossible, repair is required.

この際、従来の光電気複合基板では、光導波路10と電子回路基板30a及び光導波路10と電子回路基板30bがバンプ等で直接接合されているため、光導波路10と電子回路基板30a及び光導波路10と電子回路基板30bの接合部分を加熱する等により分解する必要があるが、本実施形態の光電気複合基板1によれば、一対のコネクタ20aを構成するアダプタ40aとソケット41a、又は、一対のコネクタ20bを構成するアダプタとソケットを介して、電子回路基板30aと光導波路10、又は電子回路基板30bと光導波路10を分離できるため、修理を極めて簡単に行うことができ、修理コストを低減することができる。   At this time, in the conventional photoelectric composite substrate, the optical waveguide 10 and the electronic circuit board 30a, and the optical waveguide 10 and the electronic circuit board 30b are directly joined by bumps or the like. 10 and the electronic circuit board 30b must be disassembled by heating or the like, but according to the optoelectric composite board 1 of the present embodiment, the adapter 40a and the socket 41a constituting the pair of connectors 20a or the pair Since the electronic circuit board 30a and the optical waveguide 10 or the electronic circuit board 30b and the optical waveguide 10 can be separated through the adapter and the socket constituting the connector 20b, the repair can be performed very easily and the repair cost is reduced. can do.

また、製造時には、発光素子14や受光素子15を実装した光導波路と電子回路基板30aと電子回路基板30bとを一体化して製造する必要がなくなるため、各々に最も適した製造工程で製造することが可能となり、製造工程を容易化することができ、製造コストを低減することができることとなる。   In addition, it is not necessary to manufacture the optical waveguide on which the light emitting element 14 and the light receiving element 15 are mounted, the electronic circuit board 30a, and the electronic circuit board 30b at the time of manufacturing, and therefore, the manufacturing process is most suitable for each. Thus, the manufacturing process can be facilitated, and the manufacturing cost can be reduced.

以上、本発明の実施例を説明したが、本発明は、上記実施例に限定されるものではなく、種々の態様を採ることができる。
例えば、上記実施例では、光導波路10側にアダプタ40aを装着し、電子回路基板30a側にソケット41aを装着するとして説明したが、光導波路10側にソケット41aを装着し、電子回路基板30a側にアダプタ40aを装着するようにしてもよい。
As mentioned above, although the Example of this invention was described, this invention is not limited to the said Example, A various aspect can be taken.
For example, in the above embodiment, the adapter 40a is mounted on the optical waveguide 10 side and the socket 41a is mounted on the electronic circuit board 30a side. However, the socket 41a is mounted on the optical waveguide 10 side and the electronic circuit board 30a side is mounted. You may make it mount | wear with the adapter 40a.

また、上記実施例では、ビア配線22aとアダプタ40aのピンとソケット41aのプラグは、一つの導体として説明したが、それらを同軸形状としてもよい。これにより、特に、高速パルス信号などの高周波成分を有する信号を送受信する場合に、ノイズ等の影響を受けることなく、高速パルス信号等の送受信が可能となる。   In the above embodiment, the via wiring 22a, the pin of the adapter 40a, and the plug of the socket 41a have been described as one conductor, but they may be coaxial. As a result, particularly when a signal having a high frequency component such as a high-speed pulse signal is transmitted / received, a high-speed pulse signal or the like can be transmitted / received without being affected by noise or the like.

さらに、上記実施例では、電子回路基板30aと光導波路10を一対のコネクタ20aで、直接接合するとして説明したが、一端に光導波路10側のアダプタ40aと嵌合するソケット41aを有し、他端に電子回路基板30a側のソケット41aと嵌合するアダプタ40aを有するハーネス等を用いて電子回路基板30aとを光導波路10とを接続するようにしてもよい。   Furthermore, in the above embodiment, the electronic circuit board 30a and the optical waveguide 10 are described as being directly joined by the pair of connectors 20a. However, the socket 41a that fits the adapter 40a on the optical waveguide 10 side is provided at one end. You may make it connect the optical circuit board 30a and the optical waveguide 10 using the harness etc. which have the adapter 40a fitted to the socket 41a by the side of the electronic circuit board 30a.

実施例の光電気複合基板の全体構成を表す説明図である。It is explanatory drawing showing the whole structure of the photoelectric composite board | substrate of an Example. 実施例の光電気複合基板の光学素子実装部分の構成を表す図1の部分的拡大図である。It is the elements on larger scale of FIG. 1 showing the structure of the optical element mounting part of the photoelectric composite board | substrate of an Example.

符号の説明Explanation of symbols

1・・・光電気複合基板、10・・・光導波路、11・・・コア、12・・・クラッド、14・・・発光素子、15・・・受光素子、16a、16b・・・光路変換部、20a、20b・・・コネクタ、22a、22b・・・ビア配線、23・・・バンプ、30a、30b・・・電子回路基板、31a、31b・・・IC、40a、40b・・・アダプタ、41a、41b・・・ソケット。
DESCRIPTION OF SYMBOLS 1 ... Photoelectric composite board | substrate, 10 ... Optical waveguide, 11 ... Core, 12 ... Cladding, 14 ... Light emitting element, 15 ... Light receiving element, 16a, 16b ... Optical path conversion Part, 20a, 20b ... connector, 22a, 22b ... via wiring, 23 ... bump, 30a, 30b ... electronic circuit board, 31a, 31b ... IC, 40a, 40b ... adapter , 41a, 41b... Sockets.

Claims (4)

光信号を送受信するための光学素子と、
該光学素子が実装され、該光学素子から出射されるか又は該光学素子に入射すべき光信号を伝送するための光路を有する光導波路と、
前記光学素子を介して電気信号を送信又は受信するための電子回路が組み込まれ、前記光導波路が前記光学素子の実装面とは反対側の面を介して積層された電子回路基板と、
該電子回路基板と前記光学素子とを電気的に接続するために、前記光導波路に、前記電子回路基板への積層面から前記光学素子の実装面へと貫通するように設けられた複数のビア配線と、
を備えた光電気複合基板であって、
前記光導波路と前記電子回路基板とに、それぞれ、前記光導波路側の各ビア配線と前記電子回路基板側の電気配線とを電気的に接続し、且つ、互いに嵌合可能な一対のコネクタを設けたことを特徴とする光電気複合基板。
An optical element for transmitting and receiving optical signals;
An optical waveguide mounted with the optical element and having an optical path for transmitting an optical signal to be emitted from or incident on the optical element;
An electronic circuit board in which an electronic circuit for transmitting or receiving an electrical signal via the optical element is incorporated, and the optical waveguide is laminated via a surface opposite to the mounting surface of the optical element;
In order to electrically connect the electronic circuit board and the optical element, a plurality of vias provided in the optical waveguide so as to penetrate from the laminated surface to the electronic circuit board to the mounting surface of the optical element Wiring and
A photoelectric composite substrate comprising:
Provided to the optical waveguide and the electronic circuit board are a pair of connectors that electrically connect the respective via wirings on the optical waveguide side and the electric wirings on the electronic circuit board side and can be fitted to each other. A photoelectric composite substrate characterized by the above.
前記光導波路は、可撓性を有することを特徴とする請求項1記載の光電気複合基板。   The photoelectric composite substrate according to claim 1, wherein the optical waveguide has flexibility. 光信号を送受信するための光学素子を実装可能で、該実装された光学素子から出射されるか又は該光学素子に入射すべき光信号を伝送するための光路を有する光導波路であって、
前記光学素子の実装面から裏面へと貫通するように、前記光学素子に電気信号を入出力するための複数のビア配線を形成すると共に、
前記光学素子の実装面とは反対側の面に、前記各ビア配線を外部の電子回路に着脱自在に接続するためのコネクタを設けたことを特徴とする光導波路。
An optical waveguide capable of mounting an optical element for transmitting and receiving an optical signal, and having an optical path for transmitting an optical signal to be emitted from the mounted optical element or incident on the optical element,
Forming a plurality of via wirings for inputting and outputting electrical signals to the optical element so as to penetrate from the mounting surface of the optical element to the back surface;
An optical waveguide, wherein a connector for detachably connecting each via wiring to an external electronic circuit is provided on a surface opposite to the mounting surface of the optical element.
光信号を送受信するための光学素子が実装され、該光学素子から出射されるか又は該光学素子に入射すべき光信号を伝送する光路を有する光学素子付光導波路であって、
前記光学素子の実装面から裏面へと貫通するように、前記光学素子に電気信号を入出力するための複数のビア配線を形成すると共に、
前記光学素子の実装面とは反対側の面に、前記ビア配線を外部の電子回路に着脱自在に接続するためのコネクタを設けたことを特徴とする光学素子付光導波路。
An optical element with an optical element on which an optical element for transmitting and receiving an optical signal is mounted and having an optical path for transmitting an optical signal to be emitted from the optical element or incident on the optical element,
Forming a plurality of via wirings for inputting and outputting electrical signals to the optical element so as to penetrate from the mounting surface of the optical element to the back surface;
An optical waveguide with an optical element, wherein a connector for detachably connecting the via wiring to an external electronic circuit is provided on a surface opposite to the mounting surface of the optical element.
JP2003313045A 2003-09-04 2003-09-04 Photoelectric composite board, optical waveguide, and optical waveguide with optical element Pending JP2005085819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313045A JP2005085819A (en) 2003-09-04 2003-09-04 Photoelectric composite board, optical waveguide, and optical waveguide with optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313045A JP2005085819A (en) 2003-09-04 2003-09-04 Photoelectric composite board, optical waveguide, and optical waveguide with optical element

Publications (1)

Publication Number Publication Date
JP2005085819A true JP2005085819A (en) 2005-03-31

Family

ID=34414122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313045A Pending JP2005085819A (en) 2003-09-04 2003-09-04 Photoelectric composite board, optical waveguide, and optical waveguide with optical element

Country Status (1)

Country Link
JP (1) JP2005085819A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156025A (en) * 2005-12-02 2007-06-21 Kyocera Corp Optical waveguide member, optical wiring board, and optical wiring module
JP2007156026A (en) * 2005-12-02 2007-06-21 Kyocera Corp Optical wiring module
JP2008147554A (en) * 2006-12-13 2008-06-26 Sumitomo Electric Printed Circuit Inc Optical module and electric equipment
WO2014141451A1 (en) * 2013-03-14 2014-09-18 株式会社日立製作所 Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus
CN106997108A (en) * 2016-01-25 2017-08-01 富士通光器件株式会社 Optical module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065805U (en) * 1983-10-13 1985-05-10 松下電工株式会社 Sequence control device
JPS60137458U (en) * 1984-02-23 1985-09-11 松下電工株式会社 optical coupling socket
JPH05343141A (en) * 1992-06-10 1993-12-24 Matsushita Electric Ind Co Ltd Printed board connecting device
JPH08265180A (en) * 1995-01-13 1996-10-11 Methode Electronics Inc Transceiver module and receptacle assembly
JP2000304953A (en) * 1999-04-20 2000-11-02 Toppan Printing Co Ltd Optical wiring layer and its manufacture, optical- electric wiring substrate and its manufacture, and mount substrate
JP2000340906A (en) * 1999-05-28 2000-12-08 Toppan Printing Co Ltd Optical/electrical wiring board, manufacture thereof and mounting board
JP2001183556A (en) * 1999-12-27 2001-07-06 Toppan Printing Co Ltd Multi-chip module board and multi-chip module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065805U (en) * 1983-10-13 1985-05-10 松下電工株式会社 Sequence control device
JPS60137458U (en) * 1984-02-23 1985-09-11 松下電工株式会社 optical coupling socket
JPH05343141A (en) * 1992-06-10 1993-12-24 Matsushita Electric Ind Co Ltd Printed board connecting device
JPH08265180A (en) * 1995-01-13 1996-10-11 Methode Electronics Inc Transceiver module and receptacle assembly
JP2000304953A (en) * 1999-04-20 2000-11-02 Toppan Printing Co Ltd Optical wiring layer and its manufacture, optical- electric wiring substrate and its manufacture, and mount substrate
JP2000340906A (en) * 1999-05-28 2000-12-08 Toppan Printing Co Ltd Optical/electrical wiring board, manufacture thereof and mounting board
JP2001183556A (en) * 1999-12-27 2001-07-06 Toppan Printing Co Ltd Multi-chip module board and multi-chip module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007156025A (en) * 2005-12-02 2007-06-21 Kyocera Corp Optical waveguide member, optical wiring board, and optical wiring module
JP2007156026A (en) * 2005-12-02 2007-06-21 Kyocera Corp Optical wiring module
JP4668049B2 (en) * 2005-12-02 2011-04-13 京セラ株式会社 Optical wiring module
JP4718312B2 (en) * 2005-12-02 2011-07-06 京セラ株式会社 Optical waveguide member, optical wiring board, optical wiring module, optical waveguide member manufacturing method, and optical wiring board manufacturing method
JP2008147554A (en) * 2006-12-13 2008-06-26 Sumitomo Electric Printed Circuit Inc Optical module and electric equipment
WO2014141451A1 (en) * 2013-03-14 2014-09-18 株式会社日立製作所 Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus
CN106997108A (en) * 2016-01-25 2017-08-01 富士通光器件株式会社 Optical module
JP2017134131A (en) * 2016-01-25 2017-08-03 富士通オプティカルコンポーネンツ株式会社 Optical module
CN106997108B (en) * 2016-01-25 2019-11-19 富士通光器件株式会社 Optical module

Similar Documents

Publication Publication Date Title
US7366380B1 (en) PLC for connecting optical fibers to optical or optoelectronic devices
US8469610B2 (en) Optical connection system with plug having optical turn
US7306378B2 (en) Method and apparatus providing an electrical-optical coupler
EP1723456B1 (en) System and method for the fabrication of an electro-optical module
JP5790769B2 (en) Optical module
US10337913B2 (en) Optoelectronic module for a contactless free-space optical link, associated multichannel modules, associated interconnection system, method of production and connection to a board
WO2013046416A1 (en) Optical module
JP2011028111A (en) Optical i/o array module and method of manufacturing the same
JP2004177985A (en) Photoelectronic interface device having reflecting surface and its manufacturing method
JP2011151402A (en) Surface mount (smt) connector for vcsel and photodiode array
US20110249947A1 (en) Opto-electronic transceiver module with castellated electrical turn
CN101452096A (en) Optical interconnection device
US8348522B2 (en) Attachable components for providing an optical interconnect between/through printed wiring boards
CN111566532A (en) Surface mount package for single mode electro-optic modules
TWI402549B (en) Optoelectric interconnection module
US8469606B2 (en) Optoelectronic interconnection system
KR20050072736A (en) Optical interconnect using flexible optical printed circuit board
JP2005084126A (en) Electro-optical composite substrate, optical waveguide, and optical waveguide with optical element
WO2004019100A1 (en) Optical transmission/reception module
JP2005085819A (en) Photoelectric composite board, optical waveguide, and optical waveguide with optical element
JP2006060004A (en) Optical component supporting substrate and its production method
KR20060080901A (en) Device of signal delivery using optical flexible pcb
JP2007052281A (en) Optical communication module and optical communication network
JP2021067851A (en) Optical transceiver
US20230094831A1 (en) Media adaptor for multimode waveguide interconnects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817